
Grzegorz ‘Natror’ Murzynowski

The gmutils Package∗

Written by Grzegorz ‘Natror’ Murzynowski,
natror at o2 dot pl
© 2005, 2006 by Grzegorz ‘Natror’ Murzynowski.
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.
Many thanks to my TEX Guru Marcin Woliński for his TEXnical support.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{gmutils}
3 [2006/11/29 v0.74 some rather TeXnical macros, some of them

tricky (GM)]

Contents

Intro 1
Installation 2
Contents of the gmutils.zip Archive . . 2
Compiling of the Documentation . . . 2

\newgif and Other Globals 2
\@ifnextcat 3
\afterfi and Pals 4
Almost an Environment or

Redefinition of \begin 4
Improvement of \end 5
From relsize 5
\firstofone and the Queer \catcodes 7
Metasymbols 8

Macros for Printing Macros and
Filenames 8

Storing and Restoring the
Meanings of CSs 10

Third Person Pronouns 11
To Save Precious Count Registers . 12
Improvements to mwcls Sectioning

Commands 12
Compatibilising Standard and

mwcls Sectionings 15
Varia 16
Index 19

Intro

The gmutils.sty package provides some macros that are analogous to the standard LATEX
ones but extend their functionality, such as \@ifnextcat, \addtomacro or \begin(*).
The others are just conveniences I like to use in all my TeX works, such as \afterfi,
\pk or \cs.

I wouldn’t say they are only for the package writers but I assume some nonzero
(LA)TEX-awareness of the user.

For details just read the code part.
∗ This file has version number v0.74 dated 2006/11/29.

1

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

Installation

Just put the gmutils.sty somewhere in the texmf/tex/latex branch. Creating a texmf/
tex/latex/gm directory may be advisable if you consider using other packages written by
me.

Then you should refresh your TEX distribution’s files’ database most probably.

Contents of the gmutils.zip Archive

The distribution of the gmutils package consists of the following four files.

gmutils.sty
README
gmutilsDoc.tex
gmutilsDoc.pdf

Compiling of the Documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from
the .sty file by running LATEX on the gmutilsDoc.tex file twice, then MakeIndex on the
gmutils.idx file, and then LATEX on gmutilsDoc.tex once more.

MakeIndex shell command:
makeindex -r gmutilsDoc

The -r switch is to forbid MakeIndex to make implicit ranges since the (code line)
numbers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmverb.sty, gmutils.sty, gmiflink.sty and also some standard packages: hyper-
ref.sty, color.sty, geometry.sty, multicol.sty, lmodern.sty, fontenc.sty that should be installed
on your computer by default.

If you had not installed the mwcls classes (available on CTAN and present in TEX
Live e.g.), the result of your compilation might differ a bit from the .pdf provided in this
.zip archive in formatting: If you had not installed mwcls, the standard article.cls class
would be used.

\newgif and Other Globals

The \newgif declaration’s effect is used even in the LATEX 2ε source by redefining some
particular user defined ifs (UD-ifs henceforth) step by step. The goal is to make the
UD-if’s assignment global. I needed it at least twice during gmdoc writing so I make it
a macro. It’s an almost verbatim copy of LATEX’s \newif modulo the letter g and the
\global prefix. (File d: ltdefns.dtx Date: 2004/02/20 Version v1.3g, lines 139–150)

4 \def\newgif#1{%\newgif
5 {\escapechar\m@ne
6 \global\let#1\iffalse
7 \@gif#1\iftrue
8 \@gif#1\iffalse
9 }}

‘Almost’ is also in the detail that in this case, which deals with \global assignments,
we don’t have to bother with storing and restoring the value of \escapechar: we can do
all the work inside a group.

2

10 \def\@gif#1#2{%
11 \expandafter\gdef\csname\expandafter\@gobbletwo\string#1%
12 g% the letter g for ‘\global’.
13 \expandafter\@gobbletwo\string#2\endcsname
14 {\global\let#1#2}}

After \newgif\iffoo you may type {\foogtrue} and the \iffoo switch becomes
globally equal \iftrue. Simili modo \foogfalse. Note the letter g added to underline
globalness of the assignment.

If for any reason, no matter how queer ;-) may it be, you need both global and local
switchers of your \if..., declare it both with \newif and \newgif.

Note that it’s just a shorthand. \global\if〈switch〉true/false does work as ex-
pected.

There’s a trouble with \refstepcounter: defining \@currentlabel is local. So let’s
\def a \global version of \refstepcounter.

Warning. I use it because of very special reasons in gmdoc and in general it is probably
not a good idea to make \refstepcounter global since it is contrary to the original LATEX
approach.

15 \newcommand*\grefstepcounter[1]{%\grefstepcounter
16 {\let\protected@edef=\protected@xdef\refstepcounter{#1}}}

Naïve first try \globaldefs=\tw@ raised an error unknown command \reserved@e.
The matter was to globalize \protected@edef of \@currentlabel.

Thanks to using the true \refstepcounter inside, it observes the change made to
\refstepcounter by hyperref.

Another shorthand. It may decrease a number of \expandafters e.g.
17 \def\glet{\global\let}\glet

\@ifnextcat

As you guess, we \def \@ifnextcat à la \@ifnextchar, see LATEX 2ε source dated
2003/12/01, file d, lines 253–271. The difference is in the kind of test used: while
\@ifnextchar does \ifx, \@ifnextcat does \ifcat which means it looks not at the
meaning of a token(s) but at their \catcode(s). As you (should) remember from
The TEXbook, the former test doesn’t expand macros while the latter does. But in
\@ifnextcat the peeked token is protected against expanding by \noexpand. Note that
the first parameter is not protected and therefore it shall be expanded if it’s a macro.

18 \long\def\@ifnextcat#1#2#3{%\@ifnextcat
19 \let\reserved@d=#1%
20 \def\reserved@a{#2}%
21 \def\reserved@b{#3}%
22 \futurelet\@let@token\@ifncat}

23 \def\@ifncat{%
24 \ifx\@let@token\@sptoken
25 \let\reserved@c\@xifncat
26 \else
27 \ifcat\reserved@d\noexpand\@let@token
28 \let\reserved@c\reserved@a
29 \else

3

30 \let\reserved@c\reserved@b
31 \fi
32 \fi
33 \reserved@c}

34 {\def\:{\let\@sptoken= } \: % this makes \@sptoken a space token.
35 \def\:{\@xifncat} \expandafter\gdef\: {\futurelet\@let@token\@ifncat}}

Note the trick to achieve a macro with no parameter and requiring a space after it.
We do it inside a group not to spoil the general meaning of \: (which we extend later).

\afterfi and Pals

It happens from time to time that you have some sequence of macros in an \if... and
you would like to expand \fi before expanding them (e.g., when the macros should take
some tokens next to \fi... as their arguments. If you know how many macros are
there, you may type a couple of \expandafters and not to care how terrible it looks.
But if you don’t know how many tokens will there be, you seem to be in a real trouble.
There’s the Knuthian trick with \next. And here another, revealed to me by my TEX
Guru.

I think the situations when the Knuthian (the former) trick is not available are rather
seldom, but they are imaginable at least: the \next trick involves an assignment so it
won’t work e.g. in \edef. But in general it’s only a matter of taste which one to use.

36 \long\def\afterfi#1\fi{\fi#1}\afterfi

One more of that family:
37 \long\def\afterelsefifi#1\else#2\fi#3\fi{\fi\fi#1}\afterelsefifi

. . . and some other:
38 \long\def\afterelsefi#1\else#2\fi{\fi#1}\afterelsefi
39 \long\def\afterfifi#1\fi#2\fi{\fi\fi#1}\afterfifi
40 \long\def\afterelseiffifi#1\else#2\if#3\fi#4\fi{\fi#1}\afterelseiffifi

Note, if you fancy this smart trick, that some ‘else’ cases are covered by proper non-
else \after... macros, e.g., \afterfielsefi’s task would be fulfilled by \afterfifi
and \afterelsefifi covers also the ‘\afterelsefielsefi’ case.

Almost an Environment or Redefinition of \begin

We’ll extend the functionality of \begin: the non-starred instances shall act as usual
and we’ll add the starred version. The difference of the latter will be that it won’t check
whether the ‘environment’ has been defined so any name will be allowed.

This is intended to structure the source with named groups that don’t have to be
especially defined and probably don’t take any particular action except the scoping.

(If the \begin*’s argument is a (defined) environment’s name, \begin* will act just
like \begin.)

Original LATEX’s \begin:
\def\begin#1{%
\@ifundefined{#1}%

{\def\reserved@a{\@latex@error{Environment #1 undefined}\@eha}}%
{\def\reserved@a{\def\@currenvir{#1}%

4

\edef\@currenvline{\on@line}%
\csname #1\endcsname}}%

\@ignorefalse
\begingroup\@endpefalse\reserved@a}

41 \@ifdefinable\@begnamedgroup{\relax}\@begnamedgroup
42 \def\@begnamedgroup#1{%
43 \@ignorefalse% not to ignore blanks after group
44 \begingroup\@endpefalse
45 \def\@currenvir{#1}%
46 \edef\@currenvline{\on@line}%
47 \csname #1\endcsname}% if the argument is a command’s name (an environment’s

e.g.), this command will now be executed. (If the corresponding control
sequence hasn’t been known to TEX, this line will act as \relax.)

For back compatibility with my earlier works
48 \let\bnamegroup\@begnamedgroup\bnamegroup

And for the ending
49 \def\enamegroup#1{\end{#1}}\enamegroup

And we make it the starred version of \begin.
50 \let\old@begin\begin\old@begin

\begin 51 \def\begin{\@ifstar{\@begnamedgroup}{\old@begin}}
\begin*

Improvement of \end

It’s very clever and useful that \end checks whether its argument is ifx-equivalent
@currenvir. However, it works not quite as I would expect: Since the idea of envi-
ronment is to open a group and launch the cs named in the \begin’s argument. That
last thing is done with \csname...\endcsname so the char catcodes are equivalent. Thus
should be also in the \end’s test and therefore we ensure the compared texts are both
expanded and made all ‘other’.

52 \def\@checkend#1{%
53 \edef\reserved@a{\expandafter\string\csname#1\endcsname}%
54 \edef\exii@currenvir{\expandafter\string\csname\@currenvir%

\endcsname}%
55 \ifx\reserved@a\exii@currenvir\else\@badend{#1}\fi}

Thanks to it you may write \begin{macrocode*} with *12 and end it with \end{%
macrocode*} with *11 (that was the problem that led me to this solution). The error
messages looked really funny:
! LaTeX Error: \begin{macrocode*} on input line 1844 ended by \end{macrocode*}.

Of course, you might write also \end{macrocode\star} where \star is defined as ‘other’
star or letter star.

From relsize

As file relsize.sty, v3.1 dated July 4, 2003 states, LATEX 2ε version of these macros was
written by Donald Arseneau asnd@triumf.ca and Matt Swift swift@bu.edu after the
LATEX 2.09 smaller.sty style file written by Bernie Cosell cosell@WILMA.BBN.COM .

5

asnd@triumf.ca
swift@bu.edu
cosell@WILMA.BBN.COM

I take only the basic, non-math mode commands with the assumption that there are
the predefined font sizes.

You declare the font size with \relsize{〈n〉} where 〈n〉 gives the number of steps\relsize
(”mag-step” = factor of 1.2) to change the size by. E.g., n = 3 changes from \normalsize
to \LARGE size. Negative n selects smaller fonts. \smaller == \relsize{-1};\smaller
\larger == \relsize{1}. \smallerr(my addition) == \relsize{-2}; \largerr\larger

\smallerr
\largerr

guess yourself.
(Since \DeclareRobustCommand doesn’t issue an error if its argument has been defined

and it only informs about redefining, loading relsize remains allowed.)
56 \DeclareRobustCommand*\relsize[1]{%\relsize
57 \ifmmode \@nomath\relsize\else
58 \begingroup
59 \@tempcnta % assign number representing current font size
60 \ifx\@currsize\normalsize 4\else % funny order is to have most ...
61 \ifx\@currsize\small 3\else % ...likely sizes checked first
62 \ifx\@currsize\footnotesize 2\else
63 \ifx\@currsize\large 5\else
64 \ifx\@currsize\Large 6\else
65 \ifx\@currsize\LARGE 7\else
66 \ifx\@currsize\scriptsize 1\else
67 \ifx\@currsize\tiny 0\else
68 \ifx\@currsize\huge 8\else
69 \ifx\@currsize\Huge 9\else
70 4\rs@unknown@warning % unknown state: \normalsize as start-

ing point
71 \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

Change the number by the given increment:
72 \advance\@tempcnta#1\relax

watch out for size underflow:
73 \ifnum\@tempcnta<\z@ \rs@size@warning{small}{\string\tiny}%

\@tempcnta\z@ \fi
74 \expandafter\endgroup
75 \ifcase\@tempcnta % set new size based on altered number
76 \tiny \or \scriptsize \or \footnotesize \or \small \or %

\normalsize \or
77 \large \or \Large \or \LARGE \or \huge \or \Huge \else
78 \rs@size@warning{large}{\string\Huge}\Huge
79 \fi\fi}% end of \relsize.
80 \providecommand*\rs@size@warning[2]{\PackageWarning{gmutils \rs@size@warning

(relsize)}{%
81 Size requested is too #1.\MessageBreak Using #2 instead}}

82 \providecommand*\rs@unknown@warning{\PackageWarning{gmutils \rs@unknown@warning
(relsize)}{Current font size

83 is unknown! (Why?!?)\MessageBreak Assuming \string\normalsize}}

And a handful of shorthands:
84 \DeclareRobustCommand*\larger[1][\@ne]{\relsize{+#1}}\larger
85 \DeclareRobustCommand*\smaller[1][\@ne]{\relsize{-#1}}\smaller

6

86 \DeclareRobustCommand*\textlarger[2][\@ne]{{\relsize{+#1}#2}}\textlarger
87 \DeclareRobustCommand*\textsmaller[2][\@ne]{{\relsize{-#1}#2}}\textsmaller
88 \DeclareRobustCommand*\largerr{\relsize{+2}}\largerr
89 \DeclareRobustCommand*\smallerr{\relsize{-2}}\smallerr

\firstofone and the Queer \catcodes

Remember that once a macro’s argument has been read, its \catcodes are assigned
forever and ever. That’s what is \firstofone for. It allows you to change the \catcodes
locally for a definition outside the changed \catcodes’ group. Just see the below usage
of this macro ‘with TEX’s eyes’, as my TEX Guru taught me.

90 \long\def\firstofone#1{#1}\firstofone

And this one is defined, I know, but it’s not \long with the standard definition.
91 \long\def\gobble#1{}\gobble
92 \let\gobbletwo\@gobbletwo\gobbletwo

93 \bgroup\catcode‘_=8 %
94 \firstofone{\egroup
95 \let\subs=_}\subs

96 \bgroup\@makeother_%
97 \firstofone{\egroup
98 \def\twelveunder{_}}\twelveunder

Now, let’s define such a smart _ (underscore) which will be usual _8 in the math mode
and _12 (‘other’) outside math.

99 \bgroup\catcode‘_=\active
100 \firstofone{\egroup
101 \newcommand*\smartunder{%\smartunder
102 \catcode‘_=\active
103 \def_{\ifmmode\subs\else_\fi}}}% We define it as _ not just as \twelveunder

because some font encodings don’t have _ at the \char‘_ position.
104 \begingroup\catcode‘\!=0
105 \@makeother\\
106 !firstofone{!endgroup%
107 !newcommand*!twelvebackslash{\}}\twelvebackslash

108 \@ifundefined{bslash}{\let\bslash=\twelvebackslash}{}\bslash

109 \begingroup \@makeother\%
110 \firstofone{\endgroup
111 \def\twelvepercent{%}}\twelvepercent

112 \begingroup \@makeother\&%
113 \firstofone{\endgroup%
114 \def\twelveand{&}}\twelveand

115 \begingroup\@makeother\ %
116 \firstofone{\endgroup%
117 \def\twelvespace{ }}\twelvespace

7

Metasymbols

I fancy also another Knuthian trick for typesetting 〈metasymbols〉 in The TEXbook. So
I repeat it here. The inner \meta macro is copied verbatim from doc’s v2.1b documen-
tation dated 2004/02/09 because it’s so beautifully crafted I couldn’t resist. I only don’t
make it \long.

“The new implementation fixes this problem by defining \meta in a radically different
way: we prevent hypenation by defining a \language which has no patterns associated
with it and use this to typeset the words within the angle brackets.”
118 \ifx\l@nohyphenation\undefined
119 \newlanguage\l@nohyphenation
120 \fi
121 \DeclareRobustCommand*\meta[1]{%\meta

“Since the old implementation of \meta could be used in math we better ensure
that this is possible with the new one as well. So we use \ensuremath around \langle
and \rangle. However this is not enough: if \meta@font@select below expands to
\itshape it will fail if used in math mode. For this reason we hide the whole thing inside
an \nfss@text box in that case.”
122 \ensuremath\langle
123 \ifmmode \expandafter \nfss@text \fi
124 {%
125 \meta@font@select

Need to keep track of what we changed just in case the user changes font inside the
argument so we store the font explicitly.
126 \edef\meta@hyphen@restore{%
127 \hyphenchar\the\font\the\hyphenchar\font}%
128 \hyphenchar\font\m@ne
129 \language\l@nohyphenation
130 #1\/%
131 \meta@hyphen@restore
132 }\ensuremath\rangle
133 }

But I define \meta@font@select as the brutal and explicit \it instead of the original
\itshape to make it usable e.g. in the gmdoc’s \cs macro’s argument.
134 \def\meta@font@select{\it}

The below \meta’s drag1 is a version of The TEXbook’s one.
135 \def\<#1>{\meta{#1}}\<...>

Macros for Printing Macros and Filenames

First let’s define three auxiliary macros analogous to \dywiz from polski.sty: a shorthands
for \discretionary that’ll stick to the word not spoiling its hyphenability and that’ll
won’t allow a linebreak just before nor just after themselves. The \discretionary TEX
primitive has three arguments: #1 ‘before break’, #2 ‘after break’, #3 ‘without break’,
remember?

1 Think of the drags that transform a very nice but rather standard ‘auntie’ (‘Tante’ in Deutsch)
into a most adorable Queen ;-) .

8

136 \def\discre#1#2#3{\kern0sp\discretionary{#1}{#2}{#3}\penalty10000%\discre
\hskip0sp\relax}

137 \def\discret#1{\kern0sp\discretionary{#1}{#1}{#1}\penalty10000%\discret
\hskip0sp\relax}

A tiny little macro that acts like \- outside the math mode and has its original
meaning inside math.
138 \def\:{\ifmmode\afterelsefi\mskip\medmuskip\else\afterfi\discret{}\fi}

139 \newcommand*{\vs}{\discre{\textvisiblespace}{}{\textvisiblespace}}\vs

Then we define a macro that makes the spaces visible even if used in an argument
(i.e., in a situation where re\catcodeing has no effect).
140 \def\printspaces#1{{\let~=\vs \let\ =\vs \gm@pswords#1 \@@nil}}\printspaces
141 \def\gm@pswords#1 #2\@@nil{%
142 \if\relax#1\relax\else#1\fi
143 \if\relax#2\relax\else\vs\penalty\hyphenpenalty\gm@pswords#2\@@nil\fi}%

note that in the recursive call of \gm@pswords the argument string is not
extended with a guardian space: it has been already by \printspaces.

144 \DeclareRobustCommand*\sfname[1]{\textsf{\printspaces{#1}}}\sfname
145 \let\file\sfname% it allows the spaces in the filenames (and prints them as).\file

The below macro I use to format the packages’ names.
146 \@ifundefined{pk}{%
147 \DeclareRobustCommand*{\pk}[1]{\textsf{\textup{#1}}}}{}\pk

Some (if not all) of the below macros are copied from doc and/or ltxdoc.
A macro for printing control sequences in arguments of a macro. Robust to avoid

writing an explicit \ into a file. It calls \ttfamily not \tt to be usable in headings
which are boldface sometimes.
148 \@ifundefined{cs}{\DeclareRobustCommand*{\cs}[2][\bslash]{{%\cs
149 \def\-{\discretionary{{\rmfamily-}}{}{}}%
150 \def\{{\char‘\{}\def\}{\char‘\}}\ttfamily #1#2}}}{}

151 \@ifundefined{env}{\DeclareRobustCommand*{\env}[1]{\cs[]{#1}}}{}\env

And one for encouraging linebreaks e.g., before long verbatim words.
152 \newcommand*\possfil{\hfil\penalty1000\hfilneg}\possfil

The five macros below are taken from the ltxdoc.dtx.
“\cmd{\foo} Prints \foo verbatim. It may be used inside moving arguments. \cs{%

foo} also prints \foo, for those who prefer that syntax. (This second form may even be
used when \foo is \outer).”
153 \def\cmd#1{\cs{\expandafter\cmd@to@cs\string#1}}\cmd
154 \def\cmd@to@cs#1#2{\char\number‘#2\relax}

\marg{text} prints {〈text〉}, ‘mandatory argument’.
155 \def\marg#1{{\ttfamily\char‘\{}\meta{#1}{\ttfamily\char‘\}}}\marg

\oarg{text} prints [〈text〉], ‘optional argument’. Also \oarg[text] does that.
156 \def\oarg{\@ifnextchar[\@oargsq\@oarg}\oarg
157 \def\@oarg#1{{\ttfamily[}\meta{#1}{\ttfamily]}}
158 \def\@oargsq[#1]{\@oarg{#1}}

\parg{te,xt} prints (〈te,xt〉), ‘picture mode argument’.

9

159 \def\parg{\@ifnextchar(\@pargp\@parg}\parg
160 \def\@parg#1{{\ttfamily(}\meta{#1}{\ttfamily)}}
161 \def\@pargp(#1){\@parg{#1}}

But we can have all three in one command.
162 \AtBeginDocument{%
163 \let\math@arg\arg\arg
164 \def\arg{\ifmmode\math@arg\else\afterfi
165 \@ifnextchar[\@oargsq{\@ifnextchar(\@pargp\marg}\fi}%
166 }

Storing and Restoring the Meanings of CSs

A command to store the current meaning of a CS in another macro to temporarily redefine
the CS and be able to set its original meanig back (when grouping is not recommended):
167 \def\StoreMacro{\bgroup\makeatletter\egStore@Macro}\StoreMacro
168 \long\def\egStore@Macro#1{\egroup\Store@Macro{#1}}
169 \long\def\Store@Macro#1{%
170 \expandafter\let\csname /gml/store\string#1\endcsname#1}

We make the \StoreMacro command a three-step to allow usage of the most inner
macro also in the next command.

The next command iterates over a list of CSs and stores each of them. The CS may
be separated with commas but they don’t have to.
171 \long\def\StoreMacros{\bgroup\makeatletter\Store@Macros}\StoreMacros
172 \long\def\Store@Macros#1{\egroup
173 \let\gml@StoreCS\Store@Macro
174 \gml@storemacros#1.}

And the inner iterating macro:
175 \long\def\gml@storemacros#1{%
176 \def\@tempa{\noexpand#1}% My TEX Guru’s trick to deal with \fi and such, i.e.,

to hide #1 from TEX when it is processing a test’s branch without expanding.
177 \if\@tempa.% a dot finishes storing.
178 \else
179 \if\@tempa,% The list this macro is put before may contain commas and that’s

O.K., we just continue the work.
180 \afterelsefifi\gml@storemacros
181 \else% what is else this shall be stored.
182 \gml@StoreCS{#1}% we use a particular CS to may \let it both to the storing

macro as above and to the restoring one as below.
183 \afterfifi\gml@storemacros
184 \fi
185 \fi}

And for the restoring
186 \def\RestoreMacro{\bgroup\makeatletter\egRestore@Macro}\RestoreMacro
187 \long\def\egRestore@Macro#1{\egroup\Restore@Macro{#1}}
188 \long\def\Restore@Macro#1{%
189 \expandafter\let\expandafter#1\csname /gml/store\string#1%

\endcsname}

10

190 \long\def\RestoreMacros{\bgroup\makeatletter\Restore@Macros}\RestoreMacros
191 \long\def\Restore@Macros#1{\egroup
192 \let\gml@StoreCS\Restore@Macro% we direct the core CS towards restoring and

call the same iterating macro as in line 174.
193 \gml@storemacros#1.}

As you see, the \RestoreMacros command uses the same iterating macro inside, it
only changes the meaning of the core macro.

And to restore and use immediately:
194 \def\StoredMacro{\bgroup\makeatletter\Stored@Macro}
195 \long\def\Stored@Macro#1{\egroup\Restore@Macro#1#1}

It happended (see the definition of \@docinclude in gmdoc.sty) that I needed to
\relax a bunch of macros and restore them after some time. Because the macros were
rather numerous and I wanted the code more readable, I wanted to \do them. After
a proper defining of \do of course. So here is this proper definition of \do, provided as
a macro (a declaration).
196 \long\def\StoringAndRelaxingDo{%\StoringAndRelaxingDo
197 \def\do##1{\expandafter\let\csname /gml/store\string##1%

\endcsname##1%
198 \let##1\relax}}

And here is the counter-definition for restore.
199 \long\def\RestoringDo{%\RestoringDo
200 \def\do##1{%
201 \expandafter\let\expandafter##1\csname /gml/store\string##1%

\endcsname}}

And to store a cs as explicitly named cs, i.e. to \let one csname another:
202 \def\@namelet#1#2{%
203 \edef\@tempa{%
204 \let\expandafter\noexpand\csname#1\endcsname
205 \expandafter\noexpand\csname#2\endcsname}%
206 \@tempa}

Third Person Pronouns

Is a reader of my documentations ‘she’ or ’he’ and does it make a difference?
Not to favour any gender in the personal pronouns, define commands that’ll print

alternately masculine and feminine pronoun of third person. By ‘any’ I mean not only
typically masculine and typically feminine but the entire amazingly rich variety of people’s
genders, including those who do not describe themselves as ‘man’ or ‘woman’.

One may say two pronouns is far too little to cover this variety but I could point
Ursula’s K. LeGuin’s The Left Hand Of Darkness as another acceptable answer. In
that moody and moderate SF novel the androgynous persons are usually referred to as
‘mister’, ‘sir’ or ‘he’: the meaning of reference is extended. Such an extension also my
automatic pronouns do suggest. It’s not political correctness, it’s just respect to people’s
diversity.
207 \newcounter{gm@PronounGender}

208 \newcommand*\gm@atppron[2]{%\gm@atppron

11

209 \stepcounter{gm@PronounGender}% remember \stepcounter is global.
210 \ifodd\arabic{gm@PronounGender}#1\else#2\fi}

211 \newcommand*\heshe{\gm@atppron{he}{she}}\heshe
212 \newcommand*\hisher{\gm@atppron{his}{her}}\hisher
213 \newcommand*\himher{\gm@atppron{him}{her}}\himher
214 \newcommand*\hishers{\gm@atppron{his}{hers}}\hishers

215 \newcommand*\HeShe{\gm@atppron{He}{She}}\HeShe
216 \newcommand*\HisHer{\gm@atppron{His}{Her}}\HisHer
217 \newcommand*\HimHer{\gm@atppron{Him}{Her}}\HimHer
218 \newcommand*\HisHers{\gm@atppron{His}{Hers}}\HisHers

To Save Precious Count Registers

It’s a contribution to TEX’s ecology ;-). You can use as many CSs as you wish and you
may use only 256 count registers (although in eTEX there are 216 count registers, which
makes the following a bit obsolete).
219 \newcommand*\nummacro[1]{\gdef#1{0}}

220 \newcommand*\stepnummacro[1]{%
221 \@tempcnta=#1\relax
222 \advance\@tempcnta by1\relax
223 \xdef#1{\the\@tempcnta}}% Because of some mysterious reasons explicit \count0

interferred with page numbering when used in \gmd@evpaddonce in gmdoc.
224 \newcommand*\addtonummacro[2]{%
225 \count0=#1\relax
226 \advance\count0by#2\relax
227 \xdef#1{\the\count\z@}}

Need an explanation? The \nummacro declaration defines its argument (that should
be a CS) as {0} which is analogous to \newcount declaration but doesn’t use up any
count register.

Then you may use this numeric macro as something between TEX’s count CS and
LATEX’s counter. The macros \stepnummacro and \addtonummacro are analogous to
LATEX’s \stepcounter and \addtocounter respectively: \stepnummacro advances the
number stored in its argument by 1 and \addtonummacro advances it by the second
argument. As the LATEX’s analogoi, they have the global effect (the effect of global
warming ;-)).

So far I’ve used only \nummacro and \stepnummacro. Notify me if you use them and
whether you need sth. more, \multiplynummacro e.g.

Improvements to mwcls Sectioning Commands

That is, ‘Expe-ri-mente’2 mit MW sectioning & \refstepcounter to improve mwcls’s
cooperation with hyperref. They shouldn’t make any harm if another class (non-mwcls)
is loaded.

We \refstep sectioning counters even if the sectionings are not numbered, because
otherwise
1. pdfTEX cried of multiply defined \labels,

2 A. Berg, Wozzeck.

12

2. e.g. in a table of contents the hyperlink <rozdzia\l\ Kwiaty polskie> linked not
to the chapter’s heading but to the last-before-it change of \ref.

228 \AtBeginDocument{% because we don’t know when exactly hyperref is loaded and
maybe after this package.

229 \@ifpackageloaded{hyperref}{\newcounter{NoNumSecs}%
230 \setcounter{NoNumSecs}{617}% to make \refing to an unnumbered section

visible (and funny?).
231 \def\gm@hyperrefstepcounter{\refstepcounter{NoNumSecs}}%
232 \DeclareRobustCommand*\gm@targetheading[1]{%
233 \hypertarget{#1}{#1}}}% end of then
234 {\def\gm@hyperrefstepcounter{}%
235 \def\gm@targetheading#1{#1}}% end of else
236 }% of \AtBeginDocument
Auxiliary macros for the kernel sectioning macro:
237 \def\gm@dontnumbersectionsoutofmainmatter{%
238 \if@mainmatter\else \HeadingNumberedfalse \fi}
239 \def\gm@clearpagesduetoopenright{%
240 \if@openright\cleardoublepage\else \clearpage\fi}

To avoid \defing of \mw@sectionxx if it’s undefined, we redefine \def to gobble the
definition and restore the original meaning of itself.

Why shouldn’t we change the ontological status of \mw@sectionxx (not define if
undefined)? Because some macros (in gmdocc e.g.) check it to learn whether they are in
an mwcls or not.

But let’s make a shorthand for this test since we’ll use it three times in this package
and maybe also somewhere else.
241 \long\def\@ifnotmw#1#2{\@ifundefined{mw@sectionxx}{#1}{#2}}\@ifnotmw

242 \@ifnotmw{%
243 \StoreMacro\def \def\def#14#2{\RestoreMacro\def}}{}

I know it may be of bad taste (to write such a way here) but I feel so lonely and am
in an alien state of mind after 3 hour sleep last night and, worst of all, listening to sir
Edward Elgar’s flamboyant Symphonies d’Art Nouveau.

A decent person would just wrap the following definition in \@ifundefined’s Else.
But look, the definition is so long and I feel so lonely etc. So, I define \def (for some
people there’s nothing sacred) to be a macro with two parameters, first of which is
delimited by digit 4 (the last token of \mw@sectionxx’s parameter string) and the latter
is undelimited which means it’ll be the body of the definition. Such defined \def does
nothing else but restores its primitive meaning by the way sending its arguments to the
Gobbled Tokens’ Paradise. Luckily, \RestoreMacro contains \let not \def.

The kernel of MW’s sectioning commands:
244 \def\mw@sectionxx#1#2[#3]#4{%
245 \edef\mw@HeadingLevel{\csname #1@level\endcsname
246 \space}% space delimits level number!
247 \ifHeadingNumbered
248 \ifnum \mw@HeadingLevel>\c@secnumdepth \HeadingNumberedfalse \fi

line below is in ifundefined to make it work in classes other than mwbk
249 \@ifundefined{if@mainmatter}{}{%

\gm@dontnumbersectionsoutofmainmatter}

13

250 \fi

% \ifHeadingNumbered
% \refstepcounter{#1}%
% \protected@edef\HeadingNumber{\csname the#1\endcsname\relax}%
% \else
% \let\HeadingNumber\@empty
% \fi

251 \def\HeadingRHeadText{#2}%
252 \def\HeadingTOCText{#3}%
253 \def\HeadingText{#4}%
254 \def\mw@HeadingType{#1}%
255 \if\mw@HeadingBreakBefore
256 \if@specialpage\else\thispagestyle{closing}\fi
257 \@ifundefined{if@openright}{}{\gm@clearpagesduetoopenright}%
258 \if\mw@HeadingBreakAfter
259 \thispagestyle{blank}\else
260 \thispagestyle{opening}\fi
261 \global\@topnum\z@
262 \fi% of \if\mw@HeadingBreakBefore
placement of \refstep suggested by me (GM)
263 \ifHeadingNumbered
264 \refstepcounter{#1}%
265 \protected@edef\HeadingNumber{\csname the#1\endcsname\relax}%
266 \else
267 \let\HeadingNumber\@empty
268 \gm@hyperrefstepcounter
269 \fi% of \ifHeadingNumbered
270 \if\mw@HeadingRunIn
271 \mw@runinheading
272 \else
273 \if\mw@HeadingWholeWidth
274 \if@twocolumn
275 \if\mw@HeadingBreakAfter
276 \onecolumn
277 \mw@normalheading
278 \pagebreak\relax
279 \if@twoside
280 \null
281 \thispagestyle{blank}%
282 \newpage
283 \fi% of \if@twoside
284 \twocolumn
285 \else
286 \@topnewpage[\mw@normalheading]%
287 \fi% of \if\mw@HeadingBreakAfter
288 \else
289 \mw@normalheading
290 \if\mw@HeadingBreakAfter\pagebreak\relax\fi
291 \fi% of \if@twocolumn

14

292 \else
293 \mw@normalheading
294 \if\mw@HeadingBreakAfter\pagebreak\relax\fi
295 \fi% of \if\mw@HeadingWholeWidth
296 \fi% of \if\mw@HeadingRunIn
297 }

(End of Experimente with MW sectioning.)

Compatibilising Standard and mwcls Sectionings

If you use Marcin Woliński’s document classes (mwcls), you might have met their little
queerness: the sectioning commands take two optional arguments instead of standard one.
It’s reasonable since one may wish one text to be put into the running head, another to
the toc and yet else to the page. But the order of optionalities causes an incompatibility
with the standard classes: MW section’s first optional argument goes to the running
head not to toc and if you’ve got a source file written with the standard classes in mind
and use the first (and only) optional argument, the effect with mwcls would be different
if not error.

Therefore I counter-assign the commands and arguments to reverse the order of op-
tional arguments for sectioning commands when mwcls are in use and reverse, to make
mwcls-like sectioning optionals usable in the standard classes.

With the following in force, you may both in the standard classes and in mwcls give
a sectioning command one or two optional arguments (and mandatory the last, of course).
If you give just one optional, it goes to the running head and to toc as in scls (which is
unlike in mwcls). If you give two optionals, the first goes to the running head and the
other to toc (like in mwcls and unlike in scls).

(In both cases the mandatory last argument goes only to the page.)
What more is unlike in scls, it’s that even with them the starred versions of sectioning

commands allow optionals (but they still send them to the Gobbled Tokens’ Paradise).
(In mwcls, the only difference between starred and non-starred sec commands is (not)

numbering the titles, both versions make a contents line and a mark and that’s not
changed with my redefinitions.)
298 \@ifnotmw{% we are not in mwcls and want to handle mwcls-like sectionings i.e., those

written with two optionals.
299 \def\gm@secini{gm@la}%
300 \def\gm@secxx#1#2[#3]#4{%\gm@secxx
301 \ifx\gm@secstar\@empty
302 \@namelet{gm@true@#1mark}{#1mark}% a little trick to allow a special ver-

sion of the heading just to the running head.
303 \@namedef{#1mark}##1{% we redefine \〈sec〉mark to gobble its argument and

to launch the stored true marking command on the appropriate argu-
ment.

304 \csname gm@true@#1mark\endcsname{#2}%
305 \@namelet{#1mark}{gm@true@#1mark}% after we’ve done what we wanted

we restore original \#1mark.
306 }%
307 \def\gm@secstar{[#3]}% if \gm@secstar is empty, which means the section-

ing command was written starless, we pass the ‘true’ sectioning com-

15

mand #3 as the optional argument. Otherwise the sectioning command
was written with star so the ‘true’ s.c. takes no optional.

308 \fi
309 \expandafter\expandafter\csname\gm@secini#1\endcsname
310 \gm@secstar{#4}}%

311 }{% we are in mwcls and want to reverse MW’s optionals order i.e., if there’s just one
optional, it should go both to toc and to running head.

312 \def\gm@secini{gm@mw}%
313 \let\gm@secmarkh\@gobble% in mwcls there’s no need to make tricks for special

version to running headings.
314 \def\gm@secxx#1#2[#3]#4{%\gm@secxx
315 \expandafter\expandafter\csname\gm@secini#1\endcsname
316 \gm@secstar[#2][#3]{#4}}%
317 }

318 \def\gm@sec#1{\@dblarg{\gm@secx{#1}}}
319 \def\gm@secx#1[#2]{%
320 \@ifnextchar[{\gm@secxx{#1}{#2}}{\gm@secxx{#1}{#2}[#2]}}% if there’s only

one optional, we double it not the mandatory argument.
321 \def\gm@straightensec#1{% the parameter is for the command’s name.
322 \@ifundefined{#1}{}{% we don’t change the ontological status of the command

because someone may test it.
323 \@namelet{\gm@secini#1}{#1}%
324 \@namedef{#1}{%
325 \@ifstar{\def\gm@secstar{*}\gm@sec{#1}}{%
326 \def\gm@secstar{}\gm@sec{#1}}}}%
327 }%

328 \let\do\gm@straightensec
329 \do{part}\do{chapter}\do{section}\do{subsection}\do{subsubsection}
330 \@ifnotmw{}{\do{paragraph}}% this ‘straightening’ of \paragraph with the stan-

dard article caused the ‘TEX capacity exceeded’ error. Anyway, who on Earth
wants paragraph titles in toc or running head?

Varia

LATEX provides a very useful \g@addto@macro macro that adds its second argument to
the current definition of its first argument (works iff the first argument is a no argument
macro). But I needed it some times in a document, where @ is not a letter. So:
331 \let\gaddtomacro=\g@addto@macro\gaddtomacro

The redefining of the first argument of the above macro(s) is \global. What if we
want it local? Here we are:
332 \long\def\addto@macro#1#2{%\addto@macro
333 \toks@\expandafter{#1#2}%
334 \edef#1{\the\toks@}%
335 }% (\toks@ is a scratch register, namely \toks0.)

And for use in the very document,
336 \let\addtomacro=\addto@macro\addtomacro

‘(LA)TEX’ in my opinion better describes what I work with/in than just ‘LATEX’.

16

337 \DeclareRobustCommand*{\LaTeXpar}{(L\kern-.36em%\LaTeXpar
338 {\sbox\z@ T%
339 \vbox to\ht\z@{\hbox{\check@mathfonts
340 \fontsize\sf@size\z@
341 \math@fontsfalse\selectfont
342 A}%
343 \vss}%
344 }%
345 \kern-.07em% originally −, 15 em
346)\TeX}

347 \newcommand*\@emptify[1]{\let#1=\@empty}\@emptify
348 \@ifdefinable\emptify{\let\emptify\@emptify}\emptify

Note the two following commands are in fact one-argument.
349 \newcommand*\g@emptify{\global\@emptify}\g@emptify
350 \@ifdefinable\gemptify{\let\gemptify\g@emptify}\gemptify

351 \newcommand*\@relaxen[1]{\let#1=\relax}\@relaxen
352 \@ifdefinable\relaxen{\let\relaxen\@relaxen}\relaxen

Note the two following commands are in fact one-argument.
353 \newcommand*\g@relaxen{\global\@relaxen}\g@relaxen
354 \@ifdefinable\grelaxen{\let\grelaxen\g@relaxen}\grelaxen

For the heavy debugs I was doing while preparing gmdoc, as a last resort I used
\showlists. But this command alone was usually too little: usually it needed setting
\showboxdepth and \showboxbreadth to some positive values. So,
355 \def\gmshowlists{\showboxdepth=1000 \showboxbreadth=1000 \showlists}\gmshowlists

356 \newcommand*\nameshow[1]{\expandafter\show\csname#1\endcsname}\nameshow

Standard \string command returns a string of ‘other’ chars except for the space, for
which it returns 10. In gmdoc I needed the spaces in macros’ and environments’ names
to be always 12, so I define
357 \def\xiistring#1{%\xiistring
358 \if\noexpand#1\twelvespace
359 \twelvespace
360 \else
361 \string#1%
362 \fi}

A very neat macro provided by doc. I copy it ˜verbatim.
363 \DeclareRobustCommand**{\leavevmode\lower.8ex\hbox{$\,\widetilde{\ }%*

\,$}}

The standard \obeyspaces declaration just changes the space’s \catcode to 13 (‘ac-
tive’). Usually it is fairly enough because no one ‘normal’ redefines the active space. But
we are not normal and we do not do usual things and therefore we want a declaration
that not only will \activeate the space but also will (re)define it as the \ primitive. So
define \gmobeyspaces that obeys this requirement.

(This definition is repeated in gmverb.)
364 \begin{catcode}‘\ \active
365 \gdef\gmobeyspaces{\catcode‘\ \active\let \ }\gmobeyspaces

17

366 \end{catcode}

While typesetting poetry, I was surprised that sth. didn’t work. The reason was that
original \obeylines does \let not \def, so I give the latter possibility.
367 \bgroup\catcode‘\^^M\active% the comment signs here are crucial.
368 \firstofone{\egroup%
369 \newcommand*\defobeylines{\catcode‘\^^M=13 \def^^M{\par}}}%\defobeylines

Another thing I dislike in LATEX yet is doing special things for \...skip’s, ’cause
I like the Knuthian simplicity. So I sort of restore Knuthian meanings:
370 \def\deksmallskip{\vskip\smallskipamount}\deksmallskip
371 \def\undeksmallskip{\vskip-\smallskipamount}\undeksmallskip
372 \def\dekmedskip{\vskip\medskipamount}\dekmedskip
373 \def\dekbigskip{\vskip\bigskipamount}\dekbigskip

In some \if(cat?) test I needed to look only at the first token of a tokens’ string
(first letter of a word usually) and to drop the rest of it. So I define a macro that expands
to the first token (or {〈text〉}) of its argument.
374 \long\def\@firstofmany#1#2\@@nil{#1}\@firstofmany

A mark for the TODO!s:
375 \newcommand*{\TODO}[1][]{{%\TODO
376 \sffamily\bfseries\huge TODO!\if\relax#1\relax\else\space\fi#1}}

I like twocolumn tables of contents. First I tried to provide them by writing \begin{%
multicols}{2} and \end{multicols} outto the .toc file but it worked wrong in some
cases. So I redefine the internal LATEX macro instead.
377 \newcommand*\twocoltoc{%\twocoltoc
378 \RequirePackage{multicol}%
379 \def\@starttoc##1{%\@starttoc
380 \begin{multicols}{2}\makeatletter\@input {\jobname .##1}%
381 \if@filesw \expandafter \newwrite \csname tf@##1\endcsname
382 \immediate \openout \csname tf@##1\endcsname \jobname .##1%

\relax
383 \fi
384 \@nobreakfalse\end{multicols}}}

385 \@onlypreamble\twocoltoc

The macro given below is taken from the multicol package (where its name is
\enough@room). I put it in this package since I needed it in two totally different works.
386 \newcommand\enoughpage[1]{%\enoughpage
387 \par
388 \dimen0=\pagegoal
389 \advance\dimen0 by-\pagetotal
390 \ifdim\dimen0<#1\relax\newpage\fi}

The \dots didn’t come out well. My small investigation revealed a mysterious re-
placement of the original LATEX definition of \textellipsis with

> \textellipsis=macro:
->\PD1-cmd \textellipsis \PD1\textellipsis .

18

So, let’s ensure \dots are given the proper kerning:
391 \DeclareTextCommandDefault\ltxtextellipsis{%\ltxtextellipsis
392 .\kern\fontdimen3\font
393 .\kern\fontdimen3\font
394 .\kern\fontdimen3\font}

395 \DeclareRobustCommand*\dots{%\dots
396 \ifmmode\mathellipsis\else\ltxtextellipsis\fi}

397 \let\ldots\dots

Two shorthands for debugging:
398 \newcommand*\tOnLine{\typeout{\on@line}}\tOnLine

399 \let\OnAtLine\on@line\OnAtLine

An equality sign properly spaced:
400 \newcommand*\equals{${}={}$}\equals

And for the LATEX’s pseudo-code statements:
401 \newcommand*\eequals{${}=={}$}\eequals

The job name without extension.
402 \def\gm@jobn#1.#2\@@nil{#1}

403 \def\jobnamewoe{\expandafter\gm@jobn\jobname.\@@nil}% We add the dot to\jobnamewoe
be sure there is one although I’m not sure whether you can TEX a file that has
no extrension.

404 \endinput

Index

Numbers written in italic refer to the code lines where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in roman
refer to the code lines where the entry is used. The numbers preceded with ‘p.’ are page
numbers. All the numbers are hyperlinks.

*, 363
\-, 149
\<...>, 135
\@@nil, 140, 141, 143, 374,

402, 403
\@badend, 55
\@begnamedgroup, 41, 42,

48, 51
\@checkend, 52
\@currenvir, 45, 54
\@currenvline, 46
\@currsize, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69
\@emptify, 347, 348, 349
\@firstofmany, 374
\@gif, 7, 8, 10

\@ifncat, 22, 23, 35
\@ifnextcat, 18
\@ifnotmw, 241, 242, 298, 330
\@namelet, 202, 302, 305, 323
\@nobreakfalse, 384
\@oarg, 156, 157, 158
\@oargsq, 156, 158, 165
\@onlypreamble, 385
\@parg, 159, 160, 161
\@pargp, 159, 161, 165
\@relaxen, 351, 352, 353
\@starttoc, 379
\@topnewpage, 286
\@xifncat, 25, 35

\addto@macro, 332, 336
\addtomacro, 336

\addtonummacro, 224
\afterelsefi, 38, 138
\afterelsefifi, 37, 180
\afterelseiffifi, 40
\afterfi, 36, 138, 164
\afterfifi, 39, 183
\arg, 163, 164
\AtBeginDocument, 162, 228

\begin, 50, 51
\begin*, 51
\bigskipamount, 373
\bnamegroup, 48
\bslash, 108, 148

\c@secnumdepth, 248
\cleardoublepage, 240

19

\cmd, 153
\cmd@to@cs, 153, 154
\count, 225, 226, 227
\cs, 148, 151, 153

\DeclareRobustCommand*,
56, 84, 85, 86, 87, 88,
89, 121, 144, 147,
148, 151, 232, 337,
363, 395

\DeclareTextCommandDefault,
391

\defobeylines, 369
\dekbigskip, 373
\dekmedskip, 372
\deksmallskip, 370
\dimen, 388, 389, 390
\discre, 136, 139
\discret, 137, 138
\dots, 395, 397

\eequals, 401
\egRestore@Macro, 186, 187
\egStore@Macro, 167, 168
\emptify, 348, 348
\enamegroup, 49
\enoughpage, 386
\ensuremath, 122, 132
\env, 151
\equals, 400
\exii@currenvir, 54, 55

\file, 145

\g@emptify, 349, 350
\g@relaxen, 353, 354
\gaddtomacro, 331
\gemptify, 350, 350
\glet, 17
\gm@atppron, 208, 211,

212, 213, 214, 215,
216, 217, 218

\gm@clearpagesduetoopenright,
239, 257

\gm@dontnumbersectionsoutofmainmatter,
237, 249

\gm@hyperrefstepcounter,
231, 234, 268

\gm@jobn, 402, 403
gm@PronounGender, 207
\gm@pswords, 140, 141, 143
\gm@sec, 318, 325, 326
\gm@secini, 299, 309, 312,

315, 323
\gm@secmarkh, 313
\gm@secstar, 301, 307,

310, 316, 325, 326
\gm@secx, 318, 319

\gm@secxx, 300, 314, 320
\gm@straightensec, 321, 328
\gm@targetheading, 232, 235
\gml@StoreCS, 173, 182, 192
\gml@storemacros, 174,

175, 180, 183, 193
\gmobeyspaces, 365
\gmshowlists, 355
\gobble, 91
\gobbletwo, 92
\grefstepcounter, 15
\grelaxen, 354, 354

\HeadingNumber, 265, 267
\HeadingNumberedfalse,

238, 248
\HeadingRHeadText, 251
\HeadingText, 253
\HeadingTOCText, 252
\HeShe, 215
\heshe, 211
\HimHer, 217
\himher, 213
\HisHer, 216
\hisher, 212
\HisHers, 218
\hishers, 214
\hyphenpenalty, 143

\if@filesw, 381
\if@mainmatter, 238
\if@openright, 240
\if@specialpage, 256
\if@twoside, 279
\ifHeadingNumbered, 247, 263
\ifodd, 210

\jobnamewoe, 403

\l@nohyphenation, 118,
119, 129

\larger, p. 6 , 84
\largerr, p. 6 , 88
\LaTeXpar, 337
\ldots, 397
\ltxtextellipsis, 391, 396

\marg, 155, 165
\math@arg, 163, 164
\mathellipsis, 396
\medmuskip, 138
\meta, 121, 135, 155, 157, 160
\meta@font@select, 125, 134
\meta@hyphen@restore,

126, 131
\mskip, 138
\mw@HeadingBreakAfter,

258, 275, 290, 294

\mw@HeadingBreakBefore, 255
\mw@HeadingLevel, 245, 248
\mw@HeadingRunIn, 270
\mw@HeadingType, 254
\mw@HeadingWholeWidth, 273
\mw@normalheading, 277,

286, 289, 293
\mw@runinheading, 271
\mw@sectionxx, 244

\nameshow, 356
\newcounter, 207, 229
\newgif, 4
\newlanguage, 119
\newwrite, 381
\nfss@text, 123
\nummacro, 219

\oarg, 156
\old@begin, 50, 51
\OnAtLine, 399

\PackageWarning, 80, 82
\pagebreak, 278, 290, 294
\pagegoal, 388
\pagetotal, 389
\parg, 159
\pk, 147
\possfil, 152
\printspaces, 140, 144

\relaxen, 352, 352
\relsize, p. 6 , 56, 57, 84,

85, 86, 87, 88, 89
\RequirePackage, 378
\Restore@Macro, 187, 188,

192, 195
\Restore@Macros, 190, 191
\RestoreMacro, 186, 243
\RestoreMacros, 190
\RestoringDo, 199
\rs@size@warning, 73, 78, 80
\rs@unknown@warning, 70, 82

\sfname, 144, 145
\showboxbreadth, 355
\showboxdepth, 355
\showlists, 355
\smaller, p. 6 , 85
\smallerr, p. 6 , 89
\smallskipamount, 370, 371
\smartunder, 101
\stepnummacro, 220
\Store@Macro, 168, 169, 173
\Store@Macros, 171, 172
\Stored@Macro, 194, 195
\StoredMacro, 194
\StoreMacro, 167, 243

20

\StoreMacros, 171
\StoringAndRelaxingDo, 196
\subs, 95, 103

\textlarger, 86
\textsmaller, 87
\textvisiblespace, 139

\TODO, 375
\tOnLine, 398
\twelveand, 114
\twelvebackslash, 107, 108
\twelvepercent, 111
\twelvespace, 117, 358, 359
\twelveunder, 98

\twocoltoc, 377, 385

\undeksmallskip, 371

\vs, 139, 140, 143

\xiistring, 357

	Intro
	Installation
	Contents of the gmutils.zip Archive
	Compiling of the Documentation

	newgif and Other Globals
	@ifnextcat
	afterfi and Pals
	Almost an Environment or Redefinition of begin
	Improvement of end
	From relsize
	firstofone and the Queer catcodes
	Metasymbols
	Macros for Printing Macros and Filenames
	Storing and Restoring the Meanings of CSs
	Third Person Pronouns
	To Save Precious Count Registers
	Improvements to mwcls Sectioning Commands
	Compatibilising Standard and mwcls Sectionings
	Varia
	Index

