Grzegorz ‘Natror’ Murzynowski

The gmdoc Package
i.e., gmdoc.sty and gmdocc.cls

October 2008

Contents

a. The gmdoc.sty Package

Readme
Installation
Contents of the gmdoc.zip archive .
Compiling of the documentation .
Dependencies
Bonus: basedrivers

Introduction,

The user interface
Usedterms
Preparing of the source file
The main input commands
Package options
The packages required
Automatic marking of definitions .
Manual marking of the macros

and environments
Index ex/inclusions
The DocStrip directives
The changes history
The parameters
The narration macros
A queerness of \label
doc-compatibility

Thedriverpart

Thecode
The package options
The dependencies and

preliminaries
Thecore
Numbering (or not) of the lines . .
Spacing with \everypar.
Life among queer EoLs
Adjustment of verbatim and

\verb
Macros for marking of the macros .
Automatic detection of definitions
Indexing of cses
Index excludelist
Index parameters
The DocStrip directives
The changes history
The checksum
Macros from ltxdoc
\DocInclude and the ltxdoc-like

setup oL
Redefinition of \maketitle

The file’s date and version

information 95
Miscellanea 96
doc-compatibility 100
gmdocing doc.dtx 105
Polishing, development and bugs . . 106
(No)(eof) . . . oo v 107
. The gmdocc Class For gmdoc

DriverFiles. 108
Intro oL 108
Usage 108
TheCode 109
The gmutils Package 114
Intro 114

Contents of the gmutils.zip archive 114
A couple of abbreviations 115
\firstofone and the queer

\catcodes 115
Global Boolean switches 116

\gm@ifundefined—a test that
doesn’t create any hash entry

unlike \@ifundefined. 118
Storing and restoring the catcodes
ofspecials 118
From the ancient xparse of TgXLive
2007 © o 118
Ampulex Compressa-like
modifications of macros 123
\@ifnextcat, \@ifnextac 124
\afterfiandpals 126
Environments redefined 127
Almost an environment or
redefinition of \begin 127
\@ifenvir and improvement of
\end 127
Fromrelsize 128
Some ‘other’ stuff 129
Metasymbols 130
Macros for printing macros and
filenames 131
Storing and restoring the meanings
ofcses. L L. 133
Not only preamble! 136
Third person pronouns 137

Improvements to mwcls sectioning
commands
An improvement of MW'’s

\SetSectionFormatting . . .
Negative \addvspace
My heading setup for mwcls
Compatibilising standard and

mwcls sectionings
enumeratex* and itemizex

The logos

Expandable turning stuff all into
‘other” L.

Brave New World of XgIEX
Fractions
\resizegraphics
Settings for mathematics in main

font oL
Minion and Garamond Premier

kerning and ligature fixes

Varia
\@ifempty
\include notonly .tex’s
Faked small caps
See above/see below
luzniej and napa-

pierki—environments used

in page breaking for money . . .
Typesetting dates in my memoirs .

A left-slanted font
Thousand separator
hyperref’s \nolinkurl into \url*
d. The gmiflink Package

Introduction, usage
Contents of the gmiflink.zip archive
The code

e. The gmverb Package

Intro,usage
Contents of the gmverb.zip archive

The code
Preliminaries
The breakables
Almost-Knuthian \ttverbatim
The core: from shortvrb
doc- and shortvrb-compatibility . .
Grey visible spaces

f. The gmeometric Package.

Introduction, usage
Contents of the gmeometric.zip
archive
Usage
The code

g. The gmoldcomm Package

Change History
Index

a. The gmdoc.sty Package'

October 8, 2008

This is (a documentation of) file gmdoc.sty, intended to be used with I4TEX 2¢ as a pack-
age for documenting (I)TEgX files and to be documented with itself.

Written by Natror (Grzegorz Murzynowski),

natror at o2 dot pl

©2006, 2007, 2008 by Natror (Grzegorz Murzynowski).

This program is subject to the I4TEX Project Public License.

See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
for the details of that license.

LPPL status: “author-maintained”.

Many thanks to my TEX Guru Marcin Woliriski for his TgXnical support.

s \ifnum\catcode "\@=11 % Why this test here—will come out in chapter The driver.
» \NeedsTeXFormat{LaTeX2e}

» \ProvidesPackage{gmdoc}

7 [2008/10/04,,v0.99p ,a, documenting package (GM)]

7+ \fi

Readme

This package is a tool for documenting of (I TEX packages, classes etc., i.e., the .sty, .cls
files etc. The author just writes the code and adds the commentary preceded with 7 sign
(or another properly declared). No special environments are necessary.

The package tends to be (optionally) compatible with the standard doc.sty package,
i.e., the .dtx files are also compilable with gmdoc (they may need very little adjustment,
in some rather special cases).

The tools are integrated with hyperref’s advantages such as hyperlinking of index
entries, contents entries and cross-references.

The package also works with XqIEX (switches automatically).

Installation

Unpack the gmdoc-tds.zip archive (this is an archive conforming the Tps standard, see
CTAN/tds/tds.pdf) in a texmf directory or put the gmdoc.sty, gmdocc.cls and gmold-
comm.sty somewhere in the texmf/tex/latex branch on your own. (Creating a texmf/
tex/latex/gm directory may be advisable if you consider using other packages written
by me. And you have to use four of them to make gmdoc work.)

You should also install gmverb.sty, gmutils.sty and gmiflink.sty (e.g., put them into the
same gm directory). These packages are available on cTaN as separate .zip archives also
in Tps-compliant zip archives.

* This file has version number vo.99p dated 2008/10/04.

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

Moreover, you should put the gmglo.ist file, a Makelndex style for the changes” his-
tory, into some texmf/makeindex (sub)directory.
Then you should refresh your TgX distribution’s files” database most probably.

Contents of the gmdoc.zip archive

The distribution of the gmdoc package consists of the following five files and a TDs-
compliant archive.

gmdoc.sty
gmdocc.cls
gmglo.ist
README
gmdoc.pdf
gmdoc.tds.zip

Compiling of the documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from the
sty and .cls files by running XgI4TEX on the gmdoc.sty twice (xelatex ;gmdoc. sty in the
directory you wish the documentation to be in, you don’t have copy the .sty file there,
TeX will find it), then Makelndex on the gmdoc.idx and gmdoc.glo files, and then XgqI4TEX
on gmdoc.sty once more. (Using IXTEX instead of XgI4TEX should do, too.)

Makelndex shell commands:

makeindex -r gmdoc
makeindex -r -s gmglo.ist -o gmdoc.gls gmdoc.glo

The -r switch is to forbid Makelndex to make implicit ranges since the (code line) num-
bers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmutils.sty, gmverb.sty, gmiflink.sty and also some standard packages: hyper-
ref.sty, xcolor.sty, geometry.sty, multicol.sty, Imodern.sty, fontenc.sty that should be in-
stalled on your computer by default.

If you had not installed the mwcls classes (available on ctan and present in TgX Live
e.g.), the result of your compilation might differ a bit from the .pdf provided in this .zip
archive in formatting: If you had not installed mwcls, the standard article.cls class would
be used.

Dependencies
The gmdoc bundle depends on some other packages of mine:

gmutils.sty,
gmverb.sty,
gmiflink.sty
gmeometric (for the driver of The IATEX 2¢ Source)

and also on some standard packages:

hyperref.sty,
color.sty,
geometry.sty,
multicol.sty,
Imodern.sty,
fontenc.sty

that should be installed on your computer by default.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 5

Bonus: base drivers

As a bonus and example of doc-compatibility there are driver files included (cf. Palest-
rina, Missa papae Marcelli ;-):

source2e_gmdoc.tex
docstrip_gmdoc.tex
doc_gmdoc.tex

gmoldcomm.sty
(gmsource2e.ist is generated from source2e__gmdoc.tex)

These drivers typeset the respective files from the
../texmf-dist/source/latex/base

directory of the TeXLive2007 distribution (they only read that directory).
Probably you should redefine the \BasePath macro in them so that it points that
directory on your computer.

Introduction

There are very sophisticated and effective tools for documenting IXTEX macro packages,
namely the doc package and the ltxdoc class. Why did I write another documenting
package then?

I like comfort and doc is not comfortable enough for me. It requires special marking
of the macro code to be properly typeset when documented. I want TgX to know “itself’
where the code begins and ends, without additional marks.

That’s the difference. One more difference, more important for the people for whom
the doc’s conventions are acceptable, is that gmdoc makes use of hyperref advantages
and makes a hyperlinking index and toc entries and the cross-references, too. (The cses
in the code maybe in the future.)

The rest is striving to level the very high doc/ltxdoc’s standard, such as (optional)
numbering of the codelines and authomatic indexing the control sequences e.g.

The doc package was and still is a great inspiration for me and I would like this
humble package to be considered as a sort of hommage to it>. If I mention copying
some code or narrative but do not state the source explicitly, I mean the doc package’s
documentation (I have v2.1b dated 2004/02/09).

The user interface
Used terms

When I write of a macro, I mean a macro in The TgXbook’s meaning, i.e., a control se-
quence whose meaning is \ (e/g/x)defined. By a macro’s parameter I mean each of
#(digit)s in its definition. When I write about a macro’s argument, I mean the value (list
of tokens) subsituting the corresponding parameter of this macro. (These understand-
ings are according to The TgXbook, I hope: TgX is a religion of Book ;-) .)

I'll use a shorthand for ‘control sequence’, cs.

When I talk of a declaration, I mean a macro that expands to a certain assignment,
such as \itshape or \Qonlypreamble{(cs)}.

Talking of declarations, I'll use the ocsr acronym as a shorthand for ‘observes/ing
common TEX scoping rules’.

> As Grieg’s Piano Concerto is a hommage to the Schumann'’s.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 6

\heshe

\StraightEOL

\QueerEQL

By a command I mean a certain abstract visible to the end user as a cs but consisting
possibly of more than one macro. I'll talk of a command’s argument also in the ‘sense
-for-the-end-user’, e.g., I'll talk of the \verb command’s argument although the macro
\verb has no #(digit) in its definition.

The code to be typeset verbatim (and with all the bells and whistles) is everything
that’s not commented out in the source file and what is not a leading space(s).

The commentary or narrative is everything after the comment char till the end of
a line. The comment char is a character the \catcode of which is 14 usually i.e., when
the file works; if you don’t play with the \catcodes, it’s just the %. When the file is
documented with gmdoc, such a char is re\catcoded and its rdle is else: it becomes the
code delimiter.

A line containing any TEX code (not commented out) will be called a codeline. A line
that begins with (some leading spaces and) a code delimiter will be called a comment
line or narration line.

The user of this package will also be addressed as you.

Not to favour any particular gender (of the amazingly rich variety, I mean, not of the
vulgarly simplified two-element set), in this documentation I use alternating pronouns
of third person (\heshe etc. commands provided by gmutils), so let one be not surprised
if ‘he’ sees ‘herself” altered in the same sentence :-).

Preparing of the source file

When (I9)TgX with gmdoc.sty package loaded typesets the comment lines, the code de-
limiter is ommitted. If the comment continues a codeline, the code delimiter is printed.
It’s done so because ending a TEX code line with a % is just a concatenation with the next
line sometimes. Comments longer than one line are typeset continuously with the code
delimiters ommitted.

The user should just write his splendid code and brilliant commentary. In the latter
she may use usual (I2)TEX commands. The only requirement is, if an argument is divided
in two lines, to end such a dividing line with \""M (\(line end)) or with ~~B sequence
that’ll enter the (active) (char2) which shall gobble the line end.

Moreover, if he wants to add a meta-comment i.e., a text that doesn’t appear in the
code layer nor in the narrative, she may use the ~~A sequence that’ll be read by TgX as
(char1), which in gmdoc is active and defined to gobble the stuff between itself and the
line end.

Note that “~A behaves much like comment char although it’s active in fact: it
re\catcodes the special characters including \, { and } so you don’t have to worry
about unbalanced braces or \ifs in its scope. But "B doesn't re\catcode anything
(it would be useless in an argument) so any text between "B and line end has to be
balanced.

However, it may be a bit confusing for someone acquainted with the doc conventions.
If you don’t fancy the ~ "B special sequence, instead you may restore the standard mean-
ing of the line end with the \StraightEOL declaration which ocsr. As almost all the
control sequences, it may be used also as an environment, i.e., \begin{StraightEOL}
... \end{StraightEOL}. However, if for any reason you don’t want to make an envi-
ronment (a group), there’s a \StraightEOL’s counterpart, the \QueerEOL declaration
that restores again the queer3 gmdoc’s meaning of the line end. It ocsg, too. One more
point to use \StraightEQL is where you wish some code lines to be executed both

3 In my understanding ‘queer” and ‘straight” are not the opposites excluding each other but the coun-
terparts that may cooperate in harmony for people’s good. And, as I try to show with the \QueerEOL and
\StraightEOL declarations, ‘queer’ may be very useful and recommended while ‘straight’ is the standard
but not necessarily normative.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 7

\DocInput

\01dDocInput

macrocode

\DocInclude

\maketitle

\PrintFilesAuthors

while loading the file and during the documentation pass (it’s analogous to doc’s not
embracing some code lines in a macrocode environment).

As in standard TgXing, one gets a paragraph by a blank line. Such a line should be
hed of course. A fully blank line is considered a blank code line and hence results in
a vertical space in the documentation. As in the environments for poetry known to me,
subsequent blank lines do not increase such a space.

Then he should prepare a main document file, a driver henceforth, to set all the
required formattings such as \documentclass, paper size etc., and load this package
with a standard command i.e., \usepackage{gmdoc}, just as doc’s documentation says:

“If one is going to document a set of macros with the [gm]doc package one has to
prepare a special driver file which produces the formatted document. This driver file
has the following characteristics:

\documentclass [{options)] {{document-class)}
\usepackage [{options, probably none)] {gmdoc}
(preamble)
\begin{document}
(special input commands)
\end{document}

4

The main input commands

To typeset a source file you may use the \DocInput macro that takes the (path
and) name of the file with the extension as the only argument, e.g., \DocInput{’
mybrilliantpackage.sty}.

(Note that an installed package or class file is findable to TEX even if you don't specify
the path.)

If a source file is written with rather doc than gmdoc in mind, then the \01dDocInput
command may be more appropriate (e.g., if you break the arguments of commands in
the commentary in lines). It also takes the file (path and) name as the argument.

When using \01ldDocInput, you have to wrap all the code in macrocode environ-
ments, which is not necessary when you use \DocInput. Moreover, with \O1ldDocInput
themacrocode (*) environments require to be ended with %, \end{macrocode (%) }
as in doc. (With \DocInput you are not obliged to precede \end{macrocode (*) } with
The Four Spaces.)

If you wish to document many files in one document, you are provided \DocInclude
command, analogous to I4TEX’s \include and very likely to ltxdoc’s command of the
same name. In gmdoc it has one mandatory argument that should be the file name
without extension, just like for \include.

The file extensions supported by \DocInclude are .fdd, .dtx, .cls, .sty, .tex and .fd.
The macro looks for one of those extensions in the order just given. If you need to doc-
ument files of other extensions, please let me know and most probably we’ll make it
possible.

\DocInclude has also an optional first argument that is intended to be the path of
the included file with the levels separated by / (slash) and also ended with a slash. The
path given to \DocInclude as the first and optional argument will not appear in the
headings nor in the footers.

\DocInclude redefines \maketitle so that it makes a chapter heading or, in the
classes that don’t support \chapter, a part heading, in both cases with respective
toc entries. The default assumption is that all the files have the same author(s) so
there’s no need to print them in the file heading. If you wish the authors names to
be printed, you should write \PrintFilesAuthors in the preamble or before the rel-

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 8

\SkipFilesAuthors

\includeonly

\SelfInclude

\1txLookSetup

\olddocIncludes

\gndocIncludes

\ltxPageLayout

\AtBegInput

\AtEndInput

\AtBegInputOnce

evant \DocIncludes. If you wish to undeclare printing the authors names, there is
\SkipFilesAuthors declaration.

Like in ltxdoc, the name of an included file appears in the footer of each page with
date and version info (if they are provided).

The \DocIncluded files are numbered with the letters, the lowercase first, as in Itx-
doc. Such a filemarker also precedes the index entries, if the (default) codeline index
option is in force.

Aswith \include, you may declare \includeonly<{(filenames separated by commas)}
for the draft versions.

If you want to put the driver into the same .sty or .cls file (see chapter 641 to see
how), you may write \DocInput{\jobname.sty}, or \DocInclude{\jobname.sty},
but there’s also a shorthand for the latter \SelfInclude that takes no arguments. By
the way, to avoid an infinite recursive input of .aux files in the case of self-inclusion an
.auxx file is used instead of (main) .aux.

At the default settings, the \Doc/SelfIncluded files constitute chaptersif \chapter
is known and parts otherwise. The \maketitles of those files result in the respective
headings.

If you prefer more Itxdocish look, in which the files always constitute the parts and
those parts have a part’s title pages with the file name and the files’ \maketitles result
in (article-like) titles not division headings, then you are provided the \1txLookSetup
declaration (allowed only in the preamble). However, even after this declaration the
files will be included according to gmdoc’s rules not necessarily to the doc’s ones (i.e.,
with minimal marking necessary at the price of active line ends (therefore not allowed
between a command and its argument nor inside an argument)).

On the other hand, if you like the look offered by me but you have the files prepared
for doc not for gmdoc, then you should declare \olddocIncludes. Unlike the previous
one, this may be used anywhere, because I have the account of including both doc-like
and gmdoc-like files into one document. This declaration just changes the internal input
command and doesn’t change the sectioning settings.

It seems possible that you wish to document the ‘old-doc’ files first and the ‘new-doc’
ones after, so the above declaration has its counterpart, \gmdocIncludes, that may be
used anywhere, too. Before the respective \DocInclude(s), of course.

Both these declarations ocsr.

If you wish to document your files as with ltxdoc and as with doc, you should declare
\1txLookSetup in the preamble and \olddocIncludes.

Talking of analogies with ltxdoc, if you like only the page layout provided by that
class, there is the \1txPageLayout declaration (allowed only in preamble) that only
changes the margins and the text width (it’s intended to be used with the default paper
size). This declaration is contained in the \1txLookSetup declaration.

If you need to add something at the beginning of the input of file, there’s the
\AtBegInput declaration that takes one mandatory argument which is the stuff to be
added. This declaration is global. It may be used more than one time and the arguments
of each occurrence of it add up and are put at the beginning of input of every subsequent
files.

Simili modo, for the end of input, there’s the \AtEndInput declaration, also one-
argument, global and cumulative.

If you need to add something at the beginning of input of only one file, put before
the respective input command an \AtBegInputOnce{(the stuff to be added)} declaration.
It’s also global which means that the groups do not limit its scope but it adds its argu-
ment only at the first input succeding it (the argument gets wrapped in a macro that’s
\relaxed at the first use). \AtBegInputOnces add up, too.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 9

\IndexInput One more input command is \IndexInput (the name and idea of effect comes from
doc). It takes the same argument as \DocInput, the file’s (path and) name with exten-
sion. (It has \DocInput inside). It works properly if the input file doesn’t contain explicit
(char1) (""A is ok).

The effect of this command is typesetting of all the input file verbatim, with the code
lines numbered and the cses automatically indexed (gmdoc.sty options are in force).

Package options

As many good packages, this also provides some options:

Due to best TEX documenting traditions the codelines will be numbered. But if the

linesnotmum user doesn’t wish that, she may turn it off with the 1inesnotnum option.

However, if he agrees to have the lines numbered, she may wish to reset the counter
of lines himself, e.g., when she documents many source files in one document. Then he
may wish the line numbers to be reset with every {section}’s turn for instance. This

uresetlinecount is the role of the uresetlinecount option, which seems to be a bit obsolete however,
since the \DocInclude command takes care of a proper reset.

Talking of line numbering further, a tradition seems to exist to number only the code-
lines and not to number the lines of commentary. That’s the default behaviour of gmdoc
but, if someone wants the comment lines to be numbered too, which may be conve-

countalllines nient for reference purposes, she is provided the countalllines option. This option
switches things to use the \inputlineno primitive for codeline numbers so you get
the numbers of the source file instead of number only of the codelines. Note however,
that there are no hypertargets made to the narration lines and the value of \ref is the
number of the most recent codeline.

Moreover, if he wants to get the narration lines” number printed, there is the starred

countalllinesx version of that option, countalllines*. I imagine someone may use it for debug. This
option is not finished in details, it causes errors with \addvspace because it puts a hy-
perlabel at every line. When it is in force, all the index entries are referenced with the
line numbers and 44 the narration acquires a bit biblical look ;-), 4.as shown in this
short example. This option is intended 44; for the draft versions and it is not perfect (as if
anything 44 in this package was). As you see, the lines 44;are typeset continuously with
the numbers printed.

By default the makeidx package is loaded and initialized and the cses occurring in
the code are automatically (hyper)indexed thanks to the hyperref package. If the user
noindex doesn’t wish to index anything, she should use the noindex option.
The index comes two possible ways: with the line numbers (if the lines are num-
pageindex bered) and that’s the default, or with the page numbers, if the pageindex option is set.
The references in the change history are of the same: when index is line number, then
the changes history too.

By default, gmdoc excludes some 300 cses from being indexed. They are the most
common cses, IXTEX internal macros and TgX primitives. To learn what cses are excluded
actually, see lines 5382-5508.
indexallmacros If you don’t want all those exclusions, you may turn them off with the indexallmacros
option.
If you have ambiguous feelings about whether to let the default exclusions or forbid
them, see p. 15 to feed this ambiguity with a couple of declarations.

In doc package there’s a default behaviour of putting marked macro’s or environ-
ment’s name to a marginpar. In the standard classes it’s allright but not all the classes
support marginpars. That is the reason why this package enables marginparing when
in standard classes, enables or disables it due to the respective option when with

withmarginpar ~ Marcin Woliriski’s classes and in any case provides the options withmarginpar and

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 10

nomarginpar

codespacesblank
\CodeSpacesBlank
codespacesgrey

\CodeSpacesGrey

\VisSpacesGrey

gmverb

\verbeolOK

\MakeShortVerb

\dekclubs

\DeleteShortVerb

gmutils

nomarginpar. So, in non-standard classes the default behaviour is to disable margin-
pars. If the marginpars are enabled in gmdoc, it will put marked control sequences
and environments into marginpars (see \TextUsage etc.). These options do not affect
common using marginpars, which depends on the documentclass.

My suggestion is to make the spaces in the code visible except the leading ones and
that’s the default. But if you wish all the code spaces to be blank, I give the option
codespacesblank reluctantly. Moreover, if you wish the code spaces to be blank only
in some areas, then there’s \CodeSpacesBlank declaration (Ocsr).

Another space formatting option is codespacesgrey suggested by Will Robertson.
It makes the spaces of code visible only not black but grey. The name of their colour
is visspacesgrey and by default it’s defined as {gray}{ .5}, you can change it with
xcolor’'s \definecolor. There is also an ocsr declaration \CodeSpacesGrey.

If for any reason you wish the code spaces blank in general and visible and grey
in verbatimxs, use the declaration \VisSpacesGrey of the gmverb package. If you
like a little tricks, you can also specify codespacesgrey, codespacesblank in gmdoc
options (in this order).

The packages required

gmdoc requires (loads if they’re not loaded yet) some other packages of mine, namely
gmutils, gmverb, analogous to Frank Mittelbach’s shortvrb, and gmiflink for conditional
making of hyperlinks. It also requires hyperref, multicol, color and makeidx.

The gmverb package redefines the \verb command and the verbatim environment
in such a way that , { and \ are breakable, the first with no ‘hyphen’ and the other two
with the comment char as a hyphen, i.e., {(subsequent text)} breaks into {%

(subsequent text)} and (text)\mylittlemacro breaks into (text)’
\mylittlemacro.

As the standard IXTEX one, my \verb issues an error when a line end occurs in its
scope. But, if you'd like to allow line ends in short verbatims, there’s the \verbeolOK
declaration. The plain \verb typesets spaces blank and \verb* makes them visible, as
in the standard version(s).

Moreover, gmverb provides the \MakeShortVerb declaration that takes a one-char
control sequence as the only argument and turns the char used into a short verbatim
delimiter, e.g., after

\MakeShortVerbx*\ |

(as you see, the declaration has the starred version, which is for visible spaces, and non-
starred for blank spaces) to get \mylittlemacro you may type |\mylittlemacrol|
instead of \verb+\mylittlemacro+. Because the char used in the last example is my
favourite and is used this way by DEK in The TgXbook’s format, gmverb provides a macro
\dekclubs that expands to the example displayed above.

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical line marker in tabulars and with the tikz package. If this happens, you can
declare e.g., \DeleteShortVerb\ | and the previous meaning of the char used shall be
restored.

One more difference between gmverb and shortvrb is that the chars \activeated by
\MakeShortVerb, behave as if they were ‘other’ in math mode, so you may type e.g.,
$k I n$ to get kin etc.

The gmutils package provides a couple of macros similar to some basic (I)YTEX
ones, rather strictly technical and (I hope) tricky, such as \afterfi, \ifnextcat,
\addtomacro etc. It’s this package that provides the macros for formatting of names
of macros and files, such as \cs, \marg, \pk etc.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 11

hyperref The gmdoc package uses a lot of hyperlinking possibilities provided by hyperref
which is therefore probably the most important package required. The recommended
situation is that the user loads hyperref package with her favourite options before loading
gmdoc.

If he does not, gmdoc shall load it with my favourite options.

gmiflink To avoid an error if a (hyper)referenced label does not exist, gmdoc uses the gmiflink
package. It works e.g., in the index when the codeline numbers have been changed: then
they are still typeset, only not as hyperlinks but as a common text.

To typeset the index and the change history in balanced columns gmdoc uses the
multicol multicol package that seems to be standard these days.
color Also the multicol package, required to define the default colour of the hyperlinks,
seems to be standard already, and makeidx.

Automatic marking of definitions

gmdoc implements automatic detection of a couple of definitions. By default it detects

all occurrences of the following commands in the code:

1. \def, \newcount, \newdimen, \newskip, \newif, \newtoks, \newbox, \newread,
\newwrite, \newlength, \newcommand (*), \renewcommand (*), \providecommand (*),
\DeclareRobustCommand (*), \DeclareTextCommand (*),
\DeclareTextCommandDefault (*), \DeclareDocumentCommand,

2. \newenvironment (*), \renewenvironment (*), \DeclareOption(*),

3. \newcounter,
of the xkeyval package:

4. \define@key, \define@boolkey, \define@choicekey, \DeclareOptionX,
and of the kvoptions package:

5. \DeclareStringOption, \DeclareBoolOption, \DeclareComplementaryOption,
\DeclareVoidOption.

What does “detects” mean? It means that the main argument of detected command
will be marked as defined at this point, i.e. thrown to a margin note and indexed with
a ‘definition” entry. Moreover, for the definitions 3-5 an alternate index entries will be
created: of the cses uderlying those definitions, e.g. \newcounter{foo} in the code
will result in indexing foo and \c@foo.

If you want to add detection of a defining command not listed above, use the

\DeclareDefining \DeclareDefining declaration. It comes in two flavours: ‘sauté’ and with star. The

‘sauté” version (without star and without an optional argument) declares a defining

command of the kind of \def and \newcommand: its main argument, whether wrapped

in braces or not, is a cs. The starred version (without the optional argument) declares

a defining command of the kind of \newenvironment and \DeclareOption: whose

main mandatory argument is text. Both versions provide an optional argument in which

you can set the keys.
type Probably the most important key is type. Its default value is cs and that is set in
the ‘sauté” version. Another possible value is text and that is set in the starred version.

You can also set three other types (any keyval setting of the type overrides the default

and ‘starred’ setting): dk, dox or kvo.

dk stands for \define@key and is the type of xkeyval definitions of keys (group 4
commands). When detected, it scans furher code for an optional [(KVprefix)], manda-
tory {(KVfamily)} and mandatory {(key name)}. The default (KVprefix) is KV, as in xkey-
val.

dox stands for \DeclareOptionX and launches scanning for an optional [{(KVprefix)],
optional <(KVfamily)> and mandatory {({option name)}. Here the default (KVprefix)
is also KV and the default (KVfamily) is the input file name. If you want to set
another default family (e.g. if the code of foo.sty actually is in file bar.dtx), use

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 12

\DeclareD0XHead

\DeclareKVOFam

star

KVpref
KViam

\HideDefining

\ResuneDef ining

\HideAl1Defining
\ResuneAl1Def ining

\UnDef

\HideDef
\HideDef*
\ResumeDef

\DeclareDOXHead{(KVfamily)}. This declaration has an optional first argument that
is the default (KVprefix) for \DeclareOptionX definitions.

kvo stands for the kvoptions package by Heiko Oberdiek. This package provides
a handful of option defining commands (the group 5 commands). Detection of such
a command launches a scan for mandatory {{option name)} and alternate indexing of
a cs\(KVOfamily)@{optionname). The default (KVOfamily) is the input file name. Again,
if you want to set something else, you are given the \DeclareKVOFam{(KVOfamily)}
that sets the default family (and prefix: (KVOfamily)Q) for all the commands of group 5.

Next key recognized by \DeclareDefining is star. It determines whether the
starred version of a defining command should be taken into account. For example,
\newcommand should be declared with [star=true] while \def with [star=false].
You can also write just [star] instead of [star=true]. It's the default if the star key
is omitted.

There are also KVpref and KVfam keys if you want to redeclare the xkeyval definitions
with another default prefix and family.

For example, if you wish \@namedef to be detected (the original IATEX version), de-
clare

\DeclareDefining*[star=false] \@namedef
or
\DeclareDefining[type=text,star=false] \@namedef

(as stated above, * is equivalent [type=text]).

On the other hand, if you want some of the commands listed above not to be detected,
write \HideDef ining(command) in the commentary. If both (command) and (command*)
are detected, then both will be hidden. \HideDefining is always \global. Later you
can resume detection of (command) and (command*) with \ResumeDef ining(command)
which is always \global too. Moreover, if you wish to suspend automatic detection
of the defining (command) only once (the next occurrence), there is \HideDefining*
which suspends detection of the next occurrence of (command). So, if you wish to ‘hide’
\providecommand* once, write

\HideDefining*\providecommand*

If you wish to turn entire detection mechanism off, write \HideAl1Defining in the
narration layer. Then you can resume detection with \ResumeAl1lDefining. Both dec-
larations are \global.

The basic definition command, \def, seems to me a bit ambiguous. Definitely not
always it defines important macros. But first of all, if you \def a cs excluded from in-
dexing (see section Index ex/inclusions), it will not be marked even if detection of \def
is on. But if the \def’s argument is not excluded from indexing and you still don’t want
it to be marked at this point, you can write \HideDefining*\def or \UnDef for short.

If you don’t like \def to be detected more times, you may write \HideDefiningJ
\def of course, but there’s a shorthand for this: \HideDef which has the starred ver-
sion \HideDef* equivalent \UnDef. To resume detection of \def you are provided also
a shorthand, \ResumeDef (but \ResumeDefining\def also works).

If you define things not with easily detectable commands, you can mark them ‘man-
ually’, with the \Define declaration described in the next section.

Manual Marking of the Macros and Environments

The concept (taken from doc) is to index virtually all the control sequences occurring in
the code. gmdoc does that by default and needs no special command. (See below about
exluding some macros from being indexed.)

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 13

The next concept (also taken from doc) is to ditinguish some occurrences of some
control sequences by putting such a sequence into a marginpar and by special format-
ting of its index entry. That is what I call marking the macros. gmdoc provides also
a possibility of analogous marking for the environments’ names and other sequences
such as ~"A.

This package provides two kinds of special formatting of the index entries: “usage’,
with the reference number italic by default, and ‘def’ (in doc called “main’), with the ref-
erence number roman (upright) and underlined by default. All the reference numbers,
also those with no special formatting, are made hyperlinks to the page or the codeline
according to the respective indexing option (see p. 10).

The macros and environments to be marked appear either in the code or in the com-
mentary. But all the definitions appear in the code, I suppose. Therefore the ‘def” mark-

\Define ~ ing macro is provided only for the code case. So we have the \Def ine, \CodeUsage and
\CodeUsage \TextUsage commands.
\TextUsage All three take one argument and all three may be starred. The non-starred versions
are intended to take a control sequence as the argument and the starred to take whatever
(an environment name or a =~ A-like and also a cs).
You don’t have to bother whether Q is a letter while documenting because even if not,
\llakePrivateLetters ~these commands do make it a letter, or more precisely, they execute \MakePrivateLetters
whatever it does: At the default settings this command makes * a letter, too, so a starred
version of a command is a proper argument to any of the three commands unstarred.

The \Define and \CodeUsage commands, if unstarred, mark the next scanned oc-
currence of their argument in the code. (By ‘scanned occurrence’ I mean a situation of
the cs having been scanned in the code which happens iff its name was preceded by the
char declared as \CodeEscapeChar). The starred versions of those commands mark just
the next codeline and don’t make TgX looks for the scanned occurrence of their argument
(which would never happen if the argument is not a cs). Therefore, if you want to mark
a definition of an environment foo, you should put

%\Definex{foo}
right before the code line
\newenvironment{foo}{%

i.e., notseparated by another code line. The starred versions of the \Code. . . commands
are also intended to mark implicit definitions of macros, e.g., \Define*\Q@foofalse
before the line

\newif\if@foo.

They both are \outer to dicourage their use inside macros because they actually
re\catcode before taking their arguments.

The \TextUsage (one-argument) command is intended to mark usage of a verba-
tim occurrence of a TgX object in the commentary. Unlike \CodeUsage or \Define, it
typesets its argument which means among others that the marginpar appears usually
at the same line as the text you wanted to mark. This command also has the starred
version primarily intended for the environments names, and secondarily for ~~A-likes
and cses, too. Currently, the most important difference is that the unstarred version
executes \MakePrivateLetters while the starred does both \MakePrivateLetters
and \MakePrivateOthers before reading the argument.

If you consider the marginpars a sort of sub(sub...)section marks, then you may wish
to have a command that makes a marginpar of the desired cs(or whatever) at the begin-
ning of its description, which may be fairly far from the first occurrence of its object.

\Describe Then you have the \Describe command which puts its argument in a marginpar and
indexes it as a ‘usage’ entry but doesn’t print it in the text. It’s \outer.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 14

\CodeMarginize
\TextMarginize

\marginpartt

\gndnarginpar

\Def Index
\CodeUsgIndex

\CodeCommonIndex*

\TextUsgIndex
\TextCommonIndex

macro
environment

\DoNot Index

All four commands just described put their (\stringed) argument into a marginpar
(if the marginpars are enabled) and create an index entry (if indexing is enabled).

But what if you want just to make a marginpar with macro’s or environment’s name?
Then you have \CodeMarginize to declare what to put into a marginpar in the TgX code
(it’s \outer) and \TextMarginize to do so in the commentary. According to the spirit
of this part of the interface, these commands also take one argument and have their
starred versions for strings other than control sequences.

The marginpars (if enabled) are ‘reverse’ i.e., at the left margin, and their contents is
flush right and typeset in a font declared with \marginpartt. By default, this declara-
tion is \let to \tt but it may be advisable to choose a condensed font if there is any.
Such a choice is made by gmdocc.cls if the Latin Modern fonts are available: in this case
gmdocc.cls uses Latin Modern Typewriter Light Condensed.

If you need to put something in a marginpar without making it typewriter font,
there’s the \gmdmarginpar macro (that takes one and mandatory argument) that only
flushes its contents right.

On the other hand, if you don’t want to put a cs(or another verbatim text) in a margin-
par but only to index it, then there are \Def Index and \CodeUsgIndex to declare spe-
cial formatting of an entry. The unstarred versions of these commands look for their
argument’s scanned occurrence in the code (the argument should be a cs), and the
starred ones just take the next code line as the reference point. Both these commands
are \outer.

In the code all the control sequences (except the excluded ones, see below) are in-
dexed by default so no explicit command is needed for that. But the environments and
other special sequences are not and the two commands described above in their *ed
versions contain the command for indexing their argument. But what if you wish to
index a not scanned stuff as a usual entry? The \CodeCommonIndex* comes in rescue,
starred for the symmetry with the two previous commands (without * it just gobbles
it’s argument—it’s indexed automatically anyway). It's \outer.

Similarly, to index a TEX object occurring verbatim in the narrative, you have
\TextUsgIndex and \TextCommonIndex commands with their starless versions for a cs
argument and the starred for all kinds of the argument.

Moreover, as in doc, the macro and environment environments are provided. Both
take one argument that should be a cs for macro and ‘whatever’ for environment. Both
add the \MacroTopsep glue before and after their contents, and put their argument in
amarginpar at the first line of their contents (since it’s done with \strut, you should not
put any blank line (%ed or not) between \begin{macro/environment} and the firstline
of the contents). Then macro commands the first scanned occurrence of its argument to
be indexed as ‘def” entry and environment commands TgX to index the argument as if
it occurred in the next code line (also as ‘def” entry).

Since it’s possible that you define a cs implicitly i.e., in such a way that it cannot
be scanned in the definition (with \csname. . .\endcsname e.g.) and wrapping such
a definition (and description) in an environment environment would look misguidedly
ugly, there’s the macro* environment which TgXnically is just an alias for environment.

(To be honest, if you give a macro environment a non-cs argument, it will accept it
and then it'll work as evironment.)

Index ex/inclusions

It's understandable* that you don’t want some control sequences to be indexed in your
documentation. The doc package gives a brilliant solution: the \DoNotIndex declara-
tion. So do I (although here, TEXnically it’s done another way). It ocsr. This declaration

4 After reading doc’s documentation ;-) .

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 15

takes one argument consisting of a list of control sequences not to be indexed. The items
of this list may be separated with commas, as in doc, but it’s not obligatory. The whole
list should come in curly braces (except when it’s one-element), e.g.,

\DoNotIndex{\some@macros,\are* \too\auxiliary\7}

(The spaces after the control sequences are ignored.) You may use as many \DoNotIndexes
as you wish (about half as many as many cses may be declared, because for each cs ex-
cluded from indexing a special cs is declared that stores the ban sentence). Excluding
the same cs more than once makes no problem.

I assume you wish most of I#TEX macros, TEX primitives etc. to be excluded from your
index (as I do). Therefore gmdoc excludes some 300 cses by default. If you don't like it,
just set the indexallmacros package option.

On the third hand, if you like the default exclusions in general but wish to undo just

\DoIndex ~ a couple of them, you are given \DoIndex declaration (ocsr) that removes a ban on all
the cses given in the argument, e.g.,

\DoIndex{\par \@@par \endgraf}

\DefaultIndexExclusions Moreover, you are provided the \DefaultIndexExclusions and \UndoDefault-
UndoDefaultIndexExclusions ~IndexExclusions declarations that act according to their names. You may use them in
any configuration with the indexallmacros option. Both of these declarations ocsr.

The DocStrip directives

gmdoc typesets the DocStrip directives and it does it quite likely as doc, i.e., with math
sans serif font. It does it automatically whether you use the traditional settings or the
new.
Advised by my TEX Guru, I didn’t implement the module nesting recognition (MW
told it’s not that important.)

So far verbatim mode directive is only half-handled. That is, a line beginning with
H#<<(END-TAG) will be typeset as a DocStrip directive, but the closing line %(END-TAG)
will be not. It doesn’t seem to be hard to implement, if I only receive some message it’s
really useful for someone.

The changes history

The doc’s documentation reads:
“To maintain a change history within the file, the \changes command may be placed
amongst the description part of the changed code. It takes three arguments, thus:

\changes{(version) }{{yyyy/mm/pD date)}{{text)}

The changes may be used to produce an auxiliary file (IXTgX’s \glossary mech-
anism is used for this) which may be printed after suitable formatting. The \changes
[command] encloses the (date) in parentheses and appends the (text) to form the printed
entry in such a change history [... obsolete remark ommitted].
\RecordChanges To cause the change information to be written out, include \RecordChanges in the
driver[’s preamble or just in the source file (gmdocc.cls does it for you)]. To read in
\PrintChanges and print the sorted change history (in two columns), just put the \PrintChanges
command as the last (commented-out, and thus executed during the documentation
pass through the file) command in your package file [or in the driver]. Alternatively,
this command may form one of the arguments of the \StopEventually command, al-
though a change history is probably not required if only the description is being printed.
The command assumes that MakeIndex or some other program has processed the .glo
file to generate a sorted .gls file. You need a special Makelndex style file; a suitable one
\GlossaryMin is supplied with doc [and gmdoc], called [... gmglo.ist for gmdoc]. The \GlossaryMin,

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 16

\GlossaryPrologue
\GlossaryParms

\MakeGlossaryControls

ChangesStartDate
\ChangesStart

\CheckSum

\GlossaryPrologue and \GlossaryParms macros are analagous to the \Index. ..
versions [see sec. The parameters p. 20]. (The IXTEX ‘glossary” mechanism is used for the
change entries.)”

In gmdoc (unless you turn definitions detection off), you can put \changes after
the line of definition of a command to set the default argument of \changes to that
command. For example,

\newcommand*\dodecaphonic{...}
% \changes{vo.gg9e}{2007/04/29}{renamed from \cs{DodecaPhonic}}

results with a history (sub)entry:
vo.99e

(-..)
\dodecaphonic:
renamed from \DodecaPhonic, 17

Such a setting is in force till the next definition and every detected definition resets it.
In gmdoc \changes is \outer.

As mentioned in the introduction, the glossary, the changes history that is, uses
a special Makelndex style, gmglo.ist. This style declares another set of the control chars
but you don’t have to worry: \changes takes care of setting them properly. To be pre-
cise, \changes executes \MakeGlossaryControls that is defined as

\def\actualchar{=} \def\quotechar{!}}
\def\levelchar{>} \edef\encapchar{\xiiclub}

Only if you want to add a control character yourself in a changes entry, to quote some
char, that is (using level or encapsulation chars is not recommended since \changes uses
them itself), use rather \quotechar.

Before writing an entry to the .glo file, \changes checks if the date (the sec-
ond mandatory = the third argument) is later than the date stored in the counter
ChangesStartDate. You may set this counter with a

\ChangesStart{(version)}{(year)/(month)/{day)}

declaration.

If the ChangesStartDate is set to a date contemporary to TgX i.e., not earlier than
September 19825, then a note shall appear at the beginning of the changes history that
informs the reader of ommitting the earlier changes entries.

If the date stored in ChangesStartDate is earlier than TgX, no notification of om-
mitting shall be printed. This is intended for a rather tricky usage of the changes start
date feature: you may establish two threads of the changes history: the one for the users,
dated with four digit year, and the other for yourself only, dated with two or three digit
year. If you declare

\ChangesStart{(version?)}{1000/00/00}

or so, the changes entries dated with less-than-four digit year shall be ommitted and no
notification shall be issued of that.

While scanning the cses in the code, gmdoc counts them and prints the informa-
tion about their number on the terminal and in .log. Moreover, you may declare
\CheckSum{(number)} before the code and TgX will inform you whether the number
stated by you is correct or not, and what it is. As you guess, it’s not my original idea but
I took it from doc.

5 DEK in TgX The Program mentions that month as of TgX Version o release.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 17

\stanzaskip

\CodeTopsep

\UnifornSkips
\NonUniformSkips

\stanza

\Chunkskip

\nostanza

\CodeIndent

\TextIndent

\EOFMark

\everyeof

There it is provided as a tool for testing whether the file is corrupted. My TeX Guru
says it’s a bit old-fashioned nowadays but I like the idea and use it to document the file’s
growth. For this purpose gmdoc types out lines like

% \chschange{vo.98j}{2006/10/19}{4372}
% \chschange{vo.98j}{06/10/19}{4372}

and you may place them at the beginning of the source file. Such a line results in setting
the check sum to the number contained in the last pair of braces and in making a ‘general’
changes entry that states the check sum for version (first brace) dated (second brace) was
(third brace).

The parameters
The gmdoc package provides some parameters specific to typesetting the TgX code:

\stanzaskip is a vertical space inserted when a blank (code) line is met. It’s
equal o.75\medskipamount by default (with the entire \medskipamount'’s stretch- and
shrinkability). Subsequent blank code lines do not increase this space.

At the points where narration begins a new line after the code or an inline comment
and where a new code line begins after the narration (that is not an inline comment),
a\CodeTopsep glueis added. At the beginning and the end of amacro or environment
environment a \MacroTopsep glue is added. By default, these two skips are set equal
\stanzaskip.

The \stanzaskip’s value is assigned also to the display skips and to \topsep. This
is done with the \UniformSkips declaration executed by default. If you want to change
some of those values, you should declare \NonUniformSkips in the preamble to dis-
card the default declaration. (To be more precise, by default \UniformSkips is exe-
cuted twice: when loading gmdoc and again \AtBeginDocument to allow you to change
\stanzaskip and have the other glues set due to it. \NonUniformSkips relaxes the
\UniformSkips’s occurrence at \begin{document}.)

If you want to add a vertical space of \CodeTopsep (equal by default \stanzaskip),
you are provided the \stanza command. Similarly, if you want to add a vertical space
of the \MacroTopsep amount (by default also equal \stanzaskip), you are given the
\chunkskip command. They both act analogously to \addvspace i.e., don’t add two
consecutive glues but put the bigger of them.

Since \CodeTopsep glue is inserted automatically at each transition from the code
(or code with an inline comment) to the narration and reverse, it may happen that you
want not to add such a glue exceptionally. Then there’s the \nostanza command. You
can use it before narration to remove the vskip before it or after narration to suppress
the vskip after it.

The TgX code is indented with the \CodeIndent glue and a leading space increases
indentation of the line by its (space’s) width. The default value of \CodeIndent is1.5em.

There’s also a parameter for the indent of the narration, \TextIndent, but you
should use it only in emergency (otherwise what would be the margins for?). It’s osp
by default.

By default, the end of a \DocInput file is marked with

given by the \EOFMark macro.

If you do use the e-TgX’s primitive \everyeof, be sure the contents of it begins with
\relax because it’s the token that stops the main macro scanning the code.

The crucial concept of gmdoc is to use the line end character as a verbatim group
opener and the comment char, usually the %, as its delimiter. Therefore the "knowledge’

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 18

\CodeDelim

\CodeEscapeChar

\MakePrivateLetters

\AddtoPrivatelthers

\LineNumFont

codelinenum
\IndexPrefix

\EntryPrefix
\HLPrefix

\UsgEntry
\DefEntry

\CommonEntryCnd

what char starts a commentary is for this package crucial and utterly important. The
default assumption is that you use % as we all do. So, if you use another character, then
you should declare it with \CodeDelim typing the desired char preceded by a backslash,
e.g., \CodeDelim\&. (As just mentioned implicitly,
\CodeDelim\} is declared by deafult.)

This declaration is always global so when- and wherever you change your mind you
should express it with a new \CodeDelim declaration.

The starred version of \CodeDelim changes also the verb ‘hyphen’, the char appear-
ing at the verbatim line breaks that is.

Talking of special chars, the escape char, \ by default, is also very important for this
package as it marks control sequences and allows automatic indexing them for instance.
Therefore, if you for any reason choose another than \ character to be the escape char,
you should tell gmdoc about it with the \CodeEscapeChar declaration. As the previous
one, this too takes its argument preceded by a backslash, e.g., \CodeEscapeChar\!. (As
you may deduct from the above, \CodeEscapeChar\\ is declared by default.)

The tradition is that in the packages @ char is a letter i.e., of catcode {;. Frank Mit-
telbach in doc takes into account a possibility that a user wishes some other chars to be
letters, too, and therefore he (F.M.) provides the \MakePrivateLetters macro. So do
I and like in doc, this macro makes @ sign a letter. It also makes * a letter in order to
cover the starred versions of commands.

Analogously but for a slightly different purpose, the \AddtoPrivateOthers macro
is provided here. It adds its argument, which is supposed to be a one-char cs, to the
\doprivateothers list, whose réle is to allow some special chars to appear in the mark-
ing commands’ arguments (the commands described in section Macros for marking the
macros). The default contents of this list is |, (the space) and ~ so you may mark the
environments names and special sequences like ~~A safely. This list is also extended
with every char that is \MakeShortVerbed. (I don't see a need of removing chars from
this list, but if you do, please let me know.)

The line numbers (if enabled) are typeset in the \LineNumFont declaration’s scope,
which is defined as {\normalfont\tiny} by default. Let us also remember, that for
each counter there is a \the(counter) macro available. The counter for the line numbers
is called codelinenum so the macro printing it is \thecodelinenum. By default we
don’t change its I4TEX’s definition which is equivalent \arabic{codelinenum}.

Three more parameter macros, are \IndexPrefix, \EntryPrefix and \HLPrefix.
All three are provided with the account of including multiple files in one document.
They are equal (almost) \@empty by default. The first may store main level index entry
of which all indexed macros and environments would be subentries, e.g., the name of
the package. The third may or even should store a text to distinguish equal codeline
numbers of distinct source files. It may be the file name too, of course. The second
macro is intended for another concept, namely the one from ltxdoc class, to distinguish
the codeline numbers from different files in the index by the file marker. Anyway, if you
document just one file per document, there’s no need of redefining those macros, nor
when you input multiple files with \DocInclude.

gmdoc automatically indexes the control sequences occurring in the code. Their in-
dex entries may be ‘common’ or distinguished in two (more) ways. The concept is to
distinguish the entries indicating the usage of the cs and the entries indicating the defi-
nition of the cs.

The special formattings of “usage’ and ‘def” index entries are determined by \Usg-
Entry and \DefEntry one-parameter macros (the parameter shall be substituted with
the reference number) and by default are defined as \textit and \underline respec-
tively (as in doc).

There’s one more parameter macro, \CommonEntryCmd that stores the name of the

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 19

IndexColumns
\IndexMin

\IndexPrologue

\AtDIPrologue

\IndexLinksBlack

\IndexParms

\gaddtomacro

\actualchar
\quotechar
\levelchar
\encapchar

\verbatimchar

\StopEventually
\Finale

\AlsoImplementation

\OnlyDescription

encapsulation for the ‘common’ index entries (not special) i.e., a word that’ll become
a cs that will be put before an entry in the .ind file. By default it’s defined as {%
relax} and a nontrivial use of it you may see in the source of chapter 641, where \def?,
\CommonEntryCmd{UsgEntry} makes all the index entries of the driver formatted as
‘usage’.

The index comes in a multicols environment whose columns number is deter-
mined by the IndexColumns counter set by default to 3. To save space, the index begins
at the same page as the previous text provided there is at least \IndexMin of the page
height free. By default, \IndexMin = 133.0pt.

The text put at the beginning of the index is declared with a one-argument \Ind-
exPrologue. Its default text at current index option you may admire on page 196.
Of course, you may write your own \IndexPrologue{(brand new index prologue)},
but if you like the default and want only to add something to it, you are provided
\AtDIPrologue one-argument declaration that adds the stuff after the default text. For
instance, I used it to add a label and hypertarget that is referred to two sentences earlier.

By default the colour of the index entry hyperlinks is set black to let Adobe Reader
work faster. If you don’t want this, \1et\IndexLinksBlack\relax. That leaves the
index links colour alone and hides the text about black links from the default index
prologue.

Other index parameters are set with the \IndexParms macro defined in line 5620 of
the code. If you want to change some of them, you don’t have to use \renewcommandx*7
\IndexParms and set all of the parameters: you may \gaddtomacro\IndexParms{%
(only the desired changes)}. (\gaddtomacro is an alias for IATEX’s \g@addto@macro pro-
vided by gmutils.)

At the default gmdoc settings the .idx file is prepared for the default settings of
Makelndex (no special style). Therefore the index control chars are as usual. But if
you need to use other chars as Makelndex controls, know that they are stored in the
four macros: \actualchar, \quotechar, \levelchar and \encapchar whose mean-
ing you infer from their names. Any redefinition of them should be done in the preamble
because the first usage of them takes place at \begin{document} and on it depends
further tests telling TEX what characters of a scanned cs name it should quote before
writing it to the .idx file.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the
\verb’s delimiter for the index entries of the scanned cs names etc. gmdoc also uses
\verbatimchar but defines it as {&}. Moreover, a macro that wraps a cs name in \verb
checks whether the wrapped cs isn't \& and if it is, § is taken as the delimiter. So there’s
hardly chance that you'll need to redefine \verbatimchar.

So strange delimiters are chosen deliberately to allow any ‘other” chars in the envi-
ronments names.

There’s a quadratus of commands taken from doc: \StopEventually, \Finale,
\AlsoImplementation and \OnlyDescription that should be explained simultane-
ously (in a polyphonic song e.g.).

The \OnlyDescription and \AlsoImplementation declarations are intended to
exclude or include the code part from the documentation. The point between the de-
scription and the implementation part should be marked with \StopEventually{’
(the stuff to be executed anyway)} and \Finale should be typed at the end of file. Then
\OnlyDescription defines \StopEventually to expand to its argument followed by
\endinput and
\AlsoImplementation defines \StopEventually to do nothing but pass its argument
to \Finale.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp 20

The narration macros

\verb To print the control sequences’ names you have the \verb macro and its ‘shortverb’
version whatever you define (see the gmverb package).

\inverb For short verbatim texts in the inline comments gmdoc provides the \ inverb({charX)...(charX)
(the name stands for “inline verbatim’) command that redefines the gmverb breakables
to break with % at the beginning of the lower line to avoid mistaking such a broken
verbatim commentary text for the code.

But nor \verb (*) neither \inverb will work if you put them in an argument of an-
other macro. For such a situation, or if you just prefer, gmdoc (gmutils) provides a robust
\c¢s command \cs, which takes one obligatory argument, the macro’s name without the
backslash, e.g., \cs{mymacro} produces \mymacro. I take account of a need of print-
ing some other text verbatim, too, and therefore \cs has the first argument optional,
which is the text to be typeset before the mandatory argument. It’s the backslash by
default, but if you wish to typeset something without the \, you may write \cs [1{%
not,,,a~macro}. Moreover, for typesetting the environments’ names, gmdoc (gmutils)
\env provides the \env macro, that prints its argument verbatim and without a backslash,
e.g., \env{an environment} produces an environment.
\incs For usage in the inline comments there are \incs and \inenv commands that take
\inenv analogous arguments and precede the typeset command and environment names with
a % if at the beginning of a new line.
\nlpercent And for line breaking at \cs and \env there is \nlpercent to ensure % if the line
\+ breaks at the beginning of a \cs or \env and \+ to use inside their argument for a dis-
cretionary hyphen that’ll break to - at the end of the upper line and 7% at the beginning of
the lower line. By default hyphenation of \cs and \env arguments is off, you can allow
it only at \- or \+.

By default the multiline inline comments are typeset with a hanging indent (that is
constant relatively to the current indent of the code) and justified. Since vertical align-
ment is determined by the parameters as they are at the moment of \par, no one can
set the code line to be typeset ragged right (to break nicely if it’s long) and the following
inline comment to be justified. Moreover, because of the hanging indent the lines of mul-
tiline inline comments are relatively short, you may get lots of overfulls. Therefore there

ilrr is a Boolean switch ilrr (ocsr), whose name stands for ‘InLine RaggedRight” and the
inline comments (and their codelines) are typeset justified in the scope of \ilrrfalse
which is the default. When you write \ilrrtrue, then all inline comments in its scope
(and their codelines) will be typeset ragged right (and still with the hanging indent).
\ilrr Moreover, you are provided \ilrr and \ilju commands that set \ilrrtrue and
\ilju \ilrrfalse for the current inline comment only. Note you can use them anywhere
within such a comment, as they set \rightskip basically. \ilrr and \ilju are no-ops

in the standalone narration.

\pk To print packages’ names sans serif there is a \pk one-argument command, and the
\file \file command intended for the filenames.

Because we play a lot with the \catcodes here and want to talk about it, there are
\catletter ~\catletter, \catother and \catactive macros that print 11, 12 and ;3 respectively

\catother ~ to concisely mark the most used char categories.
\catactive I wish my self-documenting code to be able to be typeset each package separately
or several in one document. Therefore I need some ‘“flexible” sectioning commands and
\division here they are: \division, \subdivision and \subsubdivision so far, that by default

\subdivision ~are \let to be \section, \subsection and \subsubsection respectively.

\subsubdivision One more kind of flexibility is to allow using mwcls or the standard classes for the

same file. There was a trouble with the number and order of the optional arguments of
the original mwcls’s sectioning commands.

File a: gmdoc. sty Date: 2008/10/04 Version vo.ggp