The hep-paper package*

Jan Hajer ${ }^{\dagger}$
Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium

2020/08/01

Abstract

The hep-paper package aims to provide a single style file containing most configurations and macros necessary to write appealing publications in High Energy Physics. Instead of reinventing the wheel by introducing newly created macros hep-paper preferably loads third party packages as long as they are lightweight enough.

Contents

1 Introduction 2
1.1 Options 2
1.1.1 Deactivation 2
1.1.2 Compatibility 3
1.1.3 Reactivation 3
2 Macros and environments 3
2.1 Title page 3
2.2 Text 4
2.2.1 References and footnotes 4
2.2.2 Acronyms 5
2.3 Math 5
2.3.1 Physics 7
2.4 Floats 8
2.5 Bibliography 9
3 Conclusion 9

[^0]
1 Introduction

For usual publications it is enough to load additionally to the article class without optional arguments only the hep-paper package [1].

```
\documentclass{article}
\usepackage{hep-paper}
```

The most notable changes after loading the hep-paper package is the change of some $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ defaults. The paper and font sizes are set to A 4 and 11 pt , respectively. Additionally, the paper geometry is set to the values known from the (depreciated) a4wide package [2] using the geometry package [3]. Furthermore, the font is changed to lmodern [4] with microtype [5] optimizations. Finally, portable document format (PDF) hyperlinks are implemented with the hyperref package [6].

1.1 Options

paper The paper $=\langle$ format \rangle option loads the specified paper format. The possible \langle formats \rangle are: a0, a1, a2, a3, a4, a5, a6, b0, b1, b2, b3, b4, b5, b6, c0, c1, c2, c3, c4, c5, c6, ansia, ansib, ansic, ansid, ansie, letter, executive, legal. The default is a4.
font The font=\langle size \rangle option loads the specified font size. The possible \langle sizes \rangle are: 8 pt , $9 \mathrm{pt}, 10 \mathrm{pt}, 11 \mathrm{pt}, 12 \mathrm{pt}, 14 \mathrm{pt}, 17 \mathrm{pt}, 20 \mathrm{pt}$. The default is 11 pt .
lang The lang $=\langle n a m e\rangle$ option switches the document language to the chosen value. The possible values are given by the babel package [7]. The default is british.
sansserif The sansserif option switches the document including math to the sans serif font shape.
parskip The parskip option makes use of the parskip package [8] and changes how two paragraphs are separated from each other. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ default is separation via indentation the parskip option switches to separation via vertical space. ${ }^{1}$

1.1.1 Deactivation

The hep-paper package loads few bigger packages which have a large impact on the document. The deactivation options prevent such adjustments.
defaults The defaults option prevents the adjustment of the page geometry and the font size set by the document class.
title The title=false option deactivates the title page adjustments.
bibliography The bibliography= $\langle k e y\rangle$ option prevents the automatic loading of the biblatex package [9] if $\langle k e y\rangle=f a l s e . ~ O t h e r w i s e ~ t h e ~\langle k e y\rangle ~ i s ~ p a s s e d ~ a s ~ s t y l e ~ s t r i n g ~ t o ~ t h e ~$ biblatex package.

[^1]glossaries The glossaries=false option deactives acronyms and the use of the glossaries package [10].
references The references=false option prevents the cleveref pacakge [11] from being loaded and deactivates further redefinitions of reference macros.

1.1.2 Compatibility

The compatibility options activate the compatibility mode for certain classes and packages used for publications in high energy physics. They are mostly suitable combinations of options described in the previous section. If HEP-PAPER is able to detect the presence of such a class or package, i.e. if it is loaded before the hepPAPER package, the compatibility mode is activated automatically.
beamer The beamer option activates the beamer [12] compatibility mode.
jhep The jhep option activates the JHEP [13] compatibility mode.
jcap The jcap option activates the JCAP [14] compatibility mode.
revtex The revtex option activates the $\mathrm{REVT}_{\mathrm{EX}}$ [15] compatibility mode.
pos The pos option activates the PoS compatibility mode.

1.1.3 Reactivation

The hep-paper package deactivates unrecommended macros, which can be reactivated manually.
manualplacement The manualplacement option reactivates manual float placement.
eqnarray The eqnarray option reactivates the depreciated eqnarray environment.

2 Macros and environments

2.1 Title page

\author In order to facilitate multiple authors with different affiliations the authblk pack\affiliation age [16] is loaded. The following lines add e.g. two authors with different affiliations
\email \author[1]\{Author one \email\{Email one\}\}

\affiliation[1]\{Affiliation one\}
\author[2]\{Author two \email\{Email two\}\}
\affiliation [1,2]\{Affiliation two\}

\title The PDF meta information is set according to the \title\{ \langle text $\rangle\}$ and \author $\{\langle t e x t\rangle\}$ information.

\backslash preprint The $\backslash \operatorname{preprint}\{\langle$ numer $\rangle\}$ macro places a pre-print number in the upper right corner of the title page.
abstract The abstract environment is adjusted to not start with an indentation.

2.2 Text

Hyphenation is provided by the babel package [7] and quotation commands are provided by the csquotes package [17] recommended by the babel pack-
\enquote age. The latter package provides the convenient macros \enquote $\{\langle t e x t\rangle\}$ and \backslash MakeOuterQuote\{"\} allowing to leave the choice of quotation marks to $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ and use " instead of the pair " and '', respectively.
\eg The foreign package [18] defines macros such as \eg, \ie, \cf, and \vs which are typeset as e.g., i.e., cf., and vs.
\no The \no\{〈number〉\} macro is typeset as № 123.
\software The \backslash software $[\langle$ version $\rangle]\{\langle$ name $\rangle\}$ macro is typeset as HEP-PAPER v1.4.
\online The \online\{ $\langle u r l\rangle\}\{\langle t e x t\rangle\}$ macro combines the features of the $\backslash \mathrm{href}\{\langle u r l\rangle\}$ $\{\langle t e x t\rangle\}[6]$ and the $\backslash u r l\{\langle t e x t\rangle\}$ [19] macros, resulting in e.g. ctan.org/pkg/ hep-paper.

The inlinelist and enumdescript environments are defined using the enumitem package [20].
inlinelist The three main points are
\begin\{inlinelist\} }
- one
- two
- three
\end\{inlinelist\} }
enumdescript \begin\{enumdescript\}[label=\Roman*)] }
- \{First\} one
- \{Second\} two
- \{Third\} three
\end\{enumdescript\} }

The three main points are i) one, ii) two, and iii) three.
\textsc A bold versions Small Caps and a sans serif version of Small Caps is provided, using the sansmathfonts package [21].
\underline The \underline macro is redefined to allow line-breaks using the ulem package [22].
\overline The \overline macro is extended to also overline text outside of math environments. If the parskip option is activated the \useparindent macro switches back the usual parindent mode, while the \useparskip macro switches to the parskip mode.

\useparindent

2.2.1 References and footnotes

\cref References are extended with the cleveref package [11], which allows to e.g. just type $\backslash \operatorname{cref}\{\langle k e y\rangle\}$ in order to write 'figure 1'. Furthermore, the cleveref package allows to reference multiple objects within one \cref $\{\langle$ key1,key 2$\rangle\}$.
\cite Citations are adjusted to not start on a new line in order to avoid the repeated use
of $\sim \backslash$ cite $\{\langle k e y\rangle\}$.
\backslash ref References are also adjusted to not start on a new line and are redefined in order to \eqref
handle multiple references at once.
\subref Footnotes are adjusted to swallow white space before the footnote mark and at the beginning of the footnote text.
\footnote

2.2.2 Acronyms

\acronym The \acronym $\left\langle{ }^{*}\right\rangle[\langle$ typeset abbreviation $\rangle]\{\langle$ abbreviation $\rangle\}\left\langle{ }^{*}\right\rangle\{\langle$ definition $\rangle\}[\langle$ plural
\shortacronym definition \rangle] macro generates the singular $\backslash\langle$ abbreviation \rangle and plural $\backslash\langle a b b r e v i a t i o n ~\rangle s$ macros. The first star prevents the addition of an 's' to the abbreviation plural. The
\longacronym second star restores the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ default of swallowing subsequent white space. The long form is only shown at the first appearance of these macros, later appearances generate the abbreviation with a hyperlink to the long form. Capitalization at the beginning of paragraphs and sentences is ensured. The \shortacronym and \longacronym macros are drop-in replacements of the \acronym macro showing only the short or
\resetacronym
\dummyacronym long form of their acronym. The first use form of the acronym can be enforced by resetting the acronym counter with \backslash resetacronym $\{\langle k e y\rangle\}$. If the acronym counter equals one at the end of the document the short form of the acronym is not introduced. Placing a \dummyacronym $\{\langle k e y\rangle\}$ at the end of the document ensures that the short form is introduced.

2.3 Math

The mathtools [23] and amssymb [24] packages are loaded. They in turn load the \backslash mathbf $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-\mathrm{EAT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ amsmath [25] and amsfonts [24] packages. Bold math, via \mathbf is improved by the bm package [26], i.e. ($А Ь \Gamma \boldsymbol{A} \boldsymbol{A} \Gamma \boldsymbol{\delta})$. Macros switching to bfseries such as \backslash section $\{\langle t e x t\rangle\}$ are ensured to also typeset math in bold. This may cause
\text trouble if bold symbols carry an additional non-implicit meaning. The \backslash text $\{\langle t e x t\rangle\}$ macro makes it possible to write text within math mode, i.e. ($\mathrm{Ab} \Gamma \bar{\delta} \mathbf{A b} \boldsymbol{\Gamma} \mathbf{\delta})$. The often used \backslash mathrm $\{\langle t e x t\rangle\}$ and $\{\backslash r m\langle t e x t\rangle\}$ macros are not the correct tool for this purpose, as they switch to roman font shape. This behaviour conflicts e.g. with the
\backslash mathsf sansserif package option. The math sans serif alphabet is redefined to be italic sans serif if the main text is serif and italic serif if the main text is sans serif, i.e.
\backslash mathscr $(A b \Gamma \delta \boldsymbol{A} \boldsymbol{\Gamma} \boldsymbol{\delta})$. The \backslash mathcal font i.e. $(\mathcal{A B C D})$ is accompanied by the \backslash mathscr font
\backslash mathbb i.e. $(\mathscr{A} \mathscr{B} \mathscr{C} \mathscr{D})$. The \mathbb font is improved by the doublestroke package [27] and adjusted depending on the sansserif option i.e. (Alh1). Finally, the $\backslash m a t h f r a k$ font
\backslash mathfrak is also available i.e. $(\mathfrak{A a b b} 12)$. Details about the font handling in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ can be found in reference [28].
\nicefrac The \frac\{\{number $\rangle\}\{\langle$ number $\rangle\}$ macro is accompanied by \backslash nicefrac $\{\langle$ number $\rangle\}$ $\{\langle$ number $\rangle\}$ and $\backslash f l a t f r a c\{\langle n u m b e r\rangle\}\{\langle n u m b e r\rangle\}$ leading to $\frac{1}{2}, 1 / 2$, and $1 / 2$. Diagonal matrix \diag and signum \sgn operators are defined.

The \backslash mathdef $\{\langle$ name $\rangle\}[\langle$ arguments $\rangle]\{\langle$ code $\rangle\}$ macro (re-)defines macros only within
\backslash mathdef
math mode without changing the text mode definition.
\i The imaginary unit i and the differential d are defined using this functionality.
\d For longer paper it can be useful to re-number the equation in accordance with the
\numberwithin section numbering \numberwithin\{equation\}\{section\}. In order to further reduce the size the of equation counter it can be useful to wrap align environments with multiple rows in a subequations environment. Both macros are provided by the amsmath package.
eqnarray The depreciated eqnarray environment is undefined as long this behaviour is not prevented by the eqnarray package option. The split, multline, align, multlined, aligned, alignedat, and cases environments of the amsmath and mathtools packages should be used instead.
equation Use the equation environment for short equations.

```
\begin{equation}
left = right \ .
\end{equation}
```

multline Use the multline environment for longer equations.

```
\begin{multline}
left = right 1 \\
+ right 2 \ .
\end{multline}
```

split Use the split sub environment for equations in which multiple equal signs should be aligned.

```
\begin{equation} \begin{split}
                left &= right 1 \\
                &= right 2 \.
\end{split} \end{equation}
```

$$
\begin{align*}
& \text { left }=\boxed{\text { right } 1} \\
&=\text { right } 2 \tag{3}\\
& \hline
\end{align*}
$$

align Use the align environment for the vertical alignment and horizontal distribution of multiple equations.

```
\begin\{subequations\} \begin\{align\} }
left \&= right \\, \&
left \& = right \\, \\
left \&= right \\, \&
left \& \(=\) right \(\backslash\).
```

\end\{align\} \end\{subequations\} }
aligned Use the aligned environment within a equation environment if the aligned equations should be labeled with a single equation number.
multlined Use the multlined environment if either split or align contain very long lines.

```
\begin{equation} \begin{split}
    left &= right 1 \\ &=
    \begin{multlined}[t]
    right 2 \\ + right 3 \ .
    \end{multlined}
\end{split} \end{equation}
```

$$
\begin{align*}
& \text { left }=\begin{array}{|r|}
\text { right } 1 \\
\end{array} \\
&=\frac{\text { right } 2}{+ \text { right } 3} . \tag{5}
\end{align*}
$$

alignat Use the alignat environment together with the \mathllap macro for the alignment of multiple equations with vastly different lengths.

```
\begin{subequations}
\begin{alignat}{2}
left &= long right && \ , \\
left = long right 
le. 2}= \mathrm{ ri. 2},\quadle. 3= ri. 3.
\mathllap{le. 3 = ri. 3} & \ .
```

\end\{alignat\} \end\{subequations\} }
As a rule of thumb if you have to use \notag, \nonumber, or perform manual spacing via \quad you are probably using the wrong environment.

2.3.1 Physics

Greek letters are adjusted to always be italic and upright in math and text mode, respectively, using the fixmath [29] and alphabeta [30] packages. This allows differentiations like

$$
\begin{equation*}
\sigma=5 \mathrm{fb}, \quad \text { at } 5 \sigma \text { C.L. }, \quad \mu=5 \mathrm{~cm}, \quad l=5 \mu \mathrm{~m} \tag{7}
\end{equation*}
$$

and e.g. to distinguish gauge ν and mass ν eigenstates in models with massive neutrinos. Additionally, Greek letters can also be directly typed using Unicode.
\ev The physics package [31] provides additional macros such as
$\backslash p d v$
\comm

$$
\begin{equation*}
\langle\phi\rangle, \quad \frac{\partial^{n} f}{\partial x^{n}}, \quad[A, B], \quad \mathcal{O}\left(x^{2}\right),\left.\quad x\right|_{0} ^{\infty}, \quad \operatorname{det}(M) \tag{8}
\end{equation*}
$$

\order
The \cancel\{〈characters $\rangle\}$ macro from the cancel [32] package and the \slashed $\{\langle$ character $\rangle\}$ macro from the slashed [33] package allow to cancel math and use
\backslash slashed the Dirac slash notation i.e. $\not \partial$, respectively.
\overleftright A better looking over left right arrow is defined i.e. $\overleftrightarrow{\partial}$
\unit The correct spacing for units, cf. equation (7), is provided by the macro \unit [\langle value \rangle]
\inv $\{\langle u n i t\rangle\}$ from the units package [34] which can also be used in text mode. The macro \inv $[\langle$ power $\rangle]\{\langle$ text $\rangle\}$ allows to avoid math mode also for inverse units such as $5 \mathrm{fb}^{-1}$ typeset via \unit[5]\{\inv\{fb\}\}.

```
\begin{panels}{.6}
code
\panel{.4}
\begin{tabular}...\end{tabular}
\end{panels}
```

（a）Code for this panel environment．

（b）The booktabs and multirow fea－ tures．

Table 1：Example use of the panels environment in Panel（a）and the features from the booktabs and multirow packages in Panel（b）．

2．4 Floats

figure Automatic float placement is adjusted to place a single float at the top of pages and to reduce the number of float pages，using the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ macros．
\setcounter\｛bottomnumber\}\{0\} no floats at the bottom of a page (default 1)
\setcounter\｛topnumber\}\{1\} a single float at the top of a page (default 2)
\setcounter\｛dbltopnumber\}\{1\} same for full widths floats in two-column mode
\{.1\} large floats are allowed (default 0.2)
\{.9\}
（default 0．7）
\{.9\}
（default 0．7）
\{.8\} float pages must be full (default 0.5)
Additionally，manual float placement is deactivated but can be reactivated using the manualplacement package option．It is however recommended to archive the desired design by adjusting above macros．The most useful float placement is usually
\raggedright archived by placing the float in front of the paragraph it is referenced in first．The float environments have been adjusted to center their content．The usual behaviour can be reactivated using \raggedright．
panels The panels environment makes use of the subcaption package［35］．It provides
\panel
sub－floats and takes as mandatory argument either the number of sub－floats（de－ fault 2）or the width of the first sub－float as fraction of the \linewidth．Within the \begin\｛panels\}[〈vertical alignment \rangle ］$\{\langle$ width $\rangle\}$ environment the \panel macro ini－ tiates a new sub－float．In the case that the width of the first sub－float has been given as an optional argument to the panels environment the \backslash panel $\{\langle$ width $\rangle\}$ macro takes the width of the next sub－float as mandatory argument．The example code is presented in table 1a．
tabular The booktabs［36］and multirow［37］packages are loaded enabling publication qual－ ity tabulars such as in table 1b．
\graphic The graphicx package［38］is loaded and the \graphic［ \langle width $\rangle]\{\langle$ figure $\rangle\}$ macro \graphics is defined，which is a wrapper for the \includegraphics\｛〈figure $\rangle\}$ macro and takes the figure width as fraction of the \linewidth as optional argument（de－ fault 1）．If the graphics are located in a sub－folder its path can be indicated by \graphics\｛〈subfolder〉\}.

2.5 Bibliography

\bibliography \printbibliography

The biblatex package [9] is loaded for bibliography management. The user has to add the line \bibliography\{ $\langle m y . b i b\rangle\}$ to the preamble of the document and \printbibliography at the end of the document. The bibliography is generated by Biber [39]. biblatex is extended to be able to cope with the collaboration and reportNumber fields provided by inspirehep.net and a bug in the volume number is fixed. Additionally, the PubMed IDs are recognized and ctan.org, github.com, gitlab.com, bitbucket.org, launchpad.net, sourceforge.net, and erratum hepforge.org are valid eprinttypes. Errata can be included using the related feature.

```
\article{\langlekey1\rangle,
    ..,
    relatedtype="erratum",
    related="\langlekey2\rangle",
}
\article{\langlekey2\rangle,
}
```


3 Conclusion

The hep-paper package provides a matching selection of preloaded packages and additional macros enabling the user to focus on the content instead of the layout by reducing the amount of manual tasks. The majority of the loaded packages are fairly lightweight, the others can be deactivated with package options.
arxiv-collector arxiv.org [40] requires the setup dependent bbl files instead of the original bib files, which causes trouble if the local $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ version differs from the one used by arXiv. The arxiv-collector python script [41] alleviates this problem by collecting all files necessary for publication on arXiv (including figures).

References

[1] J. Hajer. 'The hep-paper package. Publications in high energy physics' (2019). CTAN: hep-paper. DOI: 10.5281/zenodo. 3606436. GitHub: janhajer / hep - paper.
[2] A. Holt and J.-F. Lamy. 'The a4wide package. "Wide" a4 layout' (1986). depreciated and not used. CTAN: a4wide.
[3] D. Carlisle and H. Umeki. 'The geometry package. Flexible and complete interface to document dimensions' (1996). CTAN: geometry. GitHub: davidcarlisle/geometry.
[4] B. Jackowski and J. Nowacki. 'Latin Modern Family of Fonts. Latin modern fonts in outline formats' (2003). CTAN: lm. URL: gust.org.pl/projects/efoundry / latin-modern.
[5] R. Schlicht. 'The microtype package. Subliminal refinements towards typographical perfection' (2004). CTAN: microtype.
[6] $L^{A} T_{E} X 3$ Project. 'Hypertext marks in $\mathrm{IAT}_{E} X$: a manual for hyperref. Extensive support for hypertext in $\mathrm{LAT}_{\mathrm{E}}{ }^{\prime}$ (1995). CTAN: hyperref. GitHub: latex3/ hyperref.
[7] J. Braams, J. Bezos and at al. 'Babel Localization and internationalization. Multilingual support for Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ ' (1989). CTAN: babel. GitHub: latex3 / babel.
[8] R. Fairbairns, F. Mittelbach and H. Partl. 'The parskip package. Layout with zero \parindent, non-zero \parskip' (1989). CTAN: parskip. GitHub: FrankMittelbach / fmitex.
[9] P. Lehman et al. 'The biblatex Package. Sophisticated Bibliographies in $\mathrm{IAT}_{\mathrm{E} X}$ ' (2006). CTAN: biblatex. GitHub: plk/biblatex.
[10] N. Talbot. 'The glossaries package. Create glossaries and lists of acronyms' (2007). CTAN: glossaries.
[11] T. Cubitt. 'The cleveref package. Intelligent cross-referencing' (2006). CTAN: cleveref. URL: dr-qubit. org/cleveref.
[12] T. Tantau, J. Wright and V. Miletić. 'The beamer class. A LATEX class for producing presentations and slides' (2003). CTAN: beamer. GitHub: josephwright/ beamer.
[13] SISSA Medialab. 'The JHEP package' (1997). URL: jhep. sissa.it/jhep/ help / JHEP _TeXclass . jsp.
[14] SISSA Medialab. 'The JCAP package' (2002). URL: jcap.sissa.it/jcap/ help / JCAP _TeXclass . jsp.
[15] American Physical Society. 'The REVTEX class. Styles for various Physics Journals' (1999). CTAN: revtex. URL: journals.aps.org/revtex.
[16] P. W. Daly. 'A LATEX Package to Prepare Author and Affiliation Blocks. Support for footnote style author/affiliation' (2001). CTAN: authblk.
[17] P. Lehman and J. Wright. 'The csquotes Package. Context sensitive quotation facilities' (2003). CTAN: csquotes.
[18] P. G. Ratcliffe. 'The foreign package for $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$. Systematic treatment of "foreign" words in documents' (2012). CTAN: foreign.
[19] D. Arseneau. 'The url package. Verbatim with URL-sensitive line breaks' (1996). CTAN: url.
[20] J. Bezos. 'Customizing lists with the enumitem package. Control layout of itemize, enumerate, description' (2003). CTAN: enumitem. URL: texnia.com/ enumitem.html. GitHub: jbezos / enumitem.
[21] A. Barton. 'The sansmathfonts package. Correct placement of accents in sansserif maths' (2013). CTAN: sansmathfonts.
[22] D. Arseneau. 'The ulem package. Package for underlining' (1989). CTAN: ulem.
[23] L. Madsen et al. 'The mathtools package. Mathematical tools to use with amsmath' (2004). CTAN: mathtools.
[24] American Mathematical Society. 'The amsfonts package. TEX fonts from the American Mathematical Society' (1995). CTAN: amsfonts. URL: ams . org/ tex / amsfonts.
[25] $L^{A} T_{E} X$ Team. 'The amsmath package. AMS mathematical facilities for IAT $_{E} X$ ' (1994). CTAN: amsmath. URL: ams.org/tex/amslatex.
[26] $L^{A} T_{E} X$ Team. 'The bm package. Access bold symbols in maths mode' (1993). CTAN: bm.
[27] O. Kummer. 'The doublestroke font. Typeset mathematical double stroke symbols' (1995). CTAN: doublestroke.
[28] $L^{A} T_{E} X$ Team. 'EATEX 2_{ε} font selection. Docmentation of IATEX font commands' (1995). CTAN: fntguide.
[29] W. Schmidt. 'The fixmath package for $\operatorname{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$. Make maths comply with ISO 31-0:1992 to ISO 31-13:1992' (2000). CTAN: fixmath.
[30] G. Milde. 'The alphabeta package. LICR macros and encoding definition files for Greek' (2013). CTAN: greek-fontenc.
[31] S. C. de la Barrera. 'The physics package. Macros supporting the Mathematics of Physics' (2012). CTAN: physics.
[32] D. Arseneau. 'The cancel package. Place lines through maths formulae' (2013). CTAN: cancel.
[33] D. Carlisle. 'The slashed package. Put a slash through characters' (1987). CTAN: slashed.
[34] A. Reichert. 'The units and nicefrac packages. Typeset units' (1998). CTAN: units.
[35] A. Sommerfeldt. 'The subcaption package. Support for sub-captions' (2007). CTAN: subcaption. GitLab: axelsommerfeldt/caption.
[36] D. Els and S. Fear. 'The booktabs package. Publication quality tables in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ ' (1995). CTAN: booktabs.
[37] P. van Oostrum and J. Leichter. 'The multirow, bigstrut and bigdelim packages. Create tabular cells spanning multiple rows' (1994). CTAN: multirow.
[38] D. Carlisle and S. Rahtz. 'Packages in the "graphics" bundle. Enhanced support for graphics' (1994). CTAN: graphicx.
[39] F. Charette and P. Kime. 'biber. Backend processor for BibIATEX' (2009). GitHub: plk/biber. sourceforge: biblatex-biber.
[40] arXiv Team. arXiv. free distribution service and an open archive for scholarly articles. Cornell University. 1991. URL: arxiv.org.
[41] D. Sutherland. 'arxiv-collector. A little Python script to collect IATEX sources for upload to the arXiv' (2018). GitHub: dougalsutherland/arxivcollector.

[^0]: *This document corresponds to hep-paper v1.4.
 †jan.hajer@uclouvain.be

[^1]: ${ }^{1}$ Although the parskip option is used for this document, it is recommended only for very few document types such as technical manuals or answers to referees.

