Grzegorz ‘Natror’ Murzynowski

The gmverb Package®

December 1, 2006

This is (a documentation of) file gmverb.sty, intended to be used with IATEX 2¢ as
a package for a slight redefinition of the \verb macro and verbatim environment and
for short verb marking such as |\mymacrol.

Written by Grzegorz ‘Natror’ Murzynowski,

natror at o2 dot pl

©2005, 2006 by Grzegorz ‘Natror’ Murzynowski.

This program is subject to the ATEX Project Public License.

Seehttp://www.ctan.org/tex-archive/help/Catalogue/licenses.1lppl.html for the
details of that license.

LPPL status: ”author-maintained”.

Many thanks to my TEX Guru Marcin Wolinski for his TEXnical support.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{gmverb}

3 [2006/12/01,v0.78 After shortvrb, (FM) but my_way,(GM)]

Contents

Intro, Usage . ... .......... 1 The Breakables . .. ... ... ... 3
Installation . . ... .. R 2 Almost-Knuthian \ttverbatim. . .. 4
Contep’gs of the gmverb.zip Archlve o2 The Core: From shortvrb . . . . . .. 5
Compiling the Documentation . . .. 2 A o -

The Code . . . . 3 doc- And shortvrb-Compatibility . .. 9
Preliminaries . . . . . . .. ... ... 3 Index . .. ... ... ... ...... 10

Intro, Usage

This package redefines the \verb command and the verbatim environment so that the
verbatim text can break into lines, with % (or another character chosen to be the com-
ment char) as a ‘hyphen’. Moreover, it allows the user to define his own verbatim-like
environments provided their contents would be not horribly long (as long as a macro’s
argument may be at most).

This package also allows the user to declare a chosen char(s) as a ‘short verb’ e.g., to
write |\a\verbatim\example| instead of \verb|\a\verbatim\example].

The gmverb package redefines the \verb command and the verbatim environment in
such a way that ., { and \ are breakable, the first with no ‘hyphen’ and the other two
with the comment char as a hyphen. I.e. {(subsequent text)} breaks into {%

* This file has version number v0.78 dated 2006/12/01.


http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

\fixbslash

\fixlbrace

\VerbHyphen

\verbeolOK

\MakeShortVerb

\dekclubs

\DeleteShortVerb

\dekclubs

(subsequent text)} and (text)\mymacro breaks into (text)%

\mymacro.

(If you don’t like linebreaking at backslash, there’s the \fixbslash declaration (ob-
serving the common scoping rules, hence OCSR) and an analogous declaration for the
left brace: \fixlbrace.)

The default ‘hyphen’ is % since it’s the default comment char. If you wish another
char to appear at the linebreak, use the \VerbHyphen declaration that takes \(char) as
the only argument. This declaration is always global.

Another difference is the \verbeolOK declaration (OCSR). Within its scope, \verb
allows an end of a line in its argument and typesets it just as a space.

As in the standard version(s), the plain \verb typesets the spaces blank and \verbx
makes them visible.

Moreover, gmverb provides the \MakeShortVerb macro that takes a one-char control
sequence as the only argument and turns the char used into a short verbatim delimiter,
e.g., after \MakeShortVerb*\| (as you guess, the declaration has its starred version,
which is for visible spaces, and the non-starred for the spaces blank) you may type
| \mymacro| to achieve \mymacro instead of typing \verb+\mymacro+. Because the char
used in this example is my favourite and used just this way by DEK in the The TEXbook’s
format, gmverb provides a macro \dekclubs as a shorthand for \MakeShortVerb*\ |.

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical marker in tables and with the tikz package. If this happens, you can declare
e.g., \DeleteShortVerb\| and the previous meaning of the char used shall be restored.

One more difference between gmverb and shortvrb is that the chars \activeated by
\MakeShortVerb in the math mode behave as if they were ‘other’, so you may type e.g.,
$1$ to achieve | and + \activeated this way is in the math mode typeset properly etc.

There’s one more declaration provided by gmverb: \dekclubs, which is a shorthand
for \MakeShortVerb*\]| .

As many good packages, this also does not support any options.

Installation

Just put the gmverb.sty somewhere in the texmf/tex/latex branch. Creating a texmf/
tex/latex/gm directory may be advisable if you consider using other packages written by
me.

Then you should refresh your TEX distribution’s files’ database most probably.

Contents of the gmverb.zip Archive
The distribution of the gmverb package consists of the following four files.

gmverb.sty
README
gmverbDoc.tex
gmverbDoc.pdf

Compiling the Documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from
the .sty file by running IATEX on the gmverbDoc.tex file twice, then Makelndex on the
gmverb.idx file, and then KTEX on gmverbDoc.tex once more.

Makelndex shell command:



\firstofone
\afterfi

\gmobeyspaces

\twelvepercent

\verbhyphen

\VerbHyphen

\breaklbrace

makeindex -r gmverbDoc

The -r switch is to forbid Makelndex to make implicit ranges since the (code line)
numbers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmverb.sty, gmutils.sty and also some standard packages: hyperref.sty, color.sty,
geometry.sty, multicol.sty, Imodern.sty and fontenc.sty that should be installed on your
computer by default.

If you had not installed the mwcls classes (available on CTAN and present in TEX
Live e.g.), the result of your compilation might differ a bit from the .pdf provided in this
.zip archive in formatting: If you had not installed mwcls, the standard article.cls class
would be used.

The Code

Preliminaries

1 \long\def\firstofone#1{#1}
5 \long\def\afterfi#iI\fi{\fi#1}

The standard \obeyspaces command is only re\catcodeing of the space to be 13. Since
we’ll know a bit of where these macros are used, we know we have also to (re)define such
an active space to be some space.

6 \begin{catcode}‘\ \active
7 \gdef\gmobeyspaces{\catcode‘\ \active\let \,}
s \end{catcode}

(The above three preliminary definitions are present also in gmutils.)

9 \bgroup

10 \@makeother\%

11 \firstofone{\egroup

12 \def\twelvepercent{)}}

Someone may want to use another char for comment, but we assume here ‘orthodoxy’.
Other assumptions in gmdoc are made. The ‘knowledge’ what char is the comment char
is used to put proper ‘hyphen’ when a verbatim line is broken.

13 \let\verbhyphen\twelvepercent

Provide a declaration for easy changing it. Its argument should be of \(char) form
(of course, a (char)isis also allowed).

14 \def\VerbHyphen#1{/,
15 {\escapechar\m@ne
16 \expandafter\gdef\expandafter\verbhyphen\expandafter{\string#1}}}

As you see, it’s always global.

The Breakables

Let’s define a \discretionary left brace such that if it breaks, it turns {% at the end of
line. We’ll use it in almost Knuthian \ttverbatim—it’s part of this ‘almost’.

17 \bgroup,,\catcode ‘\<=1 \@makeother\{ \catcode ‘\>=2
18 \firstofone<\egroup
19 \def\breaklbrace<\discretionary<{\verbhyphen><><{>>},



\twelvelbrace 20 \def\twelvelbrace<{>%
21 >% of \firstofone

22 \bgroup \catcode ‘\<=1,\catcode‘\{=\active \catcode‘\>=2

23 \firstofone<\egroup

24 \def\dobreaklbrace<\catcode ‘\{=\active \def{<\breaklbrace>>),
25 >% end of \firstofone.

The \bslash macro defined below I use also in more ‘normal’ TEXing, e.g., to
\typeout some \outer macro’s name.

26 {\catcode‘\!=0,,\@makeother\\%
\bslash 27 !gdef!bslash{\}%
\breakbslash 25 !gdef !breakbslash{!discretionary{!verbhyphen}{\}{\}}%
20 }

Sometimes linebreaking at a backslash may be unwelcome. The basic case, when the
first CS in a verbatim breaks at the lineend leaving there %, is covered by line 183. For
the others let’s give the user a countercrank:

\fixbslash 30 \newcommand*\fixbslash{\let\breakbslash=\bslash} to use due to the common
scoping rules. But for the special case of a backslash opening a verbatim scope,
we deal specially in the line 183.

Analogously, let’s provide a possibility of ‘fixing’ the left brace:
\fixlbrace 31 \newcommand#*\fixlbrace{\let\breaklbrace=\twelvelbrace}

32 {\catcode‘\'!=0,%

33 !catcode‘!\=l!active

32 !'gdef!dobreakbslash{!catcode‘!\=!lactive !def\{!breakbslash}}’
35 }

The macros defined below, \visiblebreakspaces and \twelveclub we’ll use in the
almost Knuthian macro making verbatim. This ‘almost’ makes a difference.

36 \bgroup\catcode ‘\ =12 %
37 \firstofone{\egroup%
\twelvespace  3s \def\twelvespace{_ }%
39 \def\breakabletwelvespace{\discretionary{ }{}{,}}}

10 \bgroup\obeyspaces} it’s just re\catcode’ing.
a1 \firstofone{\egroup%
\activespace 42 \newcommand*\activespace{, }%
43 \newcommandx*\dobreakvisiblespace{\let_ =\breakabletwelvespace\obeyspaces}/
%\defing it caused a stack overflow disaster with gmdoc.
44 \newcommand*\dobreakblankspace{\let =\space\obeyspaces}’

45 F

16 \bgroup\@Cmakeother\ |
\twelveclub 47 \firstofone{\egroup\def\twelveclub{|}}

Almost-Knuthian \ttverbatim

\ttverbatim comes from The TEXbook too, but I add into it a KTEX macro changing
the \catcodes and make spaces visible and breakable and left braces too.

\ttverbatin 48 \newcommand*\ttverbatim{’
19 \let\do=\do@noligs,,\verbatim@nolig@list



\MakeShortVerb
\MakeShortVerb

\@MakeShortVerb

\DeleteShortVerb

50

51

52

\let\do=\@makeother  \dospecials
\dobreaklbrace\dobreakbslash
\dobreakspace

\tt}

We wish the visible spaces to be the default.

54 \let\dobreakspace=\dobreakvisiblespace

The Core: From shortvrb

The below is copied verbatim ;-) from doc.pdf and then is added my slight changes.

55 \def\MakeShortVerb{%

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

79

80

81

82

83

84

86

87

88

89

90

\Q@ifstar
{\def\@shortvrbdef{\verbx}\@MakeShortVerbly,
{\def\@shortvrbdef{\verb}\@MakeShortVerb}}

\def\@MakeShortVerb#1{Y%

\expandafter\ifx\csname cc\string#1\endcsname\relax
\@shortvrbinfo{Made }{#1}\@shortvrbdef
\add@special{#1}%
\AddtoPrivateOthers#1% a macro to be really defined in gmdoc.
\expandafter
\xdef\csname ,cc\string#1\endcsname{\the\catcode‘#1}J,
\begingroup
\catcode‘\~\active \lccode‘\~ ‘#1%
\lowercase{%
\global\expandafter\let
\csname ac\string#1\endcsname~Y,
\expandafter\gdef\expandafter~\expandafter{/,
\expandafter\ifmmode\expandafter\string\expandafter~
\expandafter\else\expandafter\afterfi\@shortvrbdef “\fil}}}, This ter-
rible number of \expandafters is to make the shortverb char just other
in the math mode (my addition).
\endgroup
\global\catcode ‘#1\active
\else
\@shortvrbinfo\Q@empty{#1 already}{\Qempty\verb ()1}
\fi}

\def\DeleteShortVerb#1{%

\expandafter\ifx\csname cc\string#1\endcsname\relax
\@shortvrbinfo\Q@empty{#1 not}{\@empty\verb(*)}}
\else
\@shortvrbinfo{Deleted }{#1 ,as}{\@empty\verb (x)1}7
\rem@special{#1}%
\global\catcode ‘#1\csname cc\string#1l\endcsname
\global \expandafter\let \csname cc\string#l\endcsname \relax
\ifnum\catcode‘#1=\active
\begingroup
\catcode‘\"\active \lccode‘\~ ‘#1Y%
\lowercase{%

\global\expandafter\let\expandafter~y



\@shortvrbinfo

\add@special

\rem@special

verbatim
\verbatim

verbatim*

\endverbatin

92 \csname ac\string#1\endcsnamel}/,
93 \endgroup \fi \fi}

My little addition

91 \Q@ifpackageloaded{gmdoc}{%
95 \def\gmv@packname{gmdoc}}{/
o6 \def\gmv@packname{gmverb}}

o7 \def\@shortvrbinfo#1#2#3{J

9s  \PackageInfo{\gmv@packnamel}{’

99 ~~J\@empty_#1\expandafter\Q@gobble\string#2 5a short reference
100 for \expandafter\string#3}}

101 \def\add@special#1{}

102 \rem@special{#1}},

103 \expandafter\gdef\expandafter\dospecials\expandafter
104  {\dospecials  \do #11}}

105 \expandafter\gdef\expandafter\@sanitize\expandafter
16  {\@sanitize \@makeother #1}}

For the commentary on the below macro see the doc package’s documentation. Here
let’s only say it’s just amazing: so tricky and wicked use of \do. The internal macro
\rem@special defines \do to expand to nothing if the \do’s argument is the one to
be removed and to unexpandable CSs \do and (\do’s argument) otherwise. With \do
defined this way the entire list is just globally expanded itself. Analogous hack is done
to the \@sanitize list.

107 \def\rem@special#1{}

108 \def\do##1{%

109 \ifnum‘#1="‘##1_\else \noexpand\do\noexpand##1\fi}J

110 \xdef\dospecials{\dospecials}/,

111 \begingroup

112 \def\@makeother##1{J

113 \ifnum‘#1="##1 \else \noexpand\@Cmakeother\noexpand##1\fil}J,
114 \xdef\@sanitize{\@sanitizel}},

15 \endgroup}

And now the definition of verbatim itself. As you'll see (I hope), the internal macros
of it look for the name of the current environment (i.e., \@currenvir’s meaning) to set
their expectation of the environment’s \end properly. This is done to allow the user to
define his/her own environments with \verbatim inside them. Le., as with the verbatim
package, you may write \verbatim in the begdef of your environment and then necessarily
\endverbatim in its enddef. Of course (or maybe surprisingly), the commands written
in the begdef after \verbatim will also be executed at \begin{(environment)}.

116 \def\verbatim{\@beginparpenalty \predisplaypenalty  \Qverbatim

17 \frenchspacing \gmobeyspaces \@xverbatim}} in the IATEX version there’s %%
\@vobeyspaces instead of \gmobeyspaces.

11s \@namedef{verbatim*}{\@beginparpenalty  \predisplaypenalty \@verbatim

119 \@sxverbatim}

120 \def\endverbatim{\@Gpar

121 \ifdim\lastskip >\z@

122 \@tempskipa\lastskip \vskip -\lastskip

123 \advance\@tempskipa\parskip \advance\@tempskipa ~\Qouterparskip



\@xverbatin

\@sxverbatin

\@verbatin

124 \vskip\@tempskipa
125 \fi

126 \addvspace\@topsepadd
127 \@endparenv}

128 \expandafter\let\csname endverbatim*\endcsname =\endverbatim

120 \begingroup \catcode ‘!=0_%
130 \catcode,‘ [=,1, \catcode‘]=2%
131 \catcode‘\{=\active

132 \@makeother\}Y

133 \catcode ‘\\=\active},

134 !gdef!@xverbatim[%

135 ledef ! verbatim@edef [%

136 def Inoexpand!verbatim@endy

137 ####1 ' noexpand\end ! noexpand{!@currenvir} [7
138 ####1 'noexpand!end [!@currenvir]]]Y

139 lverbatim@edef

140  !verbatim@end]’

141 !endgroup
142 \let\@sxverbatim=\0@xverbatim

F. Mittelbach says the below is copied almost verbatim from IXTEX source, modulo
\check@percent.

143 \def\@verbatim{¥%

Originally here was just \trivlist,\item[], but it worked badly in my document(s)
so let’s take just highlights of if.

14a  \parsep\parskip
From \@trivlist:

145 \if@noskipsec \leavevmode \fi
146 \@topsepadd, \topsep
147 \ifvmode

148 \advance\@topsepadd, \partopsep
149 \else

150 \unskip \par

151 \fi

152 \@topsep,\@topsepadd
153 \advance\@topsep,,\parskip
154 \Qouterparskip \parskip

(End of \trivlistlist and \@trivlist highlights.)

155 \@@par\addvspace\Q@topsep

156 \if@minipage\else\vskip\parskip\fi

157 \leftmargin\parindent, please notify me if it’s a bad idea.

158 \advance\@totalleftmargin\leftmargin

159 \raggedright

160 \leftskip\@totalleftmarginj, so many assignments to preserve the list think-
ing for possible future changes. However, we may be sure no internal list
shall use \@totalleftmargin as far as no inner environments are possible
in verbatim(x).

161 \@@pary most probably redundant.



\verbatimhangindent

\verb
\verb

\check@bslash

\verb@egroup
\gn@verbeol

162 \Qtempswafalse

163 \def\par{% but I don’t want the terribly ugly empty lines when a blank line is met.
Let’s make them gmdoc-like i.e., let a vertical space be added as in between
stanzas of poetry. Originally \if@tempswa\hbox{}\fi, in my version will

be
164 \ifvmode\if@tempswal\addvspace\stanzaskip\@tempswafalse\fi\fi
165 \@@par
166 \penalty\interlinepenalty \check@percent}

167 \everypar{\@tempswatrue\hangindent\verbatimhangindent\hangafter\@nely
since several chars are breakable, there’s a possibility of breaking some lines.
We wish them to be hanging indented.

16s  \obeylines

169 \ttverbatim}

170 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}
171 \stanzaskip=\medskipamount

172 \newlength\verbatimhangindent
173 \verbatimhangindent=3em

172 \providecommand*\check@percent{}

In the gmdoc package shall it be defined to check if the next line begins with a com-
ment char.

Similarly, the next macro shall in gmdoc be defined to update a list useful to that
package. For now let it just gobble its argument.

175 \providecommand*\AddtoPrivateOthers[1]{}

Both of the above are \provided to allow the user to load gmverb after gmdoc (which
would be redundant since gmdoc loads this package on its own, but anyway should be
harmless).

Let’s define the ‘short’ verbatim command.

176 \def\verb{\relax\ifmmode\hbox\else\leavevmode\null\fi

177 \bgroup

17 \ttverbatim

179 \gm@verbGeol

150 \@ifstar{\@sverb@chbsl}{\gmobeyspaces\frenchspacing\@sverb@chbsl}}}, in
the ITEX version there’s \@vobeyspaces instead of \gmobeyspaces.

181 \def\@sverb@chbsl#1{\@sverb#1\check@bslash}

182 \def\@def@breakbslash{\breakbslash}’, because \ is \defined as \breakbslash
not \let.

For the special case of a backslash opening a (short) verbatim, in which it shouldn’t
be breakable, we define the checking macro.

183 \def\check@bslash{\@ifnextchar{\@def@breakbslash}{\bslash\@gobble}{}}
182 \let\verb@balance@group\@empty

185 \def\verb@egroup{\global\let\verb@balance@group\@empty\egroup}

156 \let\gm@verbQeol\verbQeol@error

The latter is a IATEX 2¢ kernel macro that \activeates line end and defines it to
close the verb group and to issue an error message. We use a separate CS ’cause we
are not quite positive to the forbidden line ends idea. (Although the allowed line ends



\verb@eol0K

\verbeolOK

\verbatim@nolig@list

\do@noligs

\dekclubs

\o0ld@MakeShortVerb

with a forgotten closing shortverb char caused funny disasters at my work a few times.)
Another reason is that gmdoc wishes to redefine it for its own queer purpose.
However, let’s leave my former ‘permissive’ definition under the \verb@eol name.

187 \begingroup

155 \obeylines\obeyspaces’

189 \gdef\verb@eolOK{\obeylines
190 \def~"M{ \check@percent}/,

191 }%

192 \endgroup

The \check@percent macro here is \provided to be \@empty but in gmdoc employed
shall it be.
Let us leave (give?) a user freedom of choice:

103 \def\verbeolOK{\let\gm@verb@eol\verb@eolOK}
And back to the main matter,

194 \def\Q@sverb#1{%

195 \catcode‘#1\active \lccode‘\~ ‘#1%

16 \gdef\verb@balance@group{\verb@egroup

197 \@latex@error{Illegal, use of \bslash verb  ,command}\@ehc}’
198 \aftergroup\verb@balance@group

199 \lowercase{\let~\verb@egroup}}

200 \def\verbatim@nolig@list{\do\ ‘\do\<\do\>\do\,\do\’\do\-}

201 \def\do@noligs#1{’

202 \catcode‘#1\active

203 \begingroup

200 \lccode‘\"=‘#1\relax

205 \lowercase{\endgroup\def~{\leavevmode\kern\z@\char ‘#1}}}

And finally, what I thought to be so smart and clever, now is just one of many possible
uses of a general almost Rainer Schopf’s macro:

206 \def\dekclubs{\MakeShortVerbx*\|}

doc- And shortvrb-Compatibility

One of minor errors while TEXing doc.dtx was caused by my understanding of a ‘short-
verb’ char: at my settings, in the math mode an active ‘shortverb’ char expands to itself’s
‘other’ version thanks to \string. doc/shortvrb’s concept is different, there a ‘shortverb’
char should work as usual in the math mode. So let it may be as they wish:

207 \def\old@MakeShortVerb#1{/,

208 \expandafter\ifx\csname cc\string#1l\endcsname\relax
200  \@shortvrbinfo{Made }{#1}\@shortvrbdef

210 \add@special{#1}),

211 \AddtoPrivateOthers#1% a macro to be really defined in gmdoc.
212 \expandafter

213 \xdef\csname cc\string#l\endcsname{\the\catcode ‘#11}%
214 \begingroup

215 \catcode‘\"\active \lccode‘\~ ‘#1%

216 \lowercase{’,

217 \global\expandafter\let



\01dMakeShortVerb

\egOMakeShortVerbStar
\eg@MakeShortVerb

218 \csname ,ac\string#1\endcsname~,

219 \expandafter\gdef\expandafter™\expandafter{y
220 \@shortvrbdef~}}%

221 \endgroup

222 \global\catcode‘#1\active

223  \else

224 \@shortvrbinfo\@empty{#1 already}{\Q@empty\verb(*)}%

225 \fil}

226 \def\0ldMakeShortVerb{\begingroup
227 \let\@MakeShortVerb=\old@MakeShortVerb
228 \Q@ifstar{\eg@MakeShortVerbStar}{\eg@MakeShortVerb}}

220 \def\eg@MakeShortVerbStar#1{\MakeShortVerb*#1\endgroup}
230 \def\eg@MakeShortVerb#1{\MakeShortVerb#1\endgroup}

231 \endinput, for the Tradition.

Index

Numbers written in italic refer to the code lines where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in roman
refer to the code lines where the entry is used. The numbers preceded with ‘p.” are page
numbers. All the numbers are hyperlinks.

\-, 200
\@MakeShortVerb, 57, 58,
59, 227
\@currenvir, 137, 138
\@def@breakbslash, 182, 183
\@shortvrbdef, 57, 58, 61,
73, 209, 220
\@shortvrbinfo, 61, 77,
81, 83, 97, 209, 224
\@sverb@chbsl, 180, 181
\@topsep, 152, 153, 155
\@topsepadd, 126, 146,
148, 152

\activespace, 42
\add@special, 62, 101, 210
\AddtoPrivateOthers, 63,
175, 211
\afterfi, 5, 73

\breakabletwelvespace,

39, 43
\breakbslash, 28, 30, 34, 182
\breaklbrace, 19, 24, 31
\bslash, 27, 30, 183, 197

\check@bslash, 181, 183
\check@percent, 166, 174, 190

\dekclubs, p. 2, 206
\DeleteShortVerb, p. 2, 79
\do@noligs, 49, 201
\dobreakblankspace, 44

\dobreakbslash, 34, 51
\dobreaklbrace, 24, 51
\dobreakspace, 52, 54
\dobreakvisiblespace, 43, 54

\eg@MakeShortVerb, 228, 230
\eg@MakeShortVerbStar,
228, 229
\endverbatim, 120, 128
\everypar, 167

\fixbslash, p. 2, 30
\fixlbrace, p. 2, 31

\gm@verb@eol, 179, 186, 193
\gmobeyspaces, 7, 117, 180
\gmv@packname, 95, 96, 98

\if@noskipsec, 145
\interlinepenalty, 166

\leftmargin, 157, 158

\MakeShortVerb, p. 2, 55, 230
\MakeShortVerbx*, 55, 206, 229

\newlength, 170, 172

\obeyspaces, 40, 43, 44, 188
\old@MakeShortVerb, 207, 227
\OldMakeShortVerb, 226

\PackageInfo, 98
\parsep, 144

\partopsep, 148
\predisplaypenalty, 116, 118

\rem@special, 84, 102, 107
\stanzaskip, 164, 170, 171

\ttverbatim, 48, 169, 178
\twelveclub, 47
\twelvelbrace, 20, 31
\twelvepercent, 12, 13
\twelvespace, 38

\verb, 58, 77, 81, 83, 176, 224
\verbx*, 57, 176
\verb@balance@group,

184, 185, 196, 198
\verbQegroup, 185, 196, 199
\verb@eol@error, 186
\verb@eol0K, 189, 193
\verbatim, 116
verbatim, 116
verbatim*, 118
\verbatim@edef, 135, 139
\verbatim@end, 136, 140
\verbatim@nolig@list,

49, 200
\verbatimhangindent,

167, 172, 173
\verbeolOK, p. 2, 193
\VerbHyphen, p. 2, 14
\verbhyphen, 13, 16, 19, 28

10



	Intro, Usage
	Installation
	Contents of the gmverb.zip Archive
	Compiling the Documentation

	The Code
	Preliminaries
	The Breakables
	Almost-Knuthian ttverbatim
	The Core: From shortvrb
	doc- And shortvrb-Compatibility

	Index

