\documentclass[12pt,a4paper]{article} \usepackage[T1]{fontenc} % not necessary, but recommended \usepackage{halloweenmath} \usepackage{hyperref} % just for "\hypersetup" \title{Sample Halloween Math} \author{A.~U.~Thor} \date{January~6, 2017} \hypersetup{ pdftitle = {Sample Halloween Math}, pdfauthor = {A. U. Thor}, pdfsubject = {Sample source file for the halloweenmath package}, pdfkeywords = {Halloween, math, scary mathematical symbols}, pdfcreationdate = {D:20170106000000}, pdfmoddate = {D:20170106000000} } \begin{document} \maketitle A reduction my students are likely to make: \[\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\] The same reduction as an in-line formula: \(\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\). Now with limits: \[ \mathwitch_{i=1}^{n} \frac {\text{$i$-th magic term}} {\text{$2^{i}$-th wizardry}} \] And repeated in-line: \( \mathwitch_{i=1}^{n} x_{i}y_{i} \). The \texttt{bold} math version is honored:\mathversion{bold} \[ \mathwitch* \genfrac{<}{>}{0pt}{} {\textbf{something terribly}}{\textbf{complicated}} = 0 \] Compare it with \texttt{normal} math\mathversion{normal}: \[ \mathwitch* \genfrac{<}{>}{0pt}{} {\text{something terribly}}{\text{complicated}} = 0 \] In-line math comparison: {\boldmath $\mathwitch* f(x)$} versus $\mathwitch* f(x)$. There is also a left-facing witch: \[\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\] And here is the in-line version: \(\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\). Test for \verb|\dots|: \[ \mathwitch_{i_{1}=1}^{n_{1}} \dots \mathwitch_{i_{p}=1}^{n_{p}} \frac {\text{$i_{1}$-th magic factor}} {\text{$2^{i_{1}}$-th wizardry}} \pumpkin\dots\pumpkin \frac {\text{$i_{p}$-th magic factor}} {\text{$2^{i_{p}}$-th wizardry}} \] And repeated in-line: \( \mathwitch\dots\mathwitch_{i=1}^{n} x_{i}y_{i} \). \bigbreak Now the pumpkins. First the \texttt{bold} math version:\mathversion{bold}: \[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \] Then the \texttt{normal} one\mathversion{normal}: \[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \] In-line math comparison: {\boldmath \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \)} versus \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \). Close test: {\boldmath $\bigoplus$}$\bigoplus$. And against the pumpkins: {\boldmath $\bigpumpkin$}$\bigpumpkin\bigoplus${\boldmath $\bigoplus$}. In-line, but with \verb|\limits|: \( \bigoplus\limits_{h=1}^{m}\bigpumpkin\limits_{k=1}^{n} P_{h,k} \). Binary: \( x\pumpkin y \neq x\oplus y \). And in display: \[ a\pumpkin\frac{x\pumpkin y}{x\oplus y}\otimes b \] Close test: {\boldmath $\oplus$}$\oplus$. And with the pumpkins too: {\boldmath $\pumpkin$}$\pumpkin\oplus${\boldmath $\oplus$}. In general, \[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \] \begingroup \bfseries\boldmath The same in bold: \[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \] \endgroup Other styles: \( \frac{x\pumpkin y}{2} \), exponent~$Z^{\pumpkin}$, subscript~$W_{\!x\pumpkin y}$, double script \( 2^{t_{x\pumpkin y}} \). \bigbreak Clouds. A hypothetical identity: \( \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \). Now the same identity set in display: \[ \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \] Now in smaller size: \( \frac{\sin x+\cos x}{\mathcloud} = 1 \). Specular clouds, \texttt{bold}\ldots\mathversion{bold} \[ \reversemathcloud \longleftrightarrow \mathcloud \] \ldots and in \texttt{normal} math.\mathversion{normal} \[ \reversemathcloud \longleftrightarrow \mathcloud \] In-line math comparison: {\boldmath \( \reversemathcloud \leftrightarrow \mathcloud \)} versus \( \reversemathcloud \leftrightarrow \mathcloud \). Abutting: {\boldmath $\mathcloud$}$\mathcloud$. \bigbreak Ghosts: \( \mathleftghost \mathghost \mathrightghost \mathghost \mathleftghost \mathghost \mathrightghost \). Now with letters: \( H \mathghost H \mathghost h \mathghost ab \mathghost f \mathghost wxy \mathghost \), and also \( 2\mathghost^{3} + 5\mathleftghost^{\!2}-3\mathrightghost_{i} = 12\mathrightghost_{j}^{4} \). Then, what about~$x^{2\mathghost}$ and \( z_{\!\mathrightghost+1} = z_{\!\mathrightghost}^{2} + z_{\mathghost} \)? In subscripts: \begin{align*} F_{\mathghost+2} &= F_{\mathghost+1} + F_{\mathghost} \\ F_{\!\mathrightghost+2} &= F_{\!\mathrightghost+1} + F_{\!\mathrightghost} \end{align*} Another test: \( \mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost \). We should also try this: \( \mathrightghost \mathleftghost \mathrightghost \mathleftghost \). Extensible arrows: \begin{gather*} A \xrightwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B \xrightwitchonbroom{x+z} C \xrightwitchonbroom{} D \\ A \xrightwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B \xrightwitchonbroom*{x+z} C \xrightwitchonbroom*{} D \\ A \xleftwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B \xleftwitchonbroom*{x+z} C \xleftwitchonbroom*{} D \\ A \xleftwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B \xleftwitchonbroom{x+z} C \xleftwitchonbroom{} D \end{gather*} And \( \overrightwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \( \overrightwitchonbroom{x_{1}+\dots+x_{n}}=0 \); or \( \overleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \( \overleftwitchonbroom{x_{1}+\dots+x_{n}}=0 \). Hovering ghosts: \( \overrightswishingghost{x_{1}+\dots+x_{n}}=0 \). You might wonder whether there is enough space left for the swishing ghost; let's try again: \( \overrightswishingghost{(x_{1}+\dots+x_{n})y}=0 \). As you can see, there is enough room. Lorem ipsum dolor sit amet consectetur adipisci elit. And \( \overrightswishingghost{\mathstrut} \) too. \begin{gather*} A \xrightswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B \xrightswishingghost{x+z} C \xrightswishingghost{} D \\ A \xleftswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B \xleftswishingghost{x+z} C \xleftswishingghost{} D \end{gather*} Another hovering ghost: \( \overleftswishingghost{x_{1}+\dots+x_{n}}=0 \).. Lorem ipsum dolor sit amet consectetur adipisci elit. Ulla rutrum, vel sivi sit anismus oret, rubi sitiunt silvae. Let's see how it looks like when the ghost hovers on a taller formula, as in \( \overrightswishingghost{H_{1}\oplus\dots\oplus H_{k}} \). Mmmh, it's suboptimal, to say the least.\footnote{We'd better try \( \underleftswishingghost{y_{1}+\dots+y_{n}} \), too; well, this one looks good!} Under ``arrow-like'' symbols: \( \underleftswishingghost{x_{1}+\dots+x_{n}}=0 \) and \( \underrightswishingghost{x+y+z} \). There are \( \underleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) and \( \underrightwitchonbroom*{x+y+z} \) as well. \bigbreak A comparison between the ``standard'' and the ``script-style'' over\slash under extensible arrows: \begin{align*} \overrightarrow{f_{1}+\dots+f_{n}} &\neq\overscriptrightarrow{f_{1}+\dots+f_{n}} \\ \overleftarrow{f_{1}+\dots+f_{n}} &\neq\overscriptleftarrow{f_{1}+\dots+f_{n}} \\ \overleftrightarrow{f_{1}+\dots+f_{n}} &\neq\overscriptleftrightarrow{f_{1}+\dots+f_{n}} \\ \underrightarrow{f_{1}+\dots+f_{n}} &\neq\underscriptrightarrow{f_{1}+\dots+f_{n}} \\ \underleftarrow{f_{1}+\dots+f_{n}} &\neq\underscriptleftarrow{f_{1}+\dots+f_{n}} \\ \underleftrightarrow{f_{1}+\dots+f_{n}} &\neq\underscriptleftrightarrow{f_{1}+\dots+f_{n}} \end{align*} \end{document}