
The grabbox package
Jonathan P. Spratte†

Version 1.0b
Released 2018-10-18

Contents
1 Introduction 1

2 Acknowledgement 1

3 The macro 2

4 Useless Example! 2

5 Useful Example? 3

6 Implementation 4

1 Introduction
Sometimes I happen to write macros and environments which don’t care for the exact
contents of an argument but only for that contents typeset representation and its dimen-
sions. In that case I personally dislike the fact that those arguments couldn’t contain
verbatim material if coded straight forward. Thus the macros distributed hereby came
into existence.

This package provides \grabbox to grab an argument inside of a box. The used
mechanism allows category code changes in that argument as long as it is used in a place
allowing category code changes (so not inside of another argument).

It is written as a docstrip file: executing latex grabbox.dtx generates the grabbox.
sty file and typesets this documentation; execute tex grabbox.dtx to only generate
grabbox.sty.

2 Acknowledgement
I want to thank Enrico Gregorio for helping me develop first versions of the used mechan-
isms for the second iteration of my ducksay package. If he hadn’t helped me back then, I
wouldn’t have considered the used method further – because the user interface would’ve
been too clumsy and require strange markup like \foo arg} – and therefore this package
wouldn’t have been created.

†E-mail: jspratte@yahoo.de

1

3 The macro

\grabbox〈*〉{〈box register〉}[〈inject pre〉]{〈box type〉}[〈inject post〉]{〈afterwards〉}

grabs the next braced argument and stores it inside of the box 〈box register〉. The box
is of 〈box type〉, which should be one of \hbox or \vbox or \vtop. 〈inject pre〉 will
be injected at the beginning of the box and can affect its contents, 〈inject post〉 will
be injected after the box but can’t be affected by stuff inside of 〈inject pre〉. Unless
the 〈*〉 is given leading and trailing spaces will be stripped from the box. After the box
is read in 〈afterwards〉 will be inserted.

\grabbox

All assignments are made local. Currently it is not safe to nest macros which use
\grabbox. It should become safe if your macros use \grabbox inside of a group, so the
inner \grabbox doesn’t affect the outer one.

\grabbox uses \afterassignment and \aftergroup to do its magic. The former
should be safe where it is used, the latter is used inside of the boxed argument before any
contents are inserted.

Since \grabbox works by setting a boxregister using \setbox (and a bunch of
temporary macros), it is of course not expandable and defined \protected. Bear in mind
that macros created with \grabbox are not expandable.

4 Useless Example!
First we need to reserve us a box register for this example:

\newsavebox\ourbox

Next we define a macro which takes some arguments and uses \grabbox:

\newcommand\examplecmd[2]
{%

\begingroup
\grabbox\ourbox[\itshape]\hbox[\sffamily is]{\examplecmdOut{#1}{#2}}

}

And we need our helper macro which is executed after \grabbox:

\newcommand\examplecmdOut[3]
{%

\begin{tabular}[t]{@{}ll@{}}
Arg1: & #1\\
Arg2: & #2\\
Box: & \unhbox\ourbox\\
Arg3: & #3

\end{tabular}%
\endgroup

}

The result is a macro that takes two ordinary arguments, after those a box in
horizontal mode and finally another ordinary argument. If we use this macro we get the
following:

2

Arg1: Hi,
Arg2: my
Box: name is
Arg3: Steve!

One can see that \sffamily is of 〈inject post〉 is not affected by the \itshape in
〈inject pre〉. The used code to generate that table was:

\examplecmd{Hi,}{my}{\verb|name|}{Steve!}

5 Useful Example?
This example provides a macro which typesets its mandatory argument in a block of a
definable number of lines, it is meant for a single paragraph.

% Getting a box register:
\newsavebox\RectangleBox
% Defining the main macro:
\newcommand\Rectangle[1][4]

{%
\begingroup
\grabbox\RectangleBox\hbox

{%
% Since we don’t want to read more arguments after the box,
% we don’t need a second macro and can put the output routine
% here.
\begin{minipage}{\dimexpr\wd\RectangleBox/#1\relax}

\parfillskip0pt
\unhbox\RectangleBox

\end{minipage}%
\endgroup

}%
}

As you can see, this macro uses \grabbox in a group delimited by \begingroup and
\endgroup. It should therefore be safe to nest it inside other macros using \grabbox.

Finally a usage example of our new macro (with the duckuments package loaded):

\begin{center}
\Rectangle[9]{\blindduck}

\end{center}

Results in:
There once was a very smart but sadly blind duck. When it
was still a small duckling it was renowned for its good vision.
But sadly as the duck grew older it caught a sickness which
caused its eyesight to worsen. It became so bad, that the
duck couldn’t read the notes it once took containing much of
inline math. Only displayed equations remained legible. That
annoyed the smart duck, as it wasn’t able to do its research any
longer. It called for its underduckling and said: ‘Go, find me
the best eye ducktor there is. He shall heal me from my disease!’

3

6 Implementation
1 〈*pkg〉

2 \@ifdefinable{\if@grabbox@spaces@}{\newif\if@grabbox@spaces@}
3 \newcommand\grabbox@def[2]
4 {%
5 \@ifdefinable#1{\protected\def#1{#2}}%
6 }
7 \newcommand\grabbox@def@step[4]
8 {%
9 \@ifdefinable#1{\protected\def#1##1{\def#2{##1}\grabbox@opt#3#4}}%

10 }
11 \long\def\grabbox@check@bracket #1[#2\endgrabbox@check@bracket
12 {%
13 \if\relax\detokenize{#2}\relax
14 \expandafter\@firstoftwo
15 \else
16 \expandafter\@secondoftwo
17 \fi
18 }
19 \protected\def\grabbox@opt#1#2%
20 {%
21 \@ifnextchar[
22 {\grabbox@opt@get#1#2}
23 {\def#1{}#2}%
24 }
25 \long\def\grabbox@opt@get#1#2#3]%
26 {%
27 \expandafter\grabbox@opt@get@a\expandafter{\@gobble#3}#1#2%
28 }
29 \protected\long\def\grabbox@opt@get@a#1#2#3%
30 {%
31 \grabbox@check@bracket #1[\endgrabbox@check@bracket
32 {\def#2{#1}#3}
33 {\grabbox@opt@get@b#2#3{#1]}}%
34 }
35 \protected\long\def\grabbox@opt@get@b#1#2#3#4]%
36 {%
37 \grabbox@check@bracket #4[\endgrabbox@check@bracket
38 {\def#1{#3#4}#2}
39 {\grabbox@opt@get@b#1#2{#3#4]}}%
40 }
41 \grabbox@def\grabbox@unpack
42 {%
43 \expandafter\ifx\grabbox@type\hbox
44 \expandafter\@firstoftwo
45 \else
46 \expandafter\@secondoftwo
47 \fi
48 \unhbox
49 \unvbox
50 \grabbox@name
51 }
52 \grabbox@def\grabbox

4

53 {%
54 \@ifstar
55 {\@grabbox@spaces@true\grabbox@a}
56 {\@grabbox@spaces@false\grabbox@a}%
57 }
58 \grabbox@def@step\grabbox@a\grabbox@name\grabbox@into@pre\grabbox@b
59 \grabbox@def@step\grabbox@b\grabbox@type\grabbox@into@post\grabbox@c
60 \protected\long\def\grabbox@c#1%
61 {%
62 \def\grabbox@final{#1}%
63 \afterassignment\grabbox@intermediate
64 \setbox\grabbox@name\grabbox@type
65 }
66 \grabbox@def\grabbox@intermediate
67 {%
68 \aftergroup\grabbox@after
69 \grabbox@into@pre
70 \if@grabbox@spaces@
71 \else
72 \ignorespaces
73 \fi
74 }
75 \grabbox@def\grabbox@after
76 {%
77 \if@grabbox@spaces@
78 \setbox\grabbox@name\grabbox@type
79 {%
80 \grabbox@unpack
81 \grabbox@into@post
82 }%
83 \else
84 \setbox\grabbox@name\grabbox@type
85 {%
86 \grabbox@unpack
87 \ifhmode\unskip\fi
88 \grabbox@into@post
89 }%
90 \fi
91 \grabbox@final
92 }

93 \endinput

94 〈/pkg〉

5

	Contents
	1 Introduction
	2 Acknowledgement
	3 The macro
	4 Useless Example!
	5 Useful Example?
	6 Implementation

