
Grzegorz ‘Natror’ Murzynowski

The gmdoc Package
i.e., gmdoc.sty and gmdocc.cls

EuroBachoTEX2007

Contents

a. The gmdoc.sty Package 4
Readme 4

Installation 4
Contents of the gmdoc.zip Archive 5
Compiling the Documentation . . 5
Dependencies 5
Bonus: base Drivers 5

Introduction 6
The User Interface 6

Used Terms 6
Preparing the Source File 7
The Main Input Commands 8
Package Options 10
The Packages Required 11
Macros for Marking the Macros . 12
Index Ex/Inclusions 14
The DocStrip Directives 14
The Changes History 14
The Parameters 16
The Narration Macros 19
A Queerness of \label 20
doc-Compatibility 21

The Code 21
The Package Options 22
The Dependencies and

Preliminaries 23
The Core 26
Numbering (or Not) of the Lines . 34
Spacing with \everypar 35
Life Among Queer EOLs 36
Adjustment of verbatim and \verb 38
Macros for Marking The Macros . 39
Index Exclude List 55
Index Parameters 58
The DocStrip Directives 60
The Changes History 61
The Checksum 66
Macros from ltxdoc 67
\DocInclude and the ltxdoc-Like

Setup 68
\SelfInclude 72
Redefinition of \maketitle 74
The File’s Date and Version

Information 76
Miscellanea 78
doc-Compatibility 81
gmdocing doc.dtx 86

Polishing, Development and Bugs . . 87

(No) 〈eof 〉 87
b. The gmdocc Class For gmdoc

Driver Files 89
Intro 89
Usage 89
The Code 90

c. gmdocDoc.tex, The Driver File . 93
d. The gmutils Package 94

Intro 94
Contents of the gmutils.zip Archive 94

A couple of abbreviations 94
\@ifnextcat, \@ifnextac 96
\afterfi and Pals 98
Almost an Environment or

Redefinition of \begin 98
Improvement of \end 99
From relsize 99
\firstofone and the Queer

\catcodes 101
Metasymbols 101
Macros for Printing Macros and

Filenames 102
Storing and Restoring the Meanings

of CSs 104
Not only preamble! 106
Third Person Pronouns 106
To Save Precious Count Registers . . 107
Improvements to mwcls Sectioning

Commands 107
Compatibilising Standard and

mwcls Sectionings 110
enumerate* and itemize* 111
The Logos 112
Expanding turning stuff all into

‘other’ 113
Varia 114

e. The gmiflink Package 118
Introduction, usage 118

Contents of the gmiflink.zip archive 118
The Code 119

f. The gmverb Package 121
Intro, Usage 121

Contents of the gmverb.zip Archive 122
The Code 122

Preliminaries 122
The Breakables 123

2

Almost-Knuthian \ttverbatim . . 124
The Core: From shortvrb 124
doc- And shortvrb-Compatibility . 129

Change History 131

Index 133

3

a. The gmdoc.sty Package1

April 30, 2007

This is (a documentation of) file gmdoc.sty, intended to be used with LATEX 2ε as a pack-
age for documenting (LA)TEX files and to be documented with itself.

Written by Natror (Grzegorz Murzynowski),
natror at o2 dot pl
© 2006 by Natror (Grzegorz Murzynowski).
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.
Many thanks to my TEX Guru Marcin Woliński for his TEXnical support.

1 〈package〉

2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{gmdoc}
4 [2007/04/29 v0.99e a documenting package (GM)]

Readme

This package is a tool for documenting of (LA)TEX packages, classes etc., i.e., the .sty, .cls
files etc. The author just writes the code and adds the commentary preceded with % sign
(or another properly declared). No special environments are necessary.

The package tends to be (optionally) compatible with the standard doc.sty package,
i.e., the .dtx files are also compilable with gmdoc (they may need very little adjustment,
in some rather special cases).

The tools are integrated with hyperref’s advantages such as hyperlinking of index
entries, contents entries and cross-references.

Installation

Just put the gmdoc.sty and gmdocc.cls somewhere in the texmf/tex/latex branch. Creating
a texmf/tex/latex/gm directory may be advisable if you consider using other packages
written by me.

You should also install gmverb.sty, gmutils.sty and gmiflink.sty (e.g., put them into the
same gm directory). These packages are available on CTAN as separate .zip archives.

Moreover, you should put the gmglo.ist file, a MakeIndex style for the changes’ history,
into some texmf/makeindex (sub)directory.

Then you should refresh your TEX distribution’s files’ database most probably.
1 This file has version number v0.99e dated 2007/04/29.

4

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

Contents of the gmdoc.zip Archive

The distribution of the gmdoc package consists of the following six files.

gmdoc.sty
gmdocc.cls
gmglo.ist
README
gmdocDoc.tex
gmdocDoc.pdf

Compiling the Documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from the
.sty and .cls files by running LATEX on the gmdocDoc.tex twice, then MakeIndex on the
gmdocDoc.idx and gmdocDoc.glo files, and then LATEX on gmdocDoc.tex once more.

MakeIndex shell commands:

makeindex -r gmdocDoc
makeindex -r -s gmglo.ist -o gmdocDoc.gls gmdocDoc.glo

The -r switch is to forbid MakeIndex to make implicit ranges since the (code line)
numbers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmutils.sty, gmverb.sty, gmiflink.sty and also some standard packages: hyper-
ref.sty, color.sty, geometry.sty, multicol.sty, lmodern.sty, fontenc.sty that should be installed
on your computer by default.

If you had not installed the mwcls classes (available on CTAN and present in TEX
Live e.g.), the result of your compilation might differ a bit from the .pdf provided in this
.zip archive in formatting: If you had not installed mwcls, the standard article.cls class
would be used.

Dependencies

The gmdoc bundle depends on some other packages of mine:

gmutils.sty,
gmverb.sty,
gmiflink.sty
gmeometric (for the driver of The LATEX 2ε Source)

and also on some standard packages:

hyperref.sty,
color.sty,
geometry.sty,
multicol.sty,
lmodern.sty,
fontenc.sty

that should be installed on your computer by default.

Bonus: base Drivers

As a bonus and example of doc-compatibility there are driver files included (cf. Palestrina,
Missa papae Marceli ;-):

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 5

source2e_gmdoc.tex
docstrip_gmdoc.tex
doc_gmdoc.tex

oldcomm.sty
(gmsource2e.ist is generated from source2e_gmdoc.tex)

These drivers typeset the respective files from the

.../texmf-dist/source/latex/base
directory of the TEXLive2005 distribution.

Probably you should redefine the \BasePath macro in them so that it points that
directory on your computer.

Introduction

There are very sophisticated and effective tools for documenting LATEX macro packages,
namely the doc package and the ltxdoc class. Why did I write another documenting
package then?

I like comfort and doc is not comfortable enough for me. It requires special marking
of the macro code to be properly typeset when documented. I want TEX to know ‘itself’
where the code begins and ends, without additional marks.

That’s the difference. One more difference, more important for the people for whom
the doc’s conventions are acceptable, is that gmdoc makes use of hyperref advantages and
makes a hyperlinking index and toc entries and the cross-references, too. (The CSs in
the code maybe in the future.)

The rest is striving to level the very high doc/ltxdoc’s standard, such as (optional)
numbering of the codelines and authomatic indexing the control sequences e.g.

The doc package was and still is a great inspiration for me and I would like this
humble package to be considered as a sort of hommage to it2. If I mention copying
some code or narrative but do not state the source explicitly, I mean the doc package’s
documentation (I have v2.1b dated 2004/02/09).

The User Interface

Used Terms

When I write of a macro, I mean a macro in The TEXbook’s meaning, i.e., a control
sequence whose meaning is \(e/g/x)defined. By a macro’s parameter I mean each
of #〈digit〉s in its definition. When I write about a macro’s argument, I mean the
value (list of tokens) subsituting the corresponding parameter of this macro. (These
understandings are according to The TEXbook, I hope: TEX is a religion of Book ;-) .)

I’ll use a shorthand for ‘control sequence’, CS.
When I talk of a declaration, I mean a macro that expands to a certain assignment,

such as \itshape or \@onlypreamble{〈CS〉}.
Talking of declarations, I’ll use the OCSR acronym as a shorthand for ’observes/ing

common TEX scoping rules’.
By a command I mean a certain abstract visible to the end user as a CS but con-

sisting possibly of more than one macro. I’ll talk of a command’s argument also in
2 As Grieg’s Piano Concerto is a hommage to the Schumann’s.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 6

the ‘sense-for-the-end-user’, e.g., I’ll talk of the \verb command’s argument although the
macro \verb has no #〈digit〉 in its definition.

The code to be typeset verbatim (and with all the bells and whistles) is everything
that’s not commented out in the source file and what is not a leading space(s).

The commentary or narrative is everything after the comment char till the end
of a line. The comment char is a character the \catcode of which is 14 usually i.e.,
when the file works; if you don’t play with the \catcodes, it’s just the %. When the file
is documented with gmdoc, such a char is re\catcoded and its rôle is else: it becomes
the code delimiter.

A line containing any TEX code (not commented out) will be called a codeline. A line
that begins with (some leading spaces and) a code delimiter will be called a comment
line or narration line.

The user of this package will also be addressed as you.

Not to favour any particular gender (of the amazingly rich variety, I mean, not of the
vulgarly simplified two-element set), in this documentation I use alternating pronouns of
third person (\heshe etc. commands provided by gmutils), so let one be not surprised if\heshe
‘he’ sees ‘herself’ altered in the same sentence :-) .

Preparing the Source File

When (LA)TEX with gmdoc.sty package loaded typesets the comment lines, the code de-
limiter is ommitted. If the comment continues a codeline, the code delimiter is printed.
It’s done so because ending a TEX code line with a % is just a concatenation with the
next line sometimes. Comments longer than one line are typeset continuously with the
code delimiters ommitted.

The user should just write his splendid code and brilliant commentary. In the latter
she may use usual (LA)TEX commands. The only requirement is, if an argument is divided
in two lines, to end such a dividing line with ^^B sequence that’ll enter the (active) 〈char2〉^^B
which shall gobble the line end.

Moreover, if he wants to add a meta-comment i.e., a text that doesn’t appear in the
code layer nor in the narrative, she may use the ^^A sequence that’ll be read by TEX as^^A
〈char1〉, which is in gmdoc active and defined to gobble the stuff between itself and the
next line end.

Note, however, that both ^^A and ^^B are usually macros in gmdoc and the text being
gobbled is their argument so it has to be balanced of braces and, if it occures inside an
\if..., it has to have all \if...s coupled with \elses and \fis.

However, it may be a bit confusing for someone acquainted with the doc conventions.
If you don’t fancy the ^^B special sequence, instead you may restore the standard meaning
of the line end with the \StraightEOL declaration which OCSR. As almost all the control\StraightEOL
sequences, it may be used also as an environment, i.e., \begin{StraightEOL} … \end{%
StraightEOL}. However, if for any reason you don’t want to make an environment
(a group), there’s a \StraightEOL’s counterpart, the \QueerEOL declaration that restores\QueerEOL
again the queer3 gmdoc’s meaning of the line end. It OCSR, too. One more point to use
\StraightEOL is where you wish some code lines to be executed both while loading the
file and during the documentation pass (it’s analogous to doc’s not embracing some code
lines in a macrocode environment).

3 In my understanding ‘queer’ and ‘straight’ are not the opposites excluding each other but the
counterparts that may cooperate in harmony for people’s good. And, as I try to show with the \QueerEOL
and \StraightEOL declarations, ‘queer’ may be very useful and recommended while ‘straight’ is the
standard but not necessarily normative.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 7

As in standard TEXing, one gets a paragraph by a blank line. Such a line should be
%ed of course. A fully blank line is considered a blank code line and hence results in
a vertical space in the documentation. As in the environments for poetry known to me,
subsequent blank lines do not increase such a space.

Then he should prepare a main document file, a driver henceforth, to set all the
required formattings such as \documentclass, paper size etc., and load this package
with a standard command i.e., \usepackage{gmdoc}, just as doc’s documentation says:

“If one is going to document a set of macros with the [gm]doc package one has to
prepare a special driver file which produces the formatted document. This driver file has
the following characteristics:

\documentclass[〈options〉]{〈document-class〉}
\usepackage[〈options, probably none〉]{gmdoc}

〈preamble〉
\begin{document}

〈special input commands〉
\end{document}

”

The Main Input Commands

To typeset a source file you may use the \DocInput macro that takes the (path\DocInput
and) name of the file with the extension as the only argument, e.g., \DocInput{%
mybrilliantpackage.sty}.

(Note that an installed package or class file is findable to TEX even if you don’t specify
the path.)

If a source file is written with rather doc than gmdoc in mind, then the \OldDocInput\OldDocInput
command may be more appropriate (e.g., if you break the arguments of commands in
the commentary in lines). It also takes the file (path and) name as the argument.

When using \OldDocInput, you have to wrap all the code in macrocode environments,macrocode
which is not necessary when you use \DocInput. Moreover, with \OldDocInput the
macrocode(*) environments require to be ended with % \end{macrocode(*)}.

If you wish to document many files in one document, you are provided \DocInclude\DocInclude
command, analogous to LATEX’s \include and very likely to ltxdoc’s command of the
same name. In gmdoc it has one mandatory argument that should be the file name
without extension, just like for \include.

The file extensions supported by \DocInclude are .fdd, .dtx, .cls, .sty, .tex and .fd.
The macro looks for one of those extensions in the order just given. If you need to
document files of other extensions, please let me know and most probably we’ll make it
possible.

\DocInclude has also an optional first argument that is intended to be the path of
the included file with the levels separated by / (slash) and also ended with a slash. The
path given to \DocInclude as the first and optional argument will not appear in the
headings nor in the footers.

\DocInclude redefines \maketitle so that it makes a chapter heading or, in the\maketitle
classes that don’t support \chapter, a part heading, in both cases with respective toc
entries. The default assumption is that all the files have the same author(s) so there’s no
need to print them in the file heading. If you wish the authors names to be printed, you
should write \PrintFilesAuthors in the preamble or before the relevant \DocIncludes.\PrintFilesAuthors
If you wish to undeclare printing the authors names, there is \SkipFilesAuthors decla-\SkipFilesAuthors
ration.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 8

Like in ltxdoc, the name of an included file appears in the footer of each page with
date and version info (if they are provided).

The \DocIncluded files are numbered with the letters, the lowercase first, as in ltxdoc.
Such a filemarker also precedes the index entries, if the (default) codeline index option
is in force.

As with \include, you may declare \includeonly{〈filenames separated by commas〉}\includeonly
for the draft versions.

If you wish to include the driver file into your documentation, you may write
\DocInput{\jobname.tex}, but a try of \DocInclude{\jobname} would result with
input stack overflow caused by infinite \input{〈jobname〉.aux} recursion. But there’s
\SelfInclude at your service that creates and uses 〈jobname〉.auxx file instead of the\SelfInclude
usual 〈jobname〉.aux. Its effect is analogous to the \DocInclude’s, but the arguments it
takes are totally different: Since the filename is known, there’s no need to state it. The
extension is assumed to be .tex, but if it’s different, you may state it in the first and
optional argument. The second argument is mandatory and it’s the stuff to be put at
begin of file input, this one and no else (with \AtBegInputOnce hook). For the example
of usage see line 14 of chapter c.

At the default settings, the \Doc/SelfIncluded files constitute chapters if \chapter
is known and parts otherwise. The \maketitles of those files result in the respective
headings.

If you prefer more ltxdocish look, in which the files always constitute the parts and
those parts have a part’s title pages with the file name and the files’ \maketitles result
in (article-like) titles not division headings, then you are provided the \ltxLookSetup\ltxLookSetup
declaration (allowed only in the preamble). However, even after this declaration the files
will be included according to gmdoc’s rules not necessarily to the doc’s ones (i.e., with
minimal marking necessary at the price of active line ends (therefore not allowed between
a command and its argument nor inside an argument)).

On the other hand, if you like the look offered by me but you have the files prepared
for doc not for gmdoc, then you should declare \olddocIncludes. Unlike the previous\olddocIncludes
one, this may be used anywhere, because I have the account of including both doc-like
and gmdoc-like files into one document. This declaration just changes the internal input
command and doesn’t change the sectioning settings.

It seems possible that you wish to document the ‘old-doc’ files first and the ‘new-doc’
ones after, so the above declaration has its counterpart, \gmdocIncludes, that may be\gmdocIncludes
used anywhere, too. Before the respective \DocInclude(s), of course.

Both these declarations OCSR.
If you wish to document your files as with ltxdoc and as with doc, you should declare

\ltxLookSetup in the preamble and \olddocIncludes.

Talking of analogies with ltxdoc, if you like only the page layout provided by that class,
there is the \ltxPageLayout declaration (allowed only in preamble) that only changes\ltxPageLayout
the margins and the text width (it’s intended to be used with the default paper size).
This declaration is contained in the \ltxLookSetup declaration.

If you need to add something at the beginning of the input of file, there’s the
\AtBegInput declaration that takes one and mandatory argument which is the stuff\AtBegInput
to be added. This declaration is global. It may be used more than one time and the
arguments of each occurrence of it add up and are put at the beginning of input of every
subsequent files.

Simili modo, for the end of input, there’s the \AtEndInput declaration, also one-\AtEndInput
argument, global and cumulative.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 9

If you need to add something at the beginning of input of only one file, put before the
respective input command an \AtBegInputOnce{〈the stuff to be added〉} declaration. It’s\AtBegInputOnce
also global which means that the groups do not limit its scope but it adds its argument
only at the first input succeding it (the argument gets wrapped in a macro that’s \relaxed
at the first use). \AtBegInputOnces add up, too.

One more input command is \IndexInput (the name and idea of effect comes from\IndexInput
doc). It takes the same argument as \DocInput, the file’s (path and) name with extension.
(It has \DocInput inside). It works properly if the input file doesn’t contain explicit
〈char1〉 (^^A is OK).

The effect of this command is typesetting of all the input file verbatim, with the code
lines numbered and the CSs automatically indexed (gmdoc.sty options are in force).

Package Options

As many good packages, this also provides some options:
Due to best TEX documenting traditions the codelines will be numbered. But if the

user doesn’t wish that, she may turn it off with the linesnotnum option.linesnotnum
However, if he agrees to have the lines numbered, she may wish to reset the counter

of lines himself, e.g., when she documents many source files in one document. Then he
may wish the line numbers to be reset with every {section}’s turn for instance. This is
the rôle of the uresetlinecount option, which seems to be a bit obsolete however, sinceuresetlinecount
the \DocInclude command takes care of a proper reset.

Talking of line numbering further, a tradition seems to exist to number only the
codelines and not to number the lines of commentary. That’s the default behaviour of
gmdoc but, if someone wants the comment lines to be numbered too, she is provided
the countalllines option. 441 Then the narration acquires a bit biblical look ;-), 442 ascountalllines
shown in this short example. This option is intended 443 for the draft versions and it is
not perfect (as if anything 444 in this package was). As you see, the lines 445 are typeset
continuously with the numbers printed.

By default the makeidx package is loaded and initialized and the CSs occurring in
the code are automatically (hyper)indexed thanks to the hyperref package. If the user
doesn’t wish to index anything, she should use the noindex option.noindex

The index comes two possible ways: with the line numbers (if the lines are numbered)
and that’s the default, or with the page numbers, if the pageindex option is set.pageindex

By default, gmdoc excludes some 300 CSs from being indexed. They are the most
common CSs, LATEX internal macros and TEX primitives. To learn what CSs are excluded
actually, see lines 890–990.

If you don’t want all those exclusions, you may turn them off with the indexallmacrosindexallmacros
option.

If you have ambiguous feelings about whether to let the default exclusions or forbid
them, see p. 14 to feed this ambiguity with a couple of declarations.

In doc package there’s a default behaviour of putting marked macro’s or environment’s
name to a marginpar. In the standard classes it’s allright but not all the classes support
marginpars. That is the reason why this package enables marginparing when in standard
classes, enables or disables it due to the respective option when with Marcin Woliński’s
classes and in any case provides the options withmarginpar and nomarginpar. So, inwithmarginpar

nomarginpar non-standard classes the default behaviour is to disable marginpars. If the marginpars are
enabled in gmdoc, it will put marked control sequences and environments into marginpars
(see \TextUsage etc.). These options do not affect common using marginpars, which
depends on the documentclass.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 10

My suggestion is to make the spaces in the code visible except the leading ones and
that’s the default. But if you wish all the code spaces to be blank, I give the option
codespacesblank reluctantly. Moreover, if you wish the code spaces to be blank only incodespacesblank
some areas, then there’s \CodeSpacesBlank declaration (OCSR).\CodeSpacesBlank

The Packages Required

gmdoc requires (loads if they’re not loaded yet) some other packages of mine, namely
gmutils, gmverb, analogous to Frank Mittelbach’s shortvrb, and gmiflink for conditional
making of hyperlinks. It also requires hyperref, multicol, color and makeidx.

The gmverb package redefines the \verb command and the verbatim environment ingmverb
such a way that , { and \ are breakable, the first with no ‘hyphen’ and the other two
with the comment char as a hyphen, i.e., {〈subsequent text〉} breaks into {%
〈subsequent text〉} and 〈text〉\mylittlemacro breaks into 〈text〉%
\mylittlemacro.

As the standard LATEX one, my \verb issues an error when a line end occures in its
scope. But, if you’d like to allow line ends in short verbatims, there’s the \verbeolOK\verbeolOK
declaration. The plain \verb typesets spaces blank and \verb* makes them visible, as
in the standard version(s).

Moreover, gmverb provides the \MakeShortVerb declaration that takes a one-char\MakeShortVerb
control sequence as the only argument and turns the char used into a short verbatim
delimiter, e.g., after

\MakeShortVerb*\|

(as you see, the declaration has the starred version, which is for visible spaces, and
non-starred for blank spaces) to get \mylittlemacro you may type |\mylittlemacro|
instead of \verb+\mylittlemacro+. Because the char used in the last example is my
favourite and is used this way by DEK in The TEXbook’s format, gmverb provides a macro
\dekclubs that expands to the example displayed above.\dekclubs

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical line marker in tabulars and with the tikz package. If this happens, you can
declare e.g., \DeleteShortVerb\| and the previous meaning of the char used shall be\DeleteShortVerb
restored.

One more difference between gmverb and shortvrb is that the chars \activeated by
\MakeShortVerb, behave as if they were ‘other’ in math mode, so you may type e.g.,
$k|n$ to get k|n etc.

The gmutils package provides a couple of macros similar to some basic (LA)TEX ones,gmutils
rather strictly technical and (I hope) tricky, such as \afterfi, \ifnextcat, \addtomacro
etc. It’s this package that provides the macros for formatting of names of macros and
files, such as \cs, \marg, \pk etc.

The gmdoc package uses a lot of hyperlinking possibilities provided by hyperref whichhyperref
is therefore probably the most important package required. The recommended situation
is that the user loads hyperref package with his favourite options before loading gmdoc.

If she does not, gmdoc shall load it with my favourite options.
To avoid an error if a (hyper)referenced label does not exist, gmdoc uses the gmiflinkgmiflink

package. It works e.g., in the index when the codeline numbers have been changed: then
they are still typeset, only not as hyperlinks but as a common text.

To typeset the index and the change history in balanced columns gmdoc uses the
multicol package that seems to be standard these days.multicol

Also the multicol package, required to define the default colour of the hyperlinks,color
seems to be standard already, and makeidx.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 11

Macros for Marking the Macros

The concept (taken from doc) is to index virtually all the control sequences occurring in
the code. gmdoc does that by default and needs no special command. (See below about
exluding some macros from being indexed.)

The next concept (also taken from doc) is to ditinguish some occurrences of some
control sequences by putting such a sequence into a marginpar and by special formatting
of its index entry. That is what I call marking the macros. gmdoc provides also a pos-
sibility of analogous marking for the environments’ names and other sequences such as
^^A.

This package provides two kinds of special formatting of the index entries: ‘usage’,
with the reference number italic by default, and ‘def’ (in doc called ‘main’), with the
reference number roman (upright) and underlined by default. All the reference numbers,
also those with no special formatting, are made hyperlinks to the page or the codeline
according to the respective indexing option (see p. 10).

The macros and environments to be marked appear either in the code or in the com-
mentary. But all the definitions appear in the code, I suppose. Therefore the ‘def’ mark-
ing macro is provided only for the code case. So we have the \CodeDefine, \CodeUsage\CodeDefine

\CodeUsage and \TextUsage commands.
\TextUsage All three take one argument and all three may be starred. The non-starred versions

are intended to take a control sequence as the argument and the starred to take whatever
(an environment name or a ^^A-like and also a CS).

You don’t have to bother whether @ is a letter while documenting because even if not,
these commands do make it a letter, or more precisely, they execute \MakePrivateLetters\MakePrivateLetters
whatever it does: At the default settings this command makes * a letter, too, so a starred
version of a command is a proper argument to any of the three ‘\...Define/Usage
commands unstarred.

The two \Code... commands, if unstarred, mark the next scanned occurrence of
their argument in the code. (By ‘scanned occurrence’ I mean a situation of the CS
having been scanned in the code which happens iff its name was preceded by the char
declared as \CodeEscapeChar). The starred versions of those commands mark just the
next codeline and don’t make TEX looks for the scanned occurrence of their argument
(which would never happen if the argument is not a CS). Therefore, if you want to mark
a definition of an environment foo, you should put

%\CodeDefine*{foo}

right before the code line

\newenvironment{foo}{%

i.e., not separated by any code line. The starred versions of the \Code... commands
are also intended to mark implicit definitions of macros, e.g., \CodeDefine*\@foofalse
before the line

\newif\if@foo.

They both are \outer.
The \TextUsage (one-argument) command is intended to mark usage of a verbatim

occurrence of a TEX object in the commentary. Unlike the two \Code...s, it type-
sets its argument which means among others that the marginpar appears usually at
the same line as the text you wanted to mark. This command also has the starred
version primarily intended for the environments names, and secondarily for ^^A-likes
and CSs, too. Currently, the most important difference is that the unstarred version

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 12

executes \MakePrivateLetters while the starred does both \MakePrivateLetters and
\MakePrivateOthers before reading the argument.

If you consider the marginpars a sort of sub(sub…)section marks, then you may wish
to have a command that makes a marginpar of the desired CS (or whatever) at the
beginning of its description, which may be fairly far from the first occurrence of its
object. Then you have the \Describe command which puts its argument in a marginpar\Describe
and indexes it as a ‘usage’ entry but doesn’t print it in the text. It’s \outer.

All four commands just described put their (\stringed) argument into a marginpar
(if the marginpars are enabled) and create an index entry (if indexing is enabled).

But what if you want just to make a marginpar with macro’s or environment’s name?
Then you have \CodeMarginize to declare what to put into a marginpar in the TEX\CodeMarginize
code (it’s \outer) and \TextMarginize to do so in the commentary. According to the\TextMarginize
spirit of this part of the interface, these commands also take one argument and have their
starred versions for strings other than control sequences.

The marginpars (if enabled) are ‘reverse’ i.e., at the left margin, and their contents is
flush right and typeset in a font declared with \marginpartt. By default, this declaration\marginpartt
is \let to \tt but it may be advisable to choose a condensed font if there is any. Such
a choice is made by gmdocc.cls if the Latin Modern fonts are available: in this case
gmdocc.cls uses Latin Modern Typewriter Light Condensed.

If you need to put something in a marginpar without making it typewriter font, there’s
the \gmdmarginpar macro (that takes one and mandatory argument) that only flushes\gmdmarginpar
its contents right.

On the other hand, if you don’t want to put a CS (or another verbatim text) in
a marginpar but only to index it, then there are \CodeDefIndex and \CodeUsgIndex to\CodeDefIndex

\CodeUsgIndex declare special formatting of an entry. The unstarred versions of these commands look
for their argument’s scanned occurrence in the code (the argument should be a CS), and
the starred ones just take the next code line as the reference point. Both these commands
are \outer.

In the code all the control sequences (except the excluded ones, see below) are indexed
by default so no explicit command is needed for that. But the environments and other
special sequences are not and the two commands described above in their *ed versions
contain the command for indexing their argument. But what if you wish to index a not
scanned stuff as a usual entry? The \CodeCommonIndex* comes in rescue, starred for the\CodeCommonIndex*
symmetry with the two previous commands (without * it just gobbles it’s argument).
It’s \outer.

Similarly, to index a TEX object occurring verbatim in the narrative, you have
\TextUsgIndex and \TextCommonIndex commands with their starless versions for a CS\TextUsgIndex

\TextCommonIndex argument and the starred for all kinds of the argument.

Moreover, as in doc, the macro and environment environments are provided. Bothmacro
environment take one argument that should be a CS for macro and ‘whatever’ for environment. Both

add the \MacroTopsep glue before and after their contents, and put their argument in
a marginpar at the first line of their contents (since it’s done with \strut, you should
not put any blank line (%ed or not) between \begin{macro/environment} and the first
line of the contents). Then macro commands the first scanned occurrence of its argument
to be indexed as ‘def’ entry and environment commands TEX to index the argument as
if it occurred in the next code line (also as ‘def’ entry).

Since it’s possible that you define a CS implicitly i.e., in such a way that it cannot
be scanned in the definition (with \csname...\endcsname e.g.) and wrapping such
a definition (and description) in an environment environment would look misguidedly
ugly, there’s the macro* environment which TEXnically is just an alias for environment.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 13

(To be honest, if you give a macro environment a non-CS argument, it will accept it
and then it’ll work as evironment.)

Index Ex/Inclusions

It’s understandable4 that you don’t want some control sequences to be indexed in your
documentation. The doc package gives a brilliant solution: the \DoNotIndex declaration.\DoNotIndex
So do I (although here, TEXnically it’s done another way). It OCSR. This declaration
takes one argument consisting of a list of control sequences not to be indexed. The items
of this list may be separated with commas, as in doc, but it’s not obligatory. The whole
list should come in curly braces (except when it’s one-element), e.g.,

\DoNotIndex{\some@macros,\are* \too\auxiliary\?}

(The spaces after the control sequences are ignored.) You may use as many \DoNotIndexes
as you wish (about half as many as many CSs may be declared, because for each CS ex-
cluded from indexing a special CS is declared that stores the ban sentence). Excluding
the same CS more than once makes no problem.

I assume you wish most of LATEX macros, TEX primitives etc. to be excluded from
your index (as I do). Therefore gmdoc excludes some 300 CSs by default. If you don’t
like it, just set the indexallmacros package option.

On the third hand, if you like the default exclusions in general but wish to undo just
a couple of them, you are given \DoIndex declaration (OCSR) that removes a ban on all\DoIndex
the CSs given in the argument, e.g.,

\DoIndex{\par \@@par \endgraf}

Moreover, you are provided the \DefaultIndexExclusions and \UndoDefaultInd-\DefaultIndexExclusions
\UndoDefaultIndexExclusions exExclusions declarations that act according to their names. You may use them in any

configuration with the indexallmacros option. Both of these declarations OCSR.

The DocStrip Directives

gmdoc typesets the DocStrip directives and it does it quite likely as doc, i.e., with math
sans serif font. It does it automatically whether you use the traditional settings or the
new.

Advised by my TEX Guru, I didn’t implement the module nesting recognition (MW
told it’s not that important.)

So far verbatim mode directive is only half-handled. That is, a line beginning with
%<<〈END-TAG〉 will be typeset as a DocStrip directive, but the closing line %〈END-TAG〉
will be not. It doesn’t seem to be hard to implement, I only receive some message it’s
really useful for someone.

The Changes History

The doc’s documentation reads:
“To maintain a change history within the file, the \changes command may be placed

amongst the description part of the changed code. It takes three arguments, thus:

\changes{〈version〉}{〈YYYY/MM/DD date〉}{〈text〉}
The changes may be used to produce an auxiliary file (LATEX’s \glossary mecha-

nism is used for this) which may be printed after suitable formatting. The \changes

4 After reading doc’s documentation ;-) .

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 14

[command] encloses the 〈date〉 in parentheses and appends the 〈text〉 to form the printed
entry in such a change history [… obsolete remark ommitted].

To cause the change information to be written out, include \RecordChanges in the\RecordChanges
driver[’s preamble or just in the source file (gmdocc.cls does it for you)]. To read in and
print the sorted change history (in two columns), just put the \PrintChanges command\PrintChanges
as the last (commented-out, and thus executed during the documentation pass through
the file) command in your package file [or in the driver]. Alternatively, this command may
form one of the arguments of the \StopEventually command, although a change history
is probably not required if only the description is being printed. The command assumes
that MakeIndex or some other program has processed the .glo file to generate a sorted
.gls file. You need a special MakeIndex style file; a suitable one is supplied with doc
[and gmdoc], called [… gmglo.ist for gmdoc]. The \GlossaryMin, \GlossaryPrologue\GlossaryMin

\GlossaryPrologue and \GlossaryParms macros are analagous to the \Index... versions [see sec. The
\GlossaryParms Parameters p. 18]. (The LATEX ‘glossary’ mechanism is used for the change entries.)”

In gmdoc \changes is \outer.

As mentioned in the introduction, the glossary, the changes history that is, uses
a special MakeIndex style, gmglo.ist. This style declares another set of the control chars
but you don’t have to worry: \changes takes care of setting them properly. To be precise,
\changes executes \MakeGlossaryControls that is defined as\MakeGlossaryControls

\def\actualchar{=} \def\quotechar{!}%
\def\levelchar{>} \edef\encapchar{\twelveclub}

Only if you want to add a control character yourself in a changes entry, to quote some
char, that is (using level or encapsulation chars is not recommended since \changes uses
them itself), use rather \quotechar.

Before writing an entry to the .glo file, \changes checks if the date (the sec-
ond mandatory = the third argument) is later than the date stored in the counter
ChangesStartDate. You may set this counter with aChangesStartDate

\ChangesStart \ChangesStart{〈version〉}{〈year〉/〈month〉/〈day〉}
declaration.

If the ChangesStartDate is set to a date contemporary to TEX i.e., not earlier than
September 19825, then a note shall appear at the beginning of the changes history that
informs the reader of ommitting the earlier changes entries.

If the date stored in ChangesStartDate is earlier than TEX, no notification of om-
mitting shall be printed. This is intended for a rather tricky usage of the changes start
date feature: you may establish two threads of the changes history: the one for the users,
dated with four digit year, and the other for yourself only, dated with two or three digit
year. If you declare

\ChangesStart{〈version?〉}{1000/00/00}
or so, the changes entries dated with less-than-four digit year shall be ommitted and no
notification shall be issued of that.

While scanning the CSs in the code, gmdoc counts them and prints the information
about their number on the terminal and in .log. Moreover, you may declare \CheckSum{%\CheckSum
〈number〉} before the code and TEX will inform you whether the number stated by you
is correct or not, and what it is. As you guess, it’s not my original idea but I took it
from doc.

5 DEK in TEX The Program mentions that month as of TEX Version 0 release.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 15

There it is provided as a tool for testing whether the file is corrupted. My TEX Guru
says it’s a bit old-fashioned nowadays but I like the idea and use it to document the file’s
growth. For this purpose gmdoc types out lines like

% \chschange{v0.98j}{2006/10/19}{4372}
% \chschange{v0.98j}{06/10/19}{4372}

and you may place them at the beginning of the source file. Such a line results in setting
the check sum to the number contained in the last pair of braces and in making a ‘general’
changes entry that states the check sum for version 〈first brace〉 dated 〈second brace〉 was
〈third brace〉.

The Parameters

The gmdoc package provides some parameters specific to typesetting the TEX code:

\stanzaskip is a vertical space inserted when a blank (code) line is met. It’s equal\stanzaskip
0.75\medskipamount by default (with the entire \medskipamount’s stretch- and shrink-
ability). Subsequent blank code lines do not increase this space.

At the points where narration begins a new line after the code or an inline comment
and where a new code line begins after the narration (that is not an inline comment),
a \CodeTopsep glue is added. At the beginning and the end of a macro or environment\CodeTopsep
environment a \MacroTopsep glue is added. By default, these two skips are set equal
\stanzaskip.

The \stanzaskip’s value is assigned also to the display skips and to \topsep. This
is done with the \UniformSkips declaration executed by default. If you want to change\UniformSkips
some of those values, you should declare \NonUniformSkips in the preamble to discard\NonUniformSkips
the default declaration. (To be more precise, by default \UniformSkips is executed twice:
when loading gmdoc and again \AtBeginDocument to allow you to change \stanzaskip
and have the other glues set due to it. \NonUniformSkips relaxes the \UniformSkips’s
occurrence at \begin{document}.)

If you want to add a vertical space of \CodeTopsep (equal by default \stanzaskip),
you are provided the \stanza command. Similarly, if you want to add a vertical space\stanza
of the \MacroTopsep amount (by default also equal \stanzaskip), you are given the
\chunkskip command. They both act analogously to \addvspace i.e., don’t add two\chunkskip
consecutive glues but put the bigger of them.

Since \CodeTopsep glue is inserted automatically at each transition from the code
(or code with an inline comment) to the narration and reverse, it may happen that you
want not to add such a glue exceptionally. Then there’s the \nostanza command.\nostanza

The TEX code is indented with the \CodeIndent glue and a leading space increases\CodeIndent
indentation of the line by its (space’s) width. The default value of \CodeIndent is 1.5 em.

There’s also a parameter for the indent of the narration, \TextIndent, but you should\TextIndent
use it only in emergency (otherwise what would be the margins for?). It’s 0 sp by default.

By default, typesetting a \DocInput/Included file is ended with a codeline containing
the text ‘ �’
given by the \EOFMark macro. If you don’t like such an ending, you should end the source\EOFMark
file with the \NoEOF macro in a comment, i.e.,\NoEOF

%〈some text, why not〉\NoEOF
This macro redefines \EOFMark and suppresses the End Of File token to close the input
properly. It also has the \endinput effect so you may put some text you don’t want to
document after it.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 16

The crucial concept of gmdoc is to use the line end character as a verbatim group
opener and the comment char, usually the %, as its delimiter. Therefore the ‘knowledge’
what char starts a commentary is for this package crucial and utterly important. The
default assumption is that you use % as we all do. So, if you use another character, then
you should declare it with \CodeDelim typing the desired char preceded by a backslash,\CodeDelim
e.g., \CodeDelim\& . (As just mentioned implicitly, \CodeDelim\% is declared by deafult.)

This declaration is always global so when- and wherever you change your mind you
should express it with a new \CodeDelim declaration.

The starred version of \CodeDelim changes also the verb ‘hyphen’, the char appearing
at the verbatim line breaks that is.

Talking of special chars, the escape char, \ by default, is also very important for this
package as it marks control sequences and allows automatic indexing them for instance.
Therefore, if you for any reason choose another than \ character to be the escape char,
you should tell gmdoc about it with the \CodeEscapeChar declaration. As the previous\CodeEscapeChar
one, this too takes its argument preceded by a backslash, e.g., \CodeEscapeChar\!. (As
you may deduct from the above, \CodeEscapeChar\\ is declared by default.)

The tradition is that in the packages @ char is a letter i.e., of catcode 11. Frank
Mittelbach in doc takes into account a possibility that a user wishes some other chars to
be letters, too, and therefore he (F.M.) provides the \MakePrivateLetters macro. So\MakePrivateLetters
do I and like in doc, this macro makes @ sign a letter. It also makes * a letter in order
to cover the starred versions of commands.

Analogously but for a slightly different purpose, the \AddtoPrivateOthers macro\AddtoPrivateOthers
is provided here. It adds its argument, which is supposed to be a one-char CS, to
the \doprivateothers list, whose rôle is to allow some special chars to appear in the
marking commands’ arguments (the commands described in section Macros for Marking
the Macros). The default contents of this list is (the space) and ^ so you may mark
the environments names and special sequences like ^^A safely. This list is also extended
with every char that is \MakeShortVerbed. (I don’t see a need of removing chars from
this list, but if you do, please let me know.)

The line numbers (if enabled) are typeset in the \LineNumFont declaration’s scope,\LineNumFont
which is defined as {\normalfont\tiny} by default. Let us also remember, that for each
counter there is a \the〈counter〉 macro available. The counter for the line numbers is
called codelinenum so the macro printing it is \thecodelinenum. By default we don’tcodelinenum
change its LATEX’s definition which is equivalent \arabic{codelinenum}.

Three more parameter macros, are \IndexPrefix, \EntryPrefix and \HLPrefix.\IndexPrefix
\EntryPrefix

\HLPrefix
All three are provided with the account of including multiple files in one document.
They are equal (almost) \@empty by default. The first may store main level index entry
of which all indexed macros and environments would be subentries, e.g., the name of
the package. The third may or even should store a text to distinguish equal codeline
numbers of distinct source files. It may be the file name too, of course. The second
macro is intended for another concept, namely the one from ltxdoc class, to distinguish
the codeline numbers from different files in the index by the file marker. Anyway, if you
document just one file per document, there’s no need of redefining those macros, nor
when you input multiple files with \DocInclude.

gmdoc automatically indexes the control sequences occurring in the code. Their
index entries may be ‘common’ or distinguished in two (more) ways. The concept is
to distinguish the entries indicating the usage of the CS and the entries indicating the
definition of the CS.

The special formattings of ‘usage’ and ‘def’ index entries are determined by \UsgEntry\UsgEntry
and \DefEntry one-parameter macros (the parameter shall be substituted with the ref-\DefEntry

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 17

erence number) and by default are defined as \textit and \underline respectively (as
in doc).

There’s one more parameter macro, \CommonEntryCmd that stores the name of the\CommonEntryCmd
encapsulation for the ‘common’ index entries (not special) i.e., a word that’ll become
a CS that will be put before an entry in the .ind file. By default it’s defined as {relax}
and a nontrivial use of it you may see in line 14 of the driver file of this documentation,
where it makes all the index entries of the driver’s code are formatted as ‘usage’.

The index comes in a multicols environment whose columns number is determined
by the IndexColumns counter set by default to 3. To save space, the index begins at theIndexColumns
same page as the previous text provided there is at least \IndexMin of the page height\IndexMin
free. By default, \IndexMin = 133.0pt.

The text put at the beginning of the index is declared with a one-argument
\IndexPrologue. Its default text at current index option you may admire on page\IndexPrologue
133. Of course, you may write your own \IndexPrologue{〈brand new index prologue〉},
but if you like the default and want only to add something to it, you are provided
\AtDIPrologue one-argument declaration that adds the stuff after the default text. For\AtDIPrologue
instance, I used it to add a label and hypertarget that is referred to two sentences earlier.

By default the colour of the index entry hyperlinks is set black to let Adobe Reader
work faster. If you don’t want this, \let\IndexLinksBlack\relax. That leaves the\IndexLinksBlack
index links colour alone and hides the text about black links from the default index
prologue.

Other index parameters are set with the \IndexParms macro defined in line 1035 of\IndexParms
the code. If you want to change some of them, you don’t have to use \renewcommand*%
\IndexParms and set all of the parameters: you may \gaddtomacro\IndexParms{〈only\gaddtomacro
the desired changes〉}. (\gaddtomacro is an alias for LATEX’s \g@addto@macro provided
by gmutils.)

At the default gmdoc settings the .idx file is prepared for the default settings of
MakeIndex (no special style). Therefore the index control chars are as usual. But if you
need to use other chars as MakeIndex controls, know that they are stored in the four
macros: \actualchar, \quotechar, \levelchar and \encapchar whose meaning you\actualchar

\quotechar
\levelchar
\encapchar

infer from their names. Any redefinition of them should be done in the preamble because
the first usage of them takes place at \begin{document} and on it depends further tests
telling TEX what characters of a scanned CS name it should quote before writing it to
the .idx file.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the
\verb’s delimiter for the index entries of the scanned CS names etc. gmdoc also uses
\verbatimchar but defines it as {&}. Moreover, a macro that wraps a CS name in \verb\verbatimchar
checks whether the wrapped CS isn’t \& and if it is, $ is taken as the delimiter. So there’s
hardly chance that you’ll need to redefine \verbatimchar.

So strange delimiters are chosen deliberately to allow any ‘other’ chars in the envi-
ronments names.

There’s a quadratus of commands taken from doc: \StopEventually, \Finale,\StopEventually
\Finale \AlsoImplementation and \OnlyDescription that should be explained simultaneously

\AlsoImplementation
\OnlyDescription

(in a polyphonic song e.g.).
The \OnlyDescription and \AlsoImplementation declarations are intended to ex-

clude or include the code part from the documentation. The point between the de-
scription and the implementation part should be marked with \StopEventually{〈the
stuff to be executed anyway〉} and \Finale should be typed at the end of file. Then
\OnlyDescription defines \StopEventually to expand to its argument followed by

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 18

\endinput and \AlsoImplementation defines \StopEventually to do nothing but pass
its argument to \Finale.

The Narration Macros

To print the control sequences’ names you have the \verb macro and its ‘shortverb’\verb
version whatever you define. But they won’t work if you put them in an argument of
another macro. For such a situation, or if you just prefer, gmdoc (gmutils) provides
a robust command \cs, which takes one obligatory argument, the macro’s name without\cs
the backslash, e.g., \cs{mymacro} produces \mymacro. I take account of a need of print-
ing some other text verbatim, too, and therefore \cs has the first argument optional,
which is the text to be typeset before the mandatory argument. It’s the backslash by
default, but if you wish to typeset something without the \, you may write \cs[]{%
not a~macro}. Moreover, for typesetting the environments’ names, gmdoc (gmutils)
provides the \env macro, that prints its argument verbatim and without a backslash,\env
e.g., \env{an environment} produces an environment.

To print packages’ names sans serif there is a \pk one-argument command, and the\pk
\file command intended for the filenames.\file

Because we play a lot with the \catcodes here and want to talk about it, there are
\catletter, \catother and \catactive macros that print 11, 12 and 13 respectively to\catletter

\catother
\catactive

concisely mark the most used char categories.
I wish my self-documenting code to be able to be typeset each package separately or

several in one document. Therefore I need some ‘flexible’ sectioning commands and here
they are: \division and \subdivision so far, that by default are \let to be \section\division

\subdivision and \subsection if such commands are defined in the documentclass. (If not, \division
and \subdivision are \let to be \relax.)

One more kind of flexibility is to allow using mwcls or the standard classes for the
same file. There was a trouble with the number and order of the optional arguments of
the original mwcls’s sectioning commands.

It’s resolved in gmutils so you are free at this point, and even more free than in the
standard classes: if you give a sectioning command just one optional argument, it will
be the title to toc and to the running head (that’s standard in scls6). If you give two
optionals, the first will go to the running head and the other to toc. (In both cases the
mandatory argument goes only to the page).

If you wish the \DocIncluded files make other sectionings than the default, you may
declare \SetFileDiv{〈sec name without backslash〉}.\SetFileDiv

gmdoc.sty provides also an environment gmlonely to wrap some text you think yougmlonely
may want to skip some day. When that day comes, you write \skipgmlonely before the\skipgmlonely
instances of gmlonely you want to skip. This declaration has an optional argument which
is for a text that’ll appear in(stead of) the first gmlonely’s instance in every \DocInput
or \DocIncluded file within \skipgmlonely’s scope.

An example of use you may see in this documentation: the repeated passages about
the installation and compiling the documentation are skipped in further chapters thanks
to it.

gmdoc provides some TEX-related logos:
typesets AMS-TEX,\AmSTeX
BibTEX,\BibTeX
SLiTEX,\SliTeX
Plain TEX,\PlainTeX

6 See gmutils for some subtle details.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 19

Web,\Web
The TEXbook,\TeXbook
εTEX,\eTeX
pdfεTEX\pdfeTeX
pdfTEX\pdfTeX
XETEX (the first E will be reversed iff the graphics package is loaded) and\XeTeX
(LA)TEX.\LaTeXpar

(The last logo is defined in gmutils.)
DocStrip not quite a logo, but still convenient.\ds

The copyrnote environment is provided to format the copyright note flush left incopyrnote
\obeylines’ scope.

To put an arbitrary text into a marginpar and have it flushed right just like the
macros’ names, you are provided the \gmdmarginpar macro that takes one and manda-\gmdmarginpar
tory argument which is the contents of the marginpar.

To make a vertical space to separate some piece of text you are given two macros:
\stanza and \chunkskip. The first adds \stanzaskip while the latter \MacroTopsep.\stanza

\chunkskip Both of them take care of not cumulating the vspaces.

The quotation environment is redefined just to enclose its contents in double quotes.quotation

The \GetFileInfo{〈file name with extension〉} command defines \filedate, \fil-\GetFileInfo
\filedate

\fileversion
eversion and \fileinfo as the respective pieces of the info (the optional argument)

\fileinfo
provided by \ProvidesClass/Package/File declarations. The information of the file
you process with gmdoc is provided (and therefore getable) if the file is also loaded (or
the \Provide... line occures in a \StraightEOL scope).

If you don’t load the file the version of which you’d like to get, you may write
\FileInfo in the comment layer, before the line containing \ProvidesPackage/Class\FileInfo
and the file info will be written to the .aux file.

If the input file doesn’t contain \Provides... in the code layer, there are commands
\ProvideFileInfo{〈file name with extension〉}[〈info〉] and \ProvideSelfInfo[〈info〉].\ProvideFileInfo

\ProvideSelfInfo (〈info〉 should consist of: 〈year〉/〈month〉/〈day〉 〈version number〉 〈a short note〉.)
A macro for the standard note is provided, \filenote, that expands to “This file has\filenote

version number 〈version number〉 dated 〈date〉.” To place such a note in the document’s
title (or heading, with \DocInclude at the default settings), there’s \thfileinfo macro\thfileinfo
that puts \fileinfo in \thanks.

Since \noindent didn’t want to cooperate with my code and narration layers some-
times, I provide \gmdnoindent that forces a not indented paragraph if \noindent could\gmdnoindent
not.

If you declare the code delimiter other than % and then want % back, you may write
\CDPerc instead of \CodeDelim\%.\CDPerc

If you like & as the code delimiter (as I did twice), you may write \CDAnd instead of\CDAnd
\CodeDelim\&.

A Queerness of \label

You should be loyally informed that \label in gmdoc behaves slightly non-standard in
the \DocInput/Included files: the automatic redefinitions of \ref at each code line are
global (since the code is typeset in groups and the \refs will be out of those groups), so
a \reference in the narrative will point at the last code line not the last section, unlike
in the standard LATEX.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 20

doc-Compatibility

One of my goals while writing gmdoc was to make compilation of doc-like files with
gmdoc possible. I cannot guarantee the goal has been reached but I did compile doc.dtx
with not a smallest change of that file (actually, there was a tiny little buggie in line 3299
which I fixed remotely with \AfterMacrocode tool written specially for that). So, if you
wish to compile a doc-like file with my humble package, just try.

The doc commands most important in my opinion are supported by gmdoc. Some
commands, mostly the obsolete in my opinion, are not supported but give an info on the
terminal and in .log.

I assume that if one wishes to use doc’s interface then he won’t use gmdoc’s options
but just the default. (Some gmdoc options may interfere with some doc commands, they
may cancel them e.g.)

The main input commands compatible with doc are \OldDocInput and \DocInclude,\OldDocInput
\DocInclude the latter however only in the \olddocIncludes declaration’s scope.

\olddocIncludes Within their scope/argument the macrocode environments behave as in doc, i.e. they
macrocode are a kind of verbatim and require to be ended with % \end{macrocode(*)}.

The default behaviour of macrocode(*) with the ‘new’ input commands is different
however. Remember at te ‘new’ fashion the code and narration layers philosophy is in
force and that is sustained within macrocode(*). Which means basically that with ‘new’
settings when you write

% \begin{macrocode}
\alittlemacro % change it to \blaargh

%\end{macrocode}

and \blaargh’s definition is {foo}, you’ll get

\alittlemacro % change it to foo

(Note that ‘my’ macrocode doesn’t require the magical % \end.)
If you are used to the traditional (doc’s) macrocode and still wish to use gmdoc new

way, you have at least two options: there is the oldmc environment analogous to theoldmc
traditional (doc’s) macrocode (it also has the starred version), that’s the first option
(I needed the traditional behaviour once in this documentation, find out where & why).
The other is to write \VerbMacrocodes. That declaration (OCSR) redefines macrocode\VerbMacrocodes
and macrocode* to behave the traditional way. (It’s always executed by \OldDocInput
and \olddocIncludes.)

For a more detailed discussion of what is doc-compatible and how, see the code section
doc-Compatibiliy.

The Code

The basic idea of this package is to re\catcode ^^M (the line end char) and % (or any
other comment char) so that they start and finish typesetting of what’s between them
as the TEX code i.e., verbatim and with the bells and whistles.

The bells and whistles are (optional) numbering of the codelines, and automatic
indexing the CSs, possibly with special format for the ‘def’ and ‘usage’ entries.

As mentioned in the preface, this package aims at a minimal markup of the working
code. A package author writes her splendid code and adds a brilliant comment in %ed
lines and that’s all. Of course, if he wants tomake a \section or \emphasise, she has to
type respective CSs.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 21

I see the feature described above to be quite a convenience, however it has some price.
See section Life Among Queer EOLs for details, here I state only that in my opinion the
price is not very high.

More detailedly, the idea is to make ^^M (end of line char) active and to define it
to check if the next char i.e., the beginnig of the next line is a % and if so to gobble it
and just continue usual typesetting or else to start a verbatim scope. In fact, every such
a line end starts a verbatim scope which is immediately closed, if the next line begins
with (leading spaces and) the code delimiter.

Further details are typographical parameters of verbatim scope and how to restore
normal settings after such a scope so that a code line could be commented and still
displayed, how to deal with leading spaces, how to allow breaking a moving argument in
two lines in the comment layer, how to index and marginpar macros etc.

The Package Options

Maybe someone wants the code lines not to be numbered.

5 \newif\if@linesnotnum
6 \DeclareOption{linesnotnum}{\@linesnotnumtrue}linesnotnum

And maybe he or she wishes to declare resetting the line counter along with some
sectioning counter him/herself.

7 \newif\if@uresetlinecount
8 \DeclareOption{uresetlinecount}{\@uresetlinecounttrue}uresetlinecount

And let the user be given a possibility to count the comment lines.

9 \newif\if@countalllines
10 \DeclareOption{countalllines}{\@countalllinestrue}countalllines

Unlike in doc, indexing the macros is the default and the default reference is the code
line number.

11 \newif\if@noindex
12 \DeclareOption{noindex}{\@noindextrue}noindex

13 \newif\if@pageindex
14 \DeclareOption{pageindex}{\@pageindextrue}pageindex

It would be a great honour to me if someone would like to document LATEX source
with this humble package but I don’t think it’s really probable so let’s make an option
that’ll switch index exclude list properly (see sec. Index Exclude List).

15 \newif\if@indexallmacros
16 \DeclareOption{indexallmacros}{\@indexallmacrostrue}indexallmacros

Some document classes don’t support marginpars or disable them by default (as my
favourite Marcin Woliński’s classes).

17 \@ifundefined{if@marginparsused}{\newif\if@marginparsused}{}

This switch is copied from mwbk.cls for compatibility with it. Thanks to it loading
an mwcls with [withmarginpar] option shall switch marginpars on in this package, too.

To be compatible with the standard classes, let’s \let:

18 \@ifclassloaded{article}{\@marginparsusedtrue}{}
19 \@ifclassloaded{report}{\@marginparsusedtrue}{}
20 \@ifclassloaded{book}{\@marginparsusedtrue}{}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 22

And if you don’t use mwcls nor standard classes, then you have the options:

21 \DeclareOption{withmarginpar}{\@marginparsusedtrue}withmarginpar
22 \DeclareOption{nomarginpar}{\@marginparsusedfalse}nomarginpar

The order of the above conditional switches and options is significant. Thanks to it
the options are available also in the standard classes and in mwcls.

To make the code spaces blank (they are visible by default except the leading ones).

23 \newif\if@codespacesblank
24 \DeclareOption{codespacesblank}{\@codespacesblanktrue}codespacesblank

25 \ProcessOptions

The Dependencies and Preliminaries

We require another package of mine that provides some tricky macros analogous to the
LATEX standard ones, such as \newgif and \@ifnextcat.

26 \RequirePackage{gmutils}[2007/04/24]

A standard package for defining colours,

27 \RequirePackage{color}

and a colour definition for the hyperlinks not to be too bright

28 \definecolor{deepblue}{rgb}{0,0,.85}

And the standard package probably most important for gmdoc: If the user doesn’t
load hyperref with his favourite options, we do, with ours. If she has done it, we change
only the links’ colour.

29 \@ifpackageloaded{hyperref}{\hypersetup{colorlinks=true,
30 linkcolor=deepblue, urlcolor=blue, filecolor=blue}}{%
31 \RequirePackage[colorlinks=true, linkcolor=deepblue, urlcolor=blue,
32 filecolor=blue, pdfstartview=FitH, pdfview=FitBH,
33 pdfpagemode=None]{hyperref}}

Now a little addition to hyperref, a conditional hyperlinking possibility with the
\gmhypertarget and \gmiflink macros. It has to be loaded after hyperref.

34 \RequirePackage{gmiflink}

And a slight redefinition of verbatim, \verb(*) and providing of \MakeShortVerb(*).

35 \RequirePackage{gmverb}[2007/04/24]

36 \if@noindex
37 \AtBeginDocument{\gag@index}% for the latter macro see line 706.
38 \else
39 \RequirePackage{makeidx}\makeindex
40 \fi

Now, a crucial statement about the code delimiter in the input file. Providing a special
declaration for the assignment is intended for documenting the packages that play with
%’s \catcode. Some macros for such plays are defined further.

The declaration comes in the starred and unstarred version. The unstarred version
besides declaring the code delimiter declares the same char as the verb(atim) ‘hyphen’.
The starred version doesn’t change the verb ’hyphen’. That is intended for the special
tricks e.g. for the oldmc environment.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 23

If you want to change the verb ‘hyphen’, there is the \VerbHyphen\〈char〉 declaration
provided by gmverb.

41 \def\CodeDelim{\@ifstar\Code@Delim@St\Code@Delim}\CodeDelim

42 \def\Code@Delim#1{%
43 {\escapechar\m@ne
44 \@xa\gdef\@xa\code@delim\@xa{\string#1}}}\code@delim

(\@xa is \expandafter, see gmutils.)
45 \def\Code@Delim@St#1{\Code@Delim{#1}\VerbHyphen{#1}}

It is an invariant of gmdocing that \code@delim stores the current code delimiter (of
catcode 12).

The \code@delim should be 12 so a space is not allowed as a code delimiter. I don’t
think it really to be a limitation.

And let’s assume you do as we all do:

46 \CodeDelim\%

We’ll play with \everypar, a bit, and if you use such things as the {itemize} en-
vironment, an error would occure if we didn’t store the previous value of \everypar
and didn’t restore it at return to the narration. So let’s assign a \toks list to store the
original \everypar

47 \newtoks\gmd@preverypar

48 \newcommand*\settexcodehangi{%
49 \hangindent=\verbatimhangindent \hangafter=\@ne}% we’ll use it in the inline

comment case. \verbatimhangindent is provided by the gmverb package
and = 3 em by default.

50 \@ifdefinable\@@settexcodehangi{\let\@@settexcodehangi=%
\settexcodehangi}

We’ll play a bit with \leftskip, so let the user have a parameter instead. For normal
text (i.e. the comment):

51 \newlength\TextIndent\TextIndent

I assume it’s originally equal \leftskip, i.e. \z@. And for the TEX code:

52 \newlength\CodeIndent
53 \CodeIndent=1,5em\relax\CodeIndent

And the vertical space to be inserted where there are blank lines in the source code:

54 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}

I use \stanzaskip in gmverse package and derivates for typesetting poetry. A com-
puter program code is poetry.

55 \stanzaskip=\medskipamount\stanzaskip
56 \advance\stanzaskip by-.25\medskipamount% to preserve the stretch- and shrink-

ability.

A vertical space between the commentary and the code seems to enhance readability
so declare

57 \newskip\CodeTopsep
58 \newskip\MacroTopsep

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 24

And let’s set them. For the æsthetical minimality7 let’s unify them and other most
important vertical spaces used in gmdoc. I think a macro that gathers all these assign-
ments may be handy.

59 \def\UniformSkips{%\UniformSkips
60 \CodeTopsep=\stanzaskip\CodeTopsep
61 \MacroTopsep=\stanzaskip\MacroTopsep
62 \abovedisplayskip=\stanzaskip
%\abovedisplayshortskip remains untouched as it is 0.0 pt plus 3.0 pt by default.

63 \belowdisplayskip=\stanzaskip
64 \belowdisplayshortskip=.5\stanzaskip% due to DEK’s idea of making the

short below display skip half of the normal.
65 \advance\belowdisplayshortskip by\smallskipamount
66 \advance\belowdisplayshortskip by-1\smallskipamount% We advance \below-

% displayshortskip forth and back to give it the \smallskipamount’s
shrink- and stretchability components.

67 \topsep=\stanzaskip
68 \partopsep=\z@
69 }

We make it the default,
70 \UniformSkips

but we allow you to change the benchmark glue i.e., \stanzaskip in the preamble and
still have the other glues set due to it: we launch \UniformSkips again after the preamble.

71 \AtBeginDocument{\UniformSkips}

So, if you don’t want them at all i.e., you don’t want to set other glues due to
\stanzaskip, you should use the following declaration. That shall discard the unwanted
setting already placed in the \begin{document} hook.

72 \newcommand*\NonUniformSkips{\@relaxen\UniformSkips}\NonUniformSkips

Why do we launch \UniformSkips twice then? The first time is to set all the gmdoc-
specific glues somehow, which allows you to set not all of them, and the second time to
set them due to a possible change of \stanzaskip.

And let’s define a macro to insert a space for a chunk of documentation, e.g., to mark
the beginning of new macro’s explanation and code.

73 \newcommand*\chunkskip{%\chunkskip
74 \skip0=\MacroTopsep
75 \if@codeskipput\advance\skip0 by-\CodeTopsep\fi
76 \par\addvspace{\skip0}\@codeskipputgtrue}

And, for a smaller part of text,
77 \newcommand*\stanza{%\stanza
78 \skip0=\stanzaskip
79 \if@codeskipput\advance\skip0 by-\CodeTopsep\fi
80 \par\addvspace{\skip0}\@codeskipputgtrue}

Since the stanza skips are inserted automatically most often (cf. lines 193, 361, 202,
320, 377), sometimes you may need to forbid them.

7 The terms ‘minimal’ and ‘minimalist’ used in gmdoc are among others inspired by the South
Park cartoon’s episode Mr. Hankey The Christmas (…) in which ‘Philip Glass, a Minimalist New York
composer’ appears in a ‘non-denominational non-offensive Christmas play’ ;-) . (Philip Glass composed
the music to the Qatsi trilogy among others)

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 25

81 \newcommand*\nostanza{%\nostanza
82 \@codeskipputgtrue\@afternarrgfalse\@aftercodegtrue}% In the ‘code to

narration’ case the first switch is enough but in the countercase ‘narration
to code’ both the second and third are necessary while the first is not.

To count the lines where they have begun not before them

83 \newgif\if@newline\@newlinegtrue
\@newlinegfalse

\if@newline
\newgif is \newif with global effect i.e., it defines \...gtrue and \...gfalse switch-

ers that switch respective Boolean switch globally. See gmutils package for details.

To handle the DocStrip directives not any %<....

84 \newgif\if@dsdir\if@dsdir

This switch will be falsified at the first char of a code line. (We need a switch
independent of the one indicationg whether the line has or has not been counted because
of two reasons: 1. line numbering is optional, 2. counting the line falsifies that switch
before the first char.)

The Core

Now we define main \inputing command that’ll change catcodes. The macros used by
it are defined later.

85 \newcommand*\DocInput{\bgroup\@makeother_\Doc@Input}\DocInput
\Doc@Input

86 \begingroup\catcode‘\^^M=\active%
87 \firstofone{\endgroup%
88 \newcommand*{\Doc@Input}[1]{\egroup\begingroup%
89 \edef\gmd@inputname{#1}% we’ll use it in some notifications.
90 \let\gmd@currentlabel@before=\@currentlabel% we store it ’cause we’ll do

\xdefs of \@currentlabel to make proper references to the line numbers
so we want to restore current \@currentlabel after our group.

91 \gmd@setclubpenalty% we wrapped the assignment of \clubpenalty in a macro
because we’ll repeat it twice more.

92 \@clubpenalty\clubpenalty \widowpenalty=3333 % Most paragraphs of the
code will be one-line most probably and many of the narration, too.

93 \tolerance=1000 % as in doc.
94 \if@codespacesblank\CodeSpacesBlank\fi% The default is that the code

spaces are visible but here this may be cancelled due to the \codespa-
% cesblank option.

95 \catcode‘\^^M=\active%
96 \@xa\@makeother\csname\code@delim\endcsname%
97 \gmd@resetlinecount% due to the option uresetlinecount we reset the

linenumber counter or do nothing.
98 \@beginputhook% my first use of it is to redefine \maketitle just at this point

not globally.
99 \everypar=\@xa{\@xa\@codetonarrskip\the\everypar}%

100 \let^^M=\gmd@textEOL%^^M
101 \edef\gmd@guardedinput{%
102 \@nx\@@input #1\relax% \@nx is \noexpand, see gmutils. \@@input is the

true TEX’s \input.
103 \gmd@iihook% cf. line 1556
104 \@nx\EOFMark% to pretty finish the input, see line 151.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 26

105 \@nx\CodeDelim\@xa\@nx\csname\code@delim\endcsname% to ensure the
code delimiter is the same as at the beginning of input.

106 \@nx^^M\code@delim%
107 }% we add guardians after \inputing a file; somehow an error occurred without

them.
108 \catcode‘\%=9 % for doc-compatibility.
109 \setcounter{CheckSum}{0}% we initialize the counter for the number of the

escape chars (the assignment is \global).
110 \@xa\@xa\@xa^^M\gmd@guardedinput%
111 \par%
112 \@endinputhook% It’s a hook to let postpone some stuff till the end of input.

We use it e.g. for the doc-(not)likeliness notifications.
113 \glet\@currentlabel=\gmd@currentlabel@before% we restore value from be-

fore this group. In a very special case this could cause unexpected be-
haviour of crossrefs, but anyway we acted globally and so acts hyperref.

114 \endgroup%
115 }% end of \Doc@Input’s definition.
116 }% end of \firstofone’s argument.

So, having the main macro outlined, let’s fill in the details.
First, define the queer EOL. We define a macro that ^^M will be let to. \gmd@textEOL

will be used also for checking the %^^M case (\@ifnextchar does \ifx).

117 \def\gmd@textEOL{ % a space just like in normal TEX. We put it first to cooperate\gmd@textEOL
with \^^M’s \expandafter\ignorespaces. It’s no problem since a space 10

doesn’t drive TEX out of the vmode.
118 \ifhmode\@afternarrgtrue\@codeskipputgfalse\fi% being in the horizontal

mode means we’ve just typeset some narration so we turn the respec-
tive switches: the one bringing the message ‘we are after narration’ to
True (@afternarr) and the ‘we have put the code-narration glue’ to False
(@codeskipput). Since we are in a verbatim group and the information
should be brought outside it, we switch the switches globally (the letter g
in both).

119 \@newlinegtrue% to \refstep the lines’ counter at the proper point.
120 \@dsdirgtrue% to handle the DocStrip directives.
121 \@xa\@trimandstore\the\everypar\@trimandstore% we store the previous value

of \everypar register to restore it at a proper point. See line 390 for the
details.

122 \begingroup%
123 \gmd@setclubpenalty% Most paragraphs will be one-line most probably. Since

some sectioning commands may change \clubpenalty, we set it again here
and also after this group.

124 \aftergroup\gmd@setclubpenalty%
125 \let\par\@@par% inside the verbatim group we wish \par to be genuine.
126 \ttverbatim% it does \tt and makes specials other or \active-and-breakable.
127 \gmd@DoTeXCodeSpace%
128 \@makeother\|% ’cause \ttverbatim doesn’t do that.
129 \MakePrivateLetters% see line 451.
130 \@xa\@makeother\code@delim% we are almost sure the code comment char is

among the chars having been 12ed already. For ‘almost’ see the \IndexInput
macro’s definition.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 27

So, we’ve opened a verbatim group and want to peek at the next character. If it’s %,
then we just continue narration, else we process the leading spaces supposed there are
any and, if after them is a %, we just continue the commentary as in the previous case or
else we typeset the TEX code.
131 \@xa\@ifnextchar\@xa{\code@delim}{%
132 \gmd@continuenarration}{%
133 \gmd@dolspaces% it will launch \gmd@typesettexcode.
134 }% end of \@ifnextchar’s else.
135 }% end of \gmd@textEOL’s definition.
136 \def\gmd@setclubpenalty{\clubpenalty=3333 }

For convenient adding things to the begin- and endinput hooks:
137 \def\AtEndInput{\g@addto@macro\@endinputhook}\AtEndInput

\@endinputhook 138 \def\@endinputhook{}

Simili modo
139 \def\AtBegInput{\g@addto@macro\@beginputhook}\AtBegInput

\@beginputhook 140 \def\@beginputhook{}

For the index input hooking now declare a macro, we define it another way at line
1556.
141 \emptify\gmd@iihook

And let’s use it instantly to avoid a disaster while reading in the table of contents.
142 \AtBegInput{\let\gmd@@toc\tableofcontents\tableofcontents
143 \def\tableofcontents{%
144 \@ifQueerEOL{\StraightEOL\gmd@@toc\QueerEOL}{\gmd@@toc}}}

As you’ll learn from lines 414 and 409, we use those two strange declarations to
change and restore the very special meaning of the line end. Without such changes
\tableofcontents would cause a disaster (it did indeed). And to check the catcode of
^^M is the rôle of \@ifQueerEOL:
145 \long\def\@ifQueerEOL#1#2{%\@ifQueerEOL
146 \ifnum\the\catcode‘\^^M=\active \afterfi{#1}\else\afterfi{#2}\fi}

The declaration below is useful if you wish to put sth. just in the nearest in-
put/included file and no else: at the moment of putting the stuff it will erase it from the
hook. You may declare several \AtBegInputOnces, they add up.
147 \@emptify\gmd@ABIOnce\gmd@ABIOnce
148 \AtBegInput\gmd@ABIOnce

149 \long\def\AtBegInputOnce#1{%\AtBegInputOnce
150 \gaddtomacro\gmd@ABIOnce{\g@emptify\gmd@ABIOnce#1}}

Many tries of finishing the input cleanly led me to setting the guardians as in line 106
and to
151 \def\EOFMark{\<eof>}\EOFMark

Other solutions did print the last code delimiter or would require managing a special
case for the macros typesetting TEX code to suppress the last line’s numbering etc.

If you don’t like it, see line 1728.
Due to the codespacesblank option in the line 94 we launch the macro defined below

to change the meaning of a gmdoc-kernel macro.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 28

152 \begin{obeyspaces}%
153 \gdef\gmd@DoTeXCodeSpace{%
154 \obeyspaces\let =\breakabletwelvespace}%

155 \gdef\CodeSpacesBlank{%\CodeSpacesBlank
156 \let\gmd@DoTeXCodeSpace\gmobeyspaces%
157 \let\gmd@texcodespace=\ }% the latter \let is for the \if...s.

158 \gdef\CodeSpacesSmall{%\CodeSpacesSmall
159 \def\gmd@DoTeXCodeSpace{%
160 \obeyspaces\def {\,\hskip\z@}}%
161 \def\gmd@texcodespace{\,\hskip\z@}}%
162 \end{obeyspaces}

How the continuing of the narration should look like?

163 \def\gmd@continuenarration{%
164 \endgroup
165 \gmd@countnarrationline% see below.
166 \@xa\@trimandstore\the\everypar\@trimandstore
167 \everypar=\@xa{\@xa\@codetonarrskip\the\everypar}%
168 \@xa\gmd@checkifEOL\@gobble}

Simple, isn’t it? (We gobble the ‘other’ code delimiter. Despite of \egroup it’s 12

because it was touched by \futurelet contained in \@ifnextchar in line 131. And
in line 245 it’s been read as 12. That’s why it works in spite of that % is of category
‘ignored’.)

Whether we count the narration lines depends on the option countalllines which
is off by default.

169 \if@countalllines
170 \def\gmd@countnarrationline{%
171 \if@newline
172 \grefstepcounter{codelinenum}\@newlinegfalse% the \grefstepcounter

macro, defined in gmverb, is a global version of \refstepcounter, ob-
serving the redefinition made to \refstepcounter by hyperref.

173 \everypar=\@xa{%
174 \@xa\@codetonarrskip\the\gmd@preverypar}% the \hyperlabel@line macro

puts a hypertarget in a \raise i.e., drives TEX into the horizontal
mode so \everypar shall be issued. Therefore we should restore it.

175 \hyperlabel@line
176 {\LineNumFont\thecodelinenum}\,\ignorespaces
177 \fi}%
178 \else
179 \@emptify\gmd@countnarrationline%
180 \fi

And typesetting the TEX code?

181 \begingroup\catcode‘\^^M=\active%
182 \firstofone{\endgroup%
183 \def\gmd@typesettexcode{%
184 \gmd@parfixclosingspace% it’s to eat a space closing the paragraph, see below.

It contains \par. A verbatim group has already been opened by \ttverb-
% atim and additional \catcode.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 29

185 \everypar={\@@settexcodehangi}% At first attempt we thought of giving the
user a \toks list to insert at the beginning of every code line, but what
for?

186 \def^^M{%^^M
187 \@newlinegtrue% to \refstep the counter in proper place.
188 \@dsdirgtrue% to handle the DocStrip directives.
189 \global\gmd@closingspacewd=\z@% we don’t wish to eat a closing space after

a codeline, ’cause there isn’t any and a negative rigid \hskip added to
\parfillskip would produce a blank line.

190 \ifhmode\par\@codeskipputgfalse\else%
191 \if@codeskipput%
192 \else\addvspace{\stanzaskip}\@codeskipputgtrue%
193 \fi% if we’ve just met a blank (code) line, we insert a \stanzaskip glue.
194 \fi%
195 \prevhmodegfalse% we want to know later that now we are in the vmode.
196 \@ifnextchar{\gmd@texcodespace}{%
197 \@dsdirgfalse\gmd@dolspaces}{\gmd@charbychar}%
198 }% end of ^^M’s definition.
199 \let\gmd@texcodeEOL=^^M% for further checks inside \gmd@charbychar.
200 \raggedright\leftskip=\CodeIndent%
201 \if@aftercode\gmd@nocodeskip1{iaC}\else\if@afternarr%
202 \if@codeskipput\else\gmd@codeskip1\@codeskipputgtrue%

\@aftercodegfalse\fi%
203 \else\gmd@nocodeskip1{naN}\fi\fi% if now we are switching from the narra-

tion into the code, we insert a proper vertical space.
204 \@aftercodegtrue\@afternarrgfalse%
205 \ifdim\gmd@ldspaceswd>\z@% and here the leading spaces.
206 \leavevmode\@dsdirgfalse%
207 \if@newline\grefstepcounter{codelinenum}\@newlinegfalse%
208 \fi%
209 \printlinenumber% if we don’t want the lines to be numbered, the respective

option \lets this CS to \relax.
210 \hyperlabel@line%
211 \mark@envir% index and/or marginize an environment if there is some to be

done so, see line 658.
212 \hskip\gmd@ldspaceswd%
213 \advance\hangindent by\gmd@ldspaceswd%
214 \xdef\settexcodehangi{%
215 \@nx\hangindent=\the\hangindent% and also set the hanging indent set-

ting for the same line comment case. BTW., this % or rather lack of
it costed me five hours of debugging and rewriting. Active lineends
require extreme caution.

216 \@nx\hangafter=1\space}%
217 \else%
218 \glet\settexcodehangi=\@@settexcodehangi%

% \printlinenumber here produced line numbers for blank lines which
is what we don’t want.

219 \fi% of \ifdim
220 \gmd@ldspaceswd=\z@%
221 \prevhmodegfalse% we have done \par so we are not in the hmode.
222 \@aftercodegtrue% we want to know later that now we are typesetting a code-

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 30

line.
223 \gmd@charbychar% we’ll eat the code char by char to scan all the macros and

thus to deal properly with the case \% in which the % will be scanned and
won’t launch closing of the verbatim group.

224 }%
225 }% end of \gmd@typesettexcode’s definitions’s group’s \firstofone.

Now let’s deal with the leading spaces once forever. We wish not to typeset s but
to add the width of every leading space to the paragraph’s indent and to the hanging
indent, but only if there’ll be any code character not being % in this line (e.g., the end
of line). If there’ll be only %, we want just to continue the comment or start a new one.
(We don’t have to worry about whether we should \par or not.)

226 \newlength\gmd@spacewd% to store the width of a (leading) 12.
227 \newlength\gmd@ldspaceswd% to store total length of gobbled leading spaces.

It costed me some time to reach that in my verbatim scope a space isn’t 12 but 13,
namely \let to \breakabletwelvespace. So let us \let for future:

228 \let\gmd@texcodespace=\breakabletwelvespace

And now let’s try to deal with those spaces.

229 \def\gmd@dolspaces{%
230 \ifx\gmd@texcodespace\@let@token
231 \@dsdirgfalse
232 \afterfi{\settowidth{\gmd@spacewd}{\twelvespace}%
233 \gmd@ldspaceswd=\z@
234 \gmd@eatlspace}%
235 \else\afterfi{% about this smart macro and other of its family see gmutils sec. 3.
236 \par\gmd@typesettexcode}%
237 \fi}

And now, the iterating inner macro that’ll eat the leading spaces.

238 \def\gmd@eatlspace#1{%
239 \ifx\gmd@texcodespace#1%
240 \advance\gmd@ldspaceswd by\gmd@spacewd% we don’t \advance it \globally

’cause the current group may be closed iff we meet % and then we’ll won’t
indent the line anyway.

241 \afteriffifi\gmd@eatlspace
242 \else
243 \if\code@delim\@nx#1%
244 \gmd@ldspaceswd=\z@
245 \gmd@continuenarration#1%
246 \else \afterfifi{\gmd@typesettexcode#1}%
247 \fi
248 \fi}%

We want to know whether we were in hmode before reading current \code@delim.
We’ll need to switch the switch globally.

249 \newgif\ifprevhmode\prevhmodegtrue
\prevhmodegfalse

\ifprevhmode
And the main iterating inner macro which eats every single char of verbatim text to

check the end. The case \% should be excluded and it is indeed.

250 \newcommand*\gmd@charbychar[1]{%\gmd@charbychar

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 31

251 \ifhmode\prevhmodegtrue
252 \else\prevhmodegfalse\fi
253 \if\code@delim\@nx#1%
254 \afteriffifi{\gmd@percenthack% to typeset % if a comment continues the code-

line.
255 \endgroup%
256 \gmd@checkifEOLmixd}% to see if next is ^^M and then do \par.
257 \else% i.e., we’ve not met the code delimiter
258 \if\code@escape@char\@nx#1%
259 \@dsdirgfalse% yes, just here not before the whole \if because then we

would discard checking for DocStrip directives doable by the active %
at the ‘old macrocode’ setting.

260 \afterfifi{\gmd@counttheline#1\scan@macro}%
261 \else
262 \afterfifi{\gmd@EOLorcharbychar#1}%
263 \fi
264 \fi}

One more inner macro because ^^M in TEX code wants to peek at the next char
and possibly launch \gmd@charbychar. We deal with counting the lines thorougly. In-
creasing the counter is divided into cases and it’s very low level in one case because
\refstepcounter and \stepcounter added some stuff that caused blank lines, at least
with hyperref package loaded.
265 \def\gmd@EOLorcharbychar#1{%
266 \ifx\gmd@texcodeEOL#1%
267 \if@newline
268 \if@countalllines\global\advance\c@codelinenum by\@ne
269 \@newlinegfalse\fi
270 \fi
271 \afterfi{#1}% here we print #1.
272 \else% i.e., #1 is not a (very active) line end,
273 \afterfi
274 {\gmd@counttheline#1\gmd@charbychar}% or here we print #1. Here we would

also possibly mark an environment but there’s no need of it because declar-
ing an environment to be marked requires a bit of commentary and here
we are after a code ^^M with no commentary.

275 \fi}

276 \def\gmd@counttheline{%
277 \ifvmode
278 \if@newline
279 \grefstepcounter{codelinenum}\@newlinegfalse
280 \hyperlabel@line
281 \fi
282 \printlinenumber
283 \mark@envir
284 \else
285 \if@newline
286 \grefstepcounter{codelinenum}\@newlinegfalse
287 \hyperlabel@line
288 \fi
289 \fi}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 32

If before reading current % char we were in horizontal mode, then we wish to print %
(or another code delimiter).

290 \def\gmd@percenthack{%
291 \ifprevhmode\code@delim\aftergroup\space% We add a space after %, ’cause

I think it looks better. It’s done \aftergroup to make the spaces possible
after the % not to be typeset.

292 \else\aftergroup\gmd@narrcheckifds@ne% remember that \gmd@precenthack
is only called when we’ve the code delimiter and soon we’ll close the verbatim
group and right after \endgroup there waits \gmd@checkifEOLmixd.

293 \fi}

294 \def\gmd@narrcheckifds@ne#1{%
295 \@dsdirgfalse\@ifnextchar<{%
296 \@xa\gmd@docstripdirective\@gobble}{#1}}

The macro below is used to look for the %^^M case to make a commented blank line
make a new paragraph. Long searched and very simple at last.

297 \def\gmd@checkifEOL{%
298 \gmd@countnarrationline
299 \everypar=\@xa{\@xa\@codetonarrskip% we add the macro that’ll insert a ver-

tical space if we leave the code and enter the narration.
300 \the\gmd@preverypar}%
301 \@ifnextchar{\gmd@textEOL}{%
302 \@dsdirgfalse\par\ignorespaces}{\gmd@narrcheckifds}}%

We check if it’s %<, a DocStrip directive that is.

303 \def\gmd@narrcheckifds{%
304 \@dsdirgfalse\@ifnextchar<{%
305 \@xa\gmd@docstripdirective\@gobble}{\ignorespaces}}

In the ‘mixed’ line case it should be a bit more complex, though. On the other hand,
there’s no need to checking for DocStrip directives.

306 \def\gmd@checkifEOLmixd{%
307 \gmd@countnarrationline
308 \everypar=\@xa{\@xa\@codetonarrskip\the\gmd@preverypar}%
309 \@afternarrgfalse\@aftercodegtrue
310 \ifhmode\@codeskipputgfalse\fi
311 \@ifnextchar{\gmd@textEOL}{%
312 {\raggedright\gmd@endpe\par}% without \raggedright this \par would be

justified which is not appropriate for a long codeline that should be broken,
e.g., 308.

313 \prevhmodegfalse
314 \gmd@endpe\ignorespaces}{%

If a codeline ends with % (prevhmode == True) first \gmd@endpe sets the parameters
at the TEX code values and \par closes a paragraph and the latter \gmd@endpe sets the
parameters at the narration values. In the other case both \gmd@endpes do the same and
\par between them does nothing.

315 \def\par{%
316 \ifhmode% (I added this \ifhmode as a result of a heavy debug.)
317 \@@par
318 \if@afternarr

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 33

319 \if@aftercode
320 \if@codeskipput\else\gmd@codeskip2\@aftercodegfalse%

\@codeskipputgtrue\fi
321 \else\gmd@nocodeskip2{naC}%
322 \fi
323 \else\gmd@nocodeskip2{naN}%
324 \fi
325 \prevhmodegfalse\gmd@endpe% when taken out of \ifhmode, this line

caused some codeline numbers were typeset with \leftskip = 0.
326 \everypar=\@xa{%
327 \@xa\@codetonarrskip\the\gmd@preverypar}%
328 \let\par\@@par%
329 \fi}%
330 \gmd@endpe\ignorespaces}}

As we announced, we play with \leftskip inside the verbatim group and therefore
we wish to restore normal \leftskip when back to normal text i.e. the commentary.
But, if normal text starts in the same line as the code, then we still wish to indent such
a line.

331 \def\gmd@endpe{%
332 \ifprevhmode
333 \settexcodehangi%ndent
334 \leftskip=\CodeIndent
335 \else
336 \leftskip=\TextIndent
337 \hangindent=\z@
338 \everypar=\@xa{%
339 \@xa\@codetonarrskip\the\gmd@preverypar}%
340 \fi}

Numbering (or Not) of the Lines

Maybe you want codelines to be numbered and maybe you want to reset the counter
within sections.

341 \if@uresetlinecount% with uresetlinecount option…
342 \@relaxen\gmd@resetlinecount% … we turn resetting the counter by \DocInput

off…
343 \newcommand*\resetlinecountwith[1]{%
344 \newcounter{codelinenum}[#1]}% … and provide a new declaration of the

counter.
345 \else% With the option turned off…
346 \newcounter{DocInputsCount}%DocInputsCount
347 \newcounter{codelinenum}[DocInputsCount]% … we declare the \DocInputs’codelinenum

number counter andthe codeline counter to be reset with stepping of it.
348 \newcommand*\gmd@resetlinecount{\stepcounter{DocInputsCount}}% … and\gmd@resetlinecount

let the \DocInput increment the \DocInputs number count and thus reset
the codeline count. It’s for unique naming of the hyperref labels.

349 \fi

Let’s define printing the line number as we did in gmvb package.

350 \newcommand*\printlinenumber{%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 34

351 \leavevmode\llap{\rlap{\LineNumFont$$\llap{%
\thecodelinenum}}%

352 \hskip\leftskip}}
353 \def\LineNumFont{\normalfont\tiny}\LineNumFont

354 \if@linesnotnum\@relaxen\printlinenumber\fi
355 \newcommand*\hyperlabel@line{%
356 \if@pageindex% It’s good to be able to switch it any time not just define it once

according to the value of the switch set by the option.
357 \else
358 \raisebox{2ex}[1ex][\z@]{\gmhypertarget[clnum.%
359 \HLPrefix\arabic{codelinenum}]{}}%
360 \fi}

Spacing with \everypar

Last but not least, let’s define the macro inserting a vertical space between the code and
the narration. Its parameter is a relic of a very heavy debug of the automatic vspacing
mechanism. Let it remain at least until this package is 2.0 version.
361 \newcommand*\gmd@codeskip[1]{\@@par\addvspace\CodeTopsep%

\@codeskipputgtrue}

Sometimes we add the \CodeTopsep vertical space in \everypar. When this happens,
first we remove the \parindent empty box, but this doesn’t reverse putting \parskip
to the main vertical list. And if \parskip is put, \addvspace shall see it not the ‘true’
last skip. Therefore we need a Boolean switch to keep the knowledge of putting similar@codeskipput
vskip before \parskip.
362 \newgif\if@codeskipput\if@codeskipput

The below is another relic of the heavy debug of the automatic vspacing. Let’s give
it the same removal clause as above.
363 \newcommand*\gmd@nocodeskip[2]{}

And here is how the two relic macros looked like during the debug. As you see, they
are disabled by a false \if (look at it closely ;-).
364 \if1 1
365 \renewcommand*\gmd@codeskip[1]{%
366 \hbox{\rule{1cm}{3pt} #1!!!}}
367 \renewcommand*\gmd@nocodeskip[2]{%
368 \hbox{\rule{1cm}{0.5pt} #1: #2 }}
369 \fi

We’ll wish to execute \gmd@codeskip wherever a codeline (possibly with an inline
comment) is followed by a homogenic comment line or reverse. Let us dedicate a Boolean
switch to this then.
370 \newgif\if@aftercode\@aftercodegtrue

\@aftercodegfalse
\if@aftercode

This switch will be set true in the moments when we are able to switch from the TEX
code into the narration and the below one when we are able to switch reversely.
371 \newgif\if@afternarr\@afternarrgtrue

\@afternarrgfalse
\if@afternarr

To insert vertical glue between the TEX code and the narration we’ll be playing with
\everypar. More precisely, we’ll add a macro that the \parindent box shall move and
the glue shall put.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 35

372 \long\def\@codetonarrskip{%\@codetonarrskip
373 \if@codeskipput\else
374 \if@afternarr\gmd@nocodeskip4{iaN}\else
375 \if@aftercode

We are at the beginning of \everypar, i.e., TEX has just entered the hmode and put
the \parindent box. Let’s remove it then.

376 {\setbox0=\lastbox}%

Now we can put the vertical space and state we are not ‘aftercode’.

377 \gmd@codeskip4\@codeskipputgtrue
378 \leftskip\TextIndent% this line is a patch against a bug-or-feature that

in certain cases the narration \leftskip is left equal the code left-
skip. (It happens when there’re subsequent code lines after an inline
comment not ended with an explicit \par.)

379 \else\gmd@nocodeskip4{naC}%
380 \fi%
381 \fi
382 \fi\@aftercodegfalse}

But we play with \everypar for other reasons too, and while restoring it, we don’t
want to add the \@codetonarrskip macro infinitely many times. So let us define a macro
that’ll check if \everypar begins with \@codetonarrskip and trim it if so. We’ll use
this macro with proper \expandaftering in order to give it the contents of \everypar.
The work should be done in two steps first of which will be checking whether \everypar
is nonempty (we can’t have two delimited parameters for a macro: if we define a two-
parameter macro, the first is undelimited so it has to be nonempty; it costed me some
one hour to understand it).

383 \long\def\@trimandstore#1\@trimandstore{%\@trimandstore
384 \def\@trimandstore@hash{#1}%
385 \ifx\@trimandstore@hash\@empty% we check if #1 is nonempty. The \if%

% \relax#1\relax trick is not recommended here because using it we
couldn’t avoid expanding #1 if it’d be expandable.

386 \gmd@preverypar={}%
387 \else
388 \afterfi{\@xa\@trimandstore@ne\the\everypar\@trimandstore}%
389 \fi}

390 \long\def\@trimandstore@ne#1#2\@trimandstore{%
391 \def\trimmed@everypar{#2}%
392 \ifx\@codetonarrskip#1%
393 \gmd@preverypar=\@xa{\trimmed@everypar}%
394 \else
395 \gmd@preverypar=\@xa{\the\everypar}%
396 \fi}

We prefer not to repeat #1 and #2 within the \ifs and we even define an auxiliary
macro because \everypar may contain some \ifs or \fis.

Life Among Queer EOLs

When I showed this package to my TEX Guru he commended it and immediately pointed
some disadvantages in the comparison with the doc package.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 36

One of them was an expected difficulty of breaking a moving argument (e.g., of
a sectioning macro) in two lines. To work it around let’s define a line-end eater:

397 \catcode‘\^^B=\active% note we re\catcode 〈char2〉 globally, for the entire docu-
ment.

398 \bgroup\catcode‘\^^M=\active%
399 \firstofone{\egroup%
400 \def\QueerCharTwo{\long\def^^B##1^^M{\ignorespaces}}}^^B

401 \QueerCharTwo

402 \AtBegInput{\@ifQueerEOL{\catcode‘\^^B\active}{}\QueerCharTwo}% We re-
peat redefinition of 〈char2〉 at begin of the documenting input, because
doc.dtx suggests that some packages (namely inputenc) may re\catcode such
unusual characters.

As you see the ^^B active char is defined to gobble everything since itself till the end
of line and the very end of line. This is intended for harmless continuing a line. The
price is affecting the line numbering when countalllines option is enabled.

I also liked the doc’s idea of comment2 i.e., the possibility of marking some text so
that it doesn’t appear nor in the working version neither in the documentation, got by
making ^^A (i.e., 〈char1〉) a comment char.

However, in this package such a trick would work another way: here the line ends are
active, a comment char would disable them and that would cause disasters. So let’s do
it an \active way.

403 \catcode‘\^^A=\active% note we re\catcode 〈char1〉 globally, for the entire docu-
ment.

404 \bgroup\catcode‘\^^M=\active%
405 \firstofone{\egroup%
406 \def\QueerCharOne{\long\def^^A##1^^M{\ignorespaces^^M}}}^^A

407 \QueerCharOne

408 \AtBegInput{\@ifQueerEOL{\catcode‘\^^A\active}\QueerCharOne}% see note af-
ter line 402.

As I suggested in the users’ guide, \StraightEOL and \QueerEOL are intended to
cooperate in harmony for the user’s good. They take care not only of redefining the line
end but also these little things related to it.

One usefulness of \StraightEOL is allowing linebreaking of the command arguments.
Another making possible executing some code lines during the documentation pass.

409 \def\StraightEOL{%\StraightEOL
410 \catcode‘\^^M=5\relax
411 \catcode‘\^^A=14\relax
412 \catcode‘\^^B=14\relax
413 \def\^^M{\ }}

414 \def\QueerEOL{%\QueerEOL
415 \catcode‘\^^M=\active
416 \catcode‘\^^A=\active
417 \catcode‘\^^B=\active% I only re\catcode 〈char1〉 and 〈char2〉 hoping no one

but me is that perverse to make them \active and (re)define. (Let me know
if I’m wrong at this point.)

418 \let\^^M=\gmd@bslashEOL}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 37

To make ^^M behave more like a ‘normal’ lineend I command it to add a 10 at first.
It works but has one uwelcome feature: if the line has nearly \textwidth, this closing
space may cause line breaking and setting a blank line. To fix this I \advance the
\parfillskip:
419 \def\gmd@parfixclosingspace{{%
420 \advance\parfillskip by-\gmd@closingspacewd\par}}

We’ll put it in a group surrounding \par but we need to check if this \par is executed
after narration or after the code, i.e., whether the closing space was added or not.
421 \newskip\gmd@closingspacewd
422 \newcommand*\gmd@setclosingspacewd{%
423 \global\gmd@closingspacewd=\fontdimen2\font%
424 plus\fontdimen3\font minus\fontdimen4\font\relax}

See also line 189 to see what we do in the codeline case when no closing space is
added.

And one more detail:
425 \bgroup\catcode‘\^^M=\active%
426 \firstofone{\egroup%
427 \def\gmd@bslashEOL{\ \@xa\ignorespaces^^M}}

The \QueerEOL declaration will \let it to \^^M to make \^^M behave properly. If this
definition was ommitted, \^^M would just expand to \ and thus not gobble the leading
% of the next line leave alone typesetting the TEX code. I type \ etc. instead of just
^^M which adds a space itself because I take account of a possibility of redefining the \
CS by the user, just like in normal TEX.

We’ll need it for restoring queer definitions for doc-compatibility.

Adjustment of verbatim and \verb

To make verbatim(*) typeset its contents with the TEX code’s indentation:
428 \gaddtomacro\@verbatim{\leftskip=\CodeIndent}

And a one more little definition to accomodate \verb and pals for the lines commented
out.
429 \AtBegInput{\long\def\check@percent#1{%
430 \@xa\ifx\code@delim#1\else\afterfi{#1}\fi}}

We also redefine gmverb’s \AddtoPrivateOthers that has been provided just with
gmdoc’s need in mind.
431 \def\AddtoPrivateOthers#1{%\AddtoPrivateOthers
432 \@xa\def\@xa\doprivateothers\@xa{%
433 \doprivateothers\do#1}}%

We also redefine an internal \verb’s macro \gm@verb@eol to put a proper line end
if a line end char is met in a short verbatim: we have to check if we are in ‘queer’ or
‘straight’ EOLs area.
434 \begingroup
435 \obeylines%
436 \AtBegInput{\def\gm@verb@eol{\obeylines%
437 \def^^M{\verb@egroup\@latex@error{%
438 \@nx\verb ended by end of line}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 38

439 \@ifQueerEOL{\gmd@textEOL}{\@ehc}}}}%
440 \endgroup

Macros for Marking The Macros

A great inspiration for this part was the doc package again. I take some macros from
it, and some tasks I solve a different way, e.g., the \ (or another escapechar) is not
active, because anyway all the chars of code are scanned one by one. And exclusions
from indexing are supported not with a list stored as \toks register but with separate
control sequences for each excluded CS.

The doc package shows a very general approach to the indexing issue. It assumes
using a special MakeIndex style and doesn’t use explicit MakeIndex controls but provides
specific macros to hide them. But here in gmdoc we prefer no special style for the index.

441 \edef\actualchar{\string @}\actualchar
442 \def\quotechar{"}\quotechar
443 \edef\encapchar{\twelveclub}\encapchar
444 \def\levelchar{!}\levelchar

However, for the glossary, i.e., the change history, a special style is required, e.g.,
gmglo.ist, and the above macros are redefined by the \changes command due to gmglo.ist
and gglo.ist settings.

Moreover, if you insist on using a special MakeIndex style, you may redefine the above
four macros in the preamble. The \edefs that process them further are postponed till
\begin{document}.

445 \def\CodeEscapeChar#1{%\CodeEscapeChar
446 \begingroup
447 \escapechar\m@ne
448 \xdef\code@escape@char{\string#1}%\code@escape@char
449 \endgroup}

As you see, to make a proper use of this macro you should give it the \〈char〉 CS as
an argument. It’s an invariant assertion that \code@escape@char stores ‘other’ version
of the code layer escape char.

450 \CodeEscapeChar\\

As mentioned in doc, someone may have some chars 11ed.

451 \@ifundefined{MakePrivateLetters}{%
452 \def\MakePrivateLetters{\makeatletter\catcode‘*=11 }}{}\MakePrivateLetters

A tradition seems to exist to write about e.g., ‘command \section and command
\section*’ and such an uderstanding also of ‘macro’ is noticeable in doc. Making the *
a letter solves the problem of scanning starred commands.

And you may wish some special chars to be 12.

453 \def\MakePrivateOthers{\let\do=\@makeother \doprivateothers}\MakePrivateOthers

This macro we use to re\catcode the space for marking the environments’ names and
the caret for marking chars such as ^^M, see line 726. So let’s define the list:

454 \def\doprivateothers{\do\ \do\^}\doprivateothers

Two chars for the beginning, and also the \MakeShortVerb command shall this list
enlarge with the char(s) declared. (There’s no need to add the backslash to this list since
all the relevant commands \string their argument whatever it is.)

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 39

Now the main macro indexing a macro’s name. It would be a verbatim :-) copy of
the doc’s one if I didn’t ommit some lines irrelevant with my approach.

455 \def\scan@macro#1{% we are sure to scan at least one token and therefore we define\scan@macro
this macro as one-parameter.

Unlike in doc, here we have the escape char 12 so we may just have it printed during
main scan char by char, i.e., in the lines 271 and 274.

So, we step the checksum counter first,

456 \step@checksum% (see line 1195 for details),

Then, unlike in doc, we do not check if the scanning is allowed, because here it’s
always allowed and required.

Of course, I can imagine horrible perversities, but I don’t think they should really be
taken into account. Giving the letter a \catcode other than 11 surely would be one of
those perversities. Therefore I feel safe to take the character a as a benchmark letter.

457 \ifcat a\@nx#1%
458 \quote@char#1%
459 \xdef\macro@iname{\maybe@quote#1}% global for symmetry with line 465.
460 \xdef\macro@pname{\string#1}% we’ll print entire name of the macro later.

We \string it here and in the lines 468 and 474 to be sure it is whole 12 for easy
testing for special indexentry formats, see line 510 etc.

461 \afterfi{\@ifnextcat{a}{\continue@macroscan}{\finish@macroscan}}%
462 \else% #1 is not a letter, so we have just scanned a one-char CS.

Another reasonable \catcodes assumption seems to be that the digits are 12. Then
we don’t have to type (%)\expandafter\@gobble\string\a. We do the \uccode trick
to be sure that the char we write as the macro’s name is 12.

463 {\uccode‘9=‘#1%
464 \uppercase{\xdef\macro@iname{9}}%
465 }%
466 \quote@char#1%
467 \xdef\macro@iname{\maybe@quote\macro@iname}%
468 \xdef\macro@pname{\xiistring#1}%
469 \afterfi \finish@macroscan
470 \fi}

This is the end… beautiful friend, the end… of \scan@macro’s \def the end… The
\xiistring macro, provided by gmutils, is used instead of original \string because we
wish to get the space 12.

Now, let’s explain some details, i.e., let’s define them. We call the following macro
having known #1 to be 11.

471 \def\continue@macroscan#1{%
472 \quote@char#1%
473 \xdef\macro@iname{\macro@iname \maybe@quote#1}%
474 \xdef\macro@pname{\macro@pname \string#1}%
475 \@ifnextcat{a}{\continue@macroscan}{\finish@macroscan}%
476 }

The \@ifnextcat macro is defined analogously to \@ifnextchar but the test done
by it is not \ifx but \ifcat. (Note it would’nt work for an active char as the ‘pattern’.)

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 40

477 \def\quote@char#1{{\uccode‘9=‘#1% at first I took digit 1 for this \uccodeing but
then #1 meant #〈#1〉 in \uppercase’s argument, of course.

478 \uppercase{%
479 \@ifismember 9\of \indexcontrols\glet\maybe@quote\quotechar%
480 \else\g@emptify\maybe@quote%
481 \fi}%
482 }}

And now let’s take care of the MakeIndex control characters. We’ll define a list of them
to check whether we should quote a char or not. But we’ll do it at \begin{document} to
allow the user to use some special MakeIndex style and in such a case to redefine the four
MakeIndex controls’ macros. We enrich this list with the backslash because sometimes
MakeIndex didn’t like it unquoted.
483 \AtBeginDocument{\xdef\indexcontrols{%\indexcontrols
484 \bslash\levelchar\encapchar\actualchar\quotechar}}
485 \long\def \@ifismember#1\of#2{%\@ifismember
486 \long\def\in@@##1#1##2\in@@{%
487 \if\@nx^^A##2\@nx^^A\afterfi\gmd@@iffalse
488 \else\afterfi\gmd@@iftrue
489 \fi}%
490 \@xa\in@@#2#1\in@@}%

To hide the Booleans from TEX in some contexts define
491 \def\gmd@@iftrue{\iftrue}\gmd@@iftrue
492 \def\gmd@@iffalse{\iffalse}\gmd@@iffalse

A try to \let instead of \def resulted with the ‘incomplete if’ error: TEX looks at
the meanings not the names while counting \ifs.

A word of commentary. doc in another situation solves the problem of checking similar
way, but a little more complexely. On the other hand, doc’s solution is more general:
here a trouble may arise if the list begins with ^^A. It seems little possible to me, though.
Btw., this macro is used only for catching chars that are MakeIndex’s controls so far.
How does it work?

\quote@char sort of re\catcodes its argument through the \uccode trick: assigns the
argument as the uppercase code of the digit 9 and does further work in the \uppercase’s
scope so the digit 9 (a benchmark ‘other’) is substituted by #1 but the \catcode remains
so thus the \@ifismember macro gets \quote@char’s #1 ‘other’ed as the first argument.

\@ifismember is defined to take two parameters separated by \of. In \quote@char
the second argument for it is \indexcontrols defined as the (expanded) sequence of the
MakeIndex controls. \@ifismember defines its inner macro \in@@ to take two parameters
separated by the first and the second \@ifismember’s parameter, which are here the char
investigated by \quote@char and the \indexcontrols list. The inner macro’s parameter
string is delimited by the macro itself, why not. \in@@ is put before a string consisting of
\@ifismember’s second and first parameters (in such a reversed order) and \in@@ itself.
In such a sequence it looks for something fitting its parameter pattern. \in@@ is sure to
find the parameters delimiter (\in@@ itself) and the separator, \ifismember’s #1 i.e., the
investigated char, because they are just there. But the investigated char may be found
not near the end, where we put it, but among the MakeIndex controls’ list. Then the rest
of this list and \ifismember’s #1 put by us become the secong argument of \in@@. What
\in@@ does with its arguments, is just a check whether the second one is empty. This
may happen iff the investigated char hasn’t been found among the MakeIndex controls’
list and then \in@@ shall expand to \iffalse, otherwise it’ll expand to \iftrue. (The

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 41

\after... macros are employed not to (mis)match just got \if... with the test’s
\fi.) “(Deep breath.) You got that?” If not, try doc’s explanation of \ifnot@excluded,
pp. 36–37 of the v2.1b dated 2004/02/09 documentation, where a similar construction is
attributed to Michael Spivak.

493 \newcommand*\finish@macroscan{%

We have the macro’s name for indexing in \macro@iname and for print in \macro@pname.
So we index it. We do it a bit countercrank way because we wish to use more general
indexing macro.

494 \if\verbatimchar\macro@pname% it’s important that \verbatimchar comes be-
fore the macro’s name: when it was reverse, the \tt CS turned this test
true and left the \verbatimchar what resulted with ‘\+tt’ typeset. Note
that this test should turn true iff the scanned macro name shows to be the
default \verb’s delimiter. In such a case we give \verb another delimiter,
namely $:

495 \def\im@firstpar{[$]}%
496 \else\def\im@firstpar{}\fi
497 \@xa \index@macro\im@firstpar\macro@iname\macro@pname
498 \maybe@marginpar\macro@pname
499 \macro@pname
500 \gmd@charbychar
501 }

Now, the macro that checks whether the just scanned macro should be put into
a marginpar: it checks the meaning of a very special CS: whose name consists of
gmd/2marpar/ and of the examined macro’s name.

502 \def\maybe@marginpar#1{%
503 \@ifundefined{gmd/2marpar/#1}{}{%
504 \@xa\Text@Marginize\@xa{\bslash#1}% \expandafters

’cause the \Text@Marginize command applies \string to its argument.
% \macro@pname, which will be the only possible argument to \maybe-
% @marginpar, contains the macro’s name without the escapechar so we
added it here.

505 \@xa\g@relaxen\csname gmd/2marpar/#1\endcsname% we reset the switch.
506 }}

The inner macro indexing macro. #1 is the \verb’s delimiter; #2 is assumed to be
the macro’s name with MakeIndex-control chars quoted. #3 is a macro storing the 12

macro’s name, usually \macro@pname, built with \stringing every char in lines 460, 468
and 474. #3 is used only to test if the entry should be specially formatted.

507 \newcommand*\index@macro[3][\verbatimchar]{{%\index@macro
508 \@ifundefined{gmd/iexcl/#3}%
509 {% #3 is not excluded from index
510 \@ifundefined{gmd/defentry/#3}%
511 {% #3 is not def entry
512 \@ifundefined{gmd/usgentry/#3}%
513 {% #3 is not usg entry
514 \edef\kind@fentry{\CommonEntryCmd}}%
515 {% #3 is usg entry
516 \def\kind@fentry{UsgEntry}%
517 \un@usgentryze{#3}}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 42

518 }%
519 {% #3 is def entry
520 \def\kind@fentry{DefEntry}%
521 \un@defentryze{#3}%
522 }% of gmd/defentry/ test’s ‘else’
523 \if@pageindex\@pageinclindexfalse\fi% should it be here or there? Defi-

nitely here because we’ll wish to switch the switch with a declaration.
524 \if@pageinclindex
525 \edef\IndexRefCs{gmdindexpagecs{\HLPrefix}{\kind@fentry}{%

\EntryPrefix}}%
526 \else
527 \edef\IndexRefCs{gmdindexrefcs{\HLPrefix}{\kind@fentry}{%

\EntryPrefix}}%
528 \fi
529 \edef\@tempa{\IndexPrefix#2\actualchar%
530 \quotechar\bslash verb*#1\quoted@eschar#2#1% The last macro in this

line usually means the first two, but in some cases it’s redefined to
be empty (when we use \index@macro to index not a CS).

531 \encapchar\IndexRefCs}%
532 \@xa\special@index\@xa{\@tempa}% We give the indexing macro the argu-

ment expanded so that hyperref may see the explicit encapchar in order
not to add its own encapsulation of |hyperpage when the (default)
hyperindex=true option is in force. (After this setting the \edefs in
the above may be changed to \defs.)

533 }{}% closing of gmd/iexcl/ test.
534 }}

535 \def\un@defentryze#1{%\un@defentryze
536 \@xa\g@relaxen\csname gmd/defentry/#1\endcsname
537 \g@relaxen\last@defmark}% we care to clear the last definition marker checked

by \changes.
538 \def\un@usgentryze#1{%\un@usgentryze
539 \@xa\g@relaxen\csname gmd/usgentry/#1\endcsname}

540 \@emptify\EntryPrefix% this macro seems to be obsolete now (v0.98d).

For the case of page-indexing a macro in the commentary when codeline index option
is on:

541 \newif\if@pageinclindex\@pageinclindextrue
\@pageinclindexfalse

\if@pageinclindex
542 \newcommand*\quoted@eschar{\quotechar\bslash}% we’ll redefine it when index-

\quoted@eschar
ing an environment.

Let’s initialize \IndexPrefix

543 \def\IndexPrefix{}

The \IndexPrefix and \HLPrefix (‘HyperLabel Prefix’) macros are given with ac-
count of a possibility of documenting several files in(to) one document. In such case the
user may for each file \def\IndexPrefix{〈package name〉!} for instance and it will work
as main level index entry and \def\HLPrefix{〈package name〉} as a prefix in hypertar-
gets in the codelines. They are redefined by \DocInclude e.g.

544 \if@linesnotnum\@pageindextrue\fi
545 \AtBeginDocument{%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 43

546 \if@pageindex
547 \def\gmdindexrefcs#1#2#3#4{\csname#2\endcsname{\hyperpage{#4}}}% in

the page case we gobble the third argument that is supposed to be the
entry prefix.

548 \let\gmdindexpagecs=\gmdindexrefcs
549 \else
550 \def \gmdindexrefcs#1#2#3#4{\gmiflink[clnum.#4]{%
551 \csname#2\endcsname{#4}}}%
552 \def \gmdindexpagecs#1#2#3#4{\hyperlink{page.#4}{%
553 \csname#2\endcsname{\gmd@revprefix{#3}#4}}}%

554 \def\gmd@revprefix#1{%
555 \def\@tempa{#1}%
556 \ifx\@tempa\@empty p.\,\fi}

557 \providecommand*\HLPrefix{}% it’ll be the hypertargets names’ prefix in mul-
ti-docs. Moreover, it showed that if it was empty, hyperref saw du-
plicates of the hyper destinations, which was perfectly understandable
(codelinenum.123 made by \refstepcounter and codelinenum.123
made by \gmhypertarget). But since v0.98 it is not a problem any-
more ’cause during the authomatic \hypertargeting the lines are labeled
clnum.〈number〉. When \HLPrefix was defined as dot, MakeIndex re-
jected the entries as ‘illegal page number’.

558 \fi}

The definition is postponed till \begin{document} because of the \PageIndex dec-
laration (added for doc-compatibility), see line 1687.

I design the index to contain hyperlinking numbers whether they are the line numbers
or page numbers. In both cases the last parameter is the number, the one before the last
is the name of a formatting macro and in linenumber case the first parameter is a prefix
for proper reference in multi-doc.

I take account of three kinds of formatting the numbers: 1. the ‘def’ entry, 2. a ‘us-
age’ entry, 3. a common entry. As in doc, let them be underlined, italic and upright
respectively.

559 \def\DefEntry#1{\underline{#1}}\DefEntry
560 \def\UsgEntry#1{\textit{#1}}\UsgEntry

The third option will be just \relax by default:

561 \def\CommonEntryCmd{relax}\CommonEntryCmd

In line 514 it’s \edefed to allow an ‘unmöglich’ situation that the user wants to have
the common index entries specially formatted. I use this to make all the index entries of
the (\SelfIncluded) driver file to be ‘usage’, see codeline 14 of gmdocDoc.tex.

Now let’s \def the macros declaring a CS to be indexed special way. Each declaration
puts the 12ed name of the macro given it as the argument into proper macro to be \ifxed
in lines 510 and 512 respectively.

But first let’s make a version of \@ifstar that would work with *11. It’s analogous
to \@ifstar.

562 \bgroup\catcode‘*=11 %
563 \firstofone{\egroup
564 \def\@ifstarl#1{\@ifnextchar *{\@firstoftwo{#1}}}}\@ifstarl

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 44

Now we are ready to define a couple of commands. The * versions of them are for
marking environments and implicit CSs.

565 \outer\def\CodeDefIndex{\begingroup\CodeDefIndex*
\CodeDefIndex 566 \MakePrivateLetters

567 \@ifstarl{\MakePrivateOthers\Code@DefIndexStar}{\Code@DefIndex}}

568 \long\def\Code@DefIndex#1{\endgroup{%
569 \escapechar\m@ne% because we will compare the macro’s name with a string

without the backslash.
570 \global\@defentryze{#1}}}

571 \long\def\Code@DefIndexStar#1{%
572 \endgroup
573 \addto@estoindex{#1}%
574 \@defentryze{#1}}

575 \def\gmd@justadot{.}\gmd@justadot

576 \long\def\@defentryze#1{%\@defentryze
577 \@xa\let\csname gmd/defentry/\string#1\endcsname\gmd@justadot% The LATEX

\@namedef macro could not be used since it’s not ‘long’.
578 \xdef\last@defmark{\string#1}}% we \string the argument ’cause it’s a control\last@defmark

sequence most probably.
579 \long\def\@usgentryze#1{%\@usgentryze
580 \@xa\let\csname gmd/usgentry/\string#1\endcsname\gmd@justadot}

Initialize \envirs@toindex

581 \@emptify\envirs@toindex

Now we’ll do the same for the ‘usage’ entries:

582 \outer\def\CodeUsgIndex{\begingroup\CodeUsgIndex*
\CodeUsgIndex 583 \MakePrivateLetters

584 \@ifstarl{\MakePrivateOthers\Code@UsgIndexStar}{\Code@UsgIndex}}

The * possibility is for marking environments etc.

585 \long\def\Code@UsgIndex#1{\endgroup{%
586 \escapechar\m@ne
587 \global\@usgentryze{#1}}}

588 \long\def\Code@UsgIndexStar#1{%
589 \endgroup
590 \addto@estoindex{#1}%
591 \@usgentryze{#1}}

For the symmetry, if we want to mark a control sequence or an environment’s name
to be indexed as a ‘normal’ entry, let’s have:

592 \outer\def\CodeCommonIndex{\begingroup\CodeCommonIndex
593 \MakePrivateLetters
594 \@ifstarl{\MakePrivateOthers\Code@CommonIndexStar}{%

\Code@CommonIndex}}

595 \long\def\Code@CommonIndex#1{\endgroup}

596 \long\def\Code@CommonIndexStar#1{%
597 \endgroup\addto@estoindex{#1}}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 45

And now let’s define commands to index the control sequences and environments
occurring in the narrative.

598 \long\def\text@indexmacro#1{%\text@indexmacro
599 {\escapechar\m@ne \xdef\macro@pname{\xiistring#1}}%
600 \@xa\quote@mname\macro@pname\relax% we process the CS’s name char by char

and quote MakeIndex controls. \relax is the iterating macro’s stopper. The
scanned CS’s quoted name shall be the expansion of \macro@iname.

601 \if\verbatimchar\macro@pname
602 \def\im@firstpar{[$]}%
603 \else\def\im@firstpar{}%
604 \fi
605 {\do@properindex% see line 758.
606 \@xa \index@macro\im@firstpar\macro@iname\macro@pname}}

The macro defined below (and the next one) are executed only before a 12 macro’s
name i.e. a nonempty sequence of 12 character(s). This sequence is delimited (guarded)
by \relax.

607 \def\quote@mname{%\quote@mname
608 \def\macro@iname{}%
609 \quote@charbychar}

610 \def\quote@charbychar#1{%
611 \if\relax#1% finish quoting when you meet \relax or:
612 \else
613 \quote@char#1%
614 \xdef\macro@iname{\macro@iname \maybe@quote#1}%
615 \afterfi\quote@charbychar
616 \fi}

The next command will take one argument, which in plain version should be a control
sequence and in the starred version also a sequence of chars allowed in environment names
or made other by \MakePrivateOthers macro, taken in the curly braces.

617 \def\TextUsgIndex{\begingroup\TextUsgIndex*
\TextUsgIndex 618 \MakePrivateLetters

619 \@ifstarl{\MakePrivateOthers\Text@UsgIndexStar}{\Text@UsgIndex}}

620 \long\def\Text@UsgIndex#1{%
621 \endgroup\@usgentryze#1%
622 \text@indexmacro#1}

623 \long\def\Text@UsgIndexStar#1{\endgroup\@usgentryze{#1}%
624 \text@indexenvir{#1}}

625 \long\def \text@indexenvir#1{%\text@indexenvir
626 \edef\macro@pname{\xiistring#1}%
627 \if\bslash\@xa\@firstofmany\macro@pname\@@nil% if \stringed #1 begins

with a backslash, we will gobble it to make MakeIndex not see it.
628 \edef\@tempa{\@xa\@gobble\macro@pname}%
629 \@tempswatrue
630 \else
631 \let\@tempa\macro@pname
632 \@tempswafalse
633 \fi

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 46

634 \@xa\quote@mname\@tempa\relax% we process \stinged #1 char by char and
quote MakeIndex controls. \relax is the iterating macro’s stopper. The
quoted \stringed #1 shall be the expansion of \macro@iname.

635 {\if@tempswa
636 \def\quoted@eschar{\quotechar\bslash}%
637 \else\@emptify\quoted@eschar\fi% we won’t print any backslash before an

environment’s name, but we will before a CS’s name.
638 \do@properindex% see line 758.
639 \index@macro\macro@iname\macro@pname}}

640 \def\TextCommonIndex{\begingroup\TextCommonIndex*
\TextCommonIndex 641 \MakePrivateLetters

642 \@ifstarl{\MakePrivateOthers\Text@CommonIndexStar}{%
\Text@CommonIndex}}

643 \long\def\Text@CommonIndex#1{\endgroup
644 \text@indexmacro#1}

645 \long\def\Text@CommonIndexStar#1{\endgroup
646 \text@indexenvir{#1}}

As you see in the lines 521 and 517, the markers of special formatting are reset after
first use.

But we wish the CSs not only to be indexed special way but also to be put in margin-
pars. So:

647 \outer\def\CodeMarginize{\begingroup\CodeMarginize*
\CodeMarginize 648 \MakePrivateLetters

649 \@ifstarl{\MakePrivateOthers\egCode@MarginizeEnvir}{%
\egCode@MarginizeMacro}}

One more expansion level because we wish \Code@MarginizeMacro not to begin with
\endgroup because in the subsequent macros it’s used after ending the re\catcodeing
group.

650 \long\def\egCode@MarginizeMacro#1{\endgroup
651 \Code@MarginizeMacro#1}

652 \long\def\Code@MarginizeMacro#1{{\escapechar\m@ne
653 \@xa\glet\csname gmd/2marpar/\string#1\endcsname\gmd@justadot
654 }}

655 \long\def\egCode@MarginizeEnvir#1{\endgroup
656 \Code@MarginizeEnvir{#1}}

657 \long\def\Code@MarginizeEnvir#1{\addto@estomarginpar{#1}}

And a macro really putting the environment’s name in a marginpar shall be trigged
at the beginning of the nearest codeline.

Here it is:

658 \def\mark@envir{%\mark@envir
659 \ifx\envirs@tomarginpar\@empty
660 \else
661 \let\do\Text@Marginize
662 \envirs@tomarginpar%
663 \g@emptify\envirs@tomarginpar%
664 \fi

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 47

665 \ifx\envirs@toindex\@empty
666 \else
667 \def\do##1{% the \envirs@toindex list contains \stringed macros or environ-

ments’ names in braces and each preceded with \do.
668 \if\bslash\@firstofmany##1\@@nil% if ##1 begins with a backslash, we will

gobble it for MakeIndex not see it.
669 \edef\@tempa{\@gobble##1}%
670 \@tempswatrue
671 \else
672 \edef\@tempa{##1}\@tempswafalse
673 \fi
674 \@xa\quote@mname\@tempa\relax% see line 634 & subs. for commentary.
675 {\if@tempswa
676 \def\quoted@eschar{\quotechar\bslash}%
677 \else\@emptify\quoted@eschar\fi
678 \index@macro\macro@iname{##1}}}%
679 \envirs@toindex
680 \g@emptify\envirs@toindex%
681 \fi}

One very important thing: initialisation of the list macros:

682 \@emptify\envirs@tomarginpar
683 \@emptify\envirs@toindex

For convenience we’ll make the ‘private letters’ first not to bother ourselves with
\makeatletter for instance when we want mark some CS. And \MakePrivateOthers
for the environment and other string case.

684 \outer\def\CodeDefine{\begingroup\CodeDefine*
\CodeDefine 685 \MakePrivateLetters

We do \MakePrivateLetters before \@ifstarl in order to avoid a situation that
TEX sees a control sequence with improper name (another CS than we wished) (because
\@ifstarl establishes the \catcodes for the next token):

686 \@ifstarl{\MakePrivateOthers\Code@DefEnvir}{\Code@DefMacro}}

687 \outer\def\CodeUsage{\begingroup\CodeUsage*
\CodeUsage 688 \MakePrivateLetters

689 \@ifstarl{\MakePrivateOthers\Code@UsgEnvir}{\Code@UsgMacro}}

And then we launch the macros that close the group and do the work.

690 \long\def\Code@DefMacro#1{%
691 \Code@DefIndex#1% we use the internal macro; it’ll close the group.
692 \Code@MarginizeMacro#1}

693 \long\def\Code@UsgMacro#1{%
694 \Code@UsgIndex#1% here also the internal macro; it’ll close the group
695 \Code@MarginizeMacro#1}

The next macro is taken verbatim ;-) from doc and the subsequent \lets, too.

696 \def\codeline@wrindex#1{\if@filesw
697 \immediate\write\@indexfile
698 {\string\indexentry{#1}%
699 {\HLPrefix\number\c@codelinenum}}\fi}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 48

We initialize it due to the option (or lack of the option):

700 \AtBeginDocument{%
701 \if@pageindex
702 \let\special@index=\index
703 \else
704 \let\special@index=\codeline@wrindex
705 \fi}% postponed till \begin{document} with respect of doc-like declarations.

And in case we don’t want to index:

706 \def\gag@index{\let\index=\@gobble\gag@index
707 \let\codeline@wrindex=\@gobble}

We’ll use it in one more place or two. And we’ll wish to be able to undo it so let’s
copy the original meanings:

708 \StoreMacros{\index\codeline@wrindex}
709 \def\ungag@index{\RestoreMacros{\index\@@codeline@wrindex}}\ungag@index

Our next task is to define macros that’ll mark and index an environment or other
string in the code. Because of lack of a backslash, no environment’s name is scanned
so we have to proceed different way. But we wish the user to have symmetric tools,
i.e., the ‘def’ or ‘usage’ use of an environment should be declared before the line where
the environment occurs. Note the slight difference between these and the commands
to declare a CS marking: the latter do not require to be used immediately before the
line containig the CS to be marked. We separate indexing from marginizing to leave
a possibility of doing only one of those things.

710 \long\def\Code@DefEnvir#1{%
711 \endgroup
712 \addto@estomarginpar{#1}%
713 \addto@estoindex{#1}%
714 \@defentryze{#1}}

715 \long\def\Code@UsgEnvir#1{%
716 \endgroup
717 \addto@estomarginpar{#1}%
718 \addto@estoindex{#1}%
719 \@usgentryze{#1}}

720 \long\def\addto@estomarginpar#1{%
721 \edef\@tempa{\@nx\do{\xiistring#1}}% we \string the argument to allow it

to be a control sequence.
722 \@xa\addtomacro\@xa\envirs@tomarginpar\@xa{\@tempa}}

723 \long\def\addto@estoindex#1{%
724 \edef\@tempa{\@nx\do{\xiistring#1}}
725 \@xa\addtomacro\@xa\envirs@toindex\@xa{\@tempa}}

And now a command to mark a ‘usage’ occurrence of a CS, environment or another
string in the commentary. As the ‘code’ commands this also has plain and starred
version, first for CSs appearing explicitly and the latter for the strings and CSs appearing
implicitly.

726 \def\TextUsage{\begingroup\TextUsage*
\TextUsage 727 \MakePrivateLetters

728 \@ifstarl{\MakePrivateOthers\Text@UsgEnvir}{\Text@UsgMacro}}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 49

729 \long\def\Text@UsgMacro#1{%
730 \endgroup{\tt\xiistring#1}%
731 \Text@Marginize#1%
732 \begingroup\Code@UsgIndex#1% we declare the kind of formatting of the entry.
733 \text@indexmacro#1}

734 \long\def\Text@UsgEnvir#1{%
735 \endgroup{\tt\xiistring#1}%
736 \Text@Marginize{#1}%
737 \@usgentryze{#1}% we declare the ‘usage’ kind of formatting of the entry and

index the sequence #1.
738 \text@indexenvir{#1}}

We don’t provide commands to mark a macro’s or environment’s definition present
within the narrative because we think there won’t be any: one defines macros and envi-
ronments in the code not in the commentary.
739 \def\TextMarginize{\begingroup\TextMarginize*

\TextMarginize 740 \MakePrivateLetters
741 \@ifstarl{\MakePrivateOthers\egText@Marginize}{\egText@Marginize}}

742 \long\def\egText@Marginize#1{\endgroup
743 \Text@Marginize#1}

We check whether the margin pars are enabled and proceed respectively in either
case.
744 \if@marginparsused
745 \reversemarginpar
746 \marginparpush\z@
747 \marginparwidth8pc\relax

You may wish to put not only macros and environments to a marginpar.
748 \long\def\gmdmarginpar#1{%\gmdmarginpar
749 \marginpar{\raggedleft\strut
750 \hskip0ptplus100ptminus100pt%
751 #1}}%

752 \else
753 \long\def\gmdmarginpar#1{}%
754 \fi

755 \long\def\Text@Marginize#1{%\Text@Marginize
756 \gmdmarginpar{\marginpartt\xiistring#1}}

Note that the above macro will just gobble its argument if the marginpars are disabled.
It may be advisable to choose a condensed typewriter font for the marginpars, if there

is any. (The Latin Modern font family provides a light condensed typewriter font, it’s
set in gmdocc class.)
757 \let\marginpartt\tt

If we count all lines then the index entries for CSs and environments marked in the
commentary should have codeline numbers not page numbers and that is \let in line
704. On the other hand, if we count only the codelines, then a macro or an environment
marked in the commentary should have page number not codeline number. This we
declare here, among others we add the letter p before the page number.
758 \def\do@properindex{%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 50

759 \if@countalllines\else
760 \@pageinclindextrue
761 \let\special@index=\index
762 \fi}

In doc all the ‘working’ TEX code should be braced in(to) the macrocode environ-
ments. Here another solutions are taken so to be doc-compatible we only should nearly-
ignore macrocode(*)s with their Percent and The Four Spaces Preceding ;-) . I.e., to
ensure the line ends are ‘queer’. And that the DocStrip directives will be typeset as the
DocStrip directives. And that the usual code escape char will be restored at \end{%
macrocode}. And to add the vertical spaces.

If you know doc conventions, note that gmdoc does not require \end{macrocode} to
be preceded with any particular number of any char :-) .
763 \newenvironment*{macrocode*}{%macrocode*
764 \if@codeskipput\else\par\addvspace\CodeTopsep\@codeskipputgtrue\fi
765 \QueerEOL}%
766 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Let’s remind that the starred version makes visible, which is the default in gmdoc
outside macrocode.

So we should make the spaces invisible for the unstarred version.
767 \newenvironment*{macrocode}{%macrocode
768 \if@codeskipput\else\par\addvspace\CodeTopsep\@codeskipputgtrue\fi
769 \CodeSpacesBlank\QueerEOL}%
770 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Note that at the end of both the above environments the \’s rôle as the code escape
char is restored. This is crafted for the \SpecialEscapechar macro’s compatibility: this
macro influences only the first macrocode environment. The situation that the user wants
some queer escape char in general and in a particular macrocode yet another seems to
me “unmöglich, Prinzessin”8.

Since the first .dtx I tried to compile after the first published version of gmdoc uses
a lot of commented out code in macrocodes, it seems to me necessary to add a possibility
to typeset macrocodes as if they were a kind of verbatim, that is to leave the code layer
and narration layer philosophy.
771 \let\oldmc\macrocodeoldmc

oldmc* 772 \let\endoldmc\endmacrocode
773 \n@melet{oldmc*}{macrocode*}
774 \n@melet{endoldmc*}{endmacrocode*}

Now we arm oldmc and olmc* with the the macro looking for % \end{〈envir
name〉}.
775 \addtomacro\oldmc{\@oldmacrocode@launch}%
776 \@xa\addtomacro\csname oldmc*\endcsname{%
777 \@oldmacrocode@launch}

778 \def\@oldmacrocode@launch{%
779 \emptify\gmd@textEOL% to disable it in \gmd@docstripdirective launched

within the code.
780 \glet\stored@code@delim\code@delim
781 \@makeother\^^B\CodeDelim*\^^B%

8 Richard Strauss after Oscar Wilde, Salome.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 51

782 \ttverbatim \gmd@DoTeXCodeSpace%
783 \@makeother\|% ’cause \ttverbatim doesn’t do that.
784 \MakePrivateLetters% see line 451.
785 \docstrips@percent \@makeother\>%

sine qua non of the automatic delimiting is replacing possible *12in the environment’s
name with *11. Not to complicate assume * may occure at most once and only at the
end. We also assume the environment’s name consists only of character tokens whose
catcodes (except of *) will be the same in the verbatim text.

786 \@xa\gmd@currenvxistar\@currenvir*\relax
787 \@oldmacrocode}

788 \bgroup\catcode‘*11
789 \firstofone{\egroup
790 \def\gm@xistar{*}}

791 \def\gmd@currenvxistar#1*#2\relax{%
792 \edef\@currenvir{#1\if*#2\gm@xistar\fi}}

The trick is that #2 may be either *12 or empty. If it’s *, the test is satisfied
and \if...\fi expands to \gm@xistar. If #2 is empty, the test is also satisfied since
\gm@xistar expands to * but there’s nothing to expand to. So, if the environment’s
name ends with *12, it’ll be substituted with *11or else nothing will be added. (Note
that a * not at the end of env. name would cause a disaster.)

793 \bgroup
794 \catcode‘[=1 \catcode‘]=2
795 \catcode‘\{=\active \@makeother\}
796 \@makeother\^^B
797 \catcode‘!=0 \catcode‘\\=\active
798 !catcode‘& =14 !catcode‘*=11
799 !catcode‘!%=!active !obeyspaces&
800 !firstofone[!egroup&

801 !def!@oldmacrocode[&\@oldmacrocode
802 !bgroup!let =!relax& to avoid writing !noexpand four times.
803 !xdef!oldmc@def[&
804 !def!noexpand!oldmc@end####1!noexpand% !noexpand\end&
805 !noexpand{!@currenvir}[&
806 ####1^^B!noexpand!end[!@currenvir]!noexpand!gmd@oldmcfinis]]&
807 !egroup& now \oldmc@edef is defined to have one parameter delimited with

\end{〈current env.’s name〉}
808 !oldmc@def&
809 !oldmc@end]&
810]

811 \def\gmd@oldmcfinis{%
812 \@xa\CodeDelim\stored@code@delim
813 \gmd@mchook}% see line 1625

814 \def\VerbMacrocodes{%
815 \let\macrocode\oldmc
816 \n@melet{macrocode*}{oldmc*}}

To handle DocStrip directives in the code (in the old macrocodes case that is).

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 52

817 \bgroup\catcode‘\%\active
818 \firstofone{\egroup
819 \def\docstrips@percent{\catcode‘\%\active
820 \let%\gmd@codecheckifds}}

The point is, the active % will be expanded when just after it is the \gmd@charbychar
cs token and next is some char, the ^^B code delimiter at least. So, if that char is <,
we wish to launch DocStrip directive typesetting. (Thanks to \ttverbatim all the < are
‘other’.)

821 \def\gmd@codecheckifds#1#2{% note that #1 is just to gobble \gmd@charbychar
token.

822 \if@dsdir\@dsdirgfalse
823 \if\@nx<\@nx#2\afterfifi\gmd@docstripdirective
824 \else\afterfifi{\twelvepercent#1#2}%
825 \fi
826 \else\afterfi{\twelvepercent#1#2}%
827 \fi}

Almost the same we do with the macro(*) environments, stating only their argumentmacro
to be processed as the ‘def’ entry. Of course, we should re\catcode it first.

828 \newenvironment{macro}{%
829 \@tempskipa=\MacroTopsep
830 \if@codeskipput\advance\@tempskipa by-\CodeTopsep\fi
831 \par\addvspace{\@tempskipa}\@codeskipputgtrue
832 \begingroup\MakePrivateLetters\MakePrivateOthers% we make also the ‘pri-

vate others’ to cover the case of other sequence in the argument. (We’ll
use the \macro macro also in the environment for describing and defining
environments.)

833 \gmd@ifonetoken\Hybrid@DefMacro\Hybrid@DefEnvir}%
834 {\par\addvspace\MacroTopsep\@codeskipputgtrue}

It came out that the doc’s author(s) give the macro environment also starred versions
of commands as argument. It’s OK since (the default version of) \MakePrivateLetters
makes * a letter and therefore such a starred version is just one CS. However, in doc.dtx
occure macros that mark implicit definitions i.e., such that the defined CS is not scanned
in the subsequent code.

And for those who want to to use this environment for marking implicit definitions,macro*
define the star version:

835 \@namedef{macro*}{\let\gmd@ifonetoken\@secondoftwo\macro}
836 \@xa\let\csname endmacro*\endcsname\endmacro

Note that macro and macro* have the same effect for more-than-one-token arguments
thanks to \gmd@ifonetoken’s meaning inside unstarred macro (it checks whether the
argument is one-token and if it isn’t, \gmd@ifonetoken switches execution to ‘other
sequence’ path).

The two environments behave different only with a one-token argument: macro post-
pones indexing it till the first scanned occurrence while macro* till the first code line
met.

Now, let’s complete the details. First define an \if-like macro that turns true when
the string given to it consists of just one token (or one {〈text〉}, to tell the whole truth).

837 \def\gmd@ifsingle#1#2\@@nil{%\gmd@ifsingle

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 53

838 \def\@tempa{#2}%
839 \ifx\@tempa\@empty}

Note it expands to an open \if... test (unbalanced with \fi) so it has to be used
as all the \ifs, with optional \else and obligatory \fi. And cannot be used in the
possibly skipped branches of other \if...s (then it would result with ‘extra \fi/extra
\else’ errors). But the below usage is safe since both \gmd@ifsingle and its \else and
\fi are hidden in a macro (that will not be \expandaftered).

Note also that giving \gmd@ifsingle an \if... or so as the first token of the
argument will not confuse TEX since the first token is just gobbled. The possibility of
occurrence of \if... or so as a not-first token seems to be negligible.

840 \def\gmd@ifonetoken#1#2#3{%\gmd@ifonetoken
841 \def\@tempb{#3}% We hide #3 from TEX in case it’s \if... or so. \@tempa is

used in \gmd@ifsingle.
842 \gmd@ifsingle#3\@@nil
843 \afterfi{\@xa#1\@tempb}%
844 \else
845 \edef\@tempa{\@xa\string\@tempb}%
846 \afterfi{\@xa#2\@xa{\@tempa}}%
847 \fi}

Now, define the mysterious \Hybrid@DefMacro and \Hybrid@DefEnvir macros. They
mark their argument with a certain subtlety: they put it in a marginpar at the point
where they are and postpone indexing it till the first scanned occurrence or just the first
code line met.

848 \long\def\Hybrid@DefMacro#1{%\Hybrid@DefMacro
849 \Code@DefIndex{#1}% this macro closes the group opened by \macro.
850 \Text@MarginizeNext{#1}}

851 \long\def\Hybrid@DefEnvir#1{%\Hybrid@DefEnvir
852 \Code@DefIndexStar{#1}% this macro also closes the group begun by \macro.
853 \Text@MarginizeNext{#1}}

854 \long\def\Text@MarginizeNext#1{%\Text@MarginizeNext
855 \gmd@evpaddonce{\Text@Marginize{#1}\ignorespaces}}

The following macro adds its argument to \everypar using an auxiliary macro to
wrap the stuff in. The auxiliary macro has a self-destructor built in so it \relaxes itself
after first use.

856 \long\def\gmd@evpaddonce#1{%\gmd@evpaddonce
857 \stepnummacro\gmd@oncenum
858 \@xa\long\@xa\edef%
859 \csname gmd/evp/NeuroOncer\gmd@oncenum\endcsname{%
860 \@nx\g@relaxen
861 \csname gmd/evp/NeuroOncer\gmd@oncenum\endcsname}% Why does it work

despite it shouldn’t? Because when the CS got with \csname...ˆ
\endcsname is undefined, it’s equivalent \relax and therefore unex-
pandable. That’s why it passes \edef and is able to be assigned.

862 \@xa\addtomacro\csname gmd/evp/NeuroOncer\gmd@oncenum\endcsname{#1}%
863 \@xa\addto@hook\@xa\everypar\@xa{%
864 \csname gmd/evp/NeuroOncer\gmd@oncenum\endcsname}%
865 }

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 54

866 \nummacro\gmd@oncenum% We store the number uniquifying the auxiliary macro in
a macro to save count registers (cf. gmutils sec. To Save Precious Count Reg-
isters).

Wrapping a description and definition of an environment in a macro environmentenvironment
would look inappropriate (‘zgrzytało by’ in Polish) although there’s no TEXnical obstacle
to do so. Therefore we define the environment, because of æsthetic and psychological
reasons.
867 \@xa\let\@xa\environment\csname macro*\endcsname
868 \@xa\let\@xa\endenvironment\csname endmacro*\endcsname

Index Exclude List

We want some CSs not to be indexed, e.g., the LATEX internals and TEX primitives.
doc takes \index@excludelist to be a \toks register to store the list of expelled

CSs. Here we’ll deal another way. For each CS to be excluded we’ll make (\let, to be
precise) a control sequence and then we’ll be checking if it’s undefined (\ifx-equivalent
\relax).9

869 \def\DoNotIndex{\bgroup\MakePrivateLetters\DoNot@Index}\DoNotIndex

870 \long\def\DoNot@Index#1{\egroup% we close the group,
871 \let\gmd@iedir\gmd@justadot% we declare the direction of the cluding to be

excluding. We act this way to be able to reverse the exclusions easily later.
872 \dont@index#1.}

873 \long\def\dont@index#1{%
874 \def\@tempa{\@nx#1}% My TEX Guru’s trick to deal with \fi and such, i.e., to

hide from TEX when it is processing a test’s branch without expanding.
875 \if\@tempa.% a dot finishes expelling
876 \else
877 \if\@tempa,% The list this macro is put before may contain commas and that’s

O.K., we just continue the work.
878 \afterfifi\dont@index
879 \else% what is else shall off the Index be expelled.
880 {\escapechar\m@ne
881 \xdef\@tempa{\string#1}}%
882 \@xa\let%
883 \csname gmd/iexcl/\@tempa\endcsname=\gmd@iedir% In the default case

explained e.g. by the macro’s name, the last macro’s meaning is such
that the test in line 508 will turn false and the subject CS shall not be
indexed. We \let not \def to spare TEX’s memory.

884 \afterfifi\dont@index
885 \fi
886 \fi}

Let’s now give the exclude list copied ˜verbatim ;-) from doc.dtx. I give it in the code
layer ’cause I suppose one will document not LATEX source but normal packages.
887 \DoNotIndex\{ \DoNotIndex\}% the index entries of these two CSs would be rejected

by MakeIndex anyway.
888 \begin{MakePrivateLetters}% Yes, \DoNotIndex does \MakePrivateLetters on

its own but No, it won’t have any effect if it’s given in another macro’s \def.
889 \gdef\DefaultIndexExclusions{%\DefaultIndexExclusions

9 This idea comes from Marcin Woliński.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 55

890 \DoNotIndex{\@ \@@par \@beginparpenalty \@empty}%
891 \DoNotIndex{\@flushglue \@gobble \@input}%
892 \DoNotIndex{\@makefnmark \@makeother \@maketitle}%
893 \DoNotIndex{\@namedef \@ne \@spaces \@tempa}%
894 \DoNotIndex{\@tempb \@tempswafalse \@tempswatrue}%
895 \DoNotIndex{\@thanks \@thefnmark \@topnum}%
896 \DoNotIndex{\@@ \@elt \@forloop \@fortmp \@gtempa \@totalleftmargin}%
897 \DoNotIndex{\" \/ \@ifundefined \@nil \@verbatim \@vobeyspaces}%
898 \DoNotIndex{\| \~ \ \active \advance \aftergroup \begingroup \bgroup}%
899 \DoNotIndex{\mathcal \csname \def \documentstyle \dospecials \edef}%
900 \DoNotIndex{\egroup}%
901 \DoNotIndex{\else \endcsname \endgroup \endinput \endtrivlist}%
902 \DoNotIndex{\expandafter \fi \fnsymbol \futurelet \gdef \global}%
903 \DoNotIndex{\hbox \hss \if \if@inlabel \if@tempswa \if@twocolumn}%
904 \DoNotIndex{\ifcase}%
905 \DoNotIndex{\ifcat \iffalse \ifx \ignorespaces \index \input \item}%
906 \DoNotIndex{\jobname \kern \leavevmode \leftskip \let \llap \lower}%
907 \DoNotIndex{\m@ne \next \newpage \nobreak \noexpand

\nonfrenchspacing}%
908 \DoNotIndex{\obeylines \or \protect \raggedleft \rightskip \rm \sc}%
909 \DoNotIndex{\setbox \setcounter \small \space \string \strut}%
910 \DoNotIndex{\strutbox}%
911 \DoNotIndex{\thefootnote \thispagestyle \topmargin \trivlist \tt}%
912 \DoNotIndex{\twocolumn \typeout \vss \vtop \xdef \z@}%
913 \DoNotIndex{\, \@bsphack \@esphack \@noligs \@vobeyspaces

\@xverbatim}%
914 \DoNotIndex{\‘ \catcode \end \escapechar \frenchspacing \glossary}%
915 \DoNotIndex{\hangindent \hfil \hfill \hskip \hspace \ht \it \langle}%
916 \DoNotIndex{\leaders \long \makelabel \marginpar \markboth

\mathcode}%
917 \DoNotIndex{\mathsurround \mbox}% % \newcount \newdimen \newskip
918 \DoNotIndex{\nopagebreak}%
919 \DoNotIndex{\parfillskip \parindent \parskip \penalty \raise

\rangle}%
920 \DoNotIndex{\section \setlength \TeX \topsep \underline \unskip}%
921 \DoNotIndex{\vskip \vspace \widetilde \\ \% \@date \@defpar}%
922 \DoNotIndex{\[\]}% see line 887.
923 \DoNotIndex{\count@ \ifnum \loop \today \uppercase \uccode}%
924 \DoNotIndex{\baselineskip \begin \tw@}%
925 \DoNotIndex{\a \b \c \d \e \f \g \h \i \j \k \l \m \n \o \p \q}%
926 \DoNotIndex{\r \s \t \u \v \w \x \y \z \A \B \C \D \E \F \G \H}%
927 \DoNotIndex{\I \J \K \L \M \N \O \P \Q \R \S \T \U \V \W \X \Y \Z}%
928 \DoNotIndex{\1 \2 \3 \4 \5 \6 \7 \8 \9 \0}%
929 \DoNotIndex{\! \# \$ \& \’ \(\) \. \: \; \< \= \> \? _}% \+ seems to be so

rarely used that it may be advisable to index it.
930 \DoNotIndex{\discretionary \immediate \makeatletter \makeatother}%
931 \DoNotIndex{\meaning \newenvironment \par \relax \renewenvironment}%
932 \DoNotIndex{\repeat \scriptsize \selectfont \the \undefined}%
933 \DoNotIndex{\arabic \do \makeindex \null \number \show \write \@ehc}%
934 \DoNotIndex{\@author \@ehc \@ifstar \@sanitize \@title}%
935 \DoNotIndex{\if@minipage \if@restonecol \ifeof \ifmmode}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 56

936 \DoNotIndex{\lccode % %\newtoks
937 \onecolumn \openin \p@ \SelfDocumenting}%
938 \DoNotIndex{\settowidth \@resetonecoltrue \@resetonecolfalse \bf}%
939 \DoNotIndex{\clearpage \closein \lowercase \@inlabelfalse}%
940 \DoNotIndex{\selectfont \mathcode \newmathalphabet \rmdefault}%
941 \DoNotIndex{\bfdefault}%

From the above list I removed some \new... declarations ’cause I think it may be
useful to see gathered the special \new...s of each kind. For the same reason I would
not recommend excluding from the index such declarations as \AtBeginDocument,
\AtEndDocument, \AtEndOfPackage, \DeclareOption, \DeclareRobustCommand etc.
But the common definitions, such as \new/providecommand and \(e/g/x)defs, as the
most common, in my opinion excluded should be.

And some my exclusions:
942 \DoNotIndex{\@@input \@auxout \@currentlabel \@dblarg}%
943 \DoNotIndex{\@ifdefinable \@ifnextchar \@ifpackageloaded}%
944 \DoNotIndex{\@indexfile \@let@token \@sptoken \^}% the latter comes from

CSs like \^^M, see sec. 662.
945 \DoNotIndex{\addto@hook \addvspace}%
946 \DoNotIndex{\CurrentOption}%
947 \DoNotIndex{\emph \empty \firstofone}%
948 \DoNotIndex{\font \fontdimen \hangindent \hangafter}%
949 \DoNotIndex{\hyperpage \hyperlink \hypertarget}%
950 \DoNotIndex{\ifdim \ifhmode \iftrue \ifvmode \medskipamount}%
951 \DoNotIndex{\message}%
952 \DoNotIndex{\NeedsTeXFormat \newcommand \newif}%
953 \DoNotIndex{\newlabel}%
954 \DoNotIndex{\of}%
955 \DoNotIndex{\phantom \ProcessOptions \protected@edef}%
956 \DoNotIndex{\protected@xdef \protected@write}%
957 \DoNotIndex{\ProvidesPackage \providecommand}%
958 \DoNotIndex{\raggedright}%
959 \DoNotIndex{\raisebox \refstepcounter \ref \rlap}%
960 \DoNotIndex{\reserved@a \reserved@b \reserved@c \reserved@d}%
961 \DoNotIndex{\stepcounter \subsection \textit \textsf \thepage \tiny}%
962 \DoNotIndex{\copyright \footnote \label \LaTeX}%
963 \DoNotIndex{\@eha \@endparenv \if@endpe \@endpefalse \@endpetrue}%
964 \DoNotIndex{\@evenfoot \@oddfoot \@firstoftwo \@secondoftwo}%
965 \DoNotIndex{\@for \@gobbletwo \@idxitem \@ifclassloaded}%
966 \DoNotIndex{\@ignorefalse \@ignoretrue \if@ignore}%
967 \DoNotIndex{\@input@ \@input}%
968 \DoNotIndex{\@latex@error \@mainaux \@nameuse}%
969 \DoNotIndex{\@nomath \@oddfoot}% %\@onlypreamble should be indexed IMO.
970 \DoNotIndex{\@outerparskip \@partaux \@partlist \@plus}%
971 \DoNotIndex{\@sverb \@sxverbatim}%
972 \DoNotIndex{\@tempcnta \@tempcntb \@tempskipa \@tempskipb}%

I think the layout parameters even the kernel, should not be excluded:
% \@topsep \@topsepadd \abovedisplayskip \clubpenalty etc.

973 \DoNotIndex{\@writeckpt}%
974 \DoNotIndex{\bfseries \chapter \part \section \subsection}%
975 \DoNotIndex{\subsubsection}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 57

976 \DoNotIndex{\char \check@mathfonts \closeout}%
977 \DoNotIndex{\fontsize \footnotemark \footnotetext \footnotesize}%
978 \DoNotIndex{\g@addto@macro \hfilneg \Huge \huge}%
979 \DoNotIndex{\hyphenchar \if@partsw \IfFileExists \in@@}%
980 \DoNotIndex{\include \includeonly \indexspace}%
981 \DoNotIndex{\itshape \language \LARGE \Large \large}%
982 \DoNotIndex{\lastbox \lastskip \m@th \makeglossary}%
983 \DoNotIndex{\maketitle \math@fontsfalse \math@fontstrue \mathsf}%
984 \DoNotIndex{\MessageBreak \noindent \normalfont \normalsize}%
985 \DoNotIndex{\on@line \openout \outer}%
986 \DoNotIndex{\parbox \part \rmfamily \rule \sbox}%
987 \DoNotIndex{\sf@size \sffamily \skip}%
988 \DoNotIndex{\textsc \textup \toks@ \ttfamily \vbox}%

%%\DoNotIndex{\begin*} maybe in the future, if the idea gets popular…
989 \DoNotIndex{\hspace* \newcommand* \newenvironment*

\providecommand*}%
990 \DoNotIndex{\renewenvironment* \section* \chapter*}%
991 }% of \DefaultIndexExclusions.

I put all the expellings into a macro because I want them to be optional.

992 \end{MakePrivateLetters}

And we execute it due to the (lack of) counter-corresponding option:

993 \if@indexallmacros\else
994 \DefaultIndexExclusions
995 \fi

If we expelled so many CSs, someone may like it in general but he/she may need one
or two expelled to be indexed back. So

996 \def\DoIndex{\bgroup\MakePrivateLetters\Do@Index}\DoIndex

997 \long\def\Do@Index#1{\egroup\@relaxen\gmd@iedir\dont@index#1.}% note we
only redefine an auxiliary CS and launch also \dont@index inner macro.

And if a user wants here make default exclusions and there do not make them, he
may use the \DefaultIndexExclusions declaration herself. This declaration OCSR, but
anyway let’s provide the counterpart. It OCSR, too.

998 \def\UndoDefaultIndexExclusions{%\UndoDefaultIndexExclusions
999 \StoreMacro\DoNotIndex

1000 \let\DoNotIndex\DoIndex
1001 \DefaultIndexExclusions
1002 \RestoreMacro\DoNotIndex}

Index Parameters

“The \IndexPrologue macro is used to place a short message into the document above
the index. It is implemented by redefining \index@prologue, a macro which holds
the default text. We’d better make it a \long macro to allow \par commands in its
argument.”

1003 \long\def\IndexPrologue#1{\@bsphack\def\index@prologue{#1}\@esphack}\IndexPrologue

1004 \def\indexdiv{\@ifundefined{chapter}{\section*}{\chapter*}}\indexdiv
1005 \@ifundefined{index@prologue} {\def\index@prologue{\indexdiv{Index}%\index@prologue

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 58

1006 \markboth{Index}{Index}%
1007 Numbers written in italic refer to the \if@pageindex pages \else
1008 code lines \fi where the
1009 corresponding entry is described; numbers underlined refer to the
1010 \if@pageindex\else code line of the \fi definition; numbers in
1011 roman refer to the \if@pageindex pages\else code lines \fi where
1012 the entry is used.
1013 \if@pageindex\else
1014 \ifx\HLPrefix\@empty
1015 The numbers preceded with ‘p.’ are page numbers.
1016 \else The numbers with no prefix are page numbers.
1017 \fi\fi
1018 \ifx\IndexLinksBlack\relax\else
1019 All the numbers are hyperlinks.
1020 \fi
1021 \gmd@dip@hook% this hook is intended to let a user add something without re-

defining the entire prologue, see below.
1022 }}{}

During the preparation of this package for publishing I needed only to add something
at the end of the default index prologue. So

1023 \@emptify\gmd@dip@hook
1024 \long\def\AtDIPrologue#1{\g@addto@macro\gmd@dip@hook{#1}}\AtDIPrologue

The Author(s) of doc assume multicol is known not to everybody. My assumption is
the other so

1025 \RequirePackage{multicol}

“If multicol is in use, when the index is started we compute the remaining space on
the current page; if it is greater than \IndexMin, the first part of the index will then be
placed in the available space. The number of columns set is controlled by the counter
\c@IndexColumns which can be changed with a \setcounter declaration.”

1026 \newdimen\IndexMin \IndexMin = 133pt\relax% originally it was set 80 pt, but\IndexMin
with my default prologue there’s at least 4.7 cm needed to place the prologue
and some index entries on the same page.

1027 \newcount\c@IndexColumns \c@IndexColumns = 3IndexColumns
1028 \renewenvironment{theindex}theindex
1029 {\begin{multicols}\c@IndexColumns[\index@prologue][\IndexMin]%
1030 \IndexLinksBlack
1031 \IndexParms \let\item\@idxitem \ignorespaces}%
1032 {\end{multicols}}

1033 \def\IndexLinksBlack{\hypersetup{linkcolor=black}}% To make Adobe Reader\IndexLinksBlack
work faster.

1034 \@ifundefined{IndexParms}
1035 {\def\IndexParms{%\IndexParms
1036 \parindent \z@
1037 \columnsep 15pt
1038 \parskip 0pt plus 1pt
1039 \rightskip 15pt
1040 \mathsurround \z@

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 59

1041 \parfillskip=-15pt plus 1 fil % doc defines this parameter rigid but
that’s because of the stretchable space (more precisely, a \dotfill)
between the item and the entries. But in gmdoc we define no such
special delimiters, so we add an ifinite stretch.

1042 \small
1043 \def\@idxitem{\par\hangindent 30pt}%
1044 \def\subitem{\@idxitem\hspace*{15pt}}%
1045 \def\subsubitem{\@idxitem\hspace*{25pt}}%
1046 \def\indexspace{\par\vspace{10pt plus 2pt minus 3pt}}%
1047 \ifx\EntryPrefix\@empty\else\raggedright\fi% long (actually, a quite

short but nonempty entry prefix) made space stretches so terribly large
in the justified paragraphs that we should make \raggedright rather.

1048 \ifnum\c@IndexColumns>\tw@\raggedright\fi% the numbers in narrow col-
umns look better when they are \raggedright in my opinion.

1049 }}{}

1050 \def\PrintIndex{% we ensure the standard meaning of the line end character not to\PrintIndex
cause a disaster.

1051 \@ifQueerEOL{\StraightEOL\printindex\QueerEOL}{\printindex}}

Remember that if you want to change not all the parameters, you don’t have to
redefine the entire \IndexParms macro but you may use a very nice LATEX command
\g@addto@macro (it has \global effect, also with an apeless name (\gaddtomacro) pro-
vided by gmutils. (It adds its second argument at the end of definition of its first argument
provided the first argument is a no-argument macro.) Moreover, gmutils provides also
\addtomacro that has the same effect except it’s not \global.

The DocStrip Directives

1052 {\@makeother\<\@makeother\>
1053 \glet\sgtleftxii=<

1054 \gdef\gmd@docstripdirective{%\gmd@docstripdirective
1055 \begingroup\let\do=\@makeother
1056 \do*\do\/\do\+\do\-\do\,\do\&\do\|\do\!\do\(\do\)\do\>\do\<%
1057 \@ifnextchar{<}{%
1058 \let\do=\@makeother \dospecials
1059 \gmd@docstripverb}
1060 {\gmd@docstripinner}}%

1061 \if1 1%
1062 \gdef\Debug@dstron{\ifnum\c@codelinenum>1178 \ifdtraceon\fi
1063 \ifnum\c@codelinenum>1184 \ifdtraceoff\@emptify\Debug@dstron\fi}%
1064 \else
1065 \global\@emptify\Debug@dstron
1066 \fi

1067 \gdef\gmd@docstripinner#1>{%
1068 \endgroup
1069 \def\gmd@modulehashone{%
1070 \Module{#1}\space
1071 \@afternarrgfalse\@aftercodegtrue\@codeskipputgfalse}%
1072 \gmd@textEOL\gmd@modulehashone\Debug@dstron}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 60

A word of explanation: first of all, we close the group for changed \catcodes; the
directive’s text has its \catcodes fixed. Then we put the directive’s text wrapped with
the formatting macro into one macro in order to give just one token the gmdoc’s TEX code
scanner. Then launch this big TEX code scanning machinery by calling \gmd@textEOL
which is an alias for the ‘narrative’ meaning of the line end. This macro opens the
verbatim group and launches the char-by-char scanner. That is this scanner because of
what we encapsulated the directive’s text with the formatting into one macro: to let it
pass the scanner. That’s why in the ‘old’ macrocodes case the active % closes the group
before launching \gmd@docstripdirective.

The ‘verbatim’ directive macro works very similarly.

1073 \catcode‘\^^M=\active%
1074 \gdef\gmd@docstripverb<#1^^M{%
1075 \endgroup%
1076 \def\gmd@modulehashone{%
1077 \ModuleVerb{#1}\@afternarrgfalse\@aftercodegtrue%
1078 \@codeskipputgfalse}%
1079 \gmd@docstripshook%
1080 \gmd@textEOL\gmd@modulehashone^^M}%
1081 }

(˜Verbatim ;-) from doc:)

1082 \providecommand*\Module[1]{{\mod@math@codes$\langle\mathsf{#1}ˆ\Module
\rangle$}}

1083 \providecommand*\ModuleVerb[1]{{\mod@math@codes$\langle\langleˆ\ModuleVerb
\mathsf{#1}$}}

1084 \def\mod@math@codes{\mathcode‘\|="226A \mathcode‘\&="2026 }

The Changes History

The contents of this section was copied ˜verbatim from the doc’s documentation, with
only smallest necessary changes. Then my additions were added :-)) .

“To provide a change history log, the \changes command has been introduced. This
takes [one optional and] three [mandatory] arguments, respectively, [the macro that’ll
become the entry’s second level,] the version number of the file, the date of the change,
and some detail regarding what change has been made [i.e., the description of the change].
The [second] of these arguments is otherwise ignored, but the others are written out and
may be used to generate a history of changes, to be printed at the end of the document.
[… I ommit an obsolete remark about then-older MakeIndex’s versions.]

The output of the \changes command goes into the 〈Glossary_File〉 and therefore
uses the normal \glossaryentry commands. Thus MakeIndex or a similar program
can be used to process the output into a sorted “glossary”. The \changes command
commences by taking the usual measures to hide its spacing, and then redefines \protect
for use within the argument of the generated \indexentry command. We re-code nearly
all chars found in \@sanitize to letter since the use of special package which make some
characters active might upset the \changes command when writing its entries to the file.
However we have to leave % as comment and as 〈space〉 otherwise chaos will happen.
And, of course the \ should be available as escape character.”

We put the definition inside a macro that will be executed by (the first use of)
\RecordChanges. And we provide the default definition of \changes as a macro just

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 61

gobbling its arguments. We do this to provide no changes’ writing out if \RecordChanges
is not used.

1085 \def\gmd@DefineChanges{%\gmd@DefineChanges
1086 \outer\long\def\changes{\@bsphack\begingroup\@sanitize\changes
1087 \catcode‘\\\z@ \catcode‘\ 10 \MakePercentIgnore
1088 \MakePrivateLetters \StraightEOL
1089 \MakeGlossaryControls
1090 \changes@}}

1091 \newcommand\changes[4][]{\PackageWarningNoLine{gmdoc}{%
1092 ^^JThe \bslash changes command used \on@line
1093 ^^Jwith no \string\RecordChanges\space declared.
1094 ^^JI shall not warn you again about it}%
1095 \renewcommand\changes[4][]{}}

1096 \def\MakeGlossaryControls{%
1097 \def\actualchar{=}\def\quotechar{!}%
1098 \def\levelchar{>}\edef\encapchar{\twelveclub}}% for the glossary the ‘ac-

tual’, the ‘quote’ and the ‘level’ chars are respectively =, ! and >, the
‘encap’ char remains untouched. I decided to preserve the doc’s settings for
the compatibility.

1099 \newcommand\changes@[4][\generalname]{%\changes@
1100 \if@RecentChange{#3}% if the date is later than the one stored in \c@Changes-

% StartDate,
1101 \@tempswafalse
1102 \ifx\generalname#1% then we check whether a CS-entry is given in the optional

first argument or is it unchanged.
1103 \ifx\last@defmark\relax\else% if no particular CS is specified in #1, we

check whether \last@defmark contains something and if so, we put it
into \@tempb scratch macro.

1104 \@tempswatrue
1105 \edef\@tempb{% it’s a bug fix: while typesetting traditional .dtxes, \last@defmark

came out with \ at the beginning (which resulted with \\〈name〉 in
the change log) but while typesetting the ‘new’ way, it occured with-
out the bslash. So we gobble the bslash if it’s present and two lines
below we handle the exception of \last@defmark = {\} (what would
happen if a definition of \\ was marked in new way gmdocing).

1106 \if\bslash\last@defmark\else\last@defmark\fi}%
1107 \ifx\last@defmark\bslash\let\@tempb\last@defmark\fi%
1108 \fi
1109 \else% the first argument isx not \generalname i.e., a particular CS is specified

by it (if some day one wishes to \changes \generalname, he should type
\changes[generalname]…)

1110 \@tempswatrue
1111 {\escapechar\m@ne
1112 \xdef\@tempb{\string#1}}
1113 \fi
1114 \protected@edef\@tempa{\@nx\glossary{%
1115 \if\relax\GeneralName\relax\else
1116 \GeneralName% it’s for the \DocInclude case to precede every \changes

of the same file with the file name, cf. line 1244.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 62

1117 \fi
1118 #2\levelchar%
1119 \if@tempswa% If the macro \last@defmark doesn’t contain any CS name

(i.e., is empty) nor #1 specifies a CS, the current changes entry was
done at top-level. In this case we preceed it by \generalname.

1120 \@tempb
1121 \actualchar\bslash verb*%
1122 \if\verbatimchar\@tempb$\else\verbatimchar\fi
1123 \quotechar\bslash \@tempb
1124 \if\verbatimchar\@tempb$\else\verbatimchar\fi
1125 \else
1126 \space\actualchar\generalname
1127 \fi
1128 :\levelchar#4\encapchar hyperpage}}%
1129 \@tempa
1130 \fi\endgroup\@esphack}

Let’s initialize \last@defmark and \GeneralName.
1131 \@relaxen\last@defmark
1132 \@emptify\GeneralName

Let’s explain \if@RecentChange. We wish to check whether the change’s date is later
than date declared (if any limit date was declared). First of all, let’s establish a counter
to store the declared date. The untouched counters are equal 0 so if no date is declared
there’ll be no problem. The date will have the 〈YYYYMMDD〉 shape both to be easily
compared and readable.

1133 \newcount\c@ChangesStartDate\c@ChangesStartDate

1134 \def\if@RecentChange#1{%\if@RecentChange
1135 \gmd@setChDate#1\@@nil\@tempcnta
1136 \ifnum\@tempcnta>\c@ChangesStartDate}

1137 \def\gmd@setChDate#1/#2/#3\@@nil#4{% the last parameter will be a \count reg-
ister.

1138 #4=#1\relax
1139 \multiply#4 by\@M
1140 \count8=#2\relax% I know it’s a bit messy not to check whether the #4 \count

is \count8 but I know this macro will only be used with \count0 (\@tem-
% pcnta) and some higher (not a scratch) one.

1141 \multiply\count8 by100 %
1142 \advance#4 by\count8 \count8=\z@
1143 \advance#4 by#3\relax}

Having the test defined, let’s define the command setting the date counter. #1 is to
be the version and #2 the date {〈year〉/〈month〉/〈day〉}.

1144 \def\ChangesStart#1#2{%\ChangesStart
1145 \gmd@setChDate#2\@@nil\c@ChangesStartDate
1146 \typeout{^^JPackage gmdoc info: ^^JChanges’ start date #1 memorized
1147 as \string<\the\c@ChangesStartDate\string> \on@line.^^J}
1148 \advance\c@ChangesStartDate\m@ne% we shall show the changes at the specified

day and later.
1149 \ifnum\c@ChangesStartDate>19820900 %10 see below.

10 DEK writes in TEX, The Program of September 1982 as the date of TEX Version 0.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 63

1150 \edef\@tempa{%
1151 \@nx\g@addto@macro\@nx\glossary@prologue{%
1152 The changes
1153 \if\relax\GeneralName\relax\else of \GeneralName\space\fi
1154 earlier than
1155 #1 \if\relax#1\relax #2\else(#2)\fi\space are not shown.}}%
1156 \@tempa
1157 \fi}

(Explanation to line 1149.) My TEX Guru has remarked that the change history tool
should be used for documenting the changes that may be significant for the users not
only for the author and talking of what may be significant to the user, no changes should
be hidden since the first published version. However, the changes’ start date may be
used to provide hiding the author’s ‘personal’ notes: she should only date the ‘public’
changes with the four digit year and the ‘personal’ ones with two digit year and set
\ChangesStart{}{1000/0/0} or so.

In line 1149 I establish a test value that corresponds to a date earlier than any TEX
stuff and is not too small (early) to ensure that hiding the two digit year changes shall
not be mentioned in the changes prologue.

“The entries [of a given version number] are sorted for convenience by the name of
[the macro explicitly specified as the first argument or] the most recently introduced
macroname (i.e., that in the most recent \begin{macro} command [or \CodeDefine]).
We therefore provide [\last@defmark] to record that argument, and provide a default
definition in case \changes is used outside a macro environment. (This is a wicked hack
to get such entries at the beginning of the sorted list! It works providing no macro names
start with ! or ".)

This macro holds the string placed before changes entries on top-level.”

1158 \def\generalname{General}\generalname

“To cause the changes to be written (to a .glo) file, we define \RecordChanges to
invoke LATEX’s usual \makeglossary command.”

I add to it also the \writeing definition of the \changes macro to ensure no changes
are written out without \RecordChanges.

1159 \def\RecordChanges{\makeglossary\gmd@DefineChanges\RecordChanges
1160 \@relaxen\RecordChanges}

“The remaining macros are all analogues of those used for the theindex environment.
When the glossary is started we compute the space which remains at the bottom of the
current page; if this is greater than \GlossaryMin then the first part of the glossary will
be placed in the available space. The number of columns set [is] controlled by the counter
\c@GlossaryColumns which can be changed with a \setcounter declaration.”

1161 \newdimen\GlossaryMin \GlossaryMin = 80pt
1162 \newcount\c@GlossaryColumns \c@GlossaryColumns = 2

“The environment theglossary is defined in the same manner as the theindex en-
vironment.”

1163 \newenvironment{theglossary}{%theglossary
1164 \begin{multicols}\c@GlossaryColumns
1165 [\glossary@prologue][\GlossaryMin]%
1166 \GlossaryParms \let\item\@idxitem \ignorespaces}%
1167 {\end{multicols}}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 64

Here is the MakeIndex style definition:

1168 〈/package〉
1169 〈+gmglo〉 preamble
1170 〈+gmglo〉 "\n \\begin{theglossary} \n
1171 〈+gmglo〉 \\makeatletter\n"
1172 〈+gmglo〉 postamble
1173 〈+gmglo〉 "\n\n \\end{theglossary}\n"
1174 〈+gmglo〉 keyword "\\glossaryentry"
1175 〈+gmglo〉 actual ’=’
1176 〈+gmglo〉 quote ’!’
1177 〈+gmglo〉 level ’>’
1178 〈∗package〉

The MakeIndex shell command for the glossary should look as follows:

makeindex -r -s gmglo.ist -o 〈myfile〉.gls 〈myfile〉.glo
where -r commands MakeIndex not to make implicit page ranges, -s commands MakeIn-
dex to use the style stated next not the default settings and the -o option with the
subsequent filename defines the name of the output.

“The \GlossaryPrologue macro is used to place a short message above the glossary
into the document. It is implemented by redefining \glossary@prologue, a macro which
holds the default text. We better make it a long macro to allow \par commands in its
argument.”

1179 \long\def\GlossaryPrologue#1{\@bsphack\GlossaryPrologue
1180 \def\glossary@prologue{#1}%
1181 \@esphack}

“Now we test whether the default is already defined by another package file. If not
we define it.”

1182 \@ifundefined{glossary@prologue}
1183 {\def\glossary@prologue{\indexdiv{{Change History}}%\glossary@prologue
1184 \markboth{{Change History}}{{Change History}}%
1185 }}{}

“Unless the user specifies otherwise, we set the change history using the same param-
eters as for the index.”

1186 \AtBeginDocument{%
1187 \@ifundefined{GlossaryParms}{\let\GlossaryParms\IndexParms}{}}\GlossaryParms

“To read in and print the sorted change history, just put the \PrintChanges command
as the last (commented-out, and thus executed during the documentation pass through
the file) command in your package file. Alternatively, this command may form one of the
arguments of the \StopEventually command, although a change history is probably not
required if only the description is being printed. The command assumes that MakeIndex
or some other program has processed the .glo file to generate a sorted .gls file.”

1188 \def\PrintChanges{% to avoid a disaster among queer EOLs:\PrintChanges
1189 \@ifQueerEOL
1190 {\StraightEOL\@input@{\jobname.gls}\QueerEOL}%
1191 {\@input@{\jobname.gls}}%
1192 \g@emptify\PrintChanges}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 65

The Checksum

doc provides a checksum mechanism that counts the backslashes in the scanned code.
Let’s do almost the same.

At the beginning of the source file you may put the \CheckSum macro with a number
(in one of TEX’s formats) as its argument and TEX with gmdoc shall count the number
of the escape chars in the source file and tell you in the .log file (and on the terminal)
whether you have typed the right number. If you don’t type \CheckSum, TEX anyway
will tell you how much it is.

1193 \newcount\check@sum\check@sum
1194 \def\CheckSum#1{\@bsphack\global\check@sum#1\relax\@esphack}\CheckSum
1195 \newcounter{CheckSum}CheckSum
1196 \newcommand*\step@checksum{\stepcounter{CheckSum}}

And we’ll use it in the line 456 (\stepcounter is \global). See also the \chschange
declaration, l. 1231.

However, the check sum mechanism in gmdoc behaves slightly different than in doc
which is nicely visible while gmdocing doc: doc states its check sum to be 2171 and our
count counts 2126. The mystery lies in the fact that doc’s CheckSum mechanism counts
the code’s backslashes no matter what they mean and the gmdoc’s the escape chars so,
among others, \\ at the default settings increases doc’s CheckSum by 2 while the gmdoc’s
by 1. (There are 38 occurrences of \\ in doc.dtx macrocodes, I counted myself.)11

“But \Finale will be called at the very end of a file. This is exactly the point were
we want to know if the file is uncorrupted. Therefore we also call \check@checksum at
this point.”

In gmdoc we have the \AtEndInput hook.

1197 \AtEndInput{\check@checksum}

Based on the lines 723–741 of doc.dtx.

1198 \def\check@checksum{\relax\check@checksum
1199 \ifnum\check@sum=\z@
1200 \typeout{**********************************}%
1201 \typeout{* The input file \gmd@inputname\space has no Checksum
1202 stated.}%
1203 \typeout{* The current checksum is \the\c@CheckSum.}%
1204 \gmd@chschangeline% a check sum changes history entry, see below.
1205 \typeout{* (package gmdoc info.)}
1206 \typeout{**********************************}%
1207 \else
1208 \ifnum\check@sum=\c@CheckSum
1209 \typeout{*****+*+*+*+*+*+*+*+*+*+}%
1210 \typeout{* The input file \gmd@inputname: Checksum passed.}%
1211 \gmd@chschangeline
1212 \typeout{* (package gmdoc info.)}
1213 \typeout{*****+*+*+*+*+*+*+*+*+*+}%
1214 \else
1215 \typeout{********!*!*!*!*!*!*!*!*!*!*!*!}%
1216 \typeout{*! The input file \gmd@inputname:}
1217 \typeout{*! The CheckSum stated: \the\check@sum\space<> my

11 My opinion is that nowadays a check sum is not necessary for checking the completness of a file
but I like it as a marker of file development and this more than that is its rôle in gmdoc.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 66

1218 count: \the\c@CheckSum.}
1219 \gmd@chschangeline
1220 \typeout{*! (package gmdoc info.)}
1221 \typeout{********!*!*!*!*!*!*!*!*!*!*!*!}%
1222 \fi
1223 \fi
1224 \global\check@sum\z@}

As I mentioned above, I use the check sum mechanism to mark the file growth.
Therefore I provide a macro that produces a line on the terminal to be put somewhere
at the beginning of the source file’s commentary for instance.

1225 \def\gmd@chschangeline{%
1226 \typeout{\twelvepercent\space\string\chschange{%\chschange
1227 \fileversion}{\the\year/\the\month/\the\day}{\the\c@CheckSum}}
1228 \typeout{\twelvepercent\space\string\chschange{\fileversion}{%
1229 \@xa\@gobbletwo\the\year/\the\month/\the\day}{% with two digit year

in case you use \ChangesStart.
1230 \the\c@CheckSum}}}

And here the meaning of such a line is defined:

1231 \newcommand*\chschange[3]{%
1232 \csname changes\endcsname{#1}{#2}{CheckSum #3}% \csname... ’cause \cha-

% nges is \outer.
1233 \CheckSum{#3}}

It will make a ‘General’ entry in the change history unless used in some \CodeDefine’s
scope or inside a macro environment. It’s intended to be put somewhere at the beginning
of the documented file.

Macros from ltxdoc

I’m not sure whether this package still remains ‘minimal’ but I liked the macros provided
by ltxdoc.cls so much…

The next page setup declaration is intended to be used with the article’s default Letter
paper size. But since

1234 \newcommand*\ltxPageLayout{%\ltxPageLayout

“Increase the text width slightly so that width the standard fonts 72 columns of code
may appear in a macrocode environment.”

1235 \setlength{\textwidth}{355pt}%

“Increase the marginpar width slightly, for long command names. And increase the
left margin by a similar amount.”

To make these settings independent from the defaults (changed e.g. in gmdocc.cls) we
replace the original \addtolengths with \setlengths.

1236 \setlength\marginparwidth{95pt}%
1237 \setlength\oddsidemargin{82pt}%
1238 \setlength\evensidemargin{82pt}}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 67

\DocInclude and the ltxdoc-Like Setup

Let’s provide a command for including multiple files into one document. In the ltxdoc
class such a command is defined to include files as parts. But we prefer to include them
as chapters in the classes that provide \chapter. We’ll redefine \maketitle so that it
make a chapter or a part heading unlike in ltxdoc where the file parts have their titlepages
with only the filename and article-like titles made by \maketitle.

But we will also provide a possibility of typesetting multiple files exactly like with
the ltxdoc class.

So, define the \DocInclude command, that acts\DocInclude
“more or less exactly the same as \include, but uses \DocInput on a dtx [or .fdd]

file, not \input on a tex file.”
Our version will accept also .sty, .cls, and .tex files.

1239 \newcommand*\DocInclude{\bgroup\@makeother_\Doc@Include}% First, we make
% _ ‘other’ in order to allow it in the filenames.

1240 \newcommand*{\Doc@Include}[2][]{% originally it took just one argument. Here we\Doc@Include
make it take two, first of which is intended to be the path (with the closing /).
This is intended not to print the path in the page footers only the filename.

1241 \egroup% having the arguments read, we close the group opened by the previous
macro for _12.

1242 \gdef\HLPrefix{\filesep}%\HLPrefix
1243 \gdef\EntryPrefix{\filesep}% we define two rather kernel parameters to expand\EntryPrefix

to the file marker. The first will bring the information to one of the default
% \IndexPrologue’s \ifs. Therefore the definition is global. The latter is
such for symmetry.

1244 \def\GeneralName{#2\actualchar\pk{#2} }% for the changes’history main level\GeneralName
entry.

1245 \relax
1246 \clearpage
1247 \docincludeaux
1248 \def\currentfile{gmdoc-IncludeFileNotFound.000}%
1249 \let\fullcurrentfile\currentfile
1250 \IfFileExists{#1#2.fdd}{\edef\currentfile{#2.fdd}}{% it’s not .fdd,
1251 \IfFileExists{#1#2.dtx}{\edef\currentfile{#2.dtx}}{% it’s not .dtx ei-

ther,
1252 \IfFileExists{#1#2.sty}{\edef\currentfile{#2.sty}}{% it’s not .sty,
1253 \IfFileExists{#1#2.cls}{\edef\currentfile{#2.cls}}{% it’s not .cls,
1254 \IfFileExists{#1#2.tex}{\edef\currentfile{#2.tex}}{% it’s not .tex,
1255 \IfFileExists{#1#2.fd}{\edef\currentfile{#2.fd}}{% so it must

be .fd or error.
1256 \PackageError{gmdoc}{\string\DocInclude\space file
1257 #1#2.fdd/dtx/sty/cls/tex/fd not found.}}}}}}}%
1258 \edef\fullcurrentfile{#1\currentfile}%
1259 \ifnum\@auxout=\@partaux
1260 \@latexerr{\string\DocInclude\space cannot be nested}\@eha
1261 \else \@docinclude{#1}#2 \fi}% Why is #2 delimited with not braced as we

are used to, one may ask.

1262 \def\@docinclude#1#2 {% To match the macro’s parameter string, is an answer. But\@docinclude
why is \@docinclude defined so? Originally, in ltxdoc it takes one argument

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 68

and it’s delimited with a space probably in resemblance to the true \input
% (\@@input in LATEX).

1263 \clearpage
1264 \if@filesw \gmd@writemauxinpaux{#2.aux}\fi% this strange macro with a long

name is another thing to allow _ in the filenames (see line 1291).
1265 \@tempswatrue
1266 \if@partsw \@tempswafalse\edef\@tempb{#2}%
1267 \@for \@tempa:=\@partlist\do{\ifx\@tempa\@tempb\@tempswatrue\fi}%
1268 \fi
1269 \if@tempswa \let\@auxout\@partaux
1270 \if@filesw
1271 \immediate\openout\@partaux #2.aux\relax% Yes, only #2. It’s to cre-

ate and process the partial .aux files always in the main document’s
(driver’s) directory.

1272 \immediate\write\@partaux{\relax}%
1273 \fi

“We need to save (and later restore) various index-related commands which might be
changed by the included file.”

1274 \StoringAndRelaxingDo\gmd@doIndexRelated
1275 \if@ltxDocInclude\part{\currentfile}% In the ltxdoc-like setup we make

a part title page with only the filename and the file’s \maketitle will
typeset an article-like title.

1276 \else\let\maketitle=\InclMaketitle
1277 \fi% In the default setup we redefine \maketitle to typeset a common chapter

or part heading.
1278 \if@ltxDocInclude\xdef@filekey\fi
1279 \GetFileInfo{\currentfile}% it’s my (GM) addition with the account of using

file info in the included files’ title/heading etc.
1280 \incl@DocInput{\fullcurrentfile}% originally just \currentfile.
1281 \if@ltxDocInclude\else\xdef@filekey\fi% in the default case we add new

file to the file key after the input because in this case it’s the files own
\maketitle what launches the sectioning command that increases the
counter.

And here is the moment to restore the index-related commands.

1282 \RestoringDo\gmd@doIndexRelated
1283 \clearpage
1284 \gmd@writeckpt{#1#2}%
1285 \if@filesw \immediate\closeout\@partaux \fi
1286 \else\@nameuse{cp@#1#2}%
1287 \fi
1288 \let\@auxout\@mainaux}% end of \@docinclude.

(Two is a sufficient number of iterations to define a macro for.)

1289 \def\xdef@filekey{{\@relaxen\ttfamily% This assignment is very trickly crafted:\xdef@filekey
it makes all \ttfamilys present in the \filekey’s expansion unexpandable
not only the one added in this step.

1290 \xdef\filekey{\filekey, \thefilediv={\ttfamily\currentfile}}}}

To allow _ in the filenames we must assure _ will be 12 while reading the filename.
Therefore define

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 69

1291 \def\gmd@writemauxinpaux#1{% this name comes from ‘write outto main .aux to
input partial .aux’.

We wrap \@input{〈partial .aux〉} in a _12 hacked scope. This hack is especially
recommended here since the .aux file may contain a non-\global stuff that should not
be localized by a group that we would have to establish if we didn’t use the hack. (Hope
you understand it. If not, notify me and for now I’ll only give a hint: “Look at it with
the TEX’s eyes”. More uses of this hack are to be seen in gmutils where they are a bit
more explained.)

1292 \immediate\write\@mainaux{%
1293 \bgroup\string\@makeother\string_%
1294 \string\firstofone{\egroup
1295 \string\@input{#1}}}}

We also slightly modify a LATEX kernel macro \@writeckpt to allow _ in the file
name.

1296 \def\gmd@writeckpt#1{%
1297 \immediate\write\@partaux{%
1298 \string\bgroup\string\@makeother\string_%
1299 \string\firstofone\@charlb\string\egroup}
1300 \@writeckpt{#1}%
1301 \immediate\write\@partaux{\@charrb}}

1302 \def\gmd@doIndexRelated{%\gmd@doIndexRelated
1303 \do\tableofcontents \do\makeindex \do\EnableCrossrefs
1304 \do\PrintIndex \do\printindex \do\RecordChanges \do\PrintChanges
1305 \do\theglossary \do\endtheglossary}

1306 \@emptify\filesep

The ltxdoc class establishes a special number format for multiple file documentation
numbering needed to document the LATEX sources. I like it too, so

1307 \def\aalph#1{\@aalph{\csname c@#1\endcsname}}\aalph
\@aalph 1308 \def\@aalph#1{%

1309 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or
1310 j\or k\or l\or m\or n\or o\or p\or q\or r\or s\or
1311 t\or u\or v\or w\or x\or y\or z\or A\or B\or C\or
1312 D\or E\or F\or G\or H\or I\or J\or K\or L\or M\or
1313 N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or
1314 X\or Y\or Z\else\@ctrerr\fi}

A macro that initialises things for \DocInclude.
1315 \def\docincludeaux{%\docincludeaux

We set the things for including the files only once.
1316 \global\@relaxen\docincludeaux

By default, we will include multiple files into one document as chapters in the classes
that provide \chapter and as parts elsewhere.

1317 \ifx\filediv\relax
1318 \ifx\filedivname\relax% (nor \filediv neither \filedivname is defined by

the user)
1319 \@ifundefined{chapter}{%
1320 \SetFileDiv{part}}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 70

1321 {\SetFileDiv{chapter}}%
1322 \else% (\filedivname is defined by the user, \filediv is not)
1323 \SetFileDiv{\filedivname}% why not? Inside is \edef so it’ll work.
1324 \fi
1325 \else% (\filediv is defined by the user
1326 \ifx\filedivname\relax% and \filedivname is not)
1327 \PackageError{gmdoc}{You’ve redefined \string\filediv\space
1328 without redefining \string\filedivname.}{Please redefine the
1329 two macros accordingly. You may use \string\SetFileDiv{name
1330 without bslash}.}%
1331 \fi
1332 \fi
1333 \@addtoreset{codelinenum}{\filedivname}% remember it has a \global effect

in fact. For each file we’ll reset codelinenum.
1334 \def\thefilediv{\aalph{\filedivname}}% The files will be numbered with let-

ters, lowercase first.
1335 \@xa\let\csname the\filedivname\endcsname=\thefilediv% This line lets \the〈chapter〉

etc. equal \thefilediv.
1336 \def\filesep{\thefilediv-}% File separator (identifier) for the index.
1337 \let\filekey=\@gobble
1338 \g@addto@macro\index@prologue{%
1339 \gdef\@oddfoot{\parbox{\textwidth}{\strut\footnotesize
1340 \raggedright{\bfseries File Key:} \filekey}}% The footer for the

pages of index.
1341 \glet\@evenfoot\@oddfoot}% anyway, it’s intended to be oneside.
1342 \g@addto@macro\glossary@prologue{%
1343 \gdef\@oddfoot{\strut Change History\hfill\thepage}% The footer for

the changes history.
1344 \glet\@evenfoot\@oddfoot}%
1345 \gdef\@oddfoot{% The footer of the file pages will be its name and, if there is

a file info, also the date and version.
1346 \@xa\ifx\csname ver@\currentfile\endcsname\relax
1347 File \thefilediv: {\ttfamily\currentfile} %
1348 \else
1349 \GetFileInfo{\currentfile}%
1350 File \thefilediv: {\ttfamily\filename} %
1351 Date: \filedate\ %
1352 Version \fileversion
1353 \fi
1354 \hfill\thepage}%
1355 \glet\@evenfoot\@oddfoot% see line 1341.
1356 \@xa\def\csname\filedivname name\endcsname{File}% we redefine the name

of the proper division to ‘File’.
1357 \ifx\filediv\section
1358 \let\division=\subsection
1359 \let\subdivision=\subsubsection% If \filediv is higher than \section we

don’t change the two divisions (they are \section and \subsection by
default). \section seems to me the lowest reasonable sectioning com-
mand for the file. If \filediv is lower you should rather rethink the level
of a file in your documentation not redefine the two divisions.

1360 \fi}% end of \docincludeaux.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 71

The \filediv and \filedivname macros should always be set together. Therefore
provide a macro that takes care of both at once. Its #1 should be a sectioning name
without the backslash.

1361 \def\SetFileDiv#1{%\SetFileDiv
1362 \edef\filedivname{#1}%
1363 \@xa\let\@xa\filediv\csname#1\endcsname}

\SelfInclude

I needed to include the driver file into a documentation so I wrote a macro in case I’ll
need it again or you’ll need it. We define it immediately i.e., without the \catcodes trick
because it uses \jobname inside so the filename will be all 12 anyway.

1364 \newcommand*{\SelfInclude}[2][.tex]{% As you guess, the optional #1 is the job-\SelfInclude
name’s extension. The second parameter is not for the filename (note it’s
known: as \jobname!), but for the stuff to be put at begin input.

1365 \AtBegInputOnce{#2}%
1366 \gdef\HLPrefix{\filesep}%
1367 \gdef\EntryPrefix{\filesep}% we define two rather kernel parameters etc. as

in \DocInclude.
1368 \relax
1369 \clearpage
1370 \docincludeaux
1371 \edef\currentfile{\jobname#1}%
1372 \let\fullcurrentfile\currentfile
1373 \def\GeneralName{\jobname\actualchar\pk{\jobname} }% for the changes his-

tory main level entry.
1374 \ifnum\@auxout=\@partaux
1375 \@latexerr{\string\DocInclude\space cannot be nested}\@eha
1376 \else
1377 \if@filesw
1378 \gmd@writemauxinpaux{\jobname.auxx}% this queer macro allows _ in the

file names. In this particular case \string\jobname would do, but
anyway we provide a more general solution. Note the .auxx extension
used instead of .aux. This is done to avoid an infinite recurrence of
% \inputs.

1379 \fi
1380 \@tempswatrue
1381 \if@partsw \@tempswafalse\edef\@tempb{\jobname}%
1382 \@for
1383 \@tempa:=\@partlist\do{\ifx\@tempa\@tempb\@tempswatrue\fi}%
1384 \fi
1385 \if@tempswa \let\@auxout\@partaux
1386 \if@filesw
1387 \immediate\openout\@partaux \jobname.auxx\relax
1388 \immediate\write\@partaux{\relax}
1389 \fi

“We need to save (and later restore)…”
1390 \StoringAndRelaxingDo% provided by gmutils
1391 \gmd@doIndexRelated
1392 \if@ltxDocInclude\part{\currentfile}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 72

1393 \else\let\maketitle=\InclMaketitle
1394 \fi
1395 \if@ltxDocInclude\xdef@filekey\fi
1396 \GetFileInfo{\currentfile}% it’s my (GM) addition with the account of

using file info in the included files’ title etc.
1397 \incl@DocInput{\fullcurrentfile}% originally just \currentfile, no dif-

ference in \SelfInclude.
1398 \if@ltxDocInclude\else\xdef@filekey\fi% in the default case we add new

file to the file key after the input because in this case it’s files own
\maketitle what launches the sectioning command that increases the
counter.

And here is the moment to restore the index-related commands.

1399 \RestoringDo
1400 \gmd@doIndexRelated
1401 \clearpage% among others, causes the \writes to be executed which is crucial

for proper toc-ing e.g.
1402 \gmd@writeckpt{\jobname.x}% note the .x in the checkpoint used to distin-

guish this instance (input) of the driver file from its main instance.
1403 \if@filesw \immediate\closeout\@partaux \fi
1404 \else\@nameuse{cp@\jobname.x}% note .x: it’s used for the same reason as

above.
1405 \fi
1406 \let\@auxout\@mainaux
1407 \fi}% end of \SelfInclude.

The ltxdoc class makes some preparations for inputting multiple files. We are not
sure if the user wishes to use ltxdoc-like way of documenting (maybe he will prefer what
I offer, gmdocc.cls e.g.), so we put those preparations into a declaration.

1408 \newif\if@ltxDocInclude

1409 \newcommand*\ltxLookSetup{%\ltxLookSetup
1410 \SetFileDiv{part}%
1411 \ltxPageLayout
1412 \@ltxDocIncludetrue
1413 }

1414 \@onlypreamble\ltxLookSetup

The default is that we \DocInclude the files due to the original gmdoc input settings.

1415 \let\incl@DocInput=\DocInput

1416 \@emptify\currentfile% for the pages outside the \DocInclude’s scope. In force
for all includes.

If you want to \Doc/SelfInclude doc-likes:

1417 \newcommand*\olddocIncludes{%\olddocIncludes
1418 \let\incl@DocInput=\OldDocInput}

And, if you have set the previous and want to set it back:

1419 \newcommand*\gmdocIncludes{%\gmdocIncludes
1420 \let\incl@DocInput=\DocInput
1421 \AtBegInput{\QueerEOL}}% to move back the \StraightEOL declaration put at

begin input by \olddocIncludes.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 73

Redefinition of \maketitle

A not-so-slight alteration of the \maketitle command in order it allow multiple titles in\maketitle
one document seems to me very clever. So let’s copy again (ltxdoc.dtx the lines 643–656):

“The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed after
use with \relax. We must cancel anything that may have been put into \@thanks, etc.,
otherwise all titles will carry forward any earlier such setting!”

But here in gmdoc we’ll do it locally for (each) input not to change the main title
settings if there are any.

1422 \AtBegInput{%
1423 \providecommand*\maketitle{\par\maketitle
1424 \begingroup \def \thefootnote {\fnsymbol {footnote}}%
1425 \setcounter {footnote}\z@
1426 \def\@makefnmark{\hbox to\z@{$\m@th^{\@thefnmark}$\hss}}%
1427 \long\def\@makefntext##1{\parindent 1em\noindent
1428 \hbox to1.8em{\hss$\m@th^{\@thefnmark}$}##1}%
1429 \if@twocolumn \twocolumn [\@maketitle]%
1430 \else \newpage \global \@topnum \z@ \@maketitle \fi

“For special formatting requirements (such as in TUGboat), we use pagestyle
titlepage for this; this is later defined to be plain, unless already defined, as, for
example, by ltugboat.sty.”

1431 \thispagestyle{titlepage}\@thanks \endgroup

“If the driver file documents many files, we don’t want parts of a title of one to
propagate to the next, so we have to cancel these:”

1432 \setcounter {footnote}\z@
1433 \gdef\@date{\today}\g@emptify\@thanks%
1434 \g@emptify\@author\g@emptify\@title%
1435 }%

“When a number of articles are concatenated into a journal, for example, it is not
usual for the title pages of such documents to be formatted differently. Therefore, a class
such as ltugboat can define this macro in advance. However, if no such definition exists,
we use pagestyle plain for title pages.”

1436 \@ifundefined{ps@titlepage}{\let\ps@titlepage=\ps@plain}{}%

And let’s provide \@maketitle just in case: an error occurred without it at TEXing
with mwbk.cls because this class with the default options does not define \@maketitle.
The below definitions are taken from report.cls and mwrep.cls.

1437 \providecommand*\@maketitle{%\@maketitle
1438 \newpage\null \vskip 2em\relax%
1439 \begin{center}%
1440 \titlesetup
1441 \let \footnote \thanks
1442 {\LARGE \@title \par}%
1443 \vskip 1.5em%
1444 {\large \lineskip .5em%
1445 \begin{tabular}[t]{c}%
1446 \strut \@author
1447 \end{tabular}\par}%

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 74

1448 \vskip 1em%
1449 {\large \@date}%
1450 \end{center}%
1451 \par \vskip 1.5em\relax}%

We’d better restore the primary meanings of the macros making a title. (LATEX 2ε
source, File F: ltsect.dtx Date: 1996/12/20 Version v1.0z, lines 3.5.7.9–12.14–17.)

1452 \providecommand*\title[1]{\gdef\@title{#1}}\title
1453 \providecommand*\author[1]{\gdef\@author{#1}}\author
1454 \providecommand*\date[1]{\gdef\@date{#1}}\date
1455 \providecommand*\thanks[1]{\footnotemark\thanks
1456 \protected@xdef\@thanks{\@thanks
1457 \protect\footnotetext[\the\c@footnote]{#1}}%
1458 }%
1459 \providecommand*\and{% % \begin{tabular}
1460 \end{tabular}%
1461 \hskip 1em \@plus.17fil%
1462 \begin{tabular}[t]{c}}% % \end{tabular} And finally, let’s initialize \tit-

% lesetup if it is not yet.
1463 \providecommand*\titlesetup{}%\titlesetup
1464 }% end of \AtBegInput.

The ltxdoc class redefines the \maketitle command to allow multiple titles in one
document. We’ll do the same and something more: our \Doc/SelfInclude will turn the
file’s \maketitle into a part or chapter heading. But, if hte \ltxLookSetup declaration
is in force, \Doc/SelfInclude will make for an included file a part’s title page and an
article-like title.

Let’s initialize the file division macros.

1465 \@relaxen\filediv
1466 \@relaxen\filedivname

If we don’t include files the ltxdoc-like way, we wish to redefine \maketitle so that
it typesets a division’s heading.

Now, we redefine \maketitle and its relatives.

1467 \def\InclMaketitle{%\InclMaketitle
1468 {\def\and{, }% we make \and just a comma.
1469 {\let\thanks=\@gobble% for the toc version of the heading we discard \thanks.
1470 \protected@xdef\incl@titletotoc{\@title\if@fshda\protect\space
1471 (\@author)\fi}% we add the author iff the ‘files have different authors’

% (@fshda)
1472 }%
1473 \def\thanks##1{\footnotemark\thanks
1474 \protected@xdef\@thanks{\@thanks% to keep the previous \thanks if there

were any.
1475 \protect\footnotetext[\the\c@footnote]{##1}}}% for some mysteri-

ous reasons so defined \thanks do typeset the footnote mark and
text but they don’t hyperlink it properly. A hyperref bug?

1476 \@emptify\@thanks
1477 \protected@xdef\incl@filedivtitle{%
1478 [{\incl@titletotoc}]% braces to allow [and] in the title to toc.
1479 {\protect\@title

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 75

1480 {\smallerr% this macro is provided by the gmutils package after the relsize
package.

1481 \if@fshda\\[0.15em]\protect\@author
1482 \if\relax\@date\relax\else, \fi
1483 \else
1484 \if\relax\@date\relax\else\\[0.15em]\fi
1485 \fi

The default is that all the included files have the same author(s). In this case we won’t
print the author(s) in the headings. Otherwise we wish to print them. The information
which case are we in is brought by the \if@fshda switch defined in line 1494.

If we wish to print the author’s name (\if@fshda), then we’ll print the date after the
author, separated with a comma. If we don’t print the author, there still may be a date
to be printed. In such a case we break the line, too, and print the date with no comma.

1486 \protect\@date}}% end of \incl@filedivtitle’s brace (2nd or 3rd ar-
gument).

1487 }% end of \incl@filedivtitle’s \protected@xdef.
We \protect all the title components to avoid expanding \footnotemark hidden in

\thanks during \protected@xdef (and to let it be executed during the typesetting, of
course).

1488 }% end of the comma-\and’s group.
1489 \@xa\filediv\incl@filedivtitle
1490 \@thanks
1491 \g@relaxen\@author \g@relaxen\@title \g@relaxen\@date
1492 \g@emptify\@thanks
1493 }% end of \InclMaketitle.

What I make the default, is an assumption that all the multi-documented files have
the same author(s). And with the account of the other possibility I provide the below
switch and declaration.

1494 \newif\if@fshda

(its name comes from f iles have different authors).
1495 \newcommand*\PrintFilesAuthors{\@fshdatrue}\PrintFilesAuthors

And the counterpart, if you change your mind:
1496 \newcommand*\SkipFilesAuthors{\@fshdafalse}

The File’s Date and Version Information

Define \filedate and friends from info in the \ProvidesPackage etc. commands.
1497 \def\GetFileInfo#1{%\GetFileInfo
1498 \def\filename{#1}%
1499 \def\@tempb##1 ##2 ##3\relax##4\relax{%
1500 \def\filedate{##1}%
1501 \def\fileversion{##2}%
1502 \def\fileinfo{##3}}%
1503 \edef\@tempa{\csname ver@#1\endcsname}%
1504 \@xa\@tempb\@tempa\relax? ? \relax\relax}

Since we may documentally input files that we don’t load, as doc e.g., let’s define a dec-
laration to be put (in the comment layer) before the line(s) containing \Provides....

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 76

The \FileInfo command takes the stuff till the closing] and subsequent line end,
extracts from it the info and writes it to the .aux and rescans the stuff. εTEX provides
a special primitive for that action but we remain strictly TEXnical and do it with writing
to a file and inputting that file.

1505 \newcommand*\FileInfo{%\FileInfo
1506 \bgroup
1507 \let\do\@makeother
1508 \do\ \do\{\do\}\do\^^M\do\\%
1509 \gmd@fileinfo}

1510 \bgroup
1511 \catcode‘!\z@
1512 \catcode‘<\@ne
1513 \catcode‘>\tw@
1514 \let\do\@makeother
1515 \do\ \do\{\do\}\do\^^M\do\\%
1516 !firstofone<!egroup%
1517 !def!gmd@fileinfo#1Provides#2{#3}#4[#5]#6
1518 <%
1519 !egroup%
1520 !gmd@writeFI<#2><#3><#5>%
1521 !gmd@docrescan<#1Provides#2{#3}#4[#5]#6
1522 >%
1523 >%
1524 >

1525 \def\gmd@writeFI#1#2#3{%\gmd@writeFI
1526 \immediate\write\@auxout{%
1527 \global\@nx\@namedef{%
1528 ver@#2.\if P\@firstofmany#1\@@nil sty\else cls\fi}{#3}}}

1529 \def\gmd@docrescan#1{%\gmd@docrescan
1530 \newwrite\gmd@docrescanfile
1531 \immediate\openout\gmd@docrescanfile=\jobname.docrescan\relax
1532 {\newlinechar=‘\^^M%
1533 \immediate\write\gmd@docrescanfile{%
1534 \twelvepercent#1\twelvepercent\@nx\NoEOF}%
1535 }%
1536 \immediate\closeout\gmd@docrescanfile
1537 \@@input\jobname.docrescan
1538 }

And, for the case the input file doesn’t contain \Provides..., a macro for explicit
providing the file info. It’s written in analogy to \ProvidesFile, source 2ε, file L v1.1g,
l. 102.

1539 \def\ProvideFileInfo#1{%\ProvideFileInfo
1540 \begingroup
1541 \catcode‘\ 10 \catcode\endlinechar 10 %
1542 \@makeother\/\@makeother\&%
1543 \kernel@ifnextchar[{\gmd@providefii{#1}}{\gmd@providefii{#1}[]}%
1544 }

1545 \def\gmd@providefii#1[#2]{%
(we don’t write the file info to .log)

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 77

1546 \@xa\xdef\csname ver@#1\endcsname{#2}%
1547 \endgroup}

And a self-reference abbreviation (intended for providing file info for the driver):

1548 \def\ProvideSelfInfo{\ProvideFileInfo{\jobname.tex}}\ProvideSelfInfo

A neat conventional statement used in doc’s documentation e.g., to be put in \thanks
to the title or in a footnote:

1549 \newcommand*\filenote{This file has version number \fileversion{} \filenote
dated \filedate{}.}

And exactly as \thanks:

1550 \newcommand*\thfileinfo{\thanks\filenote}\thfileinfo

Miscellanea

The main inputting macro, \DocInput has been provided. But there’s another one in
doc and it looks very reasonably: \IndexInput. Let’s make analogous one here:

1551 \bgroup\obeylines
1552 \firstofone{\egroup
1553 \def\IndexInput#1{%\IndexInput
1554 \StoreMacro\code@delim%
1555 \CodeDelim*\^^Z%
1556 \def\gmd@iihook{% this hook is \edefed!
1557 \@nx^^M%
1558 \code@delim\relax\@nx\let\@nx\EOFMark\relax}%

1559 \DocInput{#1}\RestoreMacro\code@delim}}

How does it work? We assume in the input file is no explicit 〈char1〉. This char is
chosen as the code delimiter and will be put at the end of input. So, entire file contents
will be scanned char by char as the code.

The below environment I designed to be able to skip some repeating texts while
documenting several packages of mine into one document. At the default settings it’s
just a \StraightEOL group and in the \skipgmlonely declaration’s scope it gobbles its
contents.

1560 \newenvironment{gmlonely}{\StraightEOL}{}gmlonely

1561 \newcommand\skipgmlonely[1][]{%\skipgmlonely
1562 \def\@tempa{%
1563 \def\gmd@skipgmltext{\g@emptify\gmd@skipgmltext#1}}%
1564 \@tempa
1565 \@xa\AtBegInput\@xa{\@tempa}%
1566 \renewenvironment{gmlonely}{%
1567 \StraightEOL
1568 \@fileswfalse% to forbid writing to .toc, .idx etc.
1569 \setbox0=\vbox\bgroup}{\egroup\gmd@skipgmltext}}

Sometimes in the commentary of this package, so maybe also others, I need to say
some char is of category 12 (‘other sign’). This I’ll mark just as 12 got by \catother.

1570 \bgroup\catcode‘_=8 % we ensure the standard \catcode of _.
1571 \firstofone{\egroup
1572 \newcommand*\catother{${}_{12}$}%\catother

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 78

Similarly, if we need to say some char is of category 13 (‘active’), we’ll write 13, got
by \catactive

1573 \newcommand*\catactive{${}_{13}$}%\catactive

and a letter, 11

1574 \newcommand*\catletter{${}_{11}$}% .\catletter
1575 }

For the copyright note first I used just verse but it requires marking the line ends
with \\ and indents its contents while I prefer the copyright note to be flushed left. So

1576 \newenvironment*{copyrnote}{%copyrnote
1577 \StraightEOL\everypar{\hangindent3em\relax\hangafter1 }%
1578 \par\addvspace\medskipamount\parindent\z@\obeylines}{%
1579 \@codeskipputgfalse\stanza}

I renew the quotation environment to make the fact of quoting visible

1580 \renewenvironment{quotation}{\par‘‘\ignorespaces}{\unskip’’\par}quotation

For some mysterious reasons \noindent doesn’t work with the first (narrative) para-
graph after the code so let’s work it around:

1581 \newcommand*\gmdnoindent{\leavevmode\hskip-\parindent}\gmdnoindent

When a verbatim text occurres in an inline comment, it’s advisable to precede it with
% if it begins a not first line of such a comment not to mistake it for a part of code. For
this purpose provide

1582 \newcommand*\nlpercent{%\nlpercent
1583 \@ifstar{\def\@tempa{{\tt\twelvepercent}}%
1584 \@emptify\@tempb\nl@percent}%
1585 {\@emptify\@tempa
1586 \def\@tempb{\gmboxedspace}\nl@percent}}

1587 \newcommand*\gmboxedspace{\hbox{\normalfont{ }}}

1588 \newcommand*\nl@percent[1][]{%
1589 \unskip
1590 \discretionary{\@tempa}{{\tt\twelvepercent\gmboxedspace}}{\@tempb}%
1591 \penalty10000\hskip0sp\relax}

As you see, \nlpercent inserts a discretionary that breaks to % at the beginning of
the lower line. Without the break it’s a space (alas at its natural width i.e., not flexible)
or, with the starred version, nothing. The starred version puts % also at the end of the
upper line.

TODO: make the space flexible (most probably it requires using sth. else than
\discretionary).

An optional hyphen for CSs in the inline comment:

1592 \@ifundefined{+}{}{\typeout{^^Jgmdoc.sty: redefining \bslash+.}}
1593 \def\+{\discre{{\normalfont-}}{{\tt\twelvepercent\gmboxedspace}}{}}\+

And finally, some logos:
“Here are a few definitions which can usefully be employed when documenting package

files: now we can readily refer to AMS-TEX, BibTEX and SLiTEX, as well as the usual
TEX and LATEX. There’s even a Plain TEX and a Web.”

1594 \@ifundefined{AmSTeX}

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 79

1595 {\def\AmSTeX{\leavevmode\hbox{$\mathcal A\kern-.2em\lower.376ex%\AmSTeX
1596 \hbox{$\mathcal M$}\kern-.2em\mathcal S$-\TeX}}}{}

1597 \DeclareLogo\BibTeX{{\rmfamily B\kern-.05em%\BibTeX
1598 \textsc{i\kern-.025em b}\kern-.08em%
1599 \TeX}}

1600 \DeclareLogo\SliTeX{{\rmfamily S\kern-.06emL\kern-.18em\raise.32exˆ\SliTeX
\hbox

1601 {\scshape i}\kern -.03em\TeX}}

1602 \DeclareLogo\PlainTeX{\textsc{Plain}\kern2pt\TeX}\PlainTeX

1603 \DeclareLogo\Web{\textsc{Web}}\Web

There’s also the (LA)TEX logo got with the \LaTeXpar macro provided by gmutils. And
here The TEXbook’s logo:

1604 \DeclareLogo[The TeX book]\TeXbook{The \TeX book}\TeXbook

1605 \DeclareLogo\eTeX{ε\TeX}% The εTEX manual uses ‘ε-TEX’ but that\eTeX
would look strange in pdfεTEX.

1606 \DeclareLogo\pdfeTeX{pdf\eTeX}\pdfeTeX

1607 \DeclareLogo\pdfTeX{pdf\TeX}\pdfTeX

1608 \DeclareLogo\XeTeX{X\kern-.125em\relax\XeTeX
1609 \@ifundefined{reflectbox}{%
1610 \lower.5ex\hbox{E}\kern-.1667em\relax}{%
1611 \lower.5ex\hbox{\reflectbox{E}}\kern-.1667em\relax}%
1612 \TeX}% As you see, if TEX doesn’t recognize \reflectbox (graphics isn’t loaded),

the first E will not be reversed. This version of the command is intended
for non-XETEX usage. With XETEX, the reversed E you get as the Unicode
Latin Letter Reversed E.

1613 \@ifundefined{ds}{\def\ds{DocStrip}}{}\ds

Finally, a couple of macros for documenting files playing with %’s catcode(s). Instead
of % I used &. They may be at the end because they’re used in the commented thread
i.e. after package’s \usepackage.

1614 \newcommand*\CDAnd{\CodeDelim\&}\CDAnd
1615 \newcommand*\CDPerc{\CodeDelim\%}\CDPerc

And for documenting in general:
A general sectioning command because I foresee a possibility of typesetting the same

file once as independent document and another time as a part of bigger whole.
1616 \@ifdefinable\division{}% just to test (this LATEX check issues an error if the first

argument is already defined).
1617 \@ifundefined{section}{%
1618 \@relaxen\division}{%\division
1619 \let\division=\section}\division

1620 \@ifdefinable\subdivision{}% just to test (see above).
1621 \@ifundefined{subsection}{%
1622 \@relaxen\subdivision}{%\subdivision
1623 \let\subdivision=\subsection}\subdivision

The \lets are inside \@ifundefineds because I’m not sure whether you will typeset
a documentation with usual classes. Maybe too much care.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 80

To kill a tiny little bug in doc.dtx (in line 3299 \@tempb and \@tempc are written
plain not verbatim):

1624 \newcounter{gmd@mc}

1625 \def\gmd@mchook{\stepcounter{gmd@mc}%
1626 \gmd@mcdiag
1627 \csname gmd@mchook\the\c@gmd@mc\endcsname}

1628 \long\def\AfterMacrocode#1#2{\@namedef{gmd@mchook#1}{#2}}\AfterMacrocode

What have I done? I declare a new counter and employ it to count the macrocode(*)s
(and oldmc(*)s too, in fact) and attach a hook to (after) the end of every such environ-
ment. That lets us to put some stuff pretty far inside the compiled file (for the buggie
in doc.dtx, to redefine \@tempb/c).

One more detail to expalin and define: the \gmd@mcdiag macro may be defined to
type out a diagnostic message (the macrocode(*)’s number, code line number and input
line number).

1629 \@emptify\gmd@mcdiag\gmd@mcdiag

1630 \def\mcdiagOn{\def\gmd@mcdiag{%\mcdiagOn
1631 \typeout{^^J\bslash end{macrocode(*)} No.\the\c@gmd@mc
1632 \space\on@line, cln.\the\c@codelinenum.}}}

1633 \def\mcdiagOff{\@emptify\gmd@mcdiag}\mcdiagOff

doc-Compatibility

My TEX Guru recommended me to write hyperlinking for doc. The suggestion came out
when writing of gmdoc was at such a stage that I thought it to be much easier to write
a couple of \lets to make gmdoc able to typeset sources written for doc than to write
a new package that adds hyperlinking to doc. So…

The doc package makes % an ignored char. Here the % delimits the code and therefore
has to be ‘other’. But only the first one after the code. The others we may re\catcode
to be ignored and we do it indeed in line 108.

At the very beginning of a doc-prepared file we meet a nice command \Character-
Table. My TEX Guru says it’s a bit old fashioned these days so let’s just make it notify
the user:

1634 \def\CharacterTable{\begingroup\CharacterTable
1635 \@makeother\{\@makeother\}%
1636 \Character@Table}

1637 \begingroup
1638 \catcode‘\<=1 \catcode‘\>=2 %
1639 \@makeother\{\@makeother\}%
1640 \firstofone<\endgroup
1641 \def\Character@Table#1{#2}<\endgroup
1642 \message<^^J^^J gmdoc.sty package:^^J
1643 ==== The input file contains the \bslash CharacterTable.^^J
1644 ==== If you really need to check the correctness of the chars,^^J
1645 ==== please notify the author of gmdoc.sty at the email

address^^J

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 81

1646 ==== given in the legal notice in gmdoc.sty.^^J^^J>>>

Similarly as doc, gmdoc provides macrocode, macro and environment environments.
Unlike in doc, \end{macrocode} does not require to be preceded with any particular
number of spaces. Unlike in doc, it is not a kind of verbatim, however, which means the
code and narration layers remains in force inside it which means that any text after the
first % in a line will be processed as narration (and its control sequences will be executed).
For a discussion of a possible workaround see line 1724.

Let us now look over other original doc’s control sequences and let’s ‘domesticate’
them if they are not yet.kici kici

The \DescribeMacro and \DescribeEnv commands seem to correspond with my\DescribeMacro
\DescribeEnv \TextUsage macro in its plain and starred version respectively except they don’t typeset

their arguments in the text i.e., they do two things of the three. So let’s \def them to
do these two things in this package, too:

1647 \outer\def\DescribeMacro{%\DescribeMacro
1648 \begingroup\MakePrivateLetters
1649 \gmd@ifonetoken\Describe@Macro\Describe@Env}

Note that if the argument to \DescribeMacro is not a (possibly starred) control
sequence, then as an environment’s name shall it be processed except the \MakePrivat-
eOthers re\catcodeing shall not be done to it.

1650 \outer\def\DescribeEnv{%\DescribeEnv
1651 \begingroup\MakePrivateOthers\Describe@Env}

Actually, I’ve used the \Describe... commands myself a few times, so let’s \def
a common command with a starred version:

1652 \outer\def\Describe{%\Describe
1653 \begingroup\MakePrivateLetters
1654 \@ifstarl{\MakePrivateOthers\Describe@Env}{\Describe@Macro}}

The below two definitions are adjusted ˜s of \Text@UsgMacro and \Text@UsgEnvir.

1655 \long\def\Describe@Macro#1{%
1656 \endgroup
1657 \strut\Text@Marginize#1%
1658 \@usgentryze#1% we declare kind of formatting the entry
1659 \text@indexmacro#1\ignorespaces}

1660 \def\Describe@Env#1{%
1661 \endgroup
1662 \strut\Text@Marginize{#1}%
1663 \@usgentryze{#1}% we declare the ‘usage’ kind of formatting the entry and index

the sequence #1.
1664 \text@indexenvir{#1}\ignorespaces}

Note that here the environments’ names are typeset in \tt font just like the macros’,
unlike in doc.

My understanding of ‘minimality’ includes avoiding too much freedom as causing
chaos not beauty. That’s the philosophical and æsthetic reason why I don’t provide
\MacroFont. In my opinion there’s a noble tradition of typesetting the TEX code in \tt\MacroFont
font nad this tradition sustained should be. If one wants to change the tradition, let her
redefine \tt, in TEX it’s no problem. I suppose \MacroFont is not used explicitly, and
that it’s (re)defined at most, but just in case let’s \let:

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 82

1665 \let\MacroFont\tt

We have provided \CodeIndent in line 52. And it corresponds with doc’s \MacroIn-\CodeIndent
\MacroIndent dent so

1666 \let\MacroIndent\CodeIndent\MacroIndent

And similarly the other skips:

1667 \let\MacrocodeTopsep\CodeTopsep\MacrocodeTopsep

Note that \MacroTopsep is defined in gmdoc and has the same rôle as in doc.\MacroTopsep

1668 \let\SpecialEscapechar\CodeEscapeChar

\theCodelineNo is not used in gmdoc. Instead of it there is \LineNumFont decla-\theCodelineNo
\LineNumFont ration and a possibility to redefine \thecodelinenum as for all the counters. Here the

\LineNumFont is used two different ways, to set the benchmark width for a linenumber
among others, so it’s not appropriate to put two things into one macro. Thus let’s give
the user a notice if he defined this macro:

Because of possible localness of the definitions it seems to be better to add a check
at the end of each \DocInput or \IndexInput.

1669 \AtEndInput{\@ifundefined{theCodelineNo}{}{\PackageInfo{gmdoc}{The
1670 \string\theCodelineNo\space macro has no effect here, please use
1671 \string\LineNumFont\space for setting the font and/or
1672 \string\thecodelinenum\space to set the number format.}}}

I hope this lack will not cause big trouble.

For further notifications let’s define a shorthand:

1673 \def\noeffect@info#1{\@ifundefined{#1}{}{\PackageInfo{gmdoc}{^^J%\noeffect@info
1674 The \bslash#1 macro is not supported by this package^^J
1675 and therefore has no effect but this notification.^^J
1676 If you think it should have, please contact the maintainer^^J
1677 indicated in the package’s legal note.^^J}}}

The four macros formatting the macro and environment names, namely
\PrintDescribeMacro, \PrintMacroName, \PrintDescribeEnv and \PrintEnvName are\PrintDescribeMacro

\PrintMacroName
\PrintDescribeEnv

\PrintEnvName

not supported by gmdoc. They seem to me to be too internal to take care of them. Note
that in the name of (æsthetical) minimality and (my) convenience I deprive you of easy
knobs to set strange formats for verbatim bits: I think they are not advisable.

Let us just notify the user.

1678 \AtEndInput{%
1679 \noeffect@info{PrintDescribeMacro}%
1680 \noeffect@info{PrintMacroName}%
1681 \noeffect@info{PrintDescribeEnv}%
1682 \noeffect@info{PrintEnvName}}

The \CodelineNumbered declaration of doc seems to be equivalent to our noindex\CodelineNumbered
option with the linesnotnum option set off so let’s define it such a way.

1683 \def\CodelineNumbered{\AtBeginDocument{\gag@index}}
1684 \@onlypreamble\CodelineNumbered

Note that if the linesnotnum option is in force, this declaration shall not revert its
effect.

I assume that if one wishes to use doc’s interface then she’ll not use gmdoc’s options
but just the default.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 83

The \CodelineIndex and \PageIndex declarations correspond with the gmdoc’s de-
fault and the pageindex option respectively. Therefore let’s \let

1685 \let\CodelineIndex\@pageindexfalse\CodelineIndex
1686 \@onlypreamble\CodelineIndex

1687 \let\PageIndex\@pageindextrue\PageIndex
1688 \@onlypreamble\PageIndex

The next two declarations I find useful and smart:

1689 \def\DisableCrossrefs{\@bsphack\gag@index\@esphack}\DisableCrossrefs

1690 \def\EnableCrossrefs{\@bsphack\ungag@index\EnableCrossrefs
1691 \def\DisableCrossrefs{\@bsphack\@esphack}\@esphack}

The latter definition is made due to the footnote 6 on p. 8 of the Frank Mittel-
bach’s doc’s documentation and both of them are copies of lines 302–304 of it modulo
\(un)gag@index.

The subsequent few lines I copy almost verbatim ;-) from the lines 611–620.

1692 \newcommand*\AlsoImplementation{\@bsphack%\AlsoImplementation
1693 \long\def\StopEventually##1{\gdef\Finale{##1}}% we define \Finale just to

expand to the argument of \StopEventually not to to add anything to the
end input hook because \Finale should only be executed if entire document
is typeset.

%\init@checksum is obsolete in gmdoc at this point: the CheckSum counter is reset
just at the beginning of (each of virtually numerous) input(s).

1694 \@esphack}

1695 \AlsoImplementation

“When the user places an \OnlyDescription declaration in the driver file the docu-
ment should only be typeset up to \StopEventually. We therefore have to redefine this
macro.”

1696 \def\OnlyDescription{\@bsphack\long\def\StopEventually##1{%\OnlyDescription

“In this case the argument of \StopEventually should be set and afterwards TEX
should stop reading from this file. Therefore we finish this macro with”

1697 ##1\endinput}\@esphack}

“If no \StopEventually command is given we silently ignore a \Finale issued.”

1698 \@relaxen\Finale

The \meta macro is so beautifully crafted in doc that I couldn’t resist copying it\meta
into gmutils. It’s also available in Knuthian (The TEXbook format’s) disguise \<〈the\<...>
argument〉>.

The checksum mechanism is provided and developed for a slightly different purpose.

Most of doc’s indexing commands have already been ‘almost defined’ in gmdoc:

1699 \let\SpecialMainIndex=\CodeDefIndex\SpecialMainIndex

1700 \def\SpecialMainEnvIndex{\csname CodeDefIndex\endcsname*}% we don’t type\SpecialMainEnvIndex
\CodeDefIndex explicitly here ’cause it’s \outer, remember?

1701 \let\SpecialIndex=\CodeCommonIndex\SpecialIndex

1702 \let\SpecialUsageIndex=\TextUsgIndex\SpecialUsageIndex

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 84

1703 \def\SpecialEnvIndex{\csname TextUsgIndex\endcsname*}\SpecialEnvIndex

1704 \def\SortIndex#1#2{\index{#1\actualchar#2}}\SortIndex

“All these macros are usually used by other macros; you will need them only in an
emergency.”

Therefore I made the assumption(s) that ‘Main’ indexing macros are used in my
‘Code’ context and the ’Usage’ ones in my ‘Text’ context.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the\verbatimchar
\verb(*)’s delimiter for the index entries. The gmdoc package uses the same macro and
its default definition is {&}. When you use doc you may have to redefine \verbatimchar
if you use (and index) the \+ control sequence. gmdoc does a check for the analogous
situation (i.e., for processing \&) and if it occures it takes $ as the \verb*’s delimiter. So
strange delimiters are chosen deliberately to allow any ‘other’ chars in the environments’
names. If this would cause problems, please notify me and we’ll think of adjustments.

1705 \def\verbatimchar{&}\verbatimchar

One more a very neat macro provided by doc. I copy it verbatim and put into gmutils,
too. (\DeclareRobustCommand doesn’t issue an error if its argument has been defined,
it only informs about redefining.)

1706 \DeclareRobustCommand**{\leavevmode\lower.8ex\hbox{$\,\widetilde{\ }ˆ*
\,$}}

\IndexPrologue is defined in line 1003. And other doc index commands too.\IndexPrologue

1707 \@ifundefined{main}{}{\let\DefEntry=\main}\main

1708 \@ifundefined{usage}{}{\let\UsgEntry=\usage}\usage

About how the DocStrip directives are supported by gmdoc, see section The Doc-
Strip…. This support is not that sophisticated as in doc, among others, it doesn’t count
the modules’ nesting. Therefore if we dont want an error while gmdocumenting doc-
prepared files, better let’s define doc’s counter for the modules’ depths.

1709 \newcounter{StandardModuleDepth}StandardModuleDepth

For now let’s just mark the macro for further development

1710 \noeffect@info{DocstyleParms}\DocstyleParms

For possible further development or to notify the user once and forever:

1711 \@emptify\DontCheckModules \noeffect@info{DontCheckModules}\DontCheckModules
1712 \@emptify\CheckModules \noeffect@info{CheckModules}\CheckModules

The \Module macro is provided exactly as in doc.\Module

1713 \@emptify\AltMacroFont \noeffect@info{AltMacroFont}\AltMacroFont

“And finally the most important bit: we change the \catcode of % so that it is ignored
(which is how we are able to produce this document!). We provide two commands to do
the actual switching.”

1714 \def\MakePercentIgnore{\catcode‘\%9\relax}\MakePercentIgnore
1715 \def\MakePercentComment{\catcode‘\%14\relax}\MakePercentComment

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 85

gmdocing doc.dtx

The author(s) of doc suggest(s):
“For examples of the use of most—if not all—of the features described above consult

the doc.dtx source itself.”
Therefore I hope that after doc.dtx has been gmdoc-ed, one can say gmdoc is doc-

compatible “at most—if not at all”.
TEXing the original doc with my humble12 package was a challenge and a milestone

experience in my TEX life.
One of minor errors was caused by my understanding of a ‘shortverb’ char: due to

gmverb, in the math mode an active ‘shortverb’ char expands to itself’s ‘other’ version
thanks to \string (It’s done with | in mind). doc’s concept is different, there a ‘short-
verb’ char should in the math mode work as shortverb. So let it be as they wish: gmverb
provides \OldMakeShortVerb and the oldstyle input commands change the inner macros
so that also \MakeShortVerb works as in doc (cf. line 1718).

We also redefine the macro environment to make it mark the first code line as the
point of defining of its argument, because doc.dtx uses this environment also for implicit
definitions.

1716 \def\OldDocInput{%\OldDocInput
1717 \AtBegInputOnce{\StraightEOL
1718 \let\@MakeShortVerb=\old@MakeShortVerb
1719 \let\gmd@@macro\macro
1720 \def\macro{\let\gmd@ifonetoken\@secondoftwo\gmd@@macro}% (Of course,

naïve \exp...\let\exp...\macro\cs...\macro*\endcs... caused an
infinite loop since in the definition of macro* the \macro macro occures.)

1721 \VerbMacrocodes}%\VerbMacrocodes
1722 \bgroup\@makeother_% it’s to allow _ in the filenames. The next macro will close

the group.
1723 \Doc@Input}

We don’t swith the @codeskipput switch neither we check it because in ‘old’ world
there’s nothing to switch this switch in the narration layer.

I had a hot and wild TEX all the night nad what a bliss when the ‘Succesfully formated
67 page(s)’ message appeared.

My package needed fixing some bugs and adding some compatibility adjustments
(listed in the previous section) and the original doc.dtx source file needed a few adjust-
ments too because some crucial differences came out. I’d like to write a word about them
now.

The first but not least is that the author(s) of doc give the CS marking commands non-
macro arguments sometimes, e.g., \DescribeMacro{StandardModuleDepth}. Therefore
we should launch the starred versions of corresponding gmdoc commands. This means
the doc-like commands will not look for the CS’s occurrence in the code but will mark
the first codeline met.

Another crucial difference is that in gmdoc the narrative and the code layers are
separated with only the code delimiter and therefore may be much more mixed than
in doc. among others, the macro environment is not a typical verbatim like: the texts
commented out within macrocode are considered a normal commentary i.e., not verbatim.
Therefore some macros ‘commented out’ to be shown verbatim as an example source must

12 What a false modesty! ;-)

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 86

have been ‘additionally’ verbatimized for gmdoc with the shortverb chars e.g. You may
also change the code delimiter for a while, e.g., the line

1724 % \AVerySpecialMacro % delete the first % when...

was got with
\CodeDelim*\.
% \AVerySpecialMacro % delete the first % when.\unskip|..|\CDPerc

One more difference is that my shortverb chars expand to their 12 versions in the
math mode while in doc remain shortverb, so I added a declaration \OldMakeShortVerb
etc.

Moreover, it’s TEXing doc what inspired adding the \StraightEOL and \QueerEOL
declarations.

Polishing, Development and Bugs

• \MakePrivateLetters theoretically may interfere with \activeating some chars
to allow linebreaks. But making a space or an opening brace a letter seems so perverse
that we may feel safe not to take account of such a possibility.

• When countalllines option is enabled, the comment lines that don’t produce any
printed output result with a (blank) line too because there’s put a hypertarget at the
beginning of them. But for now let’s assume this option is for draft versions so hasn’t be
perfect.

• Marcin Woliński suggests to add the marginpar clauses for the AMS classes as we
did for the standard ones in the lines 18–20. Most probably I can do it on request when
I only know the classes’ names and their ‘marginpar status’.

• When the countalllines option is in force, some \list environments shall raise
the ‘missing \item’ error if you don’t put the first \item in the same line as \begin{.
〈environment〉} because the (comment-) line number is printed.

• I’m prone to make the control sequences hyperlinks to the(ir) ‘definition’ occur-
rences. It doesn’t seem to be a big work compared with what has been done so far.

• Is \RecordChanges really necessary these days? Shouldn’t be the \makeglossary
command rather executed by default?13

• Do you use \listoftables and/or \listoffigures in your documentations? If
so, I should ‘EOL-straighten’ them like \tableofcontents, I suppose (cf. line 143).

• Some lines of non-printing stuff such as \CodeDefine... and \changes connecting
the narration with the code resulted with unexpected large vertical space. Adding a fully
blank line between the printed narration text and not printed stuff helped.

• My TEX Guru remarked that \jobname expands to the main file name without
extension iff that extension is .tex. Should I replace \jobname with \jobnamewoe then?
(The latter always expands to the file name without extension.)

• About the DocStrip verbatim mode directive see above.

(No) 〈eof 〉

If the user doesn’t wish the documentation to be ended by 〈eof 〉, he should end the file
with a comment ending with \NoEOF macro defined below14:

13 It’s understandable that ten years earlier writing things out to the files remarkably decelerated
TEX, but nowadays it does not in most cases. That’s why \makeindex is launched by default in gmdoc.

14 Thanks to Bernd Raichle at BachoTEX 2006 Pearl Session where he presented \inputing a file
inside \edef.

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 87

1725 \bgroup\catcode‘\^^M\active \firstofone{\egroup%
1726 \def\@NoEOF#1^^M{%
1727 \@relaxen\EOFMark\@xa\@nx\endinput^^M}}

1728 \def\NoEOF{\QueerEOL\@NoEOF}\NoEOF

As you probably see, \NoEOF has also the \endinput effect.

1729 \endinput
1730 〈/package〉

File a: gmdoc.sty Date: 2007/04/29 Version v0.99e 88

b. The gmdocc Class For gmdoc Driver Files1

Written by Natror (Grzegorz Murzynowski),
natror at o2 dot pl
© 2006 by Natror (Grzegorz Murzynowski).
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesClass{gmdocc}
3 [2007/03/02 v0.75 a class for gmdoc driver files (GM)]

Intro

This file is a part of gmdoc bundle and provides a document class for the driver files
documenting (LA)TEX packages &a. with my gmdoc.sty package. It’s not necessary, of
course: most probably you may use another document class you like.

By default this class loads mwart class with a4paper (default) option and lmodern
package with QX fontencoding. It loads also my gmdoc documenting package which
loads some auxiliary packages of mine and the standard ones.

If the mwart class is not found, the standard article class is loaded instead. Similarly,
if the lmodern is not found, the standard Computer Modern font family is used in the
default font encoding.

Usage

For the ideas and details of gmdocing of the (LA)TEX files see the gmdoc.sty file’s docu-
mentation (chapter a). The rôle of the gmdocc document class is rather auxiliary and
exemplary. Most probably, you may use your favourite document class with the settings
you wish. This class I wrote to meet my needs of fine formatting, such as not numbered
sections and sans serif demi bold headings.

However, with the users other than myself in mind, I added some conditional clauses
that make this class works also if an mwcls class or the lmodern package are unknown.

Of rather many options supported by gmdoc.sty, this class chooses my favourite, i.e.,
the default. An exception is made for the noindex option, which is provided by this classnoindex
and passed to gmdoc.sty. This is intended for the case you don’t want to make an index.

Simili modo, the nochanges option is provided to turn creating the change historynochanges
off.

1 This file has version number v0.75 dated 2007/03/02.

89

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

Both of the above options turn the writing out to the files off. They don’t turn off
\PrintIndex nor \PrintChanges. (Those two commands are no-ops by themselves if
there’s no .ind (n)or .gls file respectively.)

One more option is outeroff. It’s intended for compiling the documentation ofouteroff
macros defined with the \outer prefix. It \relaxes this prefix so the ‘\outer’ macros’
names can appear in the arguments of other macros, which is necessary to pretty mark
and index them.

I decided not to make discarding \outer the default because it seems that LATEX
writers don’t use it in general and gmdoc.sty does make some use of it.

This class provides also the debug option. It turns the \if@debug Boolean switchdebug
True and loads the trace package that was a great help to me while debugging gmdoc.sty.

The default base document class loaded by gmdocc.cls is Marcin Woliński’s mwart. If
you have not installed it on your computer, the standard article will be used.

Moreover, if you like MW’s classes (as I do) and need \chapter (for multiple files’
input e.g.), you may declare another mwcls with the option homonimic with the class’es
name: mwrep for mwrep and mwbk for mwbk. For the symmetry there’s also mwart optionmwrep

mwbk
mwart

(equivalent to the default setting).
The existence test is done for any MW class option as it is in the default case.

The \EOFMark is in this class typesets like this (of course, you can redefine it as you\EOFMark
wish):

�

The Code

4 \def\gmcc@baseclass{mwart}% the default is Marcin Woliński’s class (mwcls) anal-
ogous to article.

Since you can choose the standard article class, we’d better provide a Boolean switch to
keep the score of what was chosen. It’s to avoid unused options if article is chosen.

5 \newif\ifgmcc@mwcls
6 \gmcc@mwclstrue
7 \DeclareOption{mwart}{\def\gmcc@baseclass{mwart}}% The mwart class maymwart

also be declared explicitly.
8 \DeclareOption{mwrep}{\def\gmcc@baseclass{mwrep}}% If you need chapters,mwrep

this option chooses an MW’s class that corresponds to report,
9 \DeclareOption{mwbk}{\def\gmcc@baseclass{mwbk}}% and this MW’s class corre-mwbk

sponds to book.
10 \DeclareOption{article}{\gmcc@mwclsfalse}% you can also choose article.article

11 \DeclareOption{outeroff}{\let\outer\relax}% This option allows \outer-prefixedouteroff
macros to be gmdoc-processed with all the bells and whistles.

12 \newif\if@debug\if@debug
13 \DeclareOption{debug}{\@debugtrue}% This option causes trace to be loaded anddebug

the Boolean switch of this option may be used to hide some things needed only
while debugging.

14 \DeclareOption{noindex}{%noindex
15 \PassOptionsToPackage{\CurrentOption}{gmdoc}}% This option turns the writ-

ing outto .idx file off.

File b: gmdocc.cls Date: 2007/03/02 Version v0.75 90

16 \newif\if@gmccnochanges
17 \DeclareOption{nochanges}{\@gmccnochangestrue}% This option turns the writ-nochanges

ing outto .glo file off.

18 \def\gmTheGeometry{geometry}gmeometric
19 \DeclareOption{gmeometric}{%
20 \IfFileExists{gmeometric.sty}{%
21 \def\gmTheGeometry{gmeometric}}{}}% It’s an experimental option that causes

the \geometry macro provided by geometry package is not restricted to
the preamble. This option causes the gmeometric package is loaded (if
available) that works the limitation around.

22 \ProcessOptions

23 \ifgmcc@mwcls
24 \IfFileExists{\gmcc@baseclass.cls}{}{\gmcc@mwclsfalse}% As announced,

we do the ontological test to any mwcls.
25 \fi
26 \ifgmcc@mwcls
27 \LoadClass[fleqn, oneside, noindentfirst, 11pt, withmarginpar,
28 sfheadings]{\gmcc@baseclass}%
29 \else
30 \LoadClass[fleqn, 11pt]{article}% Otherwise the standard article is loaded.
31 \fi

32 \AtBeginDocument{\mathindent=\CodeIndent}

The fleqn option makes displayed formuals be flushed left and \mathindent is their
indentation. Therefore we ensure it is always equal \CodeIndent just like \leftskip in
verbatim. Thanks to that and the \edverbs declaration below you may display single
verbatim lines with \[...\]:

\[|\verbatim\stuff|\] .

33 \IfFileExists{lmodern.sty}{% We also examine the ontological status of this pack-
age

34 \RequirePackage{lmodern}% and if it shows to be satisfactory (the package shows
to be), we load it and set the proper font encoding.

35 \RequirePackage[QX]{fontenc}%
36 }{}

37 \RequirePackage[margin=2.7cm, left=4cm,
38 right=2.2cm]{\gmTheGeometry}% Now we set the page layout.

39 \def\gmdoccMargins{%
40 \geometry{margin=2.7cm, left=4cm, right=2.2cm}}

41 \if@debug% For debugging we load also the trace package that was very helpful to
me.

42 \RequirePackage{trace}%
43 \errorcontextlines=100 % And we set an error info parameter.
44 \fi

45 \newcommand*\ifdtraceon{\if@debug\afterfi\traceon\fi}\ifdtraceon
46 \newcommand*\ifdtraceoff{\if@debug\traceoff\fi}\ifdtraceoff

We load the core package:

47 \RequirePackage{gmdoc}

File b: gmdocc.cls Date: 2007/03/02 Version v0.75 91

48 \@ifpackageloaded{lmodern}{% The Latin Modern font family provides a light con-
densed typewriter font that seems to be the most suitable for the marginpar
CS marking.

49 \def\marginpartt{\normalfont\fontseries{lc}\ttfamily}}%

50 \raggedbottom

51 \setcounter{secnumdepth}{0}% We wish only the parts and chapters to be num-
bered.

52 \renewcommand*\thesection{\arabic{section}}% isn’t it redundant at the above
setting?

53 \@ifnotmw{}{%
54 \@ifclassloaded{mwart}{% We set the indentation of Contents:
55 \SetTOCIndents{{}{\quad}{\quad}{\quad}{\quad}{\quad}{\quad}}}{% for

mwart
56 \SetTOCIndents{{}{\bf9.\enspace}{\quad}{\quad}{\quad}{\quad}{\quad}}}%

and for the two other mwclss.
57 \pagestyle{outer}}% We set the page numbers to be printed in the outer and

bottom corner of the page.

58 \def\titlesetup{\bfseries\sffamily}% We set the title(s) to be boldface and sans
serif.

59 \if@gmccnochanges\let\RecordChanges\relax\fi% If the nochanges option is on,
we discard writing outto the .glo file.

60 \RecordChanges% We turn the writing the \changes outto the .glo file if not the
above.

61 \dekclubs% We declare the club sign | to be a shorthand for \verb* .
62 \edverbs% to redefine \[so that it puts a shortverb in a \hbox.
63 \smartunder% and we declare the _ char to behave as usual in the math mode and

outside math to be just an uderscore.

64 \exhyphenpenalty\hyphenpenalty% ’cause mwcls set it =10000 due to Polish cus-
toms.

65 \VerbT1% to ensure T1 font encoding in verbatims (in code).

66 \RequirePackage{amssymb}
67 \def\EOFMark{\rightline{\ensuremath{\square}}}

68 \endinput

File b: gmdocc.cls Date: 2007/03/02 Version v0.75 92

c. gmdocDoc.tex, The Driver File

1 \documentclass[outeroff,mwrep]{gmdocc}
2 \twocoltoc
3 \title{The \pk{gmdoc} Package\\ i.e., \pk{gmdoc.sty} and
4 \pk{gmdocc.cls}}
5 \author{Grzegorz ‘Natror’ Murzynowski}
6 \date{EuroBacho\TeX 2007}
7 \begin{document}
8 \maketitle
9 \setcounter{page}{2}% hyperref cries if it sees two pages numbered 1.

10 \tableofcontents
11 \DoIndex\maketitle
12 \DocInclude{gmdoc}
13 \DocInclude{gmdocc}
14 \SelfInclude{\def\CommonEntryCmd{UsgEntry}%
15 \filediv[\file{gmdocDoc.tex}, The Driver
16 File]{\file{gmdocDoc.tex}, \gmhypertarget{The Driver} File}%
17 \label{Driver}}

For your convenience I decided to add the documentations of the three auxiliary packages:

18 \skipgmlonely[\stanza The remarks about installation and compiling
19 of the documentation are analogous to those in the chapter
20 \pk{gmdoc.sty} and therefore ommitted.\stanza]
21 \DocInclude{gmutils}
22 \DocInclude{gmiflink}
23 \DocInclude{gmverb}
24 \typeout{%
25 Produce change log with^^J%
26 makeindex -r -s gmglo.ist -o \jobnamewoe.gls \jobnamewoe.glo^^J
27 (gmglo.ist should be put into some texmf/makeindex directory.)^^J}
28 \PrintChanges
29 \typeout{%
30 Produce index with^^J%
31 makeindex -r \jobnamewoe^^J}
32 \PrintIndex
33 \end{document}

MakeIndex shell commands:

34 makeindex -r gmdocDoc
35 makeindex -r -s gmglo.ist -o gmdocDoc.gls gmdocDoc.glo

(gmglo.ist should be put into some texmf/makeindex directory.)

And “That’s all, folks” ;-) .

93

d. The gmutils Package1

Written by Grzegorz Murzynowski,
natror at o2 dot pl
© 2005, 2006, 2007 by Grzegorz Murzynowski.
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.
Many thanks to my TEX Guru Marcin Woliński for his TEXnical support.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{gmutils}
3 [2007/04/28 v0.80 some rather TeXnical macros, some of them

tricky (GM)]

Intro

The gmutils.sty package provides some macros that are analogous to the standard LATEX
ones but extend their functionality, such as \@ifnextcat, \addtomacro or \begin(*).
The others are just conveniences I like to use in all my TeX works, such as \afterfi,
\pk or \cs.

I wouldn’t say they are only for the package writers but I assume some nonzero
(LA)TEX-awareness of the user.

For details just read the code part.
The remarks about installation and compiling of the documentation are analogous to

those in the chapter gmdoc.sty and therefore ommitted.

Contents of the gmutils.zip Archive

The distribution of the gmutils package consists of the following four files.

gmutils.sty
README
gmutilsDoc.tex
gmutilsDoc.pdf

A couple of abbreviations

4 \let\@xa\expandafter\@xa
5 \let\@nx\noexpand\@nx

The \newgif declaration’s effect is used even in the LATEX 2ε source by redefining some
particular user defined ifs (UD-ifs henceforth) step by step. The goal is to make the

1 This file has version number v0.80 dated 2007/04/28.

94

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

UD-if’s assignment global. I needed it at least twice during gmdoc writing so I make it
a macro. It’s an almost verbatim copy of LATEX’s \newif modulo the letter g and the
\global prefix. (File d: ltdefns.dtx Date: 2004/02/20 Version v1.3g, lines 139–150)

6 \def\newgif#1{%\newgif
7 {\escapechar\m@ne
8 \global\let#1\iffalse
9 \@gif#1\iftrue

10 \@gif#1\iffalse
11 }}

‘Almost’ is also in the detail that in this case, which deals with \global assignments,
we don’t have to bother with storing and restoring the value of \escapechar: we can do
all the work inside a group.

12 \def\@gif#1#2{%
13 \@xa\gdef\csname\@xa\@gobbletwo\string#1%
14 g% the letter g for ‘\global’.
15 \@xa\@gobbletwo\string#2\endcsname
16 {\global\let#1#2}}

After \newgif\iffoo you may type {\foogtrue} and the \iffoo switch becomes
globally equal \iftrue. Simili modo \foogfalse. Note the letter g added to underline
globalness of the assignment.

If for any reason, no matter how queer ;-) may it be, you need both global and local
switchers of your \if..., declare it both with \newif and \newgif.

Note that it’s just a shorthand. \global\if〈switch〉true/false does work as ex-
pected.

There’s a trouble with \refstepcounter: defining \@currentlabel is local. So let’s
\def a \global version of \refstepcounter.

Warning. I use it because of very special reasons in gmdoc and in general it is probably
not a good idea to make \refstepcounter global since it is contrary to the original LATEX
approach.

17 \newcommand*\grefstepcounter[1]{%\grefstepcounter
18 {\let\protected@edef=\protected@xdef\refstepcounter{#1}}}

Naïve first try \globaldefs=\tw@ raised an error unknown command \reserved@e.
The matter was to globalize \protected@edef of \@currentlabel.

Thanks to using the true \refstepcounter inside, it observes the change made to
\refstepcounter by hyperref.

Another shorthand. It may decrease a number of \expandafters e.g.

19 \def\glet{\global\let}\glet

LATEX provides a very useful \g@addto@macro macro that adds its second argument to
the current definition of its first argument (works iff the first argument is a no argument
macro). But I needed it some times in a document, where @ is not a letter. So:

20 \let\gaddtomacro=\g@addto@macro\gaddtomacro

The redefining of the first argument of the above macro(s) is \global. What if we
want it local? Here we are:

21 \long\def\addto@macro#1#2{%\addto@macro
22 \toks@\@xa{#1#2}%

File d: gmutils.sty Date: 2007/04/28 Version v0.80 95

23 \edef#1{\the\toks@}%
24 }% (\toks@ is a scratch register, namely \toks0.)

And for use in the very document,

25 \let\addtomacro=\addto@macro\addtomacro

26 \newcommand*\@emptify[1]{\let#1=\@empty}\@emptify
27 \@ifdefinable\emptify{\let\emptify\@emptify}\emptify

Note the two following commands are in fact one-argument.

28 \newcommand*\g@emptify{\global\@emptify}\g@emptify
29 \@ifdefinable\gemptify{\let\gemptify\g@emptify}\gemptify

30 \newcommand*\@relaxen[1]{\let#1=\relax}\@relaxen
31 \@ifdefinable\relaxen{\let\relaxen\@relaxen}\relaxen

Note the two following commands are in fact one-argument.

32 \newcommand*\g@relaxen{\global\@relaxen}\g@relaxen
33 \@ifdefinable\grelaxen{\let\grelaxen\g@relaxen}\grelaxen

For the heavy debugs I was doing while preparing gmdoc, as a last resort I used
\showlists. But this command alone was usually too little: usually it needed setting
\showboxdepth and \showboxbreadth to some positive values. So,

34 \def\gmshowlists{\showboxdepth=1000 \showboxbreadth=1000 \showlists}\gmshowlists

35 \newcommand*\nameshow[1]{\@xa\show\csname#1\endcsname}\nameshow

Standard \string command returns a string of ‘other’ chars except for the space, for
which it returns 10. In gmdoc I needed the spaces in macros’ and environments’ names
to be always 12, so I define

36 \def\xiistring#1{%\xiistring
37 \if\@nx#1\twelvespace
38 \twelvespace
39 \else
40 \string#1%
41 \fi}

\@ifnextcat, \@ifnextac

As you guess, we \def \@ifnextcat à la \@ifnextchar, see LATEX 2ε source dated
2003/12/01, file d, lines 253–271. The difference is in the kind of test used: while
\@ifnextchar does \ifx, \@ifnextcat does \ifcat which means it looks not at the
meaning of a token(s) but at their \catcode(s). As you (should) remember from
The TEXbook, the former test doesn’t expand macros while the latter does. But in
\@ifnextcat the peeked token is protected against expanding by \noexpand. Note that
the first parameter is not protected and therefore it shall be expanded if it’s a macro.
Because an assignment is involved, you can’t test whether the next token is an active
char.

42 \long\def\@ifnextcat#1#2#3{%\@ifnextcat
43 \def\reserved@d{#1}%
44 \def\reserved@a{#2}%
45 \def\reserved@b{#3}%
46 \futurelet\@let@token\@ifncat}

File d: gmutils.sty Date: 2007/04/28 Version v0.80 96

47 \def\@ifncat{%
48 \ifx\@let@token\@sptoken
49 \let\reserved@c\@xifncat
50 \else
51 \ifcat\reserved@d\@nx\@let@token
52 \let\reserved@c\reserved@a
53 \else
54 \let\reserved@c\reserved@b
55 \fi
56 \fi
57 \reserved@c}

58 {\def\:{\let\@sptoken= } \: % this makes \@sptoken a space token.

59 \def\:{\@xifncat} \@xa\gdef\: {\futurelet\@let@token\@ifncat}}

Note the trick to get a macro with no parameter and requiring a space after it. We
do it inside a group not to spoil the general meaning of \: (which we extend later).

But how to peek at the next token to check whether it’s an active char? First, we
look with \@ifnextcat whether there stands a group opener. We do that to avoid taking
a whole {...} as the argument of the next macro, that doesn’t use \futurelet but takes
the next token as an argument, tests it and puts back intact.

60 \long\def\@ifnextac#1#2{%\@ifnextac
61 \@ifnextcat\bgroup{#2}{\gm@ifnac{#1}{#2}}}

62 \long\def\gm@ifnac#1#2#3{%
63 \ifcat\@nx~\@nx#3\afterfi{#1#3}\else\afterfi{#2#3}\fi}

Yes, it won’t work for an active char \let to {1, but it will work for an active char
\let to a char of catcode 6= 1. (Is there anybody on Earth who’d make an active char
working as \bgroup?)

Now, define a test that checks whether the next token is a genuine space, 10 that
is. First define a CS let such a space. The assignment needs a little trick (The TEXbook
appendix D) since \let’s syntax includes one optional space after =.

64 \let\@tempa*%
65 \def*{%
66 \let*\@tempa
67 \let\gm@letspace= }%
68 * %

69 \def\@ifnextspace#1#2{%\@ifnextspace
70 \let\@reserveda*%
71 \def*{%
72 \let*\@reserveda
73 \ifx\@let@token\gm@letspace\afterfi{#1}%
74 \else\afterfi{#2}%
75 \fi}%
76 \futurelet\@let@token*}

First use of this macro is for an active - that expands to --- if followed by a space.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 97

\afterfi and Pals

It happens from time to time that you have some sequence of macros in an \if... and
you would like to expand \fi before expanding them (e.g., when the macros should take
some tokens next to \fi... as their arguments. If you know how many macros are
there, you may type a couple of \expandafters and not to care how terrible it looks.
But if you don’t know how many tokens will there be, you seem to be in a real trouble.
There’s the Knuthian trick with \next. And here another, revealed to me by my TEX
Guru.

I think the situations when the Knuthian (the former) trick is not available are rather
seldom, but they are imaginable at least: the \next trick involves an assignment so it
won’t work e.g. in \edef. But in general it’s only a matter of taste which one to use.

One warning: those macros peel the braces off, i.e.,

\if..\afterfi{\@makeother\^^M}\fi

causes a leakage of ^^M12. To avoid pollution write

\if..\afterfi{\bgroup\@makeother\^^M\egroup}\fi .

77 \long\def\afterfi#1#2\fi{\fi#1}\afterfi

And two more of that family:

78 \long\def\afterfifi#1#2\fi#3\fi{\fi\fi#1}\afterfifi
79 \long\def\afteriffifi#1#2\if#3\fi#4\fi{\fi#1}\afteriffifi

Notice the refined elegance of those macros, that cover both ‘then’ and ‘else’ cases
thanks to #2 that is discarded.

80 \long\def\afterififfififi#1#2\fi#3\fi#4\fi{\fi#1}
81 \long\def\afteriffififi#1#2\fi#3\fi#4\fi{\fi\fi#1}
82 \long\def\afterfififi#1#2\fi#3\fi#4\fi{\fi\fi\fi#1}

Almost an Environment or Redefinition of \begin

We’ll extend the functionality of \begin: the non-starred instances shall act as usual
and we’ll add the starred version. The difference of the latter will be that it won’t check
whether the ‘environment’ has been defined so any name will be allowed.

This is intended to structure the source with named groups that don’t have to be
especially defined and probably don’t take any particular action except the scoping.

(If the \begin*’s argument is a (defined) environment’s name, \begin* will act just
like \begin.)

Original LATEX’s \begin:

\def\begin#1{%
\@ifundefined{#1}%
{\def\reserved@a{\@latex@error{Environment #1 undefined}\@eha}}%
{\def\reserved@a{\def\@currenvir{#1}%

\edef\@currenvline{\on@line}%
\csname #1\endcsname}}%

\@ignorefalse
\begingroup\@endpefalse\reserved@a}

83 \@ifdefinable\@begnamedgroup{\relax}\@begnamedgroup
84 \def\@begnamedgroup#1{%

File d: gmutils.sty Date: 2007/04/28 Version v0.80 98

85 \@ignorefalse% not to ignore blanks after group
86 \begingroup\@endpefalse
87 \def\@currenvir{#1}%
88 \edef\@currenvline{\on@line}%
89 \csname #1\endcsname}% if the argument is a command’s name (an environment’s

e.g.), this command will now be executed. (If the corresponding control
sequence hasn’t been known to TEX, this line will act as \relax.)

For back compatibility with my earlier works

90 \let\bnamegroup\@begnamedgroup\bnamegroup

And for the ending

91 \def\enamegroup#1{\end{#1}}\enamegroup

And we make it the starred version of \begin.

92 \let\old@begin\begin\old@begin
\begin 93 \def\begin{\@ifstar{\@begnamedgroup}{\old@begin}}

\begin*

Improvement of \end

It’s very clever and useful that \end checks whether its argument is ifx-equivalent
@currenvir. However, it works not quite as I would expect: Since the idea of envi-
ronment is to open a group and launch the cs named in the \begin’s argument. That
last thing is done with \csname...\endcsname so the char catcodes are equivalent. Thus
should be also in the \end’s test and therefore we ensure the compared texts are both
expanded and made all ‘other’.

94 \def\@checkend#1{%
95 \edef\reserved@a{\@xa\string\csname#1\endcsname}%
96 \edef\exii@currenvir{\@xa\string\csname\@currenvir\endcsname}%
97 \ifx\reserved@a\exii@currenvir\else\@badend{#1}\fi}

Thanks to it you may write \begin{macrocode*} with *12 and end it with \end{.
macrocode*} with *11 (that was the problem that led me to this solution). The error
messages looked really funny:

! LaTeX Error: \begin{macrocode*} on input line 1844 ended by \end{macrocode*}.

Of course, you might write also \end{macrocode\star} where \star is defined as ‘other’
star or letter star.

From relsize

As file relsize.sty, v3.1 dated July 4, 2003 states, LATEX 2ε version of these macros was
written by Donald Arseneau asnd@triumf.ca and Matt Swift swift@bu.edu after the
LATEX 2.09 smaller.sty style file written by Bernie Cosell cosell@WILMA.BBN.COM .

I take only the basic, non-math mode commands with the assumption that there are
the predefined font sizes.

You declare the font size with \relsize{〈n〉} where 〈n〉 gives the number of steps\relsize
(”mag-step” = factor of 1.2) to change the size by. E.g., n = 3 changes from \normalsize
to \LARGE size. Negative n selects smaller fonts. \smaller == \relsize{-1};\smaller
\larger == \relsize{1}. \smallerr(my addition) == \relsize{-2}; \largerr\larger

\smallerr
\largerr

guess yourself.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 99

asnd@triumf.ca
swift@bu.edu
cosell@WILMA.BBN.COM

(Since \DeclareRobustCommand doesn’t issue an error if its argument has been defined
and it only informs about redefining, loading relsize remains allowed.)

98 \DeclareRobustCommand*\relsize[1]{%\relsize
99 \ifmmode \@nomath\relsize\else

100 \begingroup
101 \@tempcnta % assign number representing current font size
102 \ifx\@currsize\normalsize 4\else % funny order is to have most ...
103 \ifx\@currsize\small 3\else % ...likely sizes checked first
104 \ifx\@currsize\footnotesize 2\else
105 \ifx\@currsize\large 5\else
106 \ifx\@currsize\Large 6\else
107 \ifx\@currsize\LARGE 7\else
108 \ifx\@currsize\scriptsize 1\else
109 \ifx\@currsize\tiny 0\else
110 \ifx\@currsize\huge 8\else
111 \ifx\@currsize\Huge 9\else
112 4\rs@unknown@warning % unknown state: \normalsize as start-

ing point
113 \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

Change the number by the given increment:

114 \advance\@tempcnta#1\relax

watch out for size underflow:

115 \ifnum\@tempcnta<\z@ \rs@size@warning{small}{\string\tiny}.
\@tempcnta\z@ \fi

116 \@xa\endgroup
117 \ifcase\@tempcnta % set new size based on altered number
118 \tiny \or \scriptsize \or \footnotesize \or \small \or .

\normalsize \or
119 \large \or \Large \or \LARGE \or \huge \or \Huge \else
120 \rs@size@warning{large}{\string\Huge}\Huge
121 \fi\fi}% end of \relsize.

122 \providecommand*\rs@size@warning[2]{\PackageWarning{gmutils \rs@size@warning
(relsize)}{%

123 Size requested is too #1.\MessageBreak Using #2 instead}}

124 \providecommand*\rs@unknown@warning{\PackageWarning{gmutils \rs@unknown@warning
(relsize)}{Current font size

125 is unknown! (Why?!?)\MessageBreak Assuming \string\normalsize}}

And a handful of shorthands:

126 \DeclareRobustCommand*\larger[1][\@ne]{\relsize{+#1}}\larger
127 \DeclareRobustCommand*\smaller[1][\@ne]{\relsize{-#1}}\smaller
128 \DeclareRobustCommand*\textlarger[2][\@ne]{{\relsize{+#1}#2}}\textlarger
129 \DeclareRobustCommand*\textsmaller[2][\@ne]{{\relsize{-#1}#2}}\textsmaller
130 \DeclareRobustCommand*\largerr{\relsize{+2}}\largerr
131 \DeclareRobustCommand*\smallerr{\relsize{-2}}\smallerr

File d: gmutils.sty Date: 2007/04/28 Version v0.80 100

\firstofone and the Queer \catcodes

Remember that once a macro’s argument has been read, its \catcodes are assigned
forever and ever. That’s what is \firstofone for. It allows you to change the \catcodes
locally for a definition outside the changed \catcodes’ group. Just see the below usage
of this macro ‘with TEX’s eyes’, as my TEX Guru taught me.

132 \long\def\firstofone#1{#1}\firstofone

And this one is defined, I know, but it’s not \long with the standard definition.

133 \long\def\gobble#1{}\gobble
134 \let\gobbletwo\@gobbletwo\gobbletwo

135 \bgroup\catcode‘_=8 %
136 \firstofone{\egroup
137 \let\subs=_}\subs

138 \bgroup\@makeother_%
139 \firstofone{\egroup
140 \def\twelveunder{_}}\twelveunder

Now, let’s define such a smart _ (underscore) which will be usual _8 in the math mode
and _12 (‘other’) outside math.

141 \bgroup\catcode‘_=\active
142 \firstofone{\egroup
143 \newcommand*\smartunder{%\smartunder
144 \catcode‘_=\active
145 \def_{\ifmmode\subs\else_\fi}}}% We define it as _ not just as \twelveunder

because some font encodings don’t have _ at the \char‘_ position.

146 \begingroup\catcode‘\!=0
147 \@makeother\\
148 !firstofone{!endgroup%
149 !newcommand*!twelvebackslash{\}}\twelvebackslash

150 \@ifundefined{bslash}{\let\bslash=\twelvebackslash}{}\bslash

151 \begingroup \@makeother\%
152 \firstofone{\endgroup
153 \def\twelvepercent{%}}\twelvepercent

154 \begingroup \@makeother\&%
155 \firstofone{\endgroup%
156 \def\twelveand{&}}\twelveand

157 \begingroup\@makeother\ %
158 \firstofone{\endgroup%
159 \def\twelvespace{ }}\twelvespace

Metasymbols

I fancy also another Knuthian trick for typesetting 〈metasymbols〉 in The TEXbook. So
I repeat it here. The inner \meta macro is copied verbatim from doc’s v2.1b documen-
tation dated 2004/02/09 because it’s so beautifully crafted I couldn’t resist. I only don’t
make it \long.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 101

“The new implementation fixes this problem by defining \meta in a radically different
way: we prevent hypenation by defining a \language which has no patterns associated
with it and use this to typeset the words within the angle brackets.”

160 \ifx\l@nohyphenation\undefined
161 \newlanguage\l@nohyphenation
162 \fi
163 \DeclareRobustCommand*\meta[1]{%\meta

“Since the old implementation of \meta could be used in math we better ensure
that this is possible with the new one as well. So we use \ensuremath around \langle
and \rangle. However this is not enough: if \meta@font@select below expands to
\itshape it will fail if used in math mode. For this reason we hide the whole thing inside
an \nfss@text box in that case.”

164 \ensuremath\langle
165 \ifmmode \@xa \nfss@text \fi
166 {%
167 \meta@font@select

Need to keep track of what we changed just in case the user changes font inside the
argument so we store the font explicitly.

168 \edef\meta@hyphen@restore{%
169 \hyphenchar\the\font\the\hyphenchar\font}%
170 \hyphenchar\font\m@ne
171 \language\l@nohyphenation
172 #1\/%
173 \meta@hyphen@restore
174 }\ensuremath\rangle
175 }

But I define \meta@font@select as the brutal and explicit \it instead of the original
\itshape to make it usable e.g. in the gmdoc’s \cs macro’s argument.

176 \def\meta@font@select{\it}

The below \meta’s drag2 is a version of The TEXbook’s one.

177 \def\<#1>{\meta{#1}}\<...>

Macros for Printing Macros and Filenames

First let’s define three auxiliary macros analogous to \dywiz from polski.sty: a shorthands
for \discretionary that’ll stick to the word not spoiling its hyphenability and that’ll
won’t allow a linebreak just before nor just after themselves. The \discretionary TEX
primitive has three arguments: #1 ‘before break’, #2 ‘after break’, #3 ‘without break’,
remember?

178 \def\discre#1#2#3{\kern0sp\discretionary{#1}{#2}{#3}\penalty10000ˆ\discre
\hskip0sp\relax}

179 \def\discret#1{\kern0sp\discretionary{#1}{#1}{#1}\penalty10000ˆ\discret
\hskip0sp\relax}

2 Think of the drags that transform a very nice but rather standard ‘auntie’ (‘Tante’ in Deutsch)
into a most adorable Queen ;-) .

File d: gmutils.sty Date: 2007/04/28 Version v0.80 102

A tiny little macro that acts like \- outside the math mode and has its original
meaning inside math.

180 \def\:{\ifmmode\afterfi{\mskip\medmuskip}\else\afterfi{\discret{}}\fi}

181 \newcommand*{\vs}{\discre{\textvisiblespace}{}{\textvisiblespace}}\vs

Then we define a macro that makes the spaces visible even if used in an argument
(i.e., in a situation where re\catcodeing has no effect).

182 \def\printspaces#1{{\let~=\vs \let\ =\vs \gm@pswords#1 \@@nil}}\printspaces
183 \def\gm@pswords#1 #2\@@nil{%
184 \if\relax#1\relax\else#1\fi
185 \if\relax#2\relax\else\vs\penalty\hyphenpenalty\gm@pswords#2\@@nil\fi}%

note that in the recursive call of \gm@pswords the argument string is not
extended with a guardian space: it has been already by \printspaces.

186 \DeclareRobustCommand*\sfname[1]{\textsf{\printspaces{#1}}}\sfname
187 \let\file\sfname% it allows the spaces in the filenames (and prints them as).\file

The below macro I use to format the packages’ names.

188 \DeclareRobustCommand*{\pk}[1]{\textsf{\textup{#1}}}\pk

Some (if not all) of the below macros are copied from doc and/or ltxdoc.
A macro for printing control sequences in arguments of a macro. Robust to avoid

writing an explicit \ into a file. It calls \ttfamily not \tt to be usable in headings
which are boldface sometimes.

189 \DeclareRobustCommand*{\cs}[2][\bslash]{{%\cs
190 \def\-{\discretionary{{\rmfamily-}}{}{}}%
191 \def\{{\char‘\{}\def\}{\char‘\}}\ttfamily #1#2}}

192 \DeclareRobustCommand*{\env}[1]{\cs[]{#1}}\env

And one for encouraging linebreaks e.g., before long verbatim words.

193 \newcommand*\possfil{\hfil\penalty1000\hfilneg}\possfil

The five macros below are taken from the ltxdoc.dtx.
“\cmd{\foo} Prints \foo verbatim. It may be used inside moving arguments. \cs{ˆ

foo} also prints \foo, for those who prefer that syntax. (This second form may even be
used when \foo is \outer).”

194 \def\cmd#1{\cs{\@xa\cmd@to@cs\string#1}}\cmd
195 \def\cmd@to@cs#1#2{\char\number‘#2\relax}

\marg{text} prints {〈text〉}, ‘mandatory argument’.

196 \def\marg#1{{\ttfamily\char‘\{}\meta{#1}{\ttfamily\char‘\}}}\marg

\oarg{text} prints [〈text〉], ‘optional argument’. Also \oarg[text] does that.

197 \def\oarg{\@ifnextchar[\@oargsq\@oarg}\oarg
198 \def\@oarg#1{{\ttfamily[}\meta{#1}{\ttfamily]}}
199 \def\@oargsq[#1]{\@oarg{#1}}

\parg{te,xt} prints (〈te,xt〉), ‘picture mode argument’.

200 \def\parg{\@ifnextchar(\@pargp\@parg}\parg
201 \def\@parg#1{{\ttfamily(}\meta{#1}{\ttfamily)}}
202 \def\@pargp(#1){\@parg{#1}}

But we can have all three in one command.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 103

203 \AtBeginDocument{%
204 \let\math@arg\arg\arg
205 \def\arg{\ifmmode\math@arg\else\afterfi{%
206 \@ifnextchar[%
207 \@oargsq{\@ifnextchar(%
208 \@pargp\marg}}\fi}%
209 }

Storing and Restoring the Meanings of CSs

A command to store the current meaning of a CS in another macro to temporarily redefine
the CS and be able to set its original meanig back (when grouping is not recommended):

210 \def\StoreMacro{%\StoreMacro
211 \bgroup\makeatletter\@ifstar\egStore@MacroSt\egStore@Macro}

212 \long\def\egStore@Macro#1{\egroup\Store@Macro{#1}}
213 \long\def\egStore@MacroSt#1{\egroup\Store@MacroSt{#1}}

214 \long\def\Store@Macro#1{%
215 \@xa\let\csname /gml/store\string#1\endcsname#1}

216 \long\def\Store@MacroSt#1{%
217 \edef\gmu@smtempa{%
218 \@nx\let\@xa\@nx\csname/gml/store#1\endcsname\@xa\@nx\csname#1ˆ

\endcsname}
219 \gmu@smtempa}

We make the \StoreMacro command a three-step to allow usage of the most inner
macro also in the next command.

The starred version, \StoreMacro* works with csnames (without the backslash). It’s
first used to store the meanings of robust commands, when you may need to store not
only \foo, but also \csname foo \endcsname.

The next command iterates over a list of CSs and stores each of them. The CS may
be separated with commas but they don’t have to.

220 \long\def\StoreMacros{\bgroup\makeatletter\Store@Macros}\StoreMacros
221 \long\def\Store@Macros#1{\egroup
222 \let\gml@StoreCS\Store@Macro
223 \gml@storemacros#1.}

And the inner iterating macro:

224 \long\def\gml@storemacros#1{%
225 \def\@tempa{\@nx#1}% My TEX Guru’s trick to deal with \fi and such, i.e., to

hide #1 from TEX when it is processing a test’s branch without expanding.
226 \if\@tempa.% a dot finishes storing.
227 \else
228 \if\@tempa,% The list this macro is put before may contain commas and that’s

O.K., we just continue the work.
229 \afterfifi\gml@storemacros
230 \else% what is else this shall be stored.
231 \gml@StoreCS{#1}% we use a particular CS to may \let it both to the storing

macro as above and to the restoring one as below.
232 \afterfifi\gml@storemacros

File d: gmutils.sty Date: 2007/04/28 Version v0.80 104

233 \fi
234 \fi}

And for the restoring

235 \def\RestoreMacro{%\RestoreMacro
236 \bgroup\makeatletter\@ifstar\egRestore@MacroSt\egRestore@Macro}

237 \long\def\egRestore@Macro#1{\egroup\Restore@Macro{#1}}
238 \long\def\egRestore@MacroSt#1{\egroup\Restore@MacroSt{#1}}

239 \long\def\Restore@Macro#1{%
240 \@xa\let\@xa#1\csname /gml/store\string#1\endcsname}

241 \long\def\Restore@MacroSt#1{%
242 \edef\gmu@smtempa{%
243 \@nx\let\@xa\@nx\csname#1\endcsname\@xa\@nx\csname/gml/store#1ˆ

\endcsname}
244 \gmu@smtempa}

245 \long\def\RestoreMacros{\bgroup\makeatletter\Restore@Macros}\RestoreMacros
246 \long\def\Restore@Macros#1{\egroup
247 \let\gml@StoreCS\Restore@Macro% we direct the core CS towards restoring and

call the same iterating macro as in line 223.
248 \gml@storemacros#1.}

As you see, the \RestoreMacros command uses the same iterating macro inside, it
only changes the meaning of the core macro.

And to restore and use immediately:

249 \def\StoredMacro{\bgroup\makeatletter\Stored@Macro}
250 \long\def\Stored@Macro#1{\egroup\Restore@Macro#1#1}

It happended (see the definition of \@docinclude in gmdoc.sty) that I needed to
\relax a bunch of macros and restore them after some time. Because the macros were
rather numerous and I wanted the code more readable, I wanted to \do them. After
a proper defining of \do of course. So here is this proper definition of \do, provided as
a macro (a declaration).

251 \long\def\StoringAndRelaxingDo{%\StoringAndRelaxingDo
252 \def\do##1{\@xa\let\csname /gml/store\string##1\endcsname##1%
253 \let##1\relax}}

And here is the counter-definition for restore.

254 \long\def\RestoringDo{%\RestoringDo
255 \def\do##1{%
256 \@xa\let\@xa##1\csname /gml/store\string##1\endcsname}}

And to store a cs as explicitly named cs, i.e. to \let one csname another (\n@melet
not \@namelet becasuse the latter is defined in Till Tantau’s beamer class another way):

257 \def\n@melet#1#2{%
258 \edef\@tempa{%
259 \let\@xa\@nx\csname#1\endcsname
260 \@xa\@nx\csname#2\endcsname}%
261 \@tempa}

File d: gmutils.sty Date: 2007/04/28 Version v0.80 105

Not only preamble!

Let’s remove some commands from the list to erase at begin document! Primarily that
list was intended to save memory not to forbid anything. Nowadays, when memory is
cheap, the list of only-preamble commands should be rethought imo.
262 \newcommand\not@onlypreamble[1]{{%\not@onlypreamble
263 \def\do##1{\ifx#1##1\else\@nx\do\@nx##1\fi}%
264 \xdef\@preamblecmds{\@preamblecmds}}}

265 \not@onlypreamble\@preamblecmds
266 \not@onlypreamble\@ifpackageloaded
267 \not@onlypreamble\@ifclassloaded
268 \not@onlypreamble\@ifl@aded
269 \not@onlypreamble\@pkgextension

And let’s make the message of only preamble command’s forbidden use informative
a bit:
270 \def\gm@notprerr{ can be used only in preamble (\on@line)}

271 \AtBeginDocument{%
272 \def\do#1{\@nx\do\@nx#1}%
273 \edef\@preamblecmds{%
274 \def\@nx\do##1{%
275 \def##1{! \@nx\string##1 \@nx\gm@notprerr}}%
276 \@preamblecmds}}

Third Person Pronouns

Is a reader of my documentations ‘she’ or ’he’ and does it make a difference?
Not to favour any gender in the personal pronouns, define commands that’ll print

alternately masculine and feminine pronoun of third person. By ‘any’ I mean not only
typically masculine and typically feminine but the entire amazingly rich variety of people’s
genders, including those who do not describe themselves as ‘man’ or ‘woman’.

One may say two pronouns is far too little to cover this variety but I could point
Ursula’s K. LeGuin’s The Left Hand Of Darkness as another acceptable answer. In
that moody and moderate SF novel the androgynous persons are usually referred to as
‘mister’, ‘sir’ or ‘he’: the meaning of reference is extended. Such an extension also my
automatic pronouns do suggest. It’s not political correctness, it’s just respect to people’s
diversity.
277 \newcounter{gm@PronounGender}

278 \newcommand*\gm@atppron[2]{%\gm@atppron
279 \stepcounter{gm@PronounGender}% remember \stepcounter is global.
280 \ifodd\arabic{gm@PronounGender}#1\else#2\fi}

281 \newcommand*\heshe{\gm@atppron{he}{she}}\heshe
282 \newcommand*\hisher{\gm@atppron{his}{her}}\hisher
283 \newcommand*\himher{\gm@atppron{him}{her}}\himher
284 \newcommand*\hishers{\gm@atppron{his}{hers}}\hishers

285 \newcommand*\HeShe{\gm@atppron{He}{She}}\HeShe
286 \newcommand*\HisHer{\gm@atppron{His}{Her}}\HisHer
287 \newcommand*\HimHer{\gm@atppron{Him}{Her}}\HimHer
288 \newcommand*\HisHers{\gm@atppron{His}{Hers}}\HisHers

File d: gmutils.sty Date: 2007/04/28 Version v0.80 106

To Save Precious Count Registers

It’s a contribution to TEX’s ecology ;-). You can use as many CSs as you wish and you
may use only 256 count registers (although in eTEX there are 216 count registers, which
makes the following a bit obsolete).

289 \newcommand*\nummacro[1]{\gdef#1{0}}

290 \newcommand*\stepnummacro[1]{%
291 \@tempcnta=#1\relax
292 \advance\@tempcnta by1\relax
293 \xdef#1{\the\@tempcnta}}% Because of some mysterious reasons explicit \count0

interferred with page numbering when used in \gmd@evpaddonce in gmdoc.

294 \newcommand*\addtonummacro[2]{%
295 \count0=#1\relax
296 \advance\count0by#2\relax
297 \xdef#1{\the\count\z@}}

Need an explanation? The \nummacro declaration defines its argument (that should
be a CS) as {0} which is analogous to \newcount declaration but doesn’t use up any
count register.

Then you may use this numeric macro as something between TEX’s count CS and
LATEX’s counter. The macros \stepnummacro and \addtonummacro are analogous to
LATEX’s \stepcounter and \addtocounter respectively: \stepnummacro advances the
number stored in its argument by 1 and \addtonummacro advances it by the second
argument. As the LATEX’s analogoi, they have the global effect (the effect of global
warming ;-)).

So far I’ve used only \nummacro and \stepnummacro. Notify me if you use them and
whether you need sth. more, \multiplynummacro e.g.

Improvements to mwcls Sectioning Commands

That is, ‘Expe-ri-mente’3 mit MW sectioning & \refstepcounter to improve mwcls’s
cooperation with hyperref. They shouldn’t make any harm if another class (non-mwcls)
is loaded.

We \refstep sectioning counters even if the sectionings are not numbered, because
otherwise
1. pdfTEX cried of multiply defined \labels,
2. e.g. in a table of contents the hyperlink <rozdzia\l\ Kwiaty polskie> linked not

to the chapter’s heading but to the last-before-it change of \ref.

298 \AtBeginDocument{% because we don’t know when exactly hyperref is loaded and
maybe after this package.

299 \@ifpackageloaded{hyperref}{\newcounter{NoNumSecs}%
300 \setcounter{NoNumSecs}{617}% to make \refing to an unnumbered section

visible (and funny?).
301 \def\gm@hyperrefstepcounter{\refstepcounter{NoNumSecs}}%
302 \DeclareRobustCommand*\gm@targetheading[1]{%
303 \hypertarget{#1}{#1}}}% end of then
304 {\def\gm@hyperrefstepcounter{}%

3 A. Berg, Wozzeck.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 107

305 \def\gm@targetheading#1{#1}}% end of else
306 }% of \AtBeginDocument

Auxiliary macros for the kernel sectioning macro:

307 \def\gm@dontnumbersectionsoutofmainmatter{%
308 \if@mainmatter\else \HeadingNumberedfalse \fi}
309 \def\gm@clearpagesduetoopenright{%
310 \if@openright\cleardoublepage\else \clearpage\fi}

To avoid \defing of \mw@sectionxx if it’s undefined, we redefine \def to gobble the
definition and restore the original meaning of itself.

Why shouldn’t we change the ontological status of \mw@sectionxx (not define if
undefined)? Because some macros (in gmdocc e.g.) check it to learn whether they are in
an mwcls or not.

But let’s make a shorthand for this test since we’ll use it three times in this package
and maybe also somewhere else.

311 \long\def\@ifnotmw#1#2{\@ifundefined{mw@sectionxx}{#1}{#2}}\@ifnotmw

312 \let\gmu@def\def
313 \@ifnotmw{%
314 \StoreMacro\gmu@def \def\gmu@def#14#2{\RestoreMacro\gmu@def}}{}

I know it may be of bad taste (to write such a way here) but I feel so lonely and am
in an alien state of mind after 3 hour sleep last night and, worst of all, listening to sir
Edward Elgar’s flamboyant Symphonies d’Art Nouveau.

A decent person would just wrap the following definition in \@ifundefined’s Else.
But look, the definition is so long and I feel so lonely etc. So, I define \def (for some
people there’s nothing sacred) to be a macro with two parameters, first of which is
delimited by digit 4 (the last token of \mw@sectionxx’s parameter string) and the latter
is undelimited which means it’ll be the body of the definition. Such defined \def does
nothing else but restores its primitive meaning by the way sending its arguments to the
Gobbled Tokens’ Paradise. Luckily, \RestoreMacro contains \let not \def.

The kernel of MW’s sectioning commands:

315 \gmu@def\mw@sectionxx#1#2[#3]#4{%
316 \edef\mw@HeadingLevel{\csname #1@level\endcsname
317 \space}% space delimits level number!
318 \ifHeadingNumbered
319 \ifnum \mw@HeadingLevel>\c@secnumdepth \HeadingNumberedfalse \fi

line below is in ifundefined to make it work in classes other than mwbk

320 \@ifundefined{if@mainmatter}{}{ˆ
\gm@dontnumbersectionsoutofmainmatter}

321 \fi

% \ifHeadingNumbered
% \refstepcounter{#1}%
% \protected@edef\HeadingNumber{\csname the#1\endcsname\relax}%
% \else
% \let\HeadingNumber\@empty
% \fi

322 \def\HeadingRHeadText{#2}%
323 \def\HeadingTOCText{#3}%

File d: gmutils.sty Date: 2007/04/28 Version v0.80 108

324 \def\HeadingText{#4}%
325 \def\mw@HeadingType{#1}%
326 \if\mw@HeadingBreakBefore
327 \if@specialpage\else\thispagestyle{closing}\fi
328 \@ifundefined{if@openright}{}{\gm@clearpagesduetoopenright}%
329 \if\mw@HeadingBreakAfter
330 \thispagestyle{blank}\else
331 \thispagestyle{opening}\fi
332 \global\@topnum\z@
333 \fi% of \if\mw@HeadingBreakBefore

placement of \refstep suggested by me (GM)

334 \ifHeadingNumbered
335 \refstepcounter{#1}%
336 \protected@edef\HeadingNumber{\csname the#1\endcsname\relax}%
337 \else
338 \let\HeadingNumber\@empty
339 \gm@hyperrefstepcounter
340 \fi% of \ifHeadingNumbered

341 \if\mw@HeadingRunIn
342 \mw@runinheading
343 \else
344 \if\mw@HeadingWholeWidth
345 \if@twocolumn
346 \if\mw@HeadingBreakAfter
347 \onecolumn
348 \mw@normalheading
349 \pagebreak\relax
350 \if@twoside
351 \null
352 \thispagestyle{blank}%
353 \newpage
354 \fi% of \if@twoside
355 \twocolumn
356 \else
357 \@topnewpage[\mw@normalheading]%
358 \fi% of \if\mw@HeadingBreakAfter
359 \else
360 \mw@normalheading
361 \if\mw@HeadingBreakAfter\pagebreak\relax\fi
362 \fi% of \if@twocolumn
363 \else
364 \mw@normalheading
365 \if\mw@HeadingBreakAfter\pagebreak\relax\fi
366 \fi% of \if\mw@HeadingWholeWidth
367 \fi% of \if\mw@HeadingRunIn
368 }

(End of Experimente with MW sectioning.)

File d: gmutils.sty Date: 2007/04/28 Version v0.80 109

Compatibilising Standard and mwcls Sectionings

If you use Marcin Woliński’s document classes (mwcls), you might have met their little
queerness: the sectioning commands take two optional arguments instead of standard one.
It’s reasonable since one may wish one text to be put into the running head, another to
the toc and yet else to the page. But the order of optionalities causes an incompatibility
with the standard classes: MW section’s first optional argument goes to the running
head not to toc and if you’ve got a source file written with the standard classes in mind
and use the first (and only) optional argument, the effect with mwcls would be different
if not error.

Therefore I counter-assign the commands and arguments to reverse the order of op-
tional arguments for sectioning commands when mwcls are in use and reverse, to make
mwcls-like sectioning optionals usable in the standard classes.

With the following in force, you may both in the standard classes and in mwcls give
a sectioning command one or two optional arguments (and mandatory the last, of course).
If you give just one optional, it goes to the running head and to toc as in scls (which is
unlike in mwcls). If you give two optionals, the first goes to the running head and the
other to toc (like in mwcls and unlike in scls).

(In both cases the mandatory last argument goes only to the page.)
What more is unlike in scls, it’s that even with them the starred versions of sectioning

commands allow optionals (but they still send them to the Gobbled Tokens’ Paradise).
(In mwcls, the only difference between starred and non-starred sec commands is (not)

numbering the titles, both versions make a contents line and a mark and that’s not
changed with my redefinitions.)

369 \@ifnotmw{% we are not in mwcls and want to handle mwcls-like sectionings i.e., those
written with two optionals.

370 \def\gm@secini{gm@la}%
371 \def\gm@secxx#1#2[#3]#4{%\gm@secxx
372 \ifx\gm@secstar\@empty
373 \n@melet{gm@true@#1mark}{#1mark}% a little trick to allow a special version

of the heading just to the running head.
374 \@namedef{#1mark}##1{% we redefine \〈sec〉mark to gobble its argument and

to launch the stored true marking command on the appropriate argu-
ment.

375 \csname gm@true@#1mark\endcsname{#2}%
376 \n@melet{#1mark}{gm@true@#1mark}% after we’ve done what we wanted

we restore original \#1mark.
377 }%
378 \def\gm@secstar{[#3]}% if \gm@secstar is empty, which means the section-

ing command was written starless, we pass the ‘true’ sectioning com-
mand #3 as the optional argument. Otherwise the sectioning command
was written with star so the ‘true’ s.c. takes no optional.

379 \fi
380 \@xa\@xa\csname\gm@secini#1\endcsname
381 \gm@secstar{#4}}%

382 }{% we are in mwcls and want to reverse MW’s optionals order i.e., if there’s just one
optional, it should go both to toc and to running head.

383 \def\gm@secini{gm@mw}%
384 \let\gm@secmarkh\@gobble% in mwcls there’s no need to make tricks for special

version to running headings.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 110

385 \def\gm@secxx#1#2[#3]#4{%\gm@secxx
386 \@xa\@xa\csname\gm@secini#1\endcsname
387 \gm@secstar[#2][#3]{#4}}%
388 }

389 \def\gm@sec#1{\@dblarg{\gm@secx{#1}}}
390 \def\gm@secx#1[#2]{%
391 \@ifnextchar[{\gm@secxx{#1}{#2}}{\gm@secxx{#1}{#2}[#2]}}% if there’s only

one optional, we double it not the mandatory argument.

392 \def\gm@straightensec#1{% the parameter is for the command’s name.
393 \@ifundefined{#1}{}{% we don’t change the ontological status of the command

because someone may test it.
394 \n@melet{\gm@secini#1}{#1}%
395 \@namedef{#1}{%
396 \@ifstar{\def\gm@secstar{*}\gm@sec{#1}}{%
397 \def\gm@secstar{}\gm@sec{#1}}}}%
398 }%

399 \let\do\gm@straightensec
400 \do{part}\do{chapter}\do{section}\do{subsection}\do{subsubsection}
401 \@ifnotmw{}{\do{paragraph}}% this ‘straightening’ of \paragraph with the stan-

dard article caused the ‘TEX capacity exceeded’ error. Anyway, who on Earth
wants paragraph titles in toc or running head?

enumerate* and itemize*

We wish the starred version of enumerate to be just numbered paragraphs. But hyperref
redefines \item so we should do it a smart way, to set the LATEX’s list parameters that
is.

(Marcin Woliński in mwcls defines those environments slightly different: his item
labels are indented, mine are not; his subsequent paragraphs of an item are not indented,
mine are.)

402 \@namedef{enumerate*}{%enumerate*
403 \ifnum\@enumdepth>\thr@@
404 \@toodeep
405 \else
406 \advance\@enumdepth\@ne
407 \edef\@enumctr{enum\romannumeral\the\@enumdepth}%
408 \@xa\list\csname label\@enumctr\endcsname{%
409 \partopsep\topsep \topsep\z@ \leftmargin\z@
410 \itemindent\@parindent %
411 \labelwidth\@parindent
412 \advance\labelwidth-\labelsep
413 \listparindent\@parindent
414 \usecounter \@enumctr
415 \def\makelabel##1{##1\hfil}}%
416 \fi}
417 \@namedef{endenumerate*}{\endlist}

418 \@namedef{itemize*}{%itemize*
419 \ifnum\@itemdepth>\thr@@

File d: gmutils.sty Date: 2007/04/28 Version v0.80 111

420 \@toodeep
421 \else
422 \advance\@itemdepth\@ne
423 \edef\@itemitem{labelitem\romannumeral\the\@itemdepth}%
424 \@xa\list\csname\@itemitem\endcsname{%
425 \partopsep\topsep \topsep\z@ \leftmargin\z@
426 \itemindent\@parindent
427 \labelwidth\@parindent
428 \advance\labelwidth-\labelsep
429 \listparindent\@parindent
430 \def\makelabel##1{##1\hfil }}%
431 \fi}
432 \@namedef{enditemize*}{\endlist}

The Logos

We’ll modify The LATEX logo now to make it fit better to various fonts.

433 \let\oldLaTeX\LaTeX
434 \let\oldLaTeXe\LaTeXe

435 \def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX\@}

436 \newcommand*\DeclareLogo[3][\relax]{%

#1 is for non-LATEX spelling and will be used in the PD1 encoding (to make pdf
bookmarks);
#2 is the command, its name will be the PD1 spelling by default,
#3 is the definition for all the font encodings except PD1.

437 \ifx\relax#1\def\@tempa{\@xa\@gobble\string#2}%
438 \else
439 \def\@tempa{#1}%
440 \fi
441 \edef\@tempa{%
442 \@nx\DeclareTextCommand\@nx#2{PD1}{\@tempa}}
443 \@tempa
444 \DeclareTextCommandDefault#2{#3}}

445 \DeclareLogo\LaTeX{%
446 {%
447 L%
448 \setbox\z@\hbox{\check@mathfonts
449 \fontsize\sf@size\z@
450 \math@fontsfalse\selectfont
451 A}%
452 \kern-.57\wd\z@
453 \sbox\tw@ T%
454 \vbox to\ht\tw@{\copy\z@ \vss}%
455 \kern-.2\wd\z@}% originally −, 15 em for T.
456 {%
457 \ifdim\fontdimen1\font=\z@
458 \else
459 \count\z@=\fontdimen5\font

File d: gmutils.sty Date: 2007/04/28 Version v0.80 112

460 \multiply\count\z@ by 64\relax
461 \divide\count\z@ by\p@
462 \count\tw@=\fontdimen1\font
463 \multiply\count\tw@ by\count\z@
464 \divide\count\tw@ by 64\relax
465 \divide\count\tw@ by\tw@
466 \kern-\the\count\tw@ sp\relax
467 \fi}%
468 \TeX}

469 \DeclareLogo\LaTeXe{\mbox{\m@th \if
470 b\expandafter\@car\f@series\@nil\boldmath\fi
471 \LaTeX\kern.15em2$_{\textstyle\varepsilon}$}}

‘(LA)TEX’ in my opinion better describes what I work with/in than just ‘LATEX’.

472 \DeclareLogo[(La)TeX]{\LaTeXpar}{%\LaTeXpar
473 {%
474 \setbox\z@\hbox{(}%)
475 \copy\z@
476 \kern-.2\wd\z@ L%
477 \setbox\z@\hbox{\check@mathfonts
478 \fontsize\sf@size\z@
479 \math@fontsfalse\selectfont
480 A}%
481 \kern-.57\wd\z@
482 \sbox\tw@ T%
483 \vbox to\ht\tw@{\box\z@%
484 \vss}%
485 }%
486 \kern-.07em% originally −, 15 em for T.
487 {% (
488 \sbox\z@)%
489 \kern-.2\wd\z@\copy\z@
490 \kern-.2\wd\z@}\TeX
491 }

Expanding turning stuff all into ‘other’

While typesetting a unicode file contents with inputenc package I got a trouble with some
Unicode sequences that expanded to unexpandable CSs: they could’nt be used within
\csname...\endcsname. My TEXGuru advised to use \meanig to make all the name
‘other’. So—here we are.

Don’t use them in \edefs, they would expand not quite.

The next macro turns its #2 all into ‘other’ chars and assigns them to #1 which has
to be a CS or an active char.

492 \long\def\def@other#1#2{%\def@other
493 \long\def\gm@def@other@tempa{#2}%
494 \all@other#1{#2}}

The next macro is intended to be put in \edefs with a macro argument. The meaning
of the macro will be made all ‘other’ and the words ’(long) macro:-¿’ gobbled.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 113

495 \def\all@other#1{\@xa\gm@gobmacro\meaning#1}\all@other

The \gm@gobmacro macro above is applied to gobble the \meaning’s beginnig, long
macro:-> all ‘other’ that is.
496 \edef\@tempa{%
497 \def\@nx\gm@gobmacro##1\@xa\@gobble\string\macro:->{}}\gm@gobmacro
498 \@tempa

In the next two macros’ names, ‘unex’ stands both for not expanding the argument(s)
and for disastrously partial unexpandability of the macros themselves.
499 \long\def\unex@namedef#1#2{%\unex@namedef
500 \edef@other\gmu@tempa{#1}%
501 \@xa\long\@xa\def\csname\gmu@tempa\endcsname{#2}}

502 \long\def\unex@nameuse#1{%\unex@nameuse
503 \edef@other\gmu@tempa{#1}%
504 \csname\gmu@tempa\endcsname}

Varia

A very neat macro provided by doc. I copy it ˜verbatim.
505 \DeclareRobustCommand**{\leavevmode\lower.8ex\hbox{$\,\widetilde{\ }ˆ*

\,$}}

The standard \obeyspaces declaration just changes the space’s \catcode to 13 (‘ac-
tive’). Usually it is fairly enough because no one ‘normal’ redefines the active space. But
we are not normal and we do not do usual things and therefore we want a declaration
that not only will \activeate the space but also will (re)define it as the \ primitive. So
define \gmobeyspaces that obeys this requirement.

(This definition is repeated in gmverb.)
506 \begin{catcode}‘\ \active
507 \gdef\gmobeyspaces{\catcode‘\ \active\let \ }\gmobeyspaces
508 \end{catcode}

While typesetting poetry, I was surprised that sth. didn’t work. The reason was that
original \obeylines does \let not \def, so I give the latter possibility.
509 \bgroup\catcode‘\^^M\active% the comment signs here are crucial.
510 \firstofone{\egroup%
511 \def\defobeylines{\catcode‘\^^M=13 \def^^M{\par}}}%\defobeylines

Another thing I dislike in LATEX yet is doing special things for \...skip’s, ’cause
I like the Knuthian simplicity. So I sort of restore Knuthian meanings:
512 \def\deksmallskip{\vskip\smallskipamount}\deksmallskip
513 \def\undeksmallskip{\vskip-\smallskipamount}\undeksmallskip
514 \def\dekmedskip{\vskip\medskipamount}\dekmedskip
515 \def\dekbigskip{\vskip\bigskipamount}\dekbigskip

516 \def\hfillneg{\hskip 0pt plus -1fill\relax}\hfillneg

In some \if(cat?) test I needed to look only at the first token of a tokens’ string
(first letter of a word usually) and to drop the rest of it. So I define a macro that expands
to the first token (or {〈text〉}) of its argument.
517 \long\def\@firstofmany#1#2\@@nil{#1}\@firstofmany

File d: gmutils.sty Date: 2007/04/28 Version v0.80 114

A mark for the TODO!s:

518 \newcommand*{\TODO}[1][]{{%\TODO
519 \sffamily\bfseries\huge TODO!\if\relax#1\relax\else\space\fi#1}}

I like twocolumn tables of contents. First I tried to provide them by writing \begin{ˆ
multicols}{2} and \end{multicols} outto the .toc file but it worked wrong in some
cases. So I redefine the internal LATEX macro instead.

520 \newcommand*\twocoltoc{%\twocoltoc
521 \RequirePackage{multicol}%
522 \def\@starttoc##1{%\@starttoc
523 \begin{multicols}{2}\makeatletter\@input {\jobname .##1}%
524 \if@filesw \@xa \newwrite \csname tf@##1\endcsname
525 \immediate \openout \csname tf@##1\endcsname \jobname .##1ˆ

\relax
526 \fi
527 \@nobreakfalse\end{multicols}}}

528 \@onlypreamble\twocoltoc

The macro given below is taken from the multicol package (where its name is
\enough@room). I put it in this package since I needed it in two totally different works.

529 \newcommand\enoughpage[1]{%\enoughpage
530 \par
531 \dimen0=\pagegoal
532 \advance\dimen0 by-\pagetotal
533 \ifdim\dimen0<#1\relax\newpage\fi}

Two shorthands for debugging:

534 \newcommand*\tOnLine{\typeout{\on@line}}\tOnLine

535 \let\OnAtLine\on@line\OnAtLine

An equality sign properly spaced:

536 \newcommand*\equals{${}={}$}\equals

And for the LATEX’s pseudo-code statements:

537 \newcommand*\eequals{${}=={}$}\eequals

The job name without extension.

538 \def\gm@jobn#1.#2\@@nil{#1}

539 \def\jobnamewoe{\@xa\gm@jobn\jobname.\@@nil}% We add the dot to be sure\jobnamewoe
there is one although I’m not sure whether you can TEX a file that has no
extrension.

While typesetting a UTF-8 ls-R result I found a difficulty that follows: UTF-8 en-
coding is handled by the inputenc package. It’s O.K. so far. The UTF-8 sequences are
managed using active chars. That’s O.K. so far. While writing such sequences to a file,
the active chars expand. You feel the blues? When the result of expansion is read again,
it sometimes is again an active char, but now it doesn’t star a correct UTF-8 sequence.

Because of that I wanted to ‘freeze’ the active chars so that they would be \writen
to a file unexpanded. A very brutal operation is done: we look at all 256 chars’ catcodes
and if we find an active one, we \let it \relax. As the macro does lots and lots of
assignments, it shouldn’t be used in \edefs.

File d: gmutils.sty Date: 2007/04/28 Version v0.80 115

540 \def\freeze@actives{%\freeze@actives
541 \count\z@\z@
542 \@whilenum\count\z@<\@cclvi\do{%
543 \ifnum\catcode\count\z@=\active
544 \uccode‘\~=\count\z@
545 \uppercase{\let~\relax}%
546 \fi
547 \advance\count\z@\@ne}}

A macro that typesets all 256 chars of given font. It makes use of \@whilenum.
548 \newcommand*\ShowFont[1][6]{%\ShowFont
549 \begin{multicols}{#1}[The current font (the \f@encoding\ encoding):]
550 \parindent\z@
551 \count\z@\m@ne
552 \@whilenum\count\z@<\@cclv\do{
553 \advance\count\z@\@ne
554 \ \the\count\z@:~\char\count\z@\par}
555 \end{multicols}}

A couple of macros for typesetting liturgic texts such as psalmody of Liturgia Ho-
rarum. I wrap them into a declaration since they’ll be needed not every time.
556 \newcommand*\liturgiques[1][red]{% Requires the color package.\liturgiques
557 \gmu@RP{color}%
558 \newcommand*\czerwo{\small\color{#1}}% environment
559 \newcommand{\czer}[1]{\leavevmode{\czerwo##1}}% we leave vmode because

if we don’t, then verse’s \everypar would be executed in a group and thus
its effect lost.

560 \def*{\czer{$*$}}
561 \def\+{\czer{\dag}}
562 \newcommand*\nieczer[1]{\textcolor{black}{##1}}}

A command that issues a message urging to load a package if it has not been loaded.
563 \let\gmu@RP\RequirePackage

564 \AtBeginDocument{%
565 \renewcommand*\gmu@RP[2][]{%\gmu@RP
566 \@ifpackageloaded{#2}{}{%
567 \typeout{^^J! Package ‘#2’ not loaded!!! (\on@line)^^J}}}}

It’s very strange to me but it seems that c is not defined in the basic math packages.
It is missing at least in the Symbols book.
568 \providecommand*\continuum{\gmu@RP{eufrak}\mathfrak{c}}\continuum

And this macro I saw in the ltugproc document class nad I liked it.
569 \providecommand*\acro[1]{{\scshape\lowercase{#1}}}

570 \newcommand*\IMO{\acro{IMO}}
571 \newcommand*\AKA{\acro{AKA}}

Probably the only use of it is loading gmdocc.cls ‘as second class’. This command takes
first argument optional, options of the class, and second mandatory, the class name. I use
it in an article about gmdoc.
572 \def\secondclass{%
573 \newif\ifSecondClass

File d: gmutils.sty Date: 2007/04/28 Version v0.80 116

574 \SecondClasstrue
575 \@fileswithoptions\@clsextension}% [outeroff,gmeometric]{gmdocc} it’s load-

ing gmdocc.cls with all the bells and whistles except the error message.

576 \endinput

File d: gmutils.sty Date: 2007/04/28 Version v0.80 117

e. The gmiflink Package1

Written by Grzegorz ‘Natror’ Murzynowski,
natror at o2 dot pl
© 2005, 2006 by Grzegorz ‘Natror’ Murzynowski.
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{gmiflink}
3 [2006/08/16 v0.97 Conditionally hyperlinking package (GM)]

Introduction, usage

This package protects you against an error when a link is dangling and typesets some
plain text instead of a hyperlink then. It is intended for use with the hyperref package.
Needs two LATEX runs.

I used it for typesetting the names of the objects in a documentation of a computer
program. If the object had been defined a \hyperlink to its definition was made, oth-
erwise a plain object’s name was typeset. I also use this package in authomatic making
of hyperlinking indexes.

The package provides the macros \gmiflink, \gmifref and \gmhypertarget for
conditional making of hyperlinks in your document.

\gmhypertarget[〈name〉]{〈text〉} makes a \hypertarget{〈@name〉}{〈text〉} and\gmhypertarget
a \label{〈@name〉}.

\gmiflink[〈name〉]{〈text〉} makes a \hyperlink{〈@name〉}{〈text〉} to a proper hy-\gmiflink
pertarget if the corresponding label exists, otherwise it typesets 〈text〉.

\gmifref[〈name〉]{〈text〉} makes a (hyper-) \ref{〈@name〉} to the given label if the\gmifref
label exists, otherwise it typesets 〈text〉.

The 〈@name〉 argument is just 〈name〉 if the 〈name〉 is given, otherwise it’s 〈text〉 in
all three macros.

For the example(s) of use, examine the gmiflink.sty file, lines 45–58.

The remarks about installation and compiling of the documentation are analogous to
those in the chapter gmdoc.sty and therefore ommitted.

Contents of the gmiflink.zip archive

The distribution of the gmiflink package consists of the following four files.

gmiflink.sty
README
1 This file has version number v0.97 dated 2006/08/16.

118

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

gmiflinkDoc.tex
gmiflinkDoc.pdf

The Code

4 \@ifpackageloaded{hyperref}{}{\message {^^J^^J gmiflink package:
5 There’s no use of me without hyperref package, I end my

input.^^J}\endinput}

6 \providecommand\empty{}

A new counter, just in case
7 \newcounter{GMhlabel}
8 \setcounter{GMhlabel}{0}

The macro given below creates both hypertarget and hyperlabel, so that you may
reference both ways: via \hyperlink and via \ref. It’s pattern is the \label macro,
see LATEX Source2e, file x, line 32.

But we don’t want to gobble spaces before and after. First argument will be a name
of the hypertarget, by default the same as typeset text, i.e., argument #2.

9 \DeclareRobustCommand*\gmhypertarget{%\gmhypertarget
10 \@ifnextchar{[}{\gm@hypertarget}{\@dblarg{\gm@hypertarget}}}

11 \def\gm@hypertarget[#1]#2{% If argument #1 = \empty, then we’ll use #2, i.e., the
same as name of hypertarget.

12 \refstepcounter{GMhlabel}% we \label{\gmht@firstpar}
13 \hypertarget{#1}{#2}%
14 \protected@write\@auxout{}{%
15 \string\newlabel{#1}{{#2}{\thepage}{\relax}{GMhlabel.\arabic{ˆ

GMhlabel}}{}}}%
16 }% end of \gm@hypertartget.

We define a macro such that if the target exists, it makes \ref, else it typesets
ordinary text.

17 \DeclareRobustCommand*\gmifref{\@ifnextchar{[}{\gm@ifref}{%]\gmifref
18 \@dblarg{\gm@ifref}}}

19 \def\gm@ifref[#1]#2{%
20 \expandafter\ifx\csname r@#1\endcsname\relax\relax%
21 #2\else\ref{#1}\fi%
22 }% end of \gm@ifref
23 \DeclareRobustCommand*\gmiflink{\@ifnextchar{[}{\gm@iflink}{%\gmiflink
24 \@dblarg{\gm@iflink}}}

25 \def\gm@iflink[#1]#2{%
26 \expandafter\ifx\csname r@#1\endcsname\relax\relax%
27 #2\else\hyperlink{#1}{#2}\fi%
28 }% end of \gm@iflink

It’s robust because when just \newcommand*ed, use of \gmiflink in an indexing
macro resulted in errors: \@ifnextchar has to be \noexpanded in \edefs.

29 \endinput

The old version — all three were this way primarily.

File e: gmiflink.sty Date: 2006/08/16 Version v0.97 119

\newcommand*\gmiflink[2][\empty]{{%
\def\gmht@test{\empty}\def\gmht@firstpar{#1}%
\ifx\gmht@test\gmht@firstpar\def\gmht@firstpar{#2}\fi%
\expandafter\ifx\csname r@\gmht@firstpar\endcsname\relax\relax%
#2\else\hyperlink{\gmht@firstpar}{#2}\fi%

}}

File e: gmiflink.sty Date: 2006/08/16 Version v0.97 120

f. The gmverb Package1

April 30, 2007

This is (a documentation of) file gmverb.sty, intended to be used with LATEX 2ε as a pack-
age for a slight redefinition of the \verb macro and verbatim environment and for short
verb marking such as |\mymacro|.

Written by Natror (Grzegorz Murzynowski),
natror at o2 dot pl
© 2005, 2006 by Natror (Grzegorz Murzynowski).
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html for the

details of that license.
LPPL status: ”author-maintained”.
Many thanks to my TEX Guru Marcin Woliński for his TEXnical support.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{gmverb}
3 [2007/04/24 v0.82 After shortvrb (FM) but my way (GM)]

Intro, Usage

This package redefines the \verb command and the verbatim environment so that the
verbatim text can break into lines, with % (or another character chosen to be the com-
ment char) as a ‘hyphen’. Moreover, it allows the user to define her own verbatim-like
environments provided their contents would be not horribly long (as long as a macro’s
argument may be at most).

This package also allows the user to declare a chosen char(s) as a ‘short verb’ e.g., to
write |\a\verbatim\example| instead of \verb|\a\verbatim\example|.

The gmverb package redefines the \verb command and the verbatim environment in
such a way that , { and \ are breakable, the first with no ‘hyphen’ and the other two
with the comment char as a hyphen. I.e. {〈subsequent text〉} breaks into {%

〈subsequent text〉} and 〈text〉\mymacro breaks into 〈text〉%
\mymacro.
(If you don’t like linebreaking at backslash, there’s the \fixbslash declaration (ob-\fixbslash

serving the common scoping rules, hence OCSR) and an analogous declaration for the
left brace: \fixlbrace.)\fixlbrace

The default ‘hyphen’ is % since it’s the default comment char. If you wish another
char to appear at the linebreak, use the \VerbHyphen declaration that takes \〈char〉 as\VerbHyphen
the only argument. This declaration is always global.

Another difference is the \verbeolOK declaration (OCSR). Within its scope, \verb\verbeolOK
1 This file has version number v0.82 dated 2007/04/24.

121

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

allows an end of a line in its argument and typesets it just as a space.
As in the standard version(s), the plain \verb typesets the spaces blank and \verb*

makes them visible.
Moreover, gmverb provides the \MakeShortVerb macro that takes a one-char control\MakeShortVerb

sequence as the only argument and turns the char used into a short verbatim delimiter,
e.g., after \MakeShortVerb*\| (as you guess, the declaration has its starred version,
which is for visible spaces, and the non-starred for the spaces blank) you may type
|\mymacro| to get \mymacro instead of typing \verb+\mymacro+. Because the char used
in this example is my favourite and used just this way by DEK in the The TEXbook’s
format, gmverb provides a macro \dekclubs as a shorthand for \MakeShortVerb*\|.\dekclubs

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical marker in tables and with the tikz package. If this happens, you can declare
e.g., \DeleteShortVerb\| and the previous meaning of the char used shall be restored.\DeleteShortVerb

One more difference between gmverb and shortvrb is that the chars \activeated by
\MakeShortVerb in the math mode behave as if they were ‘other’, so you may type e.g.,
$|$ to get | and + \activeated this way is in the math mode typeset properly etc.

However, if you don’t like such a conditional behaviour, you may use \OldMakeShortVerb\OldMakeShortVerb
instead, what I do when I like to display short verbatims in displaymath.

There’s one more declaration provided by gmverb: \dekclubs, which is a shorthand\dekclubs
for \MakeShortVerb*\| and \dekclubs* for \OldMakeShortVerb*\|.\dekclubs*

So that, after the latter declaration, you can write
\[|〈verbatim stuff 〉|\]

instead of
\[\hbox{|〈the stuff 〉|}\]

to get a displayed shortverb.
Both versions of \dekclubs OCSR.
As many good packages, this also does not support any options.
The remarks about installation and compiling of the documentation are analogous to

those in the chapter gmdoc.sty and therefore ommitted.

Contents of the gmverb.zip Archive

The distribution of the gmverb package consists of the following four files.

gmverb.sty
README
gmverbDoc.tex
gmverbDoc.pdf

The Code

Preliminaries

4 \RequirePackage{gmutils}[2007/04/24]

For \firstofone, \afterfi, \gmobeyspaces, \@ifnextcat and \noexpand’s and
\expandafter’s shorthands \@nx and \@xa resp.

5 \bgroup
6 \@makeother\%
7 \firstofone{\egroup

File f: gmverb.sty Date: 2007/04/24 Version v0.82 122

8 \def\twelvepercent{%}}\twelvepercent

Someone may want to use another char for comment, but we assume here ‘orthodoxy’.
Other assumptions in gmdoc are made. The ‘knowledge’ what char is the comment char
is used to put proper ‘hyphen’ when a verbatim line is broken.

9 \let\verbhyphen\twelvepercent\verbhyphen

Provide a declaration for easy changing it. Its argument should be of \〈char〉 form
(of course, a 〈char〉12is also allowed).

10 \def\VerbHyphen#1{%\VerbHyphen
11 {\escapechar\m@ne
12 \@xa\gdef\@xa\verbhyphen\@xa{\string#1}}}

As you see, it’s always global.

The Breakables

Let’s define a \discretionary left brace such that if it breaks, it turns {% at the end of
line. We’ll use it in almost Knuthian \ttverbatim—it’s part of this ‘almost’.

13 \bgroup \catcode‘\<=1 \@makeother\{ \catcode‘\>=2 %
14 \firstofone<\egroup
15 \def\breaklbrace<\discretionary<{\verbhyphen><><{>>%\breaklbrace
16 \def\twelvelbrace<{>%\twelvelbrace
17 >% of \firstofone

18 \bgroup \catcode‘\<=1 \catcode‘\{=\active \catcode‘\>=2
19 \firstofone<\egroup
20 \def\dobreaklbrace<\catcode‘\{=\active \def{<\breaklbrace>>%
21 >% end of \firstofone.

The \bslash macro defined below I use also in more ‘normal’ TEXing, e.g., to
\typeout some \outer macro’s name.

22 {\catcode‘\!=0 \@makeother\\%
23 !gdef!bslash{\}%\bslash
24 !gdef!breakbslash{!discretionary{!verbhyphen}{\}{\}}%\breakbslash
25 }

Sometimes linebreaking at a backslash may be unwelcome. The basic case, when the
first CS in a verbatim breaks at the lineend leaving there %, is covered by line 182. For
the others let’s give the user a countercrank:

26 \newcommand*\fixbslash{\let\breakbslash=\bslash}% to use due to the common\fixbslash
scoping rules. But for the special case of a backslash opening a verbatim scope,
we deal specially in the line 182.

Analogously, let’s provide a possibility of ‘fixing’ the left brace:

27 \newcommand*\fixlbrace{\let\breaklbrace=\twelvelbrace}\fixlbrace

28 {\catcode‘\!=0 %
29 !catcode‘!\=!active
30 !gdef!dobreakbslash{!catcode‘!\=!active !def\{!breakbslash}}%
31 }

The macros defined below, \visiblebreakspaces and \twelveclub we’ll use in the
almost Knuthian macro making verbatim. This ‘almost’ makes a difference.

File f: gmverb.sty Date: 2007/04/24 Version v0.82 123

32 \bgroup\catcode‘\ =12 %
33 \firstofone{\egroup%
34 \def\twelvespace{ }%\twelvespace
35 \def\breakabletwelvespace{\discretionary{ }{}{ }}}

36 \bgroup\obeyspaces% it’s just re\catcode’ing.
37 \firstofone{\egroup%
38 \newcommand*\activespace{ }%\activespace
39 \newcommand*\dobreakvisiblespace{\let =\breakabletwelvespace\obeyspaces}%

%\defing it caused a stack overflow disaster with gmdoc.
40 \newcommand*\dobreakblankspace{\let =\space\obeyspaces}%
41 }

42 \bgroup\@makeother\|
43 \firstofone{\egroup\def\twelveclub{|}}\twelveclub

Almost-Knuthian \ttverbatim

\ttverbatim comes from The TEXbook too, but I add into it a LATEX macro changing
the \catcodes and make spaces visible and breakable and left braces too.

44 \newcommand*\ttverbatim{%\ttverbatim
45 \let\do=\do@noligs \verbatim@nolig@list
46 \let\do=\@makeother \dospecials
47 \dobreaklbrace\dobreakbslash
48 \dobreakspace
49 \tt
50 \ttverbatim@hook}

While typesetting stuff in the QX fontencoding I noticed there were no spaces in
verbatims. That was because the QX encoding doesn’t have any reasonable char at
position 32. So we provide a hook in the very core of the verbatim making macros to set
proper fontencoding for instance.

51 \@emptify\ttverbatim@hook

11
52 \def\VerbT1{\def\ttverbatim@hook{\fontencoding{T1}\selectfont}}\VerbT

We wish the visible spaces to be the default.
53 \let\dobreakspace=\dobreakvisiblespace

The Core: From shortvrb

The below is copied verbatim ;-) from doc.pdf and then is added my slight changes.
54 \def\MakeShortVerb{%\MakeShortVerb*

\MakeShortVerb 55 \@ifstar
56 {\def\@shortvrbdef{\verb*}\@MakeShortVerb}%
57 {\def\@shortvrbdef{\verb}\@MakeShortVerb}}

58 \def\@MakeShortVerb#1{%\@MakeShortVerb
59 \@xa\ifx\csname cc\string#1\endcsname\relax
60 \@shortvrbinfo{Made }{#1}\@shortvrbdef
61 \add@special{#1}%
62 \AddtoPrivateOthers#1% a macro to be really defined in gmdoc.
63 \@xa

File f: gmverb.sty Date: 2007/04/24 Version v0.82 124

64 \xdef\csname cc\string#1\endcsname{\the\catcode‘#1}%
65 \begingroup
66 \catcode‘\~\active \lccode‘\~‘#1%
67 \lowercase{%
68 \global\@xa\let
69 \csname ac\string#1\endcsname~%
70 \@xa\gdef\@xa~\@xa{%
71 \@xa\ifmmode\@xa\string\@xa~%
72 \@xa\else\@xa\afterfi{\@shortvrbdef~}\fi}}% This terrible number of

\expandafters is to make the shortverb char just other in the math
mode (my addition).

73 \endgroup
74 \global\catcode‘#1\active
75 \else
76 \@shortvrbinfo\@empty{#1 already}{\@empty\verb(*)}%
77 \fi}

78 \def\DeleteShortVerb#1{%\DeleteShortVerb
79 \@xa\ifx\csname cc\string#1\endcsname\relax
80 \@shortvrbinfo\@empty{#1 not}{\@empty\verb(*)}%
81 \else
82 \@shortvrbinfo{Deleted }{#1 as}{\@empty\verb(*)}%
83 \rem@special{#1}%
84 \global\catcode‘#1\csname cc\string#1\endcsname
85 \global \@xa\let \csname cc\string#1\endcsname \relax
86 \ifnum\catcode‘#1=\active
87 \begingroup
88 \catcode‘\~\active \lccode‘\~‘#1%
89 \lowercase{%
90 \global\@xa\let\@xa~%
91 \csname ac\string#1\endcsname}%
92 \endgroup \fi \fi}

My little addition
93 \@ifpackageloaded{gmdoc}{%
94 \def\gmv@packname{gmdoc}}{%
95 \def\gmv@packname{gmverb}}

96 \def\@shortvrbinfo#1#2#3{%\@shortvrbinfo
97 \PackageInfo{\gmv@packname}{%
98 ^^J\@empty #1\@xa\@gobble\string#2 a short reference
99 for \@xa\string#3}}

100 \def\add@special#1{%\add@special
101 \rem@special{#1}%
102 \@xa\gdef\@xa\dospecials\@xa
103 {\dospecials \do #1}%
104 \@xa\gdef\@xa\@sanitize\@xa
105 {\@sanitize \@makeother #1}}

For the commentary on the below macro see the doc package’s documentation. Here
let’s only say it’s just amazing: so tricky and wicked use of \do. The internal macro
\rem@special defines \do to expand to nothing if the \do’s argument is the one to
be removed and to unexpandable CSs \do and 〈\do’s argument〉 otherwise. With \do

File f: gmverb.sty Date: 2007/04/24 Version v0.82 125

defined this way the entire list is just globally expanded itself. Analogous hack is done
to the \@sanitize list.

106 \def\rem@special#1{%\rem@special
107 \def\do##1{%
108 \ifnum‘#1=‘##1 \else \@nx\do\@nx##1\fi}%
109 \xdef\dospecials{\dospecials}%
110 \begingroup
111 \def\@makeother##1{%
112 \ifnum‘#1=‘##1 \else \@nx\@makeother\@nx##1\fi}%
113 \xdef\@sanitize{\@sanitize}%
114 \endgroup}

And now the definition of verbatim itself. As you’ll see (I hope), the internal macros
of it look for the name of the current environment (i.e., \@currenvir’s meaning) to set
their expectation of the environment’s \end properly. This is done to allow the user to
define his/her own environments with \verbatim inside them. I.e., as with the verbatim
package, you may write \verbatim in the begdef of your environment and then necessarily
\endverbatim in its enddef. Of course (or maybe surprisingly), the commands written
in the begdef after \verbatim will also be executed at \begin{〈environment〉}.

115 \def\verbatim{\@beginparpenalty \predisplaypenalty \@verbatimverbatim
\verbatim 116 \frenchspacing \gmobeyspaces \@xverbatim}% in the LATEX version there’s %ˆ

\@vobeyspaces instead of \gmobeyspaces.
117 \@namedef{verbatim*}{\@beginparpenalty \predisplaypenalty \@verbatimverbatim*
118 \@sxverbatim}

119 \def\endverbatim{\@@par\endverbatim
120 \ifdim\lastskip >\z@
121 \@tempskipa\lastskip \vskip -\lastskip
122 \advance\@tempskipa\parskip \advance\@tempskipa -\@outerparskip
123 \vskip\@tempskipa
124 \fi
125 \addvspace\@topsepadd
126 \@endparenv}

127 \n@melet{endverbatim*}{endverbatim}

128 \begingroup \catcode ‘!=0 %
129 \catcode ‘[= 1 \catcode‘]=2 %
130 \catcode‘\{=\active
131 \@makeother\}%
132 \catcode‘\\=\active%
133 !gdef!@xverbatim[%\@xverbatim
134 !edef!verbatim@edef[%
135 !def!noexpand!verbatim@end%
136 ####1!noexpand\end!noexpand{!@currenvir}[%
137 ####1!noexpand!end[!@currenvir]]]%
138 !verbatim@edef
139 !verbatim@end]%
140 !endgroup

141 \let\@sxverbatim=\@xverbatim\@sxverbatim

F. Mittelbach says the below is copied almost verbatim from LATEX source, modulo
\check@percent.

File f: gmverb.sty Date: 2007/04/24 Version v0.82 126

142 \def\@verbatim{%\@verbatim

Originally here was just \trivlist \item[], but it worked badly in my document(s),
so let’s take just highlights of if.

143 \parsep\parskip

From \@trivlist:

144 \if@noskipsec \leavevmode \fi
145 \@topsepadd \topsep
146 \ifvmode
147 \advance\@topsepadd \partopsep
148 \else
149 \unskip \par
150 \fi
151 \@topsep \@topsepadd
152 \advance\@topsep \parskip
153 \@outerparskip \parskip

(End of \trivlistlist and \@trivlist highlights.)

154 \@@par\addvspace\@topsep
155 \if@minipage\else\vskip\parskip\fi
156 \leftmargin\parindent% please notify me if it’s a bad idea.
157 \advance\@totalleftmargin\leftmargin
158 \raggedright
159 \leftskip\@totalleftmargin% so many assignments to preserve the list think-

ing for possible future changes. However, we may be sure no internal list
shall use \@totalleftmargin as far as no inner environments are possible
in verbatim(*).

160 \@@par% most probably redundant.
161 \@tempswafalse
162 \def\par{% but I don’t want the terribly ugly empty lines when a blank line is met.

Let’s make them gmdoc-like i.e., let a vertical space be added as in between
stanzas of poetry. Originally \if@tempswa\hbox{}\fi, in my version will
be

163 \ifvmode\if@tempswa\addvspace\stanzaskip\@tempswafalse\fi\fi
164 \@@par
165 \penalty\interlinepenalty \check@percent}%
166 \everypar{\@tempswatrue\hangindent\verbatimhangindent\hangafter\@ne}%

since several chars are breakable, there’s a possibility of breaking some lines.
We wish them to be hanging indented.

167 \obeylines
168 \ttverbatim}

169 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}
170 \stanzaskip=\medskipamount

171 \newlength\verbatimhangindent\verbatimhangindent
172 \verbatimhangindent=3em

173 \providecommand*\check@percent{}

In the gmdoc package shall it be defined to check if the next line begins with a com-
ment char.

File f: gmverb.sty Date: 2007/04/24 Version v0.82 127

Similarly, the next macro shall in gmdoc be defined to update a list useful to that
package. For now let it just gobble its argument.

174 \providecommand*\AddtoPrivateOthers[1]{}

Both of the above are \provided to allow the user to load gmverb after gmdoc (which
would be redundant since gmdoc loads this package on its own, but anyway should be
harmless).

Let’s define the ‘short’ verbatim command.

175 \def\verb{\relax\ifmmode\hbox\else\leavevmode\null\fi\verb*
\verb 176 \bgroup

177 \ttverbatim
178 \gm@verb@eol
179 \@ifstar{\@sverb@chbsl}{\gmobeyspaces\frenchspacing\@sverb@chbsl}}% in

the LATEX version there’s \@vobeyspaces instead of \gmobeyspaces.
180 \def\@sverb@chbsl#1{\@sverb#1\check@bslash}

181 \def\@def@breakbslash{\breakbslash}% because \ is \defined as \breakbslash
not \let.

For the special case of a backslash opening a (short) verbatim, in which it shouldn’t
be breakable, we define the checking macro.

182 \def\check@bslash{\@ifnextchar{\@def@breakbslash}{\bslash\@gobble}{}}\check@bslash

183 \let\verb@balance@group\@empty

184 \def\verb@egroup{\global\let\verb@balance@group\@empty\egroup}\verb@egroup

185 \let\gm@verb@eol\verb@eol@error\gm@verb@eol

The latter is a LATEX 2ε kernel macro that \activeates line end and defines it to
close the verb group and to issue an error message. We use a separate CS ’cause we
are not quite positive to the forbidden line ends idea. (Although the allowed line ends
with a forgotten closing shortverb char caused funny disasters at my work a few times.)
Another reason is that gmdoc wishes to redefine it for its own queer purpose.

However, let’s leave my former ‘permissive’ definition under the \verb@eol name.

186 \begingroup
187 \obeylines\obeyspaces%
188 \gdef\verb@eolOK{\obeylines%\verb@eolOK
189 \def^^M{ \check@percent}%
190 }%
191 \endgroup

The \check@percent macro here is \provided to be \@empty but in gmdoc employed
shall it be.

Let us leave (give?) a user freedom of choice:

192 \def\verbeolOK{\let\gm@verb@eol\verb@eolOK}\verbeolOK

And back to the main matter,

193 \def\@sverb#1{%
194 \catcode‘#1\active \lccode‘\~‘#1%
195 \gdef\verb@balance@group{\verb@egroup
196 \@latex@error{Illegal use of \bslash verb command}\@ehc}%
197 \aftergroup\verb@balance@group
198 \lowercase{\let~\verb@egroup}}

File f: gmverb.sty Date: 2007/04/24 Version v0.82 128

199 \def\verbatim@nolig@list{\do\‘\do\<\do\>\do\,\do\’\do\-}\verbatim@nolig@list

200 \def\do@noligs#1{%\do@noligs
201 \catcode‘#1\active
202 \begingroup
203 \lccode‘\~=‘#1\relax
204 \lowercase{\endgroup\def~{\leavevmode\kern\z@\char‘#1}}}

And finally, what I thought to be so smart and clever, now is just one of many possible
uses of a general almost Rainer Schöpf’s macro:

205 \def\dekclubs{\@ifstar{\OldMakeShortVerb*\|}{\MakeShortVerb*\|}}\dekclubs

But even if a shortverb is unconditional, the spaces in the math mode are not printed.
So,

206 \newcommand*\edverbs{%\edverbs
207 \let\gmv@dismath\[%
208 \let\gmv@edismath\]%
209 \def\[{%
210 \@ifnextac\gmv@disverb\gmv@dismath}%
211 \let\edverbs\relax}%

212 \def\gmv@disverb{%
213 \gmv@dismath
214 \hbox\bgroup\def\]{\egroup\gmv@edismath}}

doc- And shortvrb-Compatibility

One of minor errors while TEXing doc.dtx was caused by my understanding of a ‘short-
verb’ char: at my settings, in the math mode an active ‘shortverb’ char expands to itself’s
‘other’ version thanks to \string. doc/shortvrb’s concept is different, there a ‘shortverb’
char should work as usual in the math mode. So let it may be as they wish:

215 \def\old@MakeShortVerb#1{%\old@MakeShortVerb
216 \@xa\ifx\csname cc\string#1\endcsname\relax
217 \@shortvrbinfo{Made }{#1}\@shortvrbdef
218 \add@special{#1}%
219 \AddtoPrivateOthers#1% a macro to be really defined in gmdoc.
220 \@xa
221 \xdef\csname cc\string#1\endcsname{\the\catcode‘#1}%
222 \begingroup
223 \catcode‘\~\active \lccode‘\~‘#1%
224 \lowercase{%
225 \global\@xa\let\csname ac\string#1\endcsname~%
226 \@xa\gdef\@xa~\@xa{%
227 \@shortvrbdef~}}%
228 \endgroup
229 \global\catcode‘#1\active
230 \else
231 \@shortvrbinfo\@empty{#1 already}{\@empty\verb(*)}%
232 \fi}

233 \def\OldMakeShortVerb{\begingroup\OldMakeShortVerb
234 \let\@MakeShortVerb=\old@MakeShortVerb
235 \@ifstar{\eg@MakeShortVerbStar}{\eg@MakeShortVerb}}

File f: gmverb.sty Date: 2007/04/24 Version v0.82 129

236 \def\eg@MakeShortVerbStar#1{\MakeShortVerb*#1\endgroup}\eg@MakeShortVerbStar
237 \def\eg@MakeShortVerb#1{\MakeShortVerb#1\endgroup}\eg@MakeShortVerb

238 \endinput% for the Tradition.

File f: gmverb.sty Date: 2007/04/24 Version v0.82 130

Change History

gmdoc v0.96
General:

CheckSum 2395, 4
gmdoc v0.98d

General:
An entry to show the change history
works: watch and admire. Some sixty
\changes entries irrelevant for the
users-other-than-myself are hidden
due to the trick described on p. 64.

gmdoc v0.99a
General:

CheckSum 4479, 4
gmdoc v0.99b

General:
Thanks to the \edverbs declaration in
the class, displayed shortverbs
simplified; Emacs mode changed to
doctex. Author’s true name more
exposed, 88

gmdoc v0.99c
\^^M:

a bug fix: redefinition of it left solely to
\QueerEOL, 38

General:
A bug fixed in \DocInput and all
\expandafters changed to \@xa and
\noexpands to \@nx, 88

The TEX-related logos now are
declared with \DeclareLogo provided
in gmutils, 88

\DocInput:
added ensuring the code delimiter to
be the same at the end as at the
beginning, 27

gmdoc v0.99d
General:

\@namelet renamed to \n@melet to
solve a conflict with the beamer class
(in gmutils at first), 88

\afterfi & pals made two-argument, 88
\FileInfo:

added, 77
gmdoc v0.99e

General:
a bug fixed in \DocInput and
\IndexInput, 88

CheckSum 4574, 4
gmdocc v0.74

\edverbs:
used to simplify displaying shortverbs, 92

gmdocc v0.75
General:

CheckSum 130, 89
gmdocDoc vNo

General:
CheckSum 41, 93

gmutils v0.74
General:

Added macros to make sectioning
commands of mwcls and standard
classes compatible. Now my
sectionings allow two optionals in
both worlds and with mwcls if there’s
only one optional, it’s the title to toc
and running head not just to the
latter, 117

The catcodes of \begin and \end
argument(s) don’t have to agree
strictly anymore: an environment is
properly closed if the \begin’s and
\end’s arguments result in the same
\csname, 99

gmutils v0.75
\@ifnextac:

added, 97
\@ifnextcat:

\let for #1 changed to \def to allow
things like \noexpand˜ , 96

gmutils v0.76
General:

A ‘fixing’ of \dots was rolled back
since it came out they were O.K. and
that was the QX encoding that prints
them very tight, 117

\freeze@actives:
added, 115

gmutils v0.77
General:

\afterfi & pals made two-argument
as the Marcin Woliński’s analogoi are.
At this occasion some redundant
macros of that family are deleted, 117

gmutils v0.78

131

General:
\@namelet renamed to \n@melet to
solve a conflict with the beamer class.
The package contents regrouped, 117

gmutils v0.79
\not@onlypreamble:

All the actions are done in a group and
therefore \xdef used instead of \edef
because this command has to use \do
(which is contained in the
\@preamblecmds list) and
\not@onlypreamble itself should be
able to be let to \do, 106

gmutils v0.80
General:

CheckSum 1689, 94
\hfillneg:

added, 114
gmverb v0.79

\edverbs:
added, 129

gmverb v0.80
\edverbs:

debugged, i.e. \hbox added back and
redefinition of \[, 129

\ttverbatim:
\ttverbatim@hook added, 124

gmverb v0.81
General:

\afterfi made two-argument, 130
gmverb v0.82

General:
CheckSum 663, 121

Index

Numbers written in italic refer to the code lines where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in roman
refer to the code lines where the entry is used. The numbers with no prefix are page
numbers. All the numbers are hyperlinks.

*, a-452, a-562, a-1056,
a-1706, d-64, d-65,
d-66, d-68, d-70,
d-71, d-72, d-76,
d-505, d-560

\+, a-1056, a-1593, d-561
\-, a-1056, d-190, f-199
\<...>, d-177, 84
\@@codeline@wrindex, a-709
\@@nil, a-627, a-668, a-837,

a-842, a-1135,
a-1137, a-1145,
a-1528, d-182, d-183,
d-185, d-517, d-538,
d-539

\@@par, a-125, a-317, a-328,
a-361, a-890

\@@settexcodehangi, a-50,
a-50, a-185, a-218

\@M, a-1139
\@MakeShortVerb, a-1718,

f-56, f-57, f-58, f-234
\@NoEOF, a-1726, a-1728
\@aalph, a-1307, a-1308
\@addtoreset, a-1333
\@aftercodegfalse, a-202,

a-320, a-370, a-382
\@aftercodegtrue, a-82,

a-204, a-222, a-309,
a-370, a-1071, a-1077

\@afternarrgfalse, a-82,
a-204, a-309, a-371,
a-1071, a-1077

\@afternarrgtrue, a-118,
a-371

\@badend, d-97
\@beginputhook, a-98,

a-139, a-140
\@begnamedgroup, d-83,

d-84, d-90, d-93
\@car, d-470
\@cclv, d-552
\@cclvi, d-542

\@charlb, a-1299
\@charrb, a-1301
\@checkend, d-94
\@clsextension, d-575
\@clubpenalty, a-92
@codeskipput, a-362, 35
\@codeskipputgfalse,

a-118, a-190, a-310,
a-362, a-1071,
a-1078, a-1579

\@codeskipputgtrue, a-76,
a-80, a-82, a-192,
a-202, a-320, a-361,
a-362, a-377, a-764,
a-768, a-831, a-834

\@codespacesblanktrue,
a-24

\@codetonarrskip, a-99,
a-167, a-174, a-299,
a-308, a-327, a-339,
a-372, a-392

\@countalllinestrue, a-10
\@ctrerr, a-1314
\@currenvir, a-792, a-805,

a-806, d-87, d-96,
f-136, f-137

\@currenvir*, a-786
\@currenvline, d-88
\@currsize, d-102, d-103,

d-104, d-105, d-106,
d-107, d-108, d-109,
d-110, d-111

\@debugtrue, b-13
\@def@breakbslash, f-181,

f-182
\@defentryze, a-570,

a-574, a-576, a-714
\@docinclude, a-1261, a-1262
\@dsdirgfalse, a-197,

a-206, a-231, a-259,
a-295, a-302, a-304,
a-822

\@dsdirgtrue, a-120, a-188

\@emptify, a-147, a-179,
a-540, a-581, a-637,
a-677, a-682, a-683,
a-1023, a-1063,
a-1065, a-1132,
a-1306, a-1416,
a-1476, a-1584,
a-1585, a-1629,
a-1633, a-1711,
a-1712, a-1713, d-26,
d-27, d-28, f-51

\@endinputhook, a-112,
a-137, a-138

\@enumctr, d-407, d-408, d-414
\@enumdepth, d-403, d-406,

d-407
\@fileswfalse, a-1568
\@fileswithoptions, d-575
\@firstofmany, a-627,

a-668, a-1528, d-517
\@fshdafalse, a-1494, a-1496
\@fshdatrue, a-1494, a-1495
\@gif, d-9, d-10, d-12
\@gmccnochangesfalse, b-16
\@gmccnochangestrue,

b-16, b-17
\@ifQueerEOL, a-144,

a-145, a-402, a-408,
a-439, a-1051, a-1189

\@ifismember, a-479, a-485
\@ifl@aded, d-268
\@ifncat, d-46, d-47, d-59
\@ifnextac, d-60, f-210
\@ifnextcat, a-461, a-475,

d-42, d-61
\@ifnextspace, d-69
\@ifnotmw, b-53, d-311,

d-313, d-369, d-401
\@ifstarl, a-564, a-567,

a-584, a-594, a-619,
a-642, a-649, a-686,
a-689, a-728, a-741,
a-1654

133

\@indexallmacrosfalse, a-15
\@indexallmacrostrue,

a-15, a-16
\@itemdepth, d-419, d-422,

d-423
\@itemitem, d-423, d-424
\@latexerr, a-1260, a-1375
\@linesnotnumalse, a-5
\@linesnotnumtrue, a-5, a-6
\@ltxDocIncludefalse,

a-1408
\@ltxDocIncludetrue,

a-1408, a-1412
\@makefntext, a-1427
\@marginparsusedfalse,

a-17, a-22
\@marginparsusedtrue,

a-17, a-18, a-19,
a-20, a-21

\@newlinegfalse, a-83,
a-172, a-207, a-269,
a-279, a-286

\@newlinegtrue, a-83,
a-119, a-187

\@nobreakfalse, d-527
\@noindexfalse, a-11
\@noindextrue, a-11, a-12
\@nx, a-102, d-5, d-37, d-51,

d-63, d-218, d-225,
d-243, d-259, d-260,
d-263, d-272, d-274,
d-275, d-442, d-497,
f-108, f-112

\@oarg, d-197, d-198, d-199
\@oargsq, d-197, d-199, d-207
\@oldmacrocode, a-787, a-801
\@oldmacrocode@launch,

a-775, a-777, a-778
\@onlypreamble, a-1414,

a-1684, a-1686,
a-1688, d-528

\@pageinclindexfalse,
a-523, a-541

\@pageinclindextrue,
a-541, a-760

\@pageindexfalse, a-13,
a-1685

\@pageindextrue, a-13,
a-14, a-544, a-1687

\@parg, d-200, d-201, d-202
\@pargp, d-200, d-202, d-208
\@parindent, d-410, d-411,

d-413, d-426, d-427,
d-429

\@pkgextension, d-269
\@preamblecmds, d-264,

d-265, d-273, d-276

\@relaxen, a-72, a-342,
a-354, a-997, a-1131,
a-1160, a-1289,
a-1316, a-1465,
a-1466, a-1618,
a-1622, a-1698,
a-1727, d-30, d-31, d-32

\@reserveda, d-70, d-72
\@shortvrbdef, f-56, f-57,

f-60, f-72, f-217, f-227
\@shortvrbinfo, f-60, f-76,

f-80, f-82, f-96, f-217,
f-231

\@starttoc, d-522
\@sverb@chbsl, f-179, f-180
\@toodeep, d-404, d-420
\@topnewpage, d-357
\@topsep, f-151, f-152, f-154
\@topsepadd, f-125, f-145,

f-147, f-151
\@trimandstore, a-121,

a-166, a-383, a-383,
a-388, a-390

\@trimandstore@hash,
a-384, a-385

\@trimandstore@ne, a-388,
a-390

\@uresetlinecountfalse, a-7
\@uresetlinecounttrue,

a-7, a-8
\@usgentryze, a-579,

a-587, a-591, a-621,
a-623, a-719, a-737,
a-1658, a-1663

\@whilenum, d-542, d-552
\@xa, a-44, d-4, d-13, d-15,

d-22, d-35, d-59,
d-95, d-96, d-116,
d-165, d-194, d-215,
d-218, d-240, d-243,
d-252, d-256, d-259,
d-260, d-380, d-386,
d-408, d-424, d-437,
d-495, d-497, d-501,
d-524, d-539, f-12,
f-59, f-63, f-68, f-70,
f-71, f-72, f-79, f-85,
f-90, f-98, f-99, f-102,
f-104, f-216, f-220,
f-225, f-226

\@xifncat, d-49, d-59
^^A, 7 , a-406
^^B, 7 , a-400
\^^M, a-427
^^M, a-100, a-186

\aalph, a-1307, a-1334

\abovedisplayskip, a-62
\acro, d-569, d-570, d-571
\activespace, f-38
\actualchar, 18, a-441,

a-484, a-529, a-1097,
a-1121, a-1126,
a-1244, a-1373, a-1704

\add@special, f-61, f-100,
f-218

\addto@estoindex, a-573,
a-590, a-597, a-713,
a-718, a-723

\addto@estomarginpar,
a-657, a-712, a-717,
a-720

\addto@macro, d-21, d-25
\addtomacro, a-722, a-725,

a-775, a-776, a-862, d-25
\addtonummacro, d-294
\AddtoPrivateOthers, 17 ,

a-431, f-62, f-174, f-219
\afterfi, a-146, a-232,

a-235, a-271, a-273,
a-388, a-430, a-461,
a-469, a-487, a-488,
a-615, a-826, a-843,
a-846, b-45, d-63,
d-73, d-74, d-77,
d-180, d-205, f-72

\afterfifi, a-246, a-260,
a-262, a-823, a-824,
a-878, a-884, d-78,
d-229, d-232

\afterfififi, d-82
\afteriffifi, a-241,

a-254, d-79
\afteriffififi, d-81
\afterififfififi, d-80
\AfterMacrocode, a-1628
\AKA, d-571
\all@other, d-494, d-495
\AlsoImplementation, 18,

a-1692, a-1695
\AltMacroFont, a-1713
\AmSTeX, 19, a-1595
\and, a-1459, a-1468
\arg, d-204, d-205
article, b-10
\AtBeginDocument, a-37,

a-71, a-483, a-545,
a-700, a-1186,
a-1683, b-32, d-203,
d-271, d-298, d-564

\AtBegInput, 9, a-139,
a-142, a-148, a-402,
a-408, a-429, a-436,
a-1421, a-1422, a-1565

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\AtBegInputOnce, 9, 10,
a-149, a-1365, a-1717

\AtDIPrologue, 18, a-1024
\AtEndInput, 9, a-137,

a-1197, a-1669, a-1678
\author, a-1453, c-5
\AVerySpecialMacro, a-1724

\begin, d-92, d-93
\begin*, d-93
\belowdisplayshortskip,

a-64, a-65, a-66
\belowdisplayskip, a-63
\BibTeX, 19, a-1597
\bigskipamount, d-515
\bnamegroup, d-90
\boldmath, d-470
\box, d-483
\breakabletwelvespace,

a-154, a-228, f-35, f-39
\breakbslash, f-24, f-26,

f-30, f-181
\breaklbrace, f-15, f-20, f-27
\bslash, a-484, a-504,

a-530, a-542, a-627,
a-636, a-668, a-676,
a-1092, a-1106,
a-1107, a-1121,
a-1123, a-1592,
a-1631, a-1643,
a-1674, d-150, d-189,
f-23, f-26, f-182, f-196

\c@ChangesStartDate,
a-1133, a-1136,
a-1145, a-1147,
a-1148, a-1149

\c@CheckSum, a-1195,
a-1203, a-1208,
a-1218, a-1227, a-1230

\c@codelinenum, a-268,
a-344, a-699, a-1062,
a-1063, a-1632

\c@footnote, a-1457, a-1475
\c@GlossaryColumns,

a-1162, a-1162, a-1164
\c@gmd@mc, a-1627, a-1631
\c@IndexColumns, a-1027,

a-1027, a-1029, a-1048
\c@secnumdepth, d-319
\catactive, 19, a-1573
\catletter, 19, a-1574
\catother, 19, a-1572
\CDAnd, 20, a-1614
\CDPerc, 20, a-1615
\changes, a-1086, a-1091,

a-1095
\changes@, a-1090, a-1099

\ChangesStart, 15, a-1144
ChangesStartDate, 15
\Character@Table, a-1636,

a-1641
\CharacterTable, a-1634
\check@bslash, f-180, f-182
\check@checksum, a-1197,

a-1198
\check@percent, a-429,

f-165, f-173, f-189
\check@sum, a-1193,

a-1194, a-1199,
a-1208, a-1217, a-1224

\CheckModules, a-1712
CheckSum, a-1195
\CheckSum, 15, a-1194, a-1233
\chschange, a-1226,

a-1228, a-1231
\chunkskip, 16 , 20, a-73
\cleardoublepage, d-310
\clubpenalty, a-92, a-136
\cmd, d-194
\cmd@to@cs, d-194, d-195
\Code@CommonIndex, a-594,

a-595
\Code@CommonIndexStar,

a-594, a-596
\Code@DefEnvir, a-686, a-710
\Code@DefIndex, a-567,

a-568, a-691, a-849
\Code@DefIndexStar,

a-567, a-571, a-852
\Code@DefMacro, a-686, a-690
\Code@Delim, a-41, a-42, a-45
\code@delim, a-44, a-96 ,

a-105, a-106, a-130,
a-131, a-243, a-253,
a-291, a-430, a-780,
a-1554, a-1558, a-1559

\Code@Delim@St, a-41, a-45
\code@escape@char, a-258,

a-448
\Code@MarginizeEnvir,

a-656, a-657
\Code@MarginizeMacro,

a-651, a-652, a-692,
a-695

\Code@UsgEnvir, a-689, a-715
\Code@UsgIndex, a-584,

a-585, a-694, a-732
\Code@UsgIndexStar,

a-584, a-588
\Code@UsgMacro, a-689, a-693
\CodeCommonIndex, a-592,

a-1701
\CodeCommonIndex*, 13

\CodeDefIndex, 13, a-565,
a-1699

\CodeDefIndex*, a-565
\CodeDefine, 12, a-684
\CodeDefine*, a-684
\CodeDelim, 17 , a-41, a-46,

a-105, a-1614, a-1615
\CodeDelim*, a-781, a-1555
\CodeEscapeChar, 17 ,

a-445, a-450, a-766,
a-770, a-1668

\CodeIndent, 16 , a-52,
a-53, a-200, a-334,
a-428, a-1666, b-32, 83

\codeline@wrindex, a-696,
a-704, a-707, a-708

\CodelineIndex, a-1685,
a-1686

codelinenum, 17 , a-347
\CodelineNumbered,

a-1683, a-1684, 83
\CodeMarginize, 13, a-647
\CodeMarginize*, a-647
\CodeSpacesBlank, 11,

a-94, a-155, a-769
codespacesblank, 11, a-24
\CodeSpacesSmall, a-158
\CodeTopsep, 16 , a-57,

a-60, a-75, a-79,
a-361, a-764, a-766,
a-768, a-770, a-830,
a-1667

\CodeUsage, 12, a-687
\CodeUsage*, a-687
\CodeUsgIndex, 13, a-582
\CodeUsgIndex*, a-582
\color, d-558
\columnsep, a-1037
\CommonEntryCmd, 18,

a-514, a-561, c-14
\continue@macroscan,

a-461, a-471, a-475
\continuum, d-568
\copy, d-454, d-475, d-489
copyrnote, 20, a-1576
\count, a-1140, a-1141,

a-1142, d-295, d-296,
d-297, d-459, d-460,
d-461, d-462, d-463,
d-464, d-465, d-466,
d-541, d-542, d-543,
d-544, d-547, d-551,
d-552, d-553, d-554

countalllines, 10, a-10
\cs, 19, d-189, d-192, d-194
\currentfile, a-1248,

a-1249, a-1250,

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

a-1251, a-1252,
a-1253, a-1254,
a-1255, a-1258,
a-1275, a-1279,
a-1290, a-1346,
a-1347, a-1349,
a-1371, a-1372,
a-1392, a-1396, a-1416

\czer, d-559, d-560, d-561
\czerwo, d-558, d-559

\dag, d-561
\date, a-1454, c-6
\day, a-1227, a-1229
debug, b-13, 90
\Debug@dstron, a-1062,

a-1063, a-1065, a-1072
\DeclareLogo, a-1597,

a-1600, a-1602,
a-1603, a-1604,
a-1605, a-1606,
a-1607, a-1608,
d-436, d-445, d-469,
d-472

\DeclareOption, a-6, a-8,
a-10, a-12, a-14,
a-16, a-21, a-22,
a-24, b-7, b-8, b-9,
b-10, b-11, b-13,
b-14, b-17, b-19

\DeclareRobustCommand*,
a-1706, d-98, d-126,
d-127, d-128, d-129,
d-130, d-131, d-163,
d-186, d-188, d-189,
d-192, d-302, d-505,
e-9, e-17, e-23

\DeclareTextCommand, d-442
\DeclareTextCommandDefault,

d-444
\def@other, d-492
\DefaultIndexExclusions,

14, a-889, a-994, a-1001
\DefEntry, 17 , a-559, a-1707
\definecolor, a-28
\defobeylines, d-511
\dekbigskip, d-515
\dekclubs, 11, b-61, f-205, 122
\dekclubs*, 122
\dekmedskip, d-514
\deksmallskip, d-512
\DeleteShortVerb, 11,

f-78, 122
\Describe, 13, a-1652
\Describe@Env, a-1649,

a-1651, a-1654, a-1660
\Describe@Macro, a-1649,

a-1654, a-1655

\DescribeEnv, a-1650, 82
\DescribeMacro, a-1647, 82
\dimen, d-531, d-532, d-533
\DisableCrossrefs,

a-1689, a-1691
\discre, a-1593, d-178, d-181
\discret, d-179, d-180
\divide, d-461, d-464, d-465
\division, 19, a-1358,

a-1616, a-1618, a-1619
\Do@Index, a-996, a-997
\do@noligs, f-45, f-200
\do@properindex, a-605,

a-638, a-758
\dobreakblankspace, f-40
\dobreakbslash, f-30, f-47
\dobreaklbrace, f-20, f-47
\dobreakspace, f-48, f-53
\dobreakvisiblespace,

f-39, f-53
\Doc@Include, a-1239, a-1240
\Doc@Input, a-85, a-88, a-1723
\DocInclude, 8, 10, 21,

a-1239, a-1256,
a-1260, a-1375, c-12,
c-13, c-21, c-22, c-23

\docincludeaux, a-1247,
a-1315, a-1316, a-1370

\DocInput, 8, a-85, a-1415,
a-1420, a-1559

DocInputsCount, a-346
\docstrips@percent, a-785
\DocstyleParms, a-1710
\documentclass, c-1
\DoIndex, 14, a-996,

a-1000, c-11
\DoNot@Index, a-869, a-870
\DoNotIndex, 14, a-869,

a-999, a-1000, a-1002
\dont@index, a-872, a-873,

a-878, a-884, a-997
\DontCheckModules, a-1711
\doprivateothers, a-432,

a-433, a-453, a-454
\ds, 20, a-1613

\edef@other, d-500, d-503
\edverbs, b-62, f-206, f-211
\eequals, d-537
\eg@MakeShortVerb, f-235,

f-237
\eg@MakeShortVerbStar,

f-235, f-236
\egCode@MarginizeEnvir,

a-649, a-655
\egCode@MarginizeMacro,

a-649, a-650

\egRestore@Macro, d-236,
d-237

\egRestore@MacroSt,
d-236, d-238

\egStore@Macro, d-211, d-212
\egStore@MacroSt, d-211,

d-213
\egText@Marginize, a-741,

a-742
\emptify, a-141, a-779,

d-27, d-27
\EnableCrossrefs, a-1303,

a-1690
\enamegroup, d-91
\encapchar, 18, a-443,

a-484, a-531, a-1098,
a-1128

\endenvironment, a-868
\endlinechar, a-1541
\endlist, d-417, d-432
\endmacro, a-834, a-836
\endmacro*, a-836
\endmacrocode, a-772
\endoldmc, a-772
\endtheglossary, a-1305
\endverbatim, f-119
\enoughpage, d-529
\enspace, b-56
\ensuremath, b-67, d-164,

d-174
\EntryPrefix, 17 , a-525,

a-527, a-540, a-1047,
a-1243, a-1367

enumerate*, d-402
\env, 19, d-192
\environment, a-867
environment, 13, a-867
\envirs@toindex, a-581,

a-665, a-679, a-680,
a-683, a-725

\envirs@tomarginpar,
a-659, a-662, a-663,
a-682, a-722

\EOFMark, 16 , a-104, a-151,
a-1558, a-1727, b-67, 90

\equals, d-536
\errorcontextlines, b-43
\eTeX, 20, a-1605, a-1606
\evensidemargin, a-1238
\everypar, a-99, a-99,

a-121, a-166, a-167,
a-173, a-185, a-299,
a-308, a-326, a-338,
a-388, a-395, a-863,
a-1577, f-166

\exhyphenpenalty, b-64
\exii@currenvir, d-96, d-97

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\f@encoding, d-549
\f@series, d-470
\file, 19, c-15, c-16 , d-187
\filedate, 20, a-1351,

a-1500, a-1549
\filediv, a-1317, a-1327,

a-1357, a-1363,
a-1465, a-1489, c-15

\filedivname, a-1318,
a-1323, a-1326,
a-1328, a-1333,
a-1334, a-1335,
a-1356, a-1362, a-1466

\FileInfo, 20, a-1505
\fileinfo, 20, a-1502
\filekey, a-1290, a-1337,

a-1340
\filename, a-1350, a-1498
\filenote, 20, a-1549, a-1550
\filesep, a-1242, a-1243,

a-1306, a-1336,
a-1366, a-1367

\fileversion, 20, a-1227,
a-1228, a-1352,
a-1501, a-1549

\Finale, 18, a-1693, a-1698
\finish@macroscan, a-461,

a-469, a-475, a-493
\fixbslash, f-26, 121
\fixlbrace, f-27, 121
\fontencoding, f-52
\fontseries, b-49
\freeze@actives, d-540
\fullcurrentfile, a-1249,

a-1258, a-1280,
a-1372, a-1397

\g@emptify, a-150, a-480,
a-663, a-680, a-1192,
a-1433, a-1434,
a-1492, a-1563, d-28,
d-29

\g@relaxen, a-505, a-536,
a-537, a-539, a-860,
a-1491, d-32, d-33

\gaddtomacro, 18, a-150,
a-428, d-20

\gag@index, a-37, a-706,
a-1683, a-1689

\gemptify, d-29, d-29
\GeneralName, a-1115,

a-1116, a-1132,
a-1153, a-1244, a-1373

\generalname, a-1099,
a-1102, a-1126, a-1158

\geometry, b-40
\GetFileInfo, 20, a-1279,

a-1349, a-1396, a-1497

\glet, a-113, a-218, a-479,
a-653, a-780, a-1053,
a-1341, a-1344,
a-1355, d-19

\glossary@prologue,
a-1151, a-1165,
a-1180, a-1183, a-1342

\GlossaryMin, 15 , a-1161,
a-1165

\GlossaryParms, 15,
a-1166, a-1187

\GlossaryPrologue, 15,
a-1179

\gm@atppron, d-278, d-281,
d-282, d-283, d-284,
d-285, d-286, d-287,
d-288

\gm@clearpagesduetoopenright,
d-309, d-328

\gm@def@other@tempa, d-493
\gm@dontnumbersectionsoutofmainmatter,

d-307, d-320
\gm@gobmacro, d-495, d-497
\gm@hyperrefstepcounter,

d-301, d-304, d-339
\gm@hypertarget, e-10, e-11
\gm@iflink, e-23, e-24, e-25
\gm@ifnac, d-61, d-62
\gm@ifref, e-17, e-18, e-19
\gm@jobn, d-538, d-539
\gm@letspace, d-67, d-73
\gm@notprerr, d-270, d-275
gm@PronounGender, d-277
\gm@pswords, d-182, d-183,

d-185
\gm@sec, d-389, d-396, d-397
\gm@secini, d-370, d-380,

d-383, d-386, d-394
\gm@secmarkh, d-384
\gm@secstar, d-372, d-378,

d-381, d-387, d-396,
d-397

\gm@secx, d-389, d-390
\gm@secxx, d-371, d-385, d-391
\gm@straightensec, d-392,

d-399
\gm@targetheading, d-302,

d-305
\gm@verb@eol, a-436, f-178,

f-185, f-192
\gm@xistar, a-790, a-792
\gmboxedspace, a-1586,

a-1587, a-1590, a-1593
\gmcc@baseclass, b-4, b-7,

b-8, b-9, b-24, b-28
gmcc@mwcls, b-5
\gmcc@mwclsfalse, b-10, b-24

\gmcc@mwclstrue, b-6
\gmd@@iffalse, a-487, a-492
\gmd@@iftrue, a-488, a-491
\gmd@@macro, a-1719, a-1720
\gmd@@toc, a-142, a-144
\gmd@ABIOnce, a-147,

a-148, a-150
\gmd@bslashEOL, a-418, a-427
\gmd@charbychar, a-197,

a-223, a-250, a-250,
a-274, a-500

\gmd@checkifEOL, a-168, a-297
\gmd@checkifEOLmixd,

a-256, a-306
\gmd@chschangeline,

a-1204, a-1211,
a-1219, a-1225

\gmd@closingspacewd,
a-189, a-420, a-421,
a-423

\gmd@codecheckifds, a-821
\gmd@codeskip, a-202,

a-320, a-361, a-365,
a-377

\gmd@continuenarration,
a-132, a-163, a-245

\gmd@countnarrationline,
a-165, a-170, a-179,
a-298, a-307

\gmd@counttheline, a-260,
a-274, a-276

\gmd@currentlabel@before,
a-90, a-113

\gmd@currenvxistar,
a-786, a-791

\gmd@DefineChanges,
a-1085, a-1159

\gmd@dip@hook, a-1021,
a-1023, a-1024

\gmd@docrescan, a-1521,
a-1529

\gmd@docrescanfile,
a-1530, a-1531,
a-1533, a-1536

\gmd@docstripdirective,
a-296, a-305, a-823,
a-1054

\gmd@docstripinner,
a-1060, a-1067

\gmd@docstripshook, a-1079
\gmd@docstripverb,

a-1059, a-1074
\gmd@doIndexRelated,

a-1274, a-1282,
a-1302, a-1391, a-1400

\gmd@dolspaces, a-133,
a-197, a-229

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\gmd@DoTeXCodeSpace,
a-127, a-153, a-156,
a-159, a-782

\gmd@eatlspace, a-234,
a-238, a-241

\gmd@endpe, a-312, a-314,
a-325, a-330, a-331

\gmd@EOLorcharbychar,
a-262, a-265

\gmd@evpaddonce, a-855, a-856
\gmd@fileinfo, a-1509, a-1517
\gmd@guardedinput, a-101,

a-110
\gmd@iedir, a-871, a-883,

a-997
\gmd@ifonetoken, a-833,

a-835, a-840, a-1649,
a-1720

\gmd@ifsingle, a-837, a-842
\gmd@iihook, a-103, a-141,

a-1556
\gmd@inputname, a-89,

a-1201, a-1210, a-1216
\gmd@justadot, a-575,

a-577, a-580, a-653,
a-871

\gmd@ldspaceswd, a-205,
a-212, a-213, a-220,
a-227, a-233, a-240,
a-244

gmd@mc, a-1624
\gmd@mcdiag, a-1626,

a-1629, a-1630, a-1633
\gmd@mchook, a-1625
\gmd@modulehashone,

a-1069, a-1072,
a-1076, a-1080

\gmd@narrcheckifds,
a-302, a-303

\gmd@narrcheckifds@ne,
a-292, a-294

\gmd@nocodeskip, a-201,
a-203, a-321, a-323,
a-363, a-367, a-374,
a-379

\gmd@oldmcfinis, a-806
\gmd@oncenum, a-857,

a-859, a-861, a-862,
a-864, a-866

\gmd@parfixclosingspace,
a-184, a-419

\gmd@percenthack, a-254,
a-290

\gmd@preverypar, a-47,
a-174, a-300, a-308,
a-327, a-339, a-386,
a-393, a-395

\gmd@providefii, a-1543,
a-1545

\gmd@resetlinecount,
a-97 , a-342, a-348

\gmd@revprefix, a-553, a-554
\gmd@setChDate, a-1135,

a-1137, a-1145
\gmd@setclosingspacewd,

a-422
\gmd@setclubpenalty,

a-91, a-123, a-124, a-136
\gmd@skipgmltext, a-1563,

a-1563, a-1569
\gmd@spacewd, a-226,

a-232, a-240
\gmd@texcodeEOL, a-199, a-266
\gmd@texcodespace, a-157,

a-161, a-196, a-228,
a-230, a-239

\gmd@textEOL, a-100,
a-117, a-301, a-311,
a-439, a-779, a-1072,
a-1080

\gmd@typesettexcode,
a-183, a-236, a-246

\gmd@writeckpt, a-1284,
a-1296, a-1402

\gmd@writeFI, a-1520, a-1525
\gmd@writemauxinpaux,

a-1264, a-1291, a-1378
\gmdindexpagecs, a-548, a-552
\gmdindexrefcs, a-547,

a-548, a-550
\gmdmarginpar, 13, 20,

a-748, a-753, a-756
\gmdnoindent, 20, a-1581
\gmdoccMargins, b-39
\gmdocIncludes, 9, a-1419
gmeometric, b-18
gmglo.ist, 65
\gmhypertarget, a-358,

c-16 , e-9, 118
\gmiflink, a-550, e-23, 118
\gmifref, e-17, 118
\gml@StoreCS, d-222,

d-231, d-247
\gml@storemacros, d-223,

d-224, d-229, d-232,
d-248

gmlonely, 19, a-1560
\gmobeyspaces, a-156 ,

d-507, f-116, f-179
\gmshowlists, d-34
\gmTheGeometry, b-18,

b-21, b-38
\gmu@def, d-312, d-314, d-315

\gmu@RP, d-557, d-563,
d-565, d-568

\gmu@smtempa, d-217,
d-219, d-242, d-244

\gmu@tempa, d-500, d-501,
d-503, d-504

\gmv@dismath, f-207, f-210,
f-213

\gmv@disverb, f-210, f-212
\gmv@edismath, f-208, f-214
\gmv@packname, f-94, f-95, f-97
\gobble, d-133
\gobbletwo, d-134
\grefstepcounter, a-172,

a-207, a-279, a-286, d-17
\grelaxen, d-33, d-33

\HeadingNumber, d-336, d-338
\HeadingNumberedfalse,

d-308, d-319
\HeadingRHeadText, d-322
\HeadingText, d-324
\HeadingTOCText, d-323
\HeShe, d-285
\heshe, 7 , d-281
\hfillneg, d-516
\HimHer, d-287
\himher, d-283
\HisHer, d-286
\hisher, d-282
\HisHers, d-288
\hishers, d-284
\HLPrefix, 17 , a-359,

a-525, a-527, a-557,
a-699, a-1014,
a-1242, a-1366

\Hybrid@DefEnvir, a-833,
a-851

\Hybrid@DefMacro, a-833,
a-848

hyperindex, 43
\hyperlabel@line, a-175,

a-210, a-280, a-287,
a-355

\hypersetup, a-29, a-1033
\hyphenpenalty, b-64, d-185

\if*, a-792
\if@aftercode, a-201,

a-319, a-370, a-375
\if@afternarr, a-201,

a-318, a-371, a-374
\if@codeskipput, a-75,

a-79, a-191, a-202,
a-320, a-362, a-373,
a-764, a-768, a-830

\if@codespacesblank,
a-23, a-94

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\if@countalllines, a-9,
a-169, a-268, a-759

\if@debug, b-12, b-41,
b-45, b-46

\if@dsdir, a-84, a-84, a-822
\if@filesw, a-696, a-1264,

a-1270, a-1285,
a-1377, a-1386,
a-1403, d-524

\if@fshda, a-1470, a-1481,
a-1494

\if@gmccnochanges, b-16,
b-59

\if@indexallmacros, a-15,
a-993

\if@linesnotnum, a-5,
a-354, a-544

\if@ltxDocInclude,
a-1275, a-1278,
a-1281, a-1392,
a-1395, a-1398, a-1408

\if@mainmatter, d-308
\if@marginparsused, a-17,

a-744
\if@newline, a-83, a-171,

a-207, a-267, a-278,
a-285

\if@noindex, a-11, a-36
\if@noskipsec, f-144
\if@openright, d-310
\if@pageinclindex, a-524,

a-541
\if@pageindex, a-13,

a-356, a-523, a-546,
a-701, a-1007,
a-1010, a-1011, a-1013

\if@RecentChange, a-1100,
a-1134

\if@specialpage, d-327
\if@twoside, d-350
\if@uresetlinecount, a-7,

a-341
\ifdtraceoff, a-1063, b-46
\ifdtraceon, a-1062, b-45
\ifgmcc@mwcls, b-5, b-23,

b-26
\ifHeadingNumbered,

d-318, d-334
\ifodd, d-280
\ifprevhmode, a-249,

a-291, a-332
\ifSecondClass, d-573
\im@firstpar, a-495,

a-496, a-497, a-602,
a-603, a-606

\IMO, d-570

\incl@DocInput, a-1280,
a-1397, a-1415,
a-1418, a-1420

\incl@filedivtitle,
a-1477, a-1489

\incl@titletotoc, a-1470,
a-1478

\InclMaketitle, a-1276,
a-1393, a-1467

\index@macro, a-497,
a-507, a-606, a-639,
a-678

\index@prologue, a-1003,
a-1005, a-1029, a-1338

indexallmacros, 10, a-16
IndexColumns, 18, a-1027
\indexcontrols, a-479, a-483
\indexdiv, a-1004, a-1005,

a-1183
\indexentry, a-698
\IndexInput, 10, a-1553
\IndexLinksBlack, 18,

a-1018, a-1030, a-1033
\IndexMin, 18, a-1026,

a-1026, a-1029
\IndexParms, 18, a-1031,

a-1035, a-1187
\IndexPrefix, 17 , a-529,

a-543
\IndexPrologue, 18,

a-1003, 85
\IndexRefCs, a-525, a-527,

a-531
\interlinepenalty, f-165
\itemindent, d-410, d-426
itemize*, d-418

\jobnamewoe, c-26 , c-31, d-539

\kernel@ifnextchar, a-1543
\kind@fentry, a-514,

a-516, a-520, a-525,
a-527

\l@nohyphenation, d-160,
d-161, d-171

\labelsep, d-412, d-428
\labelwidth, d-411, d-412,

d-427, d-428
\larger, d-126, 99
\largerr, d-130, 99
\last@defmark, a-537,

a-578, a-1103,
a-1106, a-1107, a-1131

\LaTeXe, d-434, d-469
\LaTeXpar, 20, d-472
\leftmargin, d-409, d-425,

f-156, f-157

\levelchar, 18, a-444,
a-484, a-1098,
a-1118, a-1128

\LineNumFont, 17 , a-176,
a-351, a-353, a-1671, 83

\lineskip, a-1444
linesnotnum, 10, a-6
\list, d-408, d-424
\listparindent, d-413, d-429
\liturgiques, d-556
\LoadClass, b-27, b-30
\ltxLookSetup, 9, a-1409,

a-1414
\ltxPageLayout, 9, a-1234,

a-1411

\macro, a-828, a-835,
a-1719, a-1720, d-497

macro, 13, a-828
macro*, a-835
\macro@iname, a-459,

a-464, a-467, a-473,
a-497, a-606, a-608,
a-614, a-639, a-678

\macro@pname, a-460,
a-468, a-474, a-494,
a-497, a-498, a-499,
a-599, a-600, a-601,
a-606, a-626, a-627,
a-628, a-631, a-639

\macrocode, a-771
macrocode, 8, 21, a-767
macrocode*, a-763
\MacrocodeTopsep, a-1667
\MacroFont, a-1665, 82
\MacroIndent, a-1666, 83
\MacroTopsep, a-58, a-61,

a-74, a-829, a-834, 83
\main, a-1707
\MakeGlossaryControls,

15, a-1089, a-1096
\MakePercentComment, a-1715
\MakePercentIgnore,

a-1087, a-1714
\MakePrivateLetters, 12,

17 , a-129, a-452,
a-566, a-583, a-593,
a-618, a-641, a-648,
a-685, a-688, a-727,
a-740, a-784, a-832,
a-869, a-996, a-1088,
a-1648, a-1653

\MakePrivateOthers,
a-453, a-567, a-584,
a-594, a-619, a-642,
a-649, a-686, a-689,
a-728, a-741, a-832,
a-1651, a-1654

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\MakeShortVerb, 11, f-54,
f-237, 122

\MakeShortVerb*, f-54,
f-205, f-236

\maketitle, 8, a-983,
a-1276, a-1393,
a-1423, c-8, c-11, 74

\marg, d-196, d-208
\marginparpush, a-746
\marginpartt, 13, a-756,

a-757, b-49
\marginparwidth, a-747,

a-1236
\mark@envir, a-211, a-283,

a-658
\math@arg, d-204, d-205
\mathfrak, d-568
\mathindent, b-32
\maybe@marginpar, a-498,

a-502
\maybe@quote, a-459,

a-467, a-473, a-479,
a-480, a-614

\mcdiagOff, a-1633
\mcdiagOn, a-1630
\medmuskip, d-180
\meta, d-163, d-177, d-196,

d-198, d-201, 84
\meta@font@select, d-167,

d-176
\meta@hyphen@restore,

d-168, d-173
\mod@math@codes, a-1082,

a-1083, a-1084
\Module, a-1070, a-1082
\ModuleVerb, a-1077, a-1083
\month, a-1227, a-1229
\mskip, d-180
\multiply, a-1139, a-1141,

d-460, d-463
\mw@HeadingBreakAfter,

d-329, d-346, d-361,
d-365

\mw@HeadingBreakBefore,
d-326

\mw@HeadingLevel, d-316,
d-319

\mw@HeadingRunIn, d-341
\mw@HeadingType, d-325
\mw@HeadingWholeWidth,

d-344
\mw@normalheading, d-348,

d-357, d-360, d-364
\mw@runinheading, d-342
\mw@sectionxx, d-315
mwart, b-7, 90
mwbk, b-9, 90

mwrep, b-8, c-1, 90

\n@melet, a-773, a-774,
d-257, d-373, d-376,
d-394, f-127

\nameshow, d-35
NeuroOncer, a-859
\newcount, a-1027, a-1133,

a-1162, a-1193
\newcounter, a-344, a-346,

a-347, a-1195,
a-1624, a-1709,
d-277, d-299, e-7

\newdimen, a-1026, a-1161
\newgif, a-83, a-84, a-249,

a-362, a-370, a-371, d-6
\newlanguage, d-161
\newlength, a-51, a-52,

a-54, a-226, a-227,
f-169, f-171

\newlinechar, a-1532
\newskip, a-57, a-58, a-421
\newtoks, a-47
\newwrite, a-1530, d-524
\nfss@text, d-165
\nieczer, d-562
\nl@percent, a-1584,

a-1586, a-1588
\nlpercent, a-1582
nochanges, b-17, 89
\noeffect@info, a-1673,

a-1679, a-1680,
a-1681, a-1682,
a-1710, a-1711,
a-1712, a-1713

\NoEOF, 16 , a-1534, a-1728
noindex, 10, a-12, b-14, 89
nomarginpar, 10, a-22
\NonUniformSkips, 16 , a-72
\nostanza, 16 , a-81
\not@onlypreamble, d-262,

d-265, d-266, d-267,
d-268, d-269

\nummacro, a-866, d-289

\oarg, d-197
\obeyspaces, a-154, a-160,

a-799, f-36, f-39, f-40,
f-187

\oddsidemargin, a-1237
\old@begin, d-92, d-93
\old@MakeShortVerb,

a-1718, f-215, f-234
\olddocIncludes, 9, 21,

a-1417
\OldDocInput, 8, 21,

a-1418, a-1716
\oldLaTeX, d-433

\oldLaTeXe, d-434
\OldMakeShortVerb, f-233, 122
\OldMakeShortVerb*, f-205
\oldmc, a-771, a-775
oldmc, 21, a-771
oldmc*, a-771
\oldmc@def, a-803, a-808
\oldmc@end, a-804, a-809
\OnAtLine, d-535
\OnlyDescription, 18, a-1696
outeroff, b-11, c-1, 90

\PackageError, a-1256, a-1327
\PackageInfo, a-1669,

a-1673, f-97
\PackageWarning, d-122, d-124
\PackageWarningNoLine,

a-1091
\pagebreak, d-349, d-361,

d-365
\pagegoal, d-531
\PageIndex, a-1687, a-1688
pageindex, 10, a-14
\pagestyle, b-57
\pagetotal, d-532
\par, a-76, a-80, a-111,

a-125, a-190, a-236,
a-302, a-312, a-315,
a-328, a-420, a-764,
a-766, a-768, a-770,
a-831, a-834, a-931,
a-1043, a-1046,
a-1423, a-1442,
a-1447, a-1451,
a-1578, a-1580

\parg, d-200
\parsep, f-143
\partopsep, a-68, d-409,

d-425, f-147
\PassOptionsToPackage,

b-15
\pdfeTeX, 20, a-1606
\pdfTeX, 20, a-1607
\pk, 19, a-1244, a-1373,

c-3, c-4, c-20, d-188
\PlainTeX, 19, a-1602
\possfil, d-193
\predisplaypenalty,

f-115, f-117
\prevhmodegfalse, a-195,

a-221, a-249, a-252,
a-313, a-325

\prevhmodegtrue, a-249, a-251
\PrintChanges, 15 , a-1188,

a-1192, a-1304, c-28
\PrintDescribeEnv, 83
\PrintDescribeMacro, 83

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\PrintEnvName, 83
\PrintFilesAuthors, 8,

a-1495
\PrintIndex, a-1050,

a-1304, c-32
\printindex, a-1051, a-1304
\printlinenumber, a-209,

a-282, a-350, a-354
\PrintMacroName, 83
\printspaces, d-182, d-186
\ProvideFileInfo, 20,

a-1539, a-1548
\ProvidesClass, b-2
\ProvideSelfInfo, 20, a-1548
\ps@plain, a-1436
\ps@titlepage, a-1436

\quad, b-55, b-56
\QueerCharOne, a-406,

a-407, a-408
\QueerCharTwo, a-400,

a-401, a-402
\QueerEOL, 7 , a-144, a-414,

a-765, a-769, a-1051,
a-1190, a-1421, a-1728

quotation, 20, a-1580
\quote@char, a-458, a-466,

a-472, a-477, a-613
\quote@charbychar, a-609,

a-610, a-615
\quote@mname, a-600,

a-607, a-634, a-674
\quotechar, 18, a-442,

a-479, a-484, a-530,
a-542, a-636, a-676,
a-1097, a-1123

\quoted@eschar, a-530,
a-542, a-636, a-637,
a-676, a-677

\raggedbottom, b-50
\RecordChanges, 15 ,

a-1093, a-1159,
a-1160, a-1304, b-59,
b-60

\reflectbox, a-1611
\relaxen, d-31, d-31
\relsize, d-98, d-99,

d-126, d-127, d-128,
d-129, d-130, d-131, 99

\rem@special, f-83, f-101,
f-106

\renewcommand, a-1095
\renewcommand*, a-365,

a-367, b-52, d-565
\RequirePackage, a-26,

a-27, a-31, a-34,
a-35, a-39, a-1025,

b-34, b-35, b-37,
b-42, b-47, b-66,
d-521, d-563, f-4

\resetlinecountwith, a-343
\Restore@Macro, d-237,

d-239, d-247, d-250
\Restore@Macros, d-245, d-246
\Restore@MacroSt, d-238,

d-241
\RestoreMacro, a-1002,

a-1559, d-235, d-314
\RestoreMacros, a-709, d-245
\RestoringDo, a-1282,

a-1399, d-254
\reversemarginpar, a-745
\rightline, b-67
\romannumeral, d-407, d-423
\rs@size@warning, d-115,

d-120, d-122
\rs@unknown@warning,

d-112, d-124

\scan@macro, a-260, a-455
\scshape, a-1601, d-569
\secondclass, d-572
\SecondClasstrue, d-574
\SelfInclude, 9, a-1364, c-14
\SetFileDiv, 19, a-1320,

a-1321, a-1323,
a-1329, a-1361, a-1410

\settexcodehangi, a-48,
a-50, a-214, a-218, a-333

\SetTOCIndents, b-55, b-56
\sfname, d-186, d-187
\sgtleftxii, a-1053
\showboxbreadth, d-34
\showboxdepth, d-34
\ShowFont, d-548
\showlists, d-34
\SkipFilesAuthors, 8, a-1496
\skipgmlonely, 19, a-1561,

c-18
\SliTeX, 19, a-1600
\smaller, d-127, 99
\smallerr, a-1480, d-131, 99
\smallskipamount, a-65,

a-66, d-512, d-513
\smartunder, b-63, d-143
\SortIndex, a-1704
\special@index, a-532,

a-702, a-704, a-761
\SpecialEnvIndex, a-1703
\SpecialEscapechar, a-1668
\SpecialIndex, a-1701
\SpecialMainEnvIndex,

a-1700
\SpecialMainIndex, a-1699

\SpecialUsageIndex, a-1702
\square, b-67
StandardModuleDepth, a-1709
\stanza, 16 , 20, a-77,

a-1579, c-18, c-20
\stanzaskip, 16 , a-54,

a-55, a-56, a-60,
a-61, a-62, a-63,
a-64, a-67, a-78,
a-192, f-163, f-169, f-170

\step@checksum, a-456, a-1196
\stepnummacro, a-857, d-290
\StopEventually, 18,

a-1693, a-1696
\Store@Macro, d-212,

d-214, d-222
\Store@Macros, d-220, d-221
\Store@MacroSt, d-213, d-216
\stored@code@delim, a-780
\Stored@Macro, d-249, d-250
\StoredMacro, d-249
\StoreMacro, a-999,

a-1554, d-210, d-314
\StoreMacros, a-708, d-220
\StoringAndRelaxingDo,

a-1274, a-1390, d-251
\StraightEOL, 7 , a-144,

a-409, a-1051,
a-1088, a-1190,
a-1560, a-1567,
a-1577, a-1717

\subdivision, 19, a-1359,
a-1620, a-1622, a-1623

\subitem, a-1044
\subs, d-137, d-145
\subsubitem, a-1045

\tableofcontents, a-142,
a-143, a-1303, c-10

\TeXbook, 20, a-1604
\Text@CommonIndex, a-642,

a-643
\Text@CommonIndexStar,

a-642, a-645
\text@indexenvir, a-624,

a-625, a-646, a-738,
a-1664

\text@indexmacro, a-598,
a-622, a-644, a-733,
a-1659

\Text@Marginize, a-504,
a-661, a-731, a-736,
a-743, a-755, a-855,
a-1657, a-1662

\Text@MarginizeNext,
a-850, a-853, a-854

\Text@UsgEnvir, a-728, a-734

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

\Text@UsgIndex, a-619, a-620
\Text@UsgIndexStar,

a-619, a-623
\Text@UsgMacro, a-728, a-729
\textcolor, d-562
\TextCommonIndex, 13, a-640
\TextCommonIndex*, a-640
\TextIndent, 16 , a-51,

a-336, a-378
\textlarger, d-128
\TextMarginize, 13, a-739
\TextMarginize*, a-739
\textsmaller, d-129
\textstyle, d-471
\TextUsage, 12, a-726
\TextUsage*, a-726
\TextUsgIndex, 13, a-617,

a-1702
\TextUsgIndex*, a-617
\textvisiblespace, d-181
\textwidth, a-1235, a-1339
\thanks, a-1441, a-1455,

a-1469, a-1473, a-1550
\theCodelineNo, a-1670, 83
\thecodelinenum, a-176,

a-351, a-1672
\thefilediv, a-1290,

a-1334, a-1335,
a-1336, a-1347, a-1350

\theglossary, a-1163, a-1305
theglossary, a-1163
theindex, a-1028
\thesection, b-52
\thfileinfo, 20, a-1550
\thr@@, d-403, d-419
\title, a-1452, c-3
\titlesetup, a-1440,

a-1463, b-58
\TODO, d-518
\tolerance, a-93
\tOnLine, d-534

\traceoff, b-46
\traceon, b-45
\trimmed@everypar, a-391,

a-393
\ttverbatim, a-126 , a-782,

f-44, f-168, f-177
\ttverbatim@hook, f-50,

f-51, f-52
\twelveand, d-156
\twelvebackslash, d-149,

d-150
\twelveclub, a-443,

a-1098, f-43
\twelvelbrace, f-16, f-27
\twelvepercent, a-824,

a-826, a-1226,
a-1228, a-1534,
a-1583, a-1590,
a-1593, d-153, f-8, f-9

\twelvespace, a-232, d-37,
d-38, d-159, f-34

\twelveunder, d-140
\twocoltoc, c-2, d-520, d-528

\un@defentryze, a-521, a-535
\un@usgentryze, a-517, a-538
\undeksmallskip, d-513
\UndoDefaultIndexExclusions,

14, a-998
\unex@namedef, d-499
\unex@nameuse, d-502
\ungag@index, a-709, a-1690
\UniformSkips, 16 , a-59,

a-70, a-71, a-72
uresetlinecount, 10, a-8
\usage, a-1708
\usecounter, d-414
\UsgEntry, 17 , a-560, a-1708

\varepsilon, a-1605, d-471
\verb, 19, a-438, f-57, f-76,

f-80, f-82, f-175, f-231

\verb*, f-56, f-175
\verb@balance@group,

f-183, f-184, f-195, f-197
\verb@egroup, a-437, f-184,

f-195, f-198
\verb@eol@error, f-185
\verb@eolOK, f-188, f-192
\verbatim, f-115
verbatim, f-115
verbatim*, f-117
\verbatim@edef, f-134, f-138
\verbatim@end, f-135, f-139
\verbatim@nolig@list,

f-45, f-199
\verbatimchar, 18, a-494,

a-507, a-601, a-1122,
a-1124, a-1705, 85

\verbatimhangindent,
a-49, f-166, f-171, f-172

\verbeolOK, 11, f-192, 121
\VerbHyphen, a-45, f-10, 121
\verbhyphen, f-9, f-12, f-15,

f-24
\VerbMacrocodes, 21, a-1721
\VerbT, b-65, f-52
\vs, d-181, d-182, d-185

\wd, d-452, d-455, d-476,
d-481, d-489, d-490

\Web, 20, a-1603
\widowpenalty, a-92
withmarginpar, 10, a-21

\xdef@filekey, a-1278,
a-1281, a-1289,
a-1395, a-1398

\XeTeX, 20, a-1608
\xiistring, a-468, a-599,

a-626, a-721, a-724,
a-730, a-735, a-756, d-36

\year, a-1227, a-1229

File Key: a=gmdoc.sty, b=gmdocc.cls, c=gmdocDoc.tex, d=gmutils.sty, e=gmiflink.sty,
f=gmverb.sty

	The gmdoc.sty Package
	Readme
	Installation
	Contents of the gmdoc.zip Archive
	Compiling the Documentation
	Dependencies
	Bonus: = =base Drivers

	Introduction
	The User Interface
	Used Terms
	Preparing the Source File
	The Main Input Commands
	Package Options
	The Packages Required
	Macros for Marking the Macros
	Index Ex/Inclusions
	The DocStrip Directives
	The Changes History
	The Parameters
	The Narration Macros
	A Queerness of label
	doc-Compatibility

	The Code
	The Package Options
	The Dependencies and Preliminaries
	The Core
	Numbering (or Not) of the Lines
	Spacing with everypar
	Life Among Queer EOLs
	Adjustment of []verbatim and verb
	Macros for Marking The Macros
	Index Exclude List
	Index Parameters
	The DocStrip Directives
	The Changes History
	The Checksum
	Macros from ltxdoc
	DocInclude and the ltxdoc-Like Setup
	SelfInclude
	Redefinition of maketitle
	The File's Date and Version Information
	Miscellanea
	doc-Compatibility
	gmdocing = =doc.dtx

	Polishing, Development and Bugs
	(No) "426830A eof"526930B

	The gmdocc Class For gmdoc Driver Files
	Intro
	Usage
	The Code

	= =gmdocDoc.tex, The Driver File
	The gmutils Package
	Intro
	Contents of the gmutils.zip Archive

	A couple of abbreviations
	@ifnextcat, @ifnextac
	afterfi and Pals
	Almost an Environment or Redefinition of begin
	Improvement of end
	From relsize
	firstofone and the Queer catcodes
	Metasymbols
	Macros for Printing Macros and Filenames
	Storing and Restoring the Meanings of CSs
	Not only preamble!
	Third Person Pronouns
	To Save Precious Count Registers
	Improvements to mwcls Sectioning Commands
	Compatibilising Standard and mwcls Sectionings
	[]enumerate* and []itemize*
	The Logos
	Expanding turning stuff all into `other'
	Varia

	The gmiflink Package
	Introduction, usage
	Contents of the gmiflink.zip archive

	The Code

	The gmverb Package
	Intro, Usage
	Contents of the gmverb.zip Archive

	The Code
	Preliminaries
	The Breakables
	Almost-Knuthian ttverbatim
	The Core: From shortvrb
	doc- And shortvrb-Compatibility

	Change History
	Index

