
Grundgesetze.sty for LATEX2e Documentation

Marcus Rossberg
University of Connecticut

marcus.rossberg@uconn.edu

Version 1.01 2014/03/22

Grundgesetze.sty is a LATEX2e package for typesetting Gottlob Frege’s begriffs-
schrift [concept-script] formalism in the style of his Grundgesetze der Arithmetik
(1893/1903). Grundgesetze.sty was developed for the 2013 English edition of
Frege’s book.1 The package is based on Josh Parsons’s begriff.sty which renders
the formalism in the style of Frege’s earlier work, Begriffsschrift (1879). It was
amended by Richard G. Heck Jr., J. J. Green, Agust́ın Rayo, and Marcus Ross-
berg. Thanks to Philip A. Ebert for testing, comments, and suggestions. Note
that Frege’s defined function symbols are not rendered by this package, but rather
by J. J. Green’s fge.sty.

1 Options

At present the only package option is bguq, which causes the package to use the
bguq font for an alternative universal quantifier (concavity). Of course, one must
have the bguq font installed to use this option, but it is included in recent versions
of the big TEX distrubtions.

2 Basic Commands

The horizontal,\GGhorizontal

The negation-stroke,\GGnot

Conditional-stroke: called as \GGconditional{p}{q}} yields q
p

(i.e., ‘p ⊃ q’)\GGconditional

Concavity: called as \GGquant{\mathfrak a} gives a (i.e., universal quan-\GGquant

tifier, ‘a’ is the quantified variable)
Judgement-stroke,\GGjudge

Definition-stroke,\GGdef

Automatically scaling brackets, \GGbracket{\ldots} yields (. . .) (see exam-\GGbracket

ples)
Analogous square brackets, [. . .]\GGsqbracket

A complete list of commands and compatibility synonymns in the package can
be found in Table 4, and the lengths parameterising the appearance of the output
in Table 5.

1Gottlob Frege: Basic Laws of Arithmetic. Translated and edited by Philip A. Ebert and
Marcus Rossberg. Oxford 2013.

1

2.1 Examples

• \GGjudge \GGquant{\mathfrak a} \mathfrak a = \mathfrak a

yields
a a = a

• \GGjudge \GGnot \GGquant{\mathfrak F} \GGnot

\GGquant{\mathfrak a} \mathfrak{Fa}

yields
F a Fa

• \GGjudge \GGconditional{(\GGhorizontal p)}{p}

yields
p
(p)

• \GGjudge \GGbracket{\GGconditional{p}{q}} =

\GGbracket{\GGconditional{\GGnot q}{\GGnot p}}

yields (
q
p

)
=
(

p
q

)
There are further examples, including Frege’s basic laws of logic, available for

download on www.frege.info.

3 Advanced Typesetting

3.1 Left-alignment of terminal forumlae: \GGterm
Conditional-strokes, negation-strokes, and concavities that are embedded in con-
ditionals can result in a ragged appearance of the formula:

• \GGjudge\GGconditional{p}{\GGconditional{q}{p}}

yields:
p
q
p

• \GGjudge\GGconditional{Fa}

{\GGnot \GGquant{\mathfrak a} \GGnot F \mathfrak a}

yields:
a Fa
Fa

In Frege’s original work, the component formulae of conditionals are left-
aligned. This can be achieved by marking “terminal formulae” using the command
\GGterm{〈math〉}; the length \GGlinewidth specifies the distance of the terminal
formula from the left end of the whole formula (typically, ‘ ’):

2

• \setlength{\GGlinewidth}{9.2pt} \GGjudge

\GGconditional

{\GGterm{p}}

{\GGconditional{\GGterm{q}}

{\GGterm{p}}}

yields:
p
q
p

• \setlength{\GGlinewidth}{25.2pt}

\GGjudge\GGconditional{\GGterm{Fa}}

{\GGnot \GGquant{\mathfrak a} \GGnot

\GGterm{F \mathfrak a}}

yields:
a Fa

Fa

negation-stroke 4.4pt
conditional-stroke 4.4pt

concavity 11.6pt
judgement-stroke:

present add .4pt
not present subtract 2pt

Table 1: Lengths of embedded symbols

The correct values for \GGlinewidth for each formula can be determined by
adding up the lengths of the embedded symbols, as given in Table 1, or by using
a GUI that allows producing LATEX and XML code for begriffsschrift formulae via
mouse-click and that will calculate and output the correct values. The GUI is
available for download on www.frege.info.

3.2 Adding horizontal lengths manually: \GGnonot, etc.
Readability is sometimes aided by moving, e.g., negations to the right end of the
horizontal in a complex formula. For instance, Frege nearly always preferred the
rendering displayed on the right in these types of formulae:

(a) f(a)
a f(a)

f(a)
a f(a)

(b) g(a)
f(a)

a g(a)
f(a)

g(a)
f(a)

a g(a)
f(a)

(c) a = b
f(b)
f(a)

a = b
f(b)
f(a)

3

The right-hand formulae are produced by inserting commands for horizontals
of the appropriate length directly at the position where the “space” should appear.
The three right-hand formulae above are created in this way:

(a) \GGjudge \GGconditional

{\GGquant{\mathfrak a} \GGnot f(\mathfrak a)}

{\GGnoquant \GGnot f(a)}

(b) \GGjudge \GGconditional

{\GGquant{\mathfrak a}

\GGconditional{f(\mathfrak a)}{g(\mathfrak a)}}

{\GGnoquant \GGconditional{f(a)}{g(a)}}

(c) \GGjudge \GGconditional

{\GGnonot \GGnot f(a)}

{\GGconditional{\GGnonot f(b)}{\GGnot a=b}}

4 Comparison and compatibility with begriff.sty

Josh Parsons’s begriff.sty, on which grundgesetze.sty is based, is closer in appear-
ance to Frege’s formalism as it is presented in Frege’s first book, Begriffsschrift
(1879). The corresponing commands were given different names so that both
packages can be used in the same TEX document; see Table 2.

begriff.sty grundgesetze.sty
command symbol symbol command

\BGcontent \GGhorizontal

\BGnot \GGnot

\BGconditional{p}{q} q

p

q
p

\GGconditional{p}{q}

\BGquant{\mathfrak a} a a \GGquant{\mathfrak a}

\BGassert \GGjudge

\BGbracket{\ldots}

 q

p

 (
q
p

)
\GGbracket{\ldots}

Table 2: Compatibility with begriff.sty

Also note the differences in alignment between \BGbracket and \GGbracket as
shown in Table 3

\BGbracket (–εf(ε) = –αg(α)) = a

 f(a) = g(a)
a = –εf(ε)
a = –αg(α)

\GGbracket: (–εf(ε) = –αg(α)) = a

(
f(a) = g(a)
a = –εf(ε)
a = –αg(α)

)

Table 3: \BGbracket and \GGbracket alignment

4

4.1 Conversion of a begriff.sty document into a grundge-
setze.sty document

A straightforward way to convert the a LATEX document that uses begriff.sty into
one that uses grundgesetze.sty without manually exchanging the commands is to
find and replace (using wrap search) “\BG” by “\GG”. Synonyms have been added
to grundgesetze.sty to allow the use of all begriff.sty commands “translated” in
this way (see Table 4).

command symbol synonym / comment

\GGterm{\ldots} (marks terminal formula)
\GGhorizontal \GGcontent

\GGjudge \GGassert

\GGjudgelong \GGjudgealone, \GGassertlong,
\GGassertalone

\GGjudgevar{〈length〉} \GGassertvar{〈length〉} (variable
horizontal length, here: 6pt)

\GGdef

\GGdeflong \GGdefalone

\GGdefvar{〈length〉} (variable horizontal length, here: 6pt)
\GGnot \GGneg

\GGnotalone (standalone negation-stroke)
\GGdnot (standalone double negation-stroke)
\GGconditional{p}{q} q

p
\GGquant{\mathfrak a} a

\GGall{a} a \GGquant{\mathfrak a}

\GGbracket{\ldots} (. . .) (automatically scaling brackets)

\GGsqbracket{\ldots} [. . .] (ditto square brackets)
\GGnonot horizontal of \GGnot length
\GGnoquant horizontal of \GGquant length
\GGnoboth horizontal of length: \GGnot plus

\GGquant

\GGnonotalone horizontal of \GGnotalone length
\GGnodnot horizontal of \GGdnot length
\GGoddspace horizontal of length: \GGquant minus

\GGnot

\GGtinyspace horizontal of length: \GGquant minus
twice \GGnot)

\GGtiniestspace horizontal of length: thrice \GGnot

minus \GGquant

Table 4: All commands (and synonyms) defined by the package

5

length default value explanation

\GGthickness 0.4pt thickness of horizontal and vertical
lines

\GGquantthickness 0.75×
\GGthickness

thickness of the line of the quantifier
“dish”

\beforelen 2.4pt length of horizontal before quantifier,
conditional, and negation

\GGafterlen 2pt length of horizontal after quantifier,
conditional, negation, judgement-,
and definition-stroke

\GGspace 3pt space between right end of horizontal
and terminal formula

\GGlift 2pt lift of horizontal from baseline
\GGlinewidth (n/a) total length from left end of formula

(typically, ‘\GGjudge’) and the be-
ginning of the terminal formula (see
§3.1)

Table 5: Length parameters and their default values

6

