\supposedJobname

\gmBundleName

\currentBundle

Grzegorz Murzynowski

The gmdoc Bundle

Copyright © 2006, 2007, 2008, 2009, 2010

by Grzegorz ‘Natror’ Murzynowski

natror (at) o2 (dot) pl

This program is subject to the IXTEX Project Public License.

See http://www.ctan.org/tex—-
archive/help/Catalogue/licenses.lppl.html for the details of that
license.

LPPL status: “author-maintained”.

Many thanks to my TgX Guru Marcin Wolifiski for his TgXnical support.

For the documentation please refer to the file(s)

gmdoc.{gmd,pdf}.

47 {*master)
(A handful of meta-settings skipped)

98 {/ master)

99 <*inS>

100 \def\supposedJobname {%
101 gmdoc%

102 }

104 \let\xA\expandafter
105 \let \nX\noexpand
106 \def\firstofone#1{#1}

108 \unless\ifnum\strcmp, {\jobname} {\supposedJobname} =0
If we want to generate files from this file, we should call
xelatex, ,——jobname={sth. else)

Then the \strcmp primitive expands to some nonzero value and the conditional
turns true.

115 \NeedsTeXFormat {LaTeX2e} [1996/12/01]

117 \def\gmBundleName { %
118 gmdoc%

119 }

121 \def\currentBundle{%
122 docbundle$%

123 }

125 \edef\batchfile{\gmBundleName,,.gmd}

127 \input, docstrip.tex

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

\NOO 129 \def\NOO{\FromDir\gmBundleFile .gmd}
Note it’s \def so the BundleName expands to its current value.

132 \let\skiplines\relax
133 \let\endskiplines\relax
134 \askforoverwritefalse

\MetaPrefixS 136 \def\MetaPrefixS{\MetaPrefix\space}
\perCentS 137 \def\perCentS{\perCent\space}

139 \begingroup
140 \endlinechar=\newlinechar
141 \catcode\newlinechar=12\relax%

143 \catcode *=12\relax%

144 \catcode "\ =o\relax, % Tifinagh Letter Yay
145 \catcode " \\=12 relax, %

146 catcode’ ~=12 relax %

147 firstofone{ endgroup. %

149 def preamBeginningLeaf{%

151 RCSInfo

152 MetaPrefixS, This, is,file, " outFileName” generated with,
the DocStrip utility.

153 MetaPrefixS

154 Referencelines %

155 MetaPrefix %

156 }% of \preamBeginningLeaf

160 def copyRightLeaf{Copyright, ©.}%

163 def licenseNotelLeaf{%

164 This program_is, subject_to the_ LaTeX Project_Public,
License.

165 MetaPrefixS See .,
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.h

166 MetaPrefixS. . for.the details, of that.license.

167 MetaPrefix

168 MetaPrefixS, LPPL,status:."author-maintained".

169 MetaPrefix, %

170 }% of \licenseNoteLeaf

172 def preamkEndingLeaf{%

173 gmBundleFile. {gmd, pdf} gobble{ or \file{%
Natror-OperaOmnia. {gmd, pdf}}}.

174 MetaPrefixS,,.%

175 }% of \preamEndingLeaf

177 def providesStatement {%

179 \NeedsTeXFormat { LaTeX2e}

180 \Provides gmFileKind{ gmOutName}

181 space space space space[gmFileDate space.,

gmFileVersion space, gmFileInfo space, (GM)]

183 } %
185 } % of \firstofone of changed catcodes.

\beforeDot 18y \def\beforeDot#1.#2\empty{#1}

* This file has version number vo.993 dated 2010/09/25.

\firstoftwo
\secondoftwo

\csnamelf

\writeto
\FromDir
\writefrom
\FromDir
\WritePreamble

\edefInfo

189 \def\firstoftwo¥1#2{#1}
190 \def\secondoftwo#1#2{#2}

To gobble the default heading lines put by DocStrip:
193 \Name\def {ds@heading}#1{}

195 \def\csnameIf#1{$%
196 \ifcsname#1\endcsname

197 \csname#1\xA\endcsname
198 \fl
199 }

201 \def\writeto#1{\edef\destdir{#1}}
202 \def\FromDir{}
203 \def\writefrom#i{\def\FromDir{#1/}}

205 \def\WritePreamble#1{%

206 \xA\ifx\csname, pre@\@stripstring#i\endcsname\empty
207 \else

209 \edef\outFileName{\@stripstring#1}%

211 \edef\gmOutName {%

212 \xA\beforeDot\outFileName\empty

213 }% of \gmOutName

215 \edef\ngutTitle{%

216 \xA\xA\xA\detokenize\xA\xA\xA{%

217 \csname, ,\gmOutName, ,Title\endcsname}$%
218 }% of \gmOutTitle

220 \edef\gmOutYears{%

221 \csnameIf {\gmOutName Years}$%

222 1%

224 \edef\gmOutThanks{%

225 \ifcsname, \gmOutName, Thanks\endcsname
226 \xA\xA\xA\detokenize\xA\xA\xA{%

227 \csname, \gmOutName, Thanks\endcsname
228 }%

229 \fl

230 1%

232 \edefInfo{Date}% \gmFileDate

233 \edefInfo{Version}% \gmFileVersion

234 \edefInfo{Info}% \gmFileInfo

236 \StreamPut#1{\csname pre@\@stripstring#i\endcsname}$%
237 \fi}

First we look for the info at the leaf-level, then at standalone level, then at the bundle
level. If we don’t find it, it'll be empty.

241 \def\edefInfo#1{$%
202 \Name\edef{gmFile#1}{%

243 \ifcsname \gmOutName Leaf#1i\endcsname_ % e.g.gmbaselLeafVersion
244 \xA\xA\xA\detokenize\xA\xA\XA{$%

245 \csname, \gmOutName, ,Leaf#1\endcsname

246 } %

247 \else

248 \ifcsname, \gmOutName #1\endcsname % e.g. gmbaseVersion

\qnfile

\pack

249 \xA\xA\xA\detokenize\xA\xA\xA{%

250 \csname, \gmOutName, #1\endcsname

251 1%

252 \else

253 \ifcsname, \gmBundleFile, #1\endcsname % e.g.gmutilsVersion
254 \xA\xA\xA\detokenize\xA\xA\xA{%

255 \csname, \gmBundleFile #1\endcsname

256 }%

257 \fi

258 \fl

259 \fi

260 % of edefined macro
261 }% of \edefInfo

263 \let \gmOutName\relax

264 \let\gmOutTitle\relax

265 \let \gmOutYears\relax

266 \let \gmFileDate\relax

267 \let\gmFileVersion\relax
268 \let\gmFileInfo\relax

269 \let \gmOutThanks\relax
270 \let \gmBundleFile\relax
271 \let\gmFileKind\relax

274 \declarepreamble\gmdLeaf
275 \preamBeginningLeaf

277 \copyRightLeaf, \gmOutYears
2,8 by Grzegorz,, ‘Natror’ Murzynowski
279 natror,, (at) .02, (dot) pl

281 \licenseNotelLeaf

283 For, the documentation,please.refer to.the file(s)
284 \preamEndingLeaf

285 \providesStatement

286 \endpreamble

288 \keepsilent
We declare all the preambles later and use the \empty Docstrip preamble.
292 \errorcontextlines=1000

294 \@makeother**A
295 \@makeother**B
296 \@makeother**C
297 \@makeother**v

301 \def\gmfile

302 #1% file name

303 #2% DocStrip directive(s)

304 #3% file extension

305 {%

306 \file{gm#i.#3}{\from{\gmBundleFile/\NOO}{#2}1}%
307 }

309 \def\pack#1i{\gmfile{#1}{#1}{sty}}

s11 \begingroup\catcode \. =9
312 \catcode ' \"*I=9g\relax
313 \catcode ' \"*M=9g\relax
314 \firstofone{\endgroup

\gmBundleFile 318 \def\gmBundleFile{gmdoc}

320 \generate{

322 \usepreamble\gmdLeaf
\gnFileKind 324 \def\gmFileKind{,Package. ...}
326 \Writeto{uuuugmeCuuuu}
327 \pack{_uuodocin}
\gnFileKind 330 \def\gmFileKind{Class ..}
331 \gmfi le{Luwwdoceuuu {uwuwdoccu i Huwuwelsunug}
333 \writefrom{ .. .gmdoc, ...}
334 \writeto{ o ouuoowgmdoc/Source2e, i}
335 \usepreamble\gmdStandalone
337 \flle { uuuuuuuusourceze_gmdoc . teX|_||_||_||_|} { \from{ \NOO} { [N
LaTeXsource, .} }
339 \Writeto{uuuugmeC/dOCuuuu}
340 \file { uuuuuuuudoc_gmdoc Jtexiuuu} \from{ \NOO} { Lo
docbygmdoc,)}
342 \writeto{, ...gmdoc/docstrip i}
343 \file{ o LLuuoodocestrip_gmdoc.tex oy} {\from{\NOO} { ...

docstripuiuu}}

345)
346 }% of changed catcodes’ \firstofone

348 \Msg{%
ek ke e ke ke ke ke ek ke ke ek ke ke ke ke ok ko kek ok ko ko kkok ok ko k ok kkkkkkkkokkkkk }

349 \Msg{.}

350 \Msg{...To_ finish, the installation,,you, have to, move}

351 \Msg{_..the generated files,into,a directory. searched by TeX.}

352 \Msg{.}

353 \Msg{...To type-set the documentation, run the file '\NOO'’}

354 \Msg{_.twice through, LaTeX and, maybe MakeIndex, it.. .}

355 \Msg{.}

356 \Msg{%
Khkkkkkkkhkkkhhhkkkkkhkrhkhkhkhhkhkrhkhkhkhrhhkkhhrhhkhkhhhrrhkhkkhrkrrkhhkkixrk}

359 \csname, . fi\endcsname, % probably for the directive’s clause

360 \csname, .endinput\expandafter\endcsname, %

361 \fi_% of unless job name other than name of this file, which indicates the DocStrip
pass.

364 {/ ins)

Contents

Readme. 6
Installation. 7
Contents of the gmdoc.zip archive . . . 7
Compiling of the documentation . . . 7
Bonus: base drivers 7

Introduction 8

The user interface. 8
Usedterms 8
Preparing of the source file 9
The main input commands 10
Package options 12
The packages required 13
Automatic marking of definitions . . . 14
Manual marking of the macros and

environments 16
Index ex/inclusions 18
The DocStrip directives 19
The changes history 19
The parameters 21
The narration macros 23
A queerness of \label 26
doc-compatibility 26

The driverpart 27

Thecode 29
The package options 30
The dependencies and preliminaries . 31
Thecore 34
Numbering (or not) of the lines 46
Spacing with \everypar 47
Life among queer EOLs 49
Adjustments of verbatimand \verb 52
Macros for marking of the macros . . 53

408 {xdoc>

Readme

Automatic detection of definitions . . 57
\DeclareDefining and the
detectors 58
Default defining commands 65
Suspending (‘hiding”) and
resuming detection 67
Indexingof CSes 68
Indexexcludelist 83
Index parameters 87
The DocStrip directives 89
The changes history 91
The checksum 96
Macros from ltxdoc 99
\DocInclude and the ltxdoc-like
setup. oo 99
Redefinition of \maketitle 104
The file’s date and version information 108
Miscellanea 110
doc-compatibility 117
gmdocing doc.dtx 122
\OCRInclude 123
Polishing, development and bugs . . . 123
[No]<eof > 124
Intro 125
Usage 125
TheCode 126
The gmoldcomm package 131
Some Typesetting Remarks 134
TheBody 134
Index 141
Change History 159

This package is a tool for documenting of (IXTEX packages, classes etc., i.e., the .sty, .cls
files etc. The author just writes the code and adds the commentary preceded with % sign
(or another properly declared). No special environments are necessary.

The package tends to be (optionally) compatible with the standard doc.sty package,
i.e., the .dtx files are also compilable with gmdoc (they may need a tiny adjustment in

some special cases).

The tools are integrated with hyperref’s advantages such as hyperlinking of index

entries, contents entries and cross-references.

The package also works with XgIEX (switches automatically).

Installation

Unpack the \jobname-tds.zip archive (this is an archive that conforms the TDS standard,
see CTAN/tds/tds.pdf) in some texmf directory or just put the gmutils.sty somewhere in
the texmf/\:tex/\:latex branch. Creating a texmf/\:tex/\:latex/\:gm directory may be
advisable if you consider using other packages written by me.

Then you should refresh your TgX distribution’s files” database most probably.

Contents of the gmdoc.zip archive

The distribution of the gmutils package consists of the following three files and a TDS-
compliant archive.

gmdoc.gmd
README
gmdoc.pdf
gmdoc.tds.zip

Compiling of the documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from the
.gmd file by running I4TEX on the gmdoc.gmd file twice (xelatex.gmdoc.gmd in the
directory you wish the documentation to be in), then Makelndex on the \jobname.idx
file, and then I4TEX on \jobname.\gmdExt once more.

Makelndex shell commands:

makeindex -r gmdoc
makeindex -r -s gmglo.ist -o gmdoc.gls gmdoc.glo

The —r switch is to forbid Makelndex to make implicit ranges since the (code line)
numbers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmverb.sty, the gmutils bundle, gmiflink.sty and also some standard packages:
hyperref.sty, color.sty, geometry.sty, multicol.sty, Imodern.sty, fontenc.sty that should be in-
stalled on your computer by default.

Moreover, you should put the gmglo.ist file, a MakeIndex style for the changes’ his-
tory, into some texmf/makeindex (sub)directory.

Then you should refresh your TgX distribution’s files” database most probably.

If you had not installed the mwcls classes (available on CTAN and present in TgX Live
e.g.), the result of your compilation might differ a bit from the .pdf provided in this .zip
archive in formatting: If you had not installed mwcls, the standard article.cls class would
be used.

Bonus: base drivers

As a bonus and example of doc-compatibility there are driver files included (cf. Palest-
rina, Missa papae Marcelli ;-):

source2e_gmdoc.tex
docstrip_gmdoc.tex
doc_gmdoc.tex

gmoldcomm.sty
(gmsource2e.ist is generated from source2e_gmdoc.tex)

These drivers typeset the respective files from the

.../texmf-dist/source/latex/base

directory of the TeXLive2007 distribution (they only read that directory).
Probably you should redefine the \BasePath macro in them so that it points that
directory on your computer.

Introduction

There are very sophisticated and effective tools for documenting IXTEX macro packages,
namely the doc package and the ltxdoc class. Why did I write another documenting
package then?

I like comfort and doc is not comfortable enough for me. It requires special marking
of the macro code to be properly typeset when documented. I want TgX to know “itself’
where the code begins and ends, without additional marks.

That’s the difference. One more difference, more important for the people for whom
the doc’s conventions are acceptable, is that gmdoc makes use of hyperref advantages and
makes a hyperlinking index and toc entries and the cross-references, too. (The CSes in
the code maybe in the future.)

The rest is striving to level the very high doc/ltxdoc’s standard, such as (optional)
numbering of the codelines and automatic indexing the control sequences e.g.

The doc package was and still is a great inspiration for me and I would like this hum-
ble package to be considered as a sort of homage to it". If mention copying some code or
narrative but do not state the source explicitly, I mean the doc package’s documentation
(I have v2.1b dated 2004/02/09).

The user interface

Used terms

When I write of a macro, I mean a macro in The TgX book’s meaning, i.e., a control se-
quence whose meaning is \[e|g|x]defined. By a macro’s parameter I mean each of
#{digit)s in its definition. When I write about a macro’s argument, I mean the value
(list of tokens) substituting the corresponding parameter of this macro. (These under-
standings are according to The TEX book, I hope: TX is a religion of Book ;-).)

I'll use a shorthand for ‘control sequence’, CS.

When I talk of a declaration, I mean a macro that expands to a certain assignment,
such as \itshape or \Qonlypreamble{<{CS)}.

Talking of declarations, I'll use the OCSR acronym as a shorthand for ‘observes/ing
common TEX scoping rules’.

By a command I mean a certain abstract visible to the end user as a CS but consisting
possibly of more than one macro. I'll talk of a command’s argument also in the ‘sense -
for -the -end -user’, e.g., I'll talk of the \verb command’s argument although the macro
\verb has no #<{digit) in its definition.

The code to be typeset verbatim (and with all the bells and whistles) is everything
that’s not commented out in the source file and what is not a leading space(s).

The commentary or narrative is everything after the comment char till the end of
a line. The comment char is a character the \catcode of which is 14 usually i.e., when
the file works; if you don’t play with the \catcodes, it’s just the %. When the file is
documented with gmdoc, such a char is re\ cat coded and its role is else: it becomes the
code delimiter.

A line containing any TEX code (not commented out) will be called a codeline. A line
that begins with (some leading spaces and) a code delimiter will be called a comment
line or narration line.

1 As Grieg’s Piano Concerto is a homage to the Schumann’s.

\heshe

\AAM
AAB

\qfootnote
\qemph

\arg

/\/\A

\StraightEOL

\QueerEQL

The user of this package will also be addressed as you.

Not to favour any particular gender (of the amazingly rich variety, I mean, not of the
vulgarly simplified two-element set), in this documentation I use alternating pronouns
of third person (\heshe etc. commands provided by gmutils), so let one be not surprised
if ‘they’ sees ‘themself” altered in the same sentence :-).

Preparing of the source file

When (I)TEX with gmdoc.sty package loaded typesets the comment lines, the code de-
limiter is omitted. If the comment continues a codeline, the code delimiter is printed.
It’s done so because ending a TgX code line with a % is just a concatenation with the next
line sometimes. Comments longer than one line are typeset continuously with the code
delimiters omitted.

The user should just write their splendid code and brilliant commentary. In the lat-
ter they may use usual (I&)TgX commands. The only requirement is, if an argument is
divided in two lines, to end such a dividing line with \"*M (\{line end)) or with **B
sequence that’ll enter the (active) {char2) which shall gobble the line end.

But there is also a gmdoc version of \footnote provided that sets the catcodes so
that you don’t bother about "B in the argument, \gfootnotethat takes the same ar-
gument(s) as the standard \footnote and for emphasis there is \gemph { {text to em-
phasisey}. Both of them work also in the ‘straight’ EOLs” scope so you don’t bother. The
\arg gmutils’ command also works without **B.

Moreover, if they wants to add a meta-comment i.e., a text that doesn’t appear in the
code layer nor in the narrative, they may use the *"A sequence that’ll be read by TgX as
{char1y, which in gmdoc is active and defined to gobble the stuff between itself and the
line end.

Note that *“"A behaves much like comment char although it’s active in fact: it
re\catcodes the special characters including \, { and } so you don’t have to worry
about unbalanced braces or \ifs in its scope. But **B doesn’t re\catcode anything
(which would be useless in an argument) so any text between **B and line end has to
be balanced.

However, it may be a bit confusing for someone acquainted with the doc conventions.
If you don’t fancy the * "B special sequence, instead you may restore the standard mean-
ing of the line end with the \StraightEOL declaration which OCSR. As almost all the
control sequences, it may be used also as an environment, i.e., \begin{StraightEOL}
... \end{StraightEOL}. However, if for any reason you don’t want to make an envi-
ronment (a group), there’s a \St raight EOL’s counterpart, the \QueerEOL declaration
that restores again the queer> gmdoc’s meaning of the line end. It OCSR, too. One more
point to use \StraightEOL is where you wish some code lines to be executed both
while loading the file and during the documentation pass (it’s analogous to doc’s not
embracing some code lines in a macrocode environment).

As in standard TgXing, one gets a paragraph by a blank line. Such a line should be
%ed of course. A fully blank line is considered a blank code line and hence results in
a vertical space in the documentation. As in the environments for poetry known to me,
subsequent blank lines do not increase such a space.

Then they should prepare a main document file, a driver henceforth, to set all the
required formattings such as \documentclass, paper size etc., and load this pack-

2 In my understanding ‘queer” and ‘straight’ are not the opposites excluding each other but the coun-
terparts that may cooperate in harmony for people’s good. And, as I try to show with the \QueerEOL and
\StraightEOL declarations, ‘queer’ may be very useful and recommended while ‘straight’ is the standard
but not necessarily normative.

\DocInput

\0ldDocInput

macrocode

\DocInclude

\maketitle

\PrintFilesAuthors
\SkipFilesAuthors

age with a standard command i.e., \usepackage { gmdoc}, just as doc’s documentation
says:

“If one is going to document a set of macros with the [gm]doc package one has to
prepare a special driver file which produces the formatted document. This driver file
has the following characteristics:

\documentclass [{options)] { {document class)}
\usepackage [{options, probably none)] {gmdoc}
{preamble)
\begin{document}
{special input commands)
\end{document}

7”7

The main input commands

To typeset a source file you may use the \DocInput macro that takes the (path and)
name of the file with the extension as the only argument, e.g., \DocInput {mybril|
liantpackage.sty}3.

(Note that an installed package or class file is findable to TgX even if you don't specify
the path.)

If a source file is written with rather doc than gmdoc in mind, then the \OldDocInput
command may be more appropriate (e.g., if you break the arguments of commands in
the commentary in lines). It also takes the file (path and) name as the argument.

When using \OldDocInput, you have to wrap all the code in macrocode environ-
ments, which is not necessary when you use \DocInput. Moreover, with \OldDocIn|
put the macrocode[*] environments require to be ended with

$.uou\end{macrocode[x]}

as in doc. (With \DocInput you are not obliged to precede \end{macrocode[x]} with
The Four Spaces.)

If you wish to document many files in one document, you are provided \DocIn|
clude command, analogous to IXTEX’s \include and very likely to ltxdoc’s command
of the same name. In gmdoc it has one mandatory argument that should be the file name
without extension, just like for \include.

The file extensions supported by \DocInclude are .fdd, .dtx, .cls, .sty, .tex and .fd.
The macro looks for one of those extensions in the order just given. If you need to doc-
ument files of other extensions, please let me know and most probably we’ll make it
possible.

\DocInclude has also an optional first argument that is intended to be the path of
the included file with the levels separated by / (slash) and also ended with a slash. The
path given to \DocInclude as the first and optional argument will not appear in the
headings nor in the footers.

\DocInclude redefines \maketitle so that it makes a chapter heading or, in the
classes that don’t support \chapter, a part heading, in both cases with respective toc
entries. The default assumption is that all the files have the same author(s) so there’s no
need to print them in the file heading. If you wish the authors names to be printed, you
should write \PrintFilesAuthors in the preamble or before the relevant \DocIn|
cludes. If you wish to undeclare printing the authors names, there is \SkipFiles|
Authors declaration.

3 T'use the ‘broken bar’ character as a hyphen in verbatim texts and hyperlinks. If you dont't like it, see
\verbDiscretionaryHyphen in gmverb.

10

\includeonly

\SelfInclude

\1txLookSetup

\olddocIncludes

\gmdocIncludes

\ltxPagelayout

\AtBegInput

\AtEndInput

\AtBegInputOnce

Like in ltxdoc, the name of an included file appears in the footer of each page with
date and version info (if they are provided).

The \DocIncluded files are numbered with the letters, the lowercase first, as in
ltxdoc. Such a file-marker also precedes the index entries, if the (default) codeline index
option is in force.

As with \include, you may declare \includeonly {{filenames separated with com-
masy} for the draft versions.

If you want to put the driver into the same .sty or .cls file (see chapter 640 to see
how), you may write \DocInput {\jobname.sty}, or \DocInclude{\jobname},
but there’s also a shorthand for the latter \SelfInclude that takes no arguments. By
the way, to avoid an infinite recursive input of .aux files in the case of self-inclusion an
.auxx file is used instead of (main) .aux.

By the way, to say TgX to (self)include only the current file, most probably you
should say \includeonly{\jobname} not \includeonly{myfile} because of the
catcodes.

At the default settings, the \(Doc|Self)Included files constitute chaptersif \chap |
ter is known and parts otherwise. The \maketitles of those files result in the respec-
tive headings.

If you prefer more ltxdocish look, in which the files always constitute the parts and
those parts have a part’s title pages with the file name and the files’ \maket it les result
in (article-like) titles not division headings, then you are provided the \1txLookSetup
declaration (allowed only in the preamble). However, even after this declaration the
files will be included according to gmdoc’s rules not necessarily to the doc’s ones (i.e.,
with minimal marking necessary at the price of active line ends (therefore not allowed
between a command and its argument nor inside an argument)).

On the other hand, if you like the look offered by me but you have the files prepared
for doc not for gmdoc, then you should declare \olddocIncludes. Unlike the previous
one, this may be used anywhere, because I have the account of including both doc-like
and gmdoc-like files into one document. This declaration just changes the internal input
command and doesn’t change the sectioning settings.

It seems possible that you wish to document the ‘old-doc’ files first and the ‘new-doc’
ones after, so the above declaration has its counterpart, \gmdocIncludes, that may be
used anywhere, too. Before the respective \DocInclude(s), of course.

Both these declarations OCSR.

If you wish to document your files as with ltxdoc and as with doc, you should declare
\1ltxLookSetup in the preamble and \olddocIncludes.

Talking of analogies with ltxdoc, if you like only the page layout provided by that
class, there is the \1txPageLayout declaration (allowed only in preamble) that only
changes the margins and the text width (it’s intended to be used with the default paper
size). This declaration is contained in the \1txLookSetup declaration.

If you need to add something at the beginning of the input of file, there’s the \AtBe |
gInput declaration that takes one mandatory argument which is the stuff to be added.
This declaration is global. It may be used more than one time and the arguments of each
occurrence of it add up and are put at the beginning of input of every subsequent files.

Simili modo, for the end of input, there’s the \AtEndInput declaration, also one-
argument, global and cumulative.

If you need to add something at the beginning of input of only one file, put before
the respective input command an \AtBegInputOnce {{the stuff to be added)} declara-
tion. It’s also global which means that the groups do not limit its scope but it adds its
argument only at the first input succeeding it (the argument gets wrapped in a macro
that’s \relaxed at the first use). \AtBegInputOnces add up, too.

11

\IndexInput One more input command is \ IndexInput (the name and idea of effect comes from
doc). It takes the same argument as \DocInput, the file’s (path and) name with exten-
sion. (Ithas \DocInput inside). It works properly if the input file doesn’t contain explicit
{char1y (*"~A is OK).

The effect of this command is typesetting of all the input file verbatim, with the code
lines numbered and the CSes automatically indexed (gmdoc.sty options are in force).

Package options
As many good packages, this also provides some options:

Due to best TEX documenting traditions the codelines will be numbered. But if the

linesnotnum user doesn’t wish that, they may turn it off with the 1inesnotnum option.

However, if they agrees to have the lines numbered, they may wish to reset the
counter of lines themself, e.g., when they documents many source files in one docu-
ment. Then they may wish the line numbers to be reset with every {section}’s turn

uresetlinecount for instance. This is the role of the uresetlinecount option, which seems to be a bit
obsolete however, since the \DocInclude command takes care of a proper reset.

Talking of line numbering further, a tradition seems to exist to number only the code-
lines and not to number the lines of commentary. That’s the default behaviour of gmdoc
but, if someone wants the comment lines to be numbered too, which may be conve-

countalllines nient for reference purposes, they is provided the countalllines option. This option
switches things to use the \inputlineno primitive for codeline numbers so you get
the numbers of the source file instead of number only of the codelines. Note however,
that there are no hypertargets made to the narration lines and the value of \ref is the
number of the most recent codeline.

Moreover, if they wants to get the narration lines” number printed, there is the starred

countalllinesk version of that option, countalllines*. I imagine someone may use it for debug.
This option is not finished in details, it causes errors with \addvspace because it puts
a hyperlabel at every line. When it is in force, all the index entries are referenced with
the line numbers and 441 the narration acquires a bit biblical look ;-), 442 as shown in this
short example. This option is intended 443 for the draft versions and it is not perfect (as if
anything 444 in this package was). As you see, the lines 445 are typeset continuously with
the numbers printed.

By default the makeidx package is loaded and initialised and the CSes occurring in
the code are automatically (hyper)indexed thanks to the hyperref package. If the user
noindex doesn’t wish to index anything, she should use the noindex option.
The index comes two possible ways: with the line numbers (if the lines are num-
pageindex bered) and that’s the default, or with the page numbers, if the pageindex option is
set.
The references in the change history are of the same: when index is line number, then
the changes history too.

By default, gmdoc excludes some 300 CSes from being indexed. They are the most
common CSes, I#TEX internal macros and TgX primitives. To learn what CSes are ex-
cluded actually, see lines 6179-6305.
indexallmacros If you don’t want all those exclusions, you may turn them off with the indexallmacros
option.
If you have ambiguous feelings about whether to let the default exclusions or forbid
them, see p. 18 to feed this ambiguity with a couple of declarations.

In doc package there’s a default behaviour of putting marked macro’s or environ-
ment’s name to a marginpar. In the standard classes it’s alright but not all the classes
support marginpars. That is the reason why this package enables marginpar-ing when

12

withmarginpar
nomarginpar

codespacesblank
\CodeSpacesBlank
codespacesqrey

\CodeSpacesGrey

\VisSpacesGrey

gmverb

\verbatimspecials

\verbeolOK

\MakeShortVerb

\dekclubs

\DeleteShortVerb

in standard classes, enables or disables it due to the respective option when with
Marcin Woliriski’s classes and in any case provides the options withmarginpar and
nomarginpar. So, in non-standard classes the default behaviour is to disable margin-
pars. If the marginpars are enabled in gmdoc, it will put marked control sequences and
environments into marginpars (see \TextUsage etc.). These options do not affect com-
mon using marginpars, which depends on the document class.

My suggestion is to make the spaces in the code visible except the leading ones and
that’s the default. But if you wish all the code spaces to be blank, I give the option
codespacesblank reluctantly. Moreover, if you wish the code spaces to be blank only
in some areas, then there’s \CodeSpacesBlank declaration (OCSR).

Another space formatting option is codespacesgrey suggested by Will Robertson.
It makes the spaces of code visible only not black but grey. The name of their colour
is visspacesgrey and by default it’s defined as {gray}{ .5}, you can change it with
xcolor's \definecolor. There is also an OCSR declaration \CodeSpacesGrey.

If for any reason you wish the code spaces blank in general and visible and grey
in verbatimxs, use the declaration \VisSpacesGrey of the gmverb package. If you
like little tricks, you can also specify codespacesgrey, .codespacesblank in gmdoc
options (in this order).

The packages required

gmdoc requires (loads if they’re not loaded yet) some other packages of mine, namely
gmutils, gmverb, analogous to Frank Mittelbach’s shortvrb, and gmiflink for conditional
making of hyperlinks. It also requires hyperref, multicol, color and makeidx.

The gmverb package redefines the \verb command and the verbatimenvironment
in such a way that ., { and \ are breakable, the first with no ‘hyphen” and the other two
with the comment char as a hyphen, i.e., { {subsequent text)} breaks into {%
{subsequent text)y} and {texty\mylittlemacro breaks into {text)%

\mylittlemacro.

This package provides the \verbatimspecials declaration that is used in gm-

docc.cls as
\verbatimspecials «»[¢]

to set ~ (fractional slash) to the escape char, « and » to group begin and end respectively
and ¢ to math shift in verbatims (also the short ones). Note however that this declaration
has no effect on the code layer.

As the standard IATEX one, my \verb issues an error when a line end occurs in its
scope. But, if you'd like to allow line ends in short verbatims, there’s the \verbeolOK
declaration. The plain \verb typesets spaces blank and \verb* makes them visible, as
in the standard version(s).

Moreover, gmverb provides the \MakeShortVerb declaration that takes a one-char
control sequence as the only argument and turns the char used into a short verbatim
delimiter, e.g., after

\MakeShortVerbx\ |

(as you see, the declaration has the starred version, which is for visible spaces, and non-
starred for blank spaces) to get \mylittlemacro you may type |\mylittlemacro|
instead of \verb+\mylittlemacro+. Because the char used in the last example is my
favourite and is used this way by DEK in The TEX book’s format, gmverb provides a macro
\dekclubs that expands to the example displayed above.

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical line marker in tabulars and with the tikz package. If this happens, you can
declare e.g., \DeleteShortVerb\ | and the previous meaning of the char used shall
be restored.

13

gmutils

hyperref

gmiflink

multicol
color

\DeclareDefining

One more difference between gmverb and shortvrb is that the chars \act iveated by
\MakeShortVerb, behave as if they were ‘other” in math mode, so you may type e.g.,
Sk |n$ to get k|n etc.

The gmutils package provides a couple of macros similar to some basic (I2)ITgX ones,
rather strictly technical and (I hope) tricky, such as \afterfi, \ifnextcat, \ad|
dtomacro etc. It’s this package that provides the macros for formatting of names of
macros and files, such as \cs, \marg, \pk etc. Moreover, it provides a powerful tool for
defining commands with weird optional and Knuthian arguments, \DeclareCommand,
inspired by ancient (pre-expl3) xparse’s \DeclareDocumentCommand

The gmdoc package uses a lot of hyperlinking possibilities provided by hyperref which
is therefore probably the most important package required. The recommended situation
is that the user loads hyperref package with their favourite options before loading gmdoc.

If they does not, gmdoc shall load it with my favourite options.

To avoid an error if a (hyper)referenced label does not exist, gmdoc uses the gmiflink
package. It works e.g., in the index when the codeline numbers have been changed: then
they are still typeset, only not as hyperlinks but as a common text.

To typeset the index and the change history in balanced columns gmdoc uses the
multicol package that seems to be standard these days.

Also the multicol package, required to define the default colour of the hyperlinks,
seems to be standard already, and makeidx.

Automatic marking of definitions

gmdoc implements automatic detection of a couple of definitions*. By default it detects
all occurrences of the following commands in the code:
1. \def, \newcount, \newdimen, \newskip, \newif, \newtoks, \newbox,

\newread,

\newwrite, \newlength, \newcommand[*], \renewcommand|[*],

\providecommand[*], \DeclareRobustCommand[*],

\DeclareTextCommand[*],

\DeclareTextCommandDefault[*], \DeclareDocumentCommand,

\DeclareCommand
2. \newenvironment[*], \renewenvironment[*], \DeclareOption,

3. \newcounter,

of the xkeyval package:

4. \define@key, \define@boolkey, \define@choicekey, \DeclareOptionX,
and of the kvoptions package:
5. \DeclareStringOption, \DeclareBoolOption,

\DeclareComplementaryOption,

\DeclareVoidOption.

What does ‘detects” mean? It means that the main argument of detected command
will be marked as defined at this point, i.e. thrown to a margin note and indexed with
a ‘definition” entry. Moreover, for the definitions 3-5 an alternate index entries will be
created: of the CSes underlying those definitions, e.g. \newcounter{foo} in the code
will result in indexing foo and \c@foo.

If you want to add detection of a defining command not listed above, use the \De |
clareDefining declaration. It comes in two flavours: ‘sauté” and with star. The ‘sauté’
version (without star and without an optional argument) declares a defining command
of the kind of \def and \newcommand: its main argument, whether wrapped in braces

4 FMI: the implementation took me 752/3 hrs.

14

type

\DeclareDOXHead

\DeclareKVOFam

star

Kvpref
Kviam

\HideDefining

\ResumeDefining

\HideAllDefining

or not, is a CS. The starred version (without the optional argument) declares a defin-
ing command of the kind of \newenvironment and \DeclareOption: whose main
mandatory argument is text. Both versions provide an optional argument in which you
can set the keys.

Probably the most important key is type. Its default value is cs and that is set in
the ‘sauté” version. Another possible value is text and that is set in the starred version.
You can also set three other types (any keyval setting of the type overrides the default
and ‘starred’ setting): dk, dox or kvo.

dk stands for \define@key and is the type of xkeyval definitions of keys (group 4
commands). When detected, it scans further code for an optional [{KVprefix)], manda-
tory {<{KVfamily)} and mandatory {<key name)}. The default (KVprefix) is KV, as in
xkeyval.

dox stands for \DeclareOptionX and launches scanning for an optional [{KV-
prefix)], optional <{KVfamily)> and mandatory {<option name)}. Here the default
{KVprefix) is also KV and the default (KVfamily) is the input file name. If you want
to set another default family (e.g. if the code of foo.sty actually is in file bar.dtx), use
\DeclareDOXHead{{KVfamilyy}. This declaration has an optional first argument that
is the default (KVprefix) for \DeclareOpt ionX definitions.

kvo stands for the kvoptions package by Heiko Oberdiek. This package provides
a handful of option defining commands (the group 5 commands). Detection of such
a command launches a scan for mandatory {<option name)} and alternate indexing
of a CS\{KVOfamilyy@<option namey. The default (KVOfamily) is the input file name.
Again, if you want to set something else, you are given the \DeclareKVOFam{<{KVO-
family)} that sets the default family (and prefix: (KVOfamily»@) for all the commands of
group 5.

Next key recognised by \DeclareDefining is star. It determines whether the
starred version of a defining command should be taken into account>. For example,
\newcommand should be declared with [star=true] while \def with [star=false]
You can also write just [star] instead of [star=true]. It’s the default if the star key
is omitted.

There are also KVpref and KVfamkeys if you want to redeclare the xkeyval definitions
with another default prefix and family.

For example, if you wish \@namedef to be detected (the original IATEX version), de-
clare

\DeclareDefiningx[star=false]\@namedef

or
\DeclareDefining[type=text, star=false] \@namedef

(as stated above, * is equivalent to [type=text]).

On the other hand, if you want some of the commands listed above not to be de-
tected, write \HideDefining\{command) in the commentary. If both {command)
and {commandx) are detected, then both will be hidden. \HideDefining is always
\global. Later you can resume detection of {command) and {commandx)y with \Re |
sumeDefining{command) which is always \global too. Moreover, if you wish to
suspend automatic detection of the defining <{command) only once (the next occur-
rence), there is \HideDefining* which suspends detection of the next occurrence of
{command). So, if you wish to ‘hide” \providecommand* once, write

\HideDefining*\providecommand*
If you wish to turn entire detection mechanism off, write \HideAllDefining in

5 The star key is provided because the default setting of \MakePrivateLetters is such that % is
a letter so e.g. \newcommandx is scanned as one CS. However, if the \makestarlow declaration is in force
(e.g. with the gmdocc) this is not so—\newcommand# is scanned as the CS \newcommand and a star.

15

\ResumeAllDefining

\UnDef

\HideDef
\HideDef
\ResumeDef
\UnPdef

\Define
\CodeUsage
\TextUsage

\MakePrivateletters

the narration layer. Then you can resume detection with \ResumeAl1lDefining. Both
declarations are \global.

The basic definition command, \def, seems to me a bit ambiguous. Definitely not
always it defines important macros. But first of all, if you \def a CS excluded from
indexing (see section Index ex/inclusions), it will not be marked even if detection of
\def is on. But if the \def’s argument is not excluded from indexing and you still don’t
want it to be marked at this point, you can write \HideDefining*\def or \UnDef for
short.

If you don't like \def to be detected more times, you may write \HideDefining%
\def of course, but there’s a shorthand for this: \HideDef which has the starred version
\HideDef* equivalent to \UnDef. To resume detection of \def you are provided also
a shorthand, \ResumeDef (but \ResumeDefining\def also works).

Since I use \pdef most often, I provide also \UnPdef, analogous to \UnDef.

If you define things not with easily detectable commands, you can mark them ‘man-
ually’, with the \Define declaration described in the next section.

Manual Marking of the Macros and Environments

The concept (taken from doc) is to index virtually all the control sequences occurring in
the code. gmdoc does that by default and needs no special command. (See below about
excluding some macros from being indexed.)

The next concept (also taken from doc) is to distinguish some occurrences of some
control sequences by putting such a sequence into a marginpar and by special format-
ting of its index entry. That is what I call marking the macros. gmdoc provides also
a possibility of analogous marking for the environments” names and other sequences
such as *"A.

This package provides two kinds of special formatting of the index entries: “usage’,
with the reference number italic by default, and ‘def’ (in doc called ‘main’), with the ref-
erence number roman (upright) and underlined by default. All the reference numbers,
also those with no special formatting, are made hyperlinks to the page or the codeline
according to the respective indexing option (see p. 12).

The macros and environments to be marked appear either in the code or in the com-
mentary. But all the definitions appear in the code, I suppose. Therefore the ‘def” mark-
ing macro is provided only for the code case. So we have the \Define, \CodeUsage
and \TextUsage commands.

The arguments to all three are as follows:

#1 [*] to indicate whether we mark a single CS or more than one token(s): without
star for a single CS, with star for environment names etc., the starred version executes
\@sanitize,

[#2] o version to be marginized and printed here,

#3 m version to be put to the index, and also (printed here and) marginized if the
previous argument is missing.

Note that if you give a single CS to the starred version (e.g. the next \MakePri |
vateLetters is done so to hyphenate it in the text), you have to wrap it in braces be-
cause command \@sanitizes the specials including backslash.

You don’t have to bother whether @ is a letter while documenting because even if not,
these commands do make it a letter, or more precisely, they execute \MakePrivate|
Letters whatever it does: At the default settings this command makes * a letter, too,
so a starred version of a command is a proper argument to any of the three commands
unstarred.

The \Define and \CodeUsage commands, if unstarred, mark the next scanned oc-
currence of their argument in the code. (By ‘scanned occurrence’ I mean a situation of
the CS having been scanned in the code which happens iff its name was preceded by the

16

\Describe

\CodeMarginize
\TextMarginize

\marginpartt

\gndnarginpar

\DefIndex
\CodeUsgIndex

char declared as \CodeEscapeChar). The starred versions of those commands mark
just the next codeline and don’t make TEX looks for the scanned occurrence of their ar-
gument (which would never happen if the argument is not a CS). Therefore, if you want
to mark a definition of an environment foo, you should put

$\Definex{foo}
right before the code line
\newenvironment {foo}{$%

i.e., not separated by another code line. The starred versions of the \Code... commands
are also intended to mark implicit definitions of macros, e.g., \Definex\@foofalse
before the line

\newif\if@foo.

They both are \outer to discourage their use inside macros because they actually
re\catcode before taking their arguments.

The \TextUsage (one-argument) command is intended to mark usage of a verba-
tim occurrence of a TgX object in the commentary. Unlike \CodeUsage or \Define, it
typesets its argument which means among others that the marginpar appears usually
at the same line as the text you wanted to mark. This command also has the starred
version primarily intended for the environments names, and secondarily for *”A-likes
and CSes, too. Currently, the most important difference is that the unstarred version ex-
ecutes \MakePrivateLetters while the starred does both \MakePrivateLetters
and \MakePrivateOthers before reading the argument.

If you consider the marginpars a sort of sub(sub...)section marks, then you may wish
to have a command that makes a marginpar of the desired CS(or whatever) at the be-
ginning of its description, which may be fairly far from the first occurrence of its object.
Then you have the \Describe command which puts its argument in a marginpar and
indexes it as a “usage’ entry but doesn’t print it in the text. It's \outer.

All four commands just described put their (\st ringed) argument into a marginpar
(if the marginpars are enabled) and create an index entry (if indexing is enabled).

But what if you want just to make a marginpar with macro’s or environment’s name?
Then you have \CodeMarginize to declare what to put into a marginpar in the TgX
code (it’s \outer) and \TextMarginize to do so in the commentary. According to
the spirit of this part of the interface, these commands also take one argument and have
their starred versions for strings other than control sequences.

The marginpars (if enabled) are ‘reverse’ i.e., at the left margin, and their contents is
flush right and typeset in a font declared with \marginpartt. By default, this decla-
ration is \let to \tt but it may be advisable to choose a condensed font if there is any.
Such a choice is made by gmdocc.cls if the Latin Modern fonts are available: in this case
gmdocc.cls uses Latin Modern Typewriter Light Condensed.

If you need to put something in a marginpar without making it typewriter font,
there’s the \gmdmarginpar macro (that takes one and mandatory argument) that only
flushes its contents right.

On the other hand, if you don’t want to put a CS(or another verbatim text) in
a marginpar but only to index it, then there are \DefIndex and \CodeUsgIndex to
declare special formatting of an entry. The unstarred versions of these commands look
for their argument’s scanned occurrence in the code (the argument should be a CS), and
the starred ones just take the next code line as the reference point. Both these commands
are \outer.

In the code all the control sequences (except the excluded ones, see below) are in-
dexed by default so no explicit command is needed for that. But the environments and
other special sequences are not and the two commands described above in their xed

17

\CodeCommonIndex

\TextUsgIndex
\TextCommonIndex

macro
environment

\DoNot Index

\DoIndex

DefaultIndexExclusions
DefaultIndexExclusions

versions contain the command for indexing their argument. But what if you wish to
index a not scanned stuff as a usual entry? The \CodeCommonIndex* comes in rescue,
starred for the symmetry with the two previous commands (without * it just gobbles
it'’s argument—it’s indexed automatically anyway). It’s \outer.

Similarly, to index a TgX object occurring verbatim in the narrative, you have \Text |
UsgIndex and \TextCommonIndex commands with their starless versions for a CS
argument and the starred for all kinds of the argument.

Moreover, as in doc, the macro and environment environments are provided. Both
take one argument that should be a CS for macro and ‘whatever” for environment.
Both add the \MacroTopsep glue before and after their contents, and put their argu-
ment in a marginpar at the first line of their contents (since it’s done with \strut, you
should not put any blank line ($ed or not) between \begin{macro/environment}
and the first line of the contents). Then macro commands the first scanned occurrence
of its argument to be indexed as ‘def’ entry and environment commands TgX to index
the argument as if it occurred in the next code line (also as “def” entry).

Since it’s possible that you define a CS implicitly i.e., in such a way that it cannot
be scanned in the definition (with \csname...\endcsname e.g.) and wrapping such
a definition (and description) in an environment environment would look misguid-
edly ugly, there’s the macrox environment which TgXnically is just an alias for envi |
ronment.

(To be honest, if you give a macro environment a non-CS argument, it will accept it
and then it'll work as environment.)

Index ex/inclusions

It's understandable® that you don’t want some control sequences to be indexed in your
documentation. The doc package gives a brilliant solution: the \DoNot Index declara-
tion. So do I (although here, TeXnically it’s done another way). It OCSR. This declaration
takes one argument consisting of a list of control sequences not to be indexed. The items
of this list may be separated with commas, as in doc, but it’s not obligatory. The whole
list should come in curly braces (except when it’s one-element), e.g.,

\DoNotIndex{\some@macros, \arekx \too\auxiliary\?}

(The spaces after the control sequences are ignored.) You may use as many \DoNot In |
dexes as you wish (about half as many as many CSes may be declared, because for each
CS excluded from indexing a special CS is declared that stores the ban sentence). Ex-
cluding the same CS more than once makes no problem.

I assume you wish most of IXTEX macros, TgX primitives etc. to be excluded from
your index (as I do). Therefore gmdoc excludes some 300 CSes by default. If you don’t
like it, just set the indexallmacros package option.

On the third hand, if you like the default exclusions in general but wish to undo just
a couple of them, you are given \DoIndex declaration (OCSR) that removes a ban on all
the CSes given in the argument, e.g.,

\DoIndex{\par.\@@par. \endgraf}

Moreover, you are provided the \DefaultIndexExclusions and \UndoDef|
aultIndexExclusions declarations that act according to their names. You may use
them in any configuration with the indexallmacros option. Both of these declarations
OCSR.

6 After reading doc’s documentation ;-) .

18

\RecordChanges

\PrintChanges

\GlossaryMin
\GlossaryPrologue
\GlossaryParms

The DocStrip directives

gmdoc typesets the DocStrip directives and it does it quite likely as doc, i.e., with math
sans serif font. It does it automatically whether you use the traditional settings or the
new.
Advised by my TgX Guru, I didn’t implement the module nesting recognition (MW
told it’s not that important.)

So far verbatim mode directive is only half-handled. That is, a line beginning with
%$<<(END-TAG) will be typeset as a DocStrip directive, but the closing line ${END-
TAG) will be not. It doesn’t seem to be hard to implement, if I only receive some message
it’s really useful for someone.

The changes history

The doc’s documentation reads:
“To maintain a change history within the file, the \changes command may be placed
amongst the description part of the changed code. It takes three arguments, thus:

\changes [{\cs)] {version)} {{YYYY/MM/DD date)} {<text)}

or, if you prefer the \ProvidesPackage/Class syntax,

\chgs [{\cs)>] {(KYYYY/MM/DD) {version)y {texty»}

The optional \cs argument may be a CS(with backslash) or a string. By default it’s
the most recently defined CS (see section about automatic detection of definitions).

The changes may be used to produce an auxiliary file (ITgX’s \glossary mecha-
nism is used for this) which may be printed after suitable formatting. The \changes
[command] encloses the {date) in parentheses and appends the {text) to form the
printed entry in such a change history [... obsolete remark omitted].

To cause the change information to be written out, include \RecordChanges in
the driver[’s preamble or just in the source file (gmdocc.cls does it for you)]. To read
in and print the sorted change history (in two columns), just put the \PrintChanges
command as the last (commented-out, and thus executed during the documentation
pass through the file) command in your package file [or in the driver]. Alternatively,
this command may form one of the arguments of the \StopEventually command, al-
though a change history is probably not required if only the description is being printed.
The command assumes that Makelndex or some other program has processed the .glo
file to generate a sorted .gls file. You need a special Makelndex style file; a suitable one
is supplied with doc [and gmdoc], called [... gmglo.ist for gmdoc]. The \GlossaryMin,
\GlossaryPrologue and \GlossaryParms macros are analogous to the \Index...
versions [see sec. The parameters p. 23]. (The IXTgX ‘glossary” mechanism is used for the
change entries.)”

In gmdoc (unless you turn definitions detection off), you can put \changes after
the line of definition of a command to set the default argument of \changes to that
command. For example,

\newcommand*\dodecaphonic{...}
% \changes{vo.g99e}{2007/04/29}{renamed from \cs{DodecaPhonic}}
results with a history (sub)entry:
v0.99e

(..)
\dodecaphonic:
renamed from \DodecaPhonic, 19

Such a setting is in force till the next definition and every detected definition resets it.

19

\MakeGlossaryControls

ChangesStartDate
\ChangesStart

\CheckSum

\toCTAN

In gmdoc \changes is \outer.

As mentioned in the introduction, the glossary, the changes history that is, uses
a special Makelndex style, gmglo.ist. This style declares another set of the control chars
but you don’t have to worry: \changes takes care of setting them properly. To be pre-
cise, \changes executes \MakeGlossaryControls that is defined as

\def\actualchar{=} \def\quotechar{!}$%
\def\levelchar{>} \edef\encapchar{\xiiclub}

Only if you want to add a control character yourself in a changes entry, to quote some
char, that is (using level or encapsulation chars is not recommended since \changes
uses them itself), use rather \quotechar.

Before writing an entry to the .glo file, \changes checks if the date (the sec-
ond mandatory = the third argument) is later than the date stored in the counter
ChangesStartDate. You may set this counter with a

\ChangesStart {{version)} {{year)/{month)/{day)}

declaration.

If the ChangesStartDate is set to a date contemporary to TgX i.e., not earlier than
September 19827, then a note shall appear at the beginning of the changes history that
informs the reader of omitting the earlier changes entries.

If the date stored in ChangesStartDate is earlier than TgX, no notification of omit-
ting shall be printed. This is intended for a rather tricky usage of the changes start date
feature: you may establish two threads of the changes history: the one for the users,
dated with four digit year, and the other for yourself only, dated with two or three digit
year. If you declare

\ChangesStart {{version?»}{1000/00/00}

or so, the changes entries dated with less-than-four digit year shall be omitted and no
notification shall be issued of that.

While scanning the CSes in the code, gmdoc counts them and prints the information
about their number on the terminal and in .log. Moreover, you may declare \Check |
Sum{{number)} before the code and TgX will inform you whether the number stated by
you is correct or not, and what it is. As you guess, it’s not my original idea but I took it
from doc.

There it is provided as a tool for testing whether the file is corrupted. My TgX Guru
says it’s a bit old-fashioned nowadays but I like the idea and use it to document the file’s
growth. For this purpose gmdoc types out lines like

% \chschange{vo.987j}{2006/10/19}{4372}
% \chschange{vo.987j}{06/10/19}{4372}

and you may place them at the beginning of the source file. Such a line results in setting
the check sum to the number contained in the last pair of braces and in making a ‘general’
changes entry that states the check sum for version {first brace) dated <{second brace) was
{third brace).

There is also \t oCTAN({{date)_{version)}, a shorthand for
\chgs {<date) {versiony put, to, \acro{CTAN} on, {date)}

20

\stanzaskip

\CodeTopsep

\UniformSkips
\NonUniformSkips

\stanza

\chunkskip

\nostanza

\CodeIndent

\TextIndent

\EOFMark

\everyeof

\CodeDelim

\narrationmark

The parameters
The gmdoc package provides some parameters specific to typesetting the TgX code:

\stanzaskip is a vertical space inserted when a blank (code) line is met. It’s equal
\medskipamount by default. Subsequent blank code lines do not increase this space.

At the points where narration begins a new line after the code or an in-line comment
and where a new code line begins after the narration (that is not an in-line comment),
a \CodeTopsep glue is added. At the beginning and the end of a macro or environ|
ment environment a \MacroTopsep glue is added. By default, these two skips are set
equal \stanzaskip.

The \stanzaskip’s value is assigned also to the display skips and to \topsep.
This is done with the \UniformSkips declaration executed by default. If you want
to change some of those values, you should declare \NonUniformSkips in the pream-
ble to discard the default declaration. (To be more precise, by default \UniformSkips
is executed twice: when loading gmdoc and again \AtBeginDocument to allow you
to change \stanzaskip and have the other glues set due to it. \NonUniformSkips
relaxes the \UniformSkips’s occurrence at \begin{document}.)

If you want to add a vertical space of \CodeTopsep (equal by default \stanza |
skip), you are provided the \stanza command. Similarly, if you want to add a verti-
cal space of the \MacroTopsep amount (by default also equal \stanzaskip), you are
given the \chunkskip command. They both act analogously to \addvspacei.e., don't
add two consecutive glues but put the bigger of them.

Since \CodeTopsep glue is inserted automatically at each transition from the code
(or code with an in-line comment) to the narration and reverse, it may happen that you
want not to add such a glue exceptionally. Then there’s the \nostanza command. You
can use it before narration to remove the vskip before it or after narration to suppress
the vskip after it.

The TgX code is indented with the \CodeIndent glue and a leading space increases
indentation of the line by its (space’s) width. The default value of \CodeIndent is
1.5em.

There’s also a parameter for the indent of the narration, \TextIndent, but you
should use it only in emergency (otherwise what would be the margins for?). It’s osp
by default.

By default, the end of a \DocInput file is marked with

given by the \EOFMark macro.

If you do use the &-TgX’s primitive \everyeof, be sure the contents of it begins with
\relax because it’s the token that stops the main macro scanning the code.

The crucial concept of gmdoc is to use the line end character as a verbatim group
opener and the comment char, usually the %, as its delimiter. Therefore the ‘knowledge’
what char starts a commentary is for this package crucial and utterly important. The
default assumption is that you use % as we all do. So, if you use another character, then
you should declare it with \CodeDelim typing the desired char preceded by a back-
slash, e.g., \CodeDelim\&. (As just mentioned implicitly, \CodeDelim\% is declared
by default.)

This declaration is always global so when- and wherever you change your mind you
should express it with a new \CodeDelim declaration.

The unstarred version of \CodeDelim changes also the verb ‘hyphen’, the char ap-
pearing at the verbatim line breaks that is and affects the \narrationmark which by

7 DEK in TgX The Program mentions that month as of TgX Version o release.

21

\CodeDelim

\CodeEscapeChar

\MakePrivateletters

\AddtoPrivateOthers

\LineNumFont

codelinenum
\IndexPrefix

\EntryPrefix
\HLPrefix

\UsgEntry
\DefEntry

\CommonEnt ryCmd

default typesets % followed by an en space.
The starred version, \CodeDelim*, changes only the code delimiter and the char
typeset remains untouched. Most probably you shouldn’t use the starred version.

Talking of special chars, the escape char, \ by default, is also very important for this
package as it marks control sequences and allows automatic indexing them for instance.
Therefore, if you for any reason choose another than \ character to be the escape char,
you should tell gmdoc about it with the \CodeEscapeChar declaration. As the previous
one, this too takes its argument preceded by a backslash, e.g., \CodeEscapeChar\!.
(As you may deduct from the above, \CodeEscapeChar\\ is declared by default.)

The tradition is that in the packages @ char is a letter i.e., of catcode ;. Frank Mit-
telbach in doc takes into account a possibility that a user wishes some other chars to be
letters, too, and therefore he (F.M.) provides the \MakePrivateLetters macro. So do
I and like in doc, this macro makes @ sign a letter. It also makes * a letter in order to
cover the starred versions of commands.

Analogously but for a slightly different purpose, the \AddtoPrivateOthers macro
is provided here. It adds its argument, which is supposed to be a one-char CS, to the
\doprivateothers list, whose role is to allow some special chars to appear in the
marking commands” arguments (the commands described in section Macros for mark-
ing the macros). The default contents of this list is ., (the space) and * so you may mark
the environments names and special sequences like **A safely. This list is also extended
with every char that is \MakeShortVerbed. (I don't see a need of removing chars from
this list, but if you do, please let me know.)

The line numbers (if enabled) are typeset in the \LineNumFont declaration’s scope,
which is defined as { \normalfont\tiny} by default. Let us also remember, that for
each counter there is a \the{counter) macro available. The counter for the line numbers
is called codelinenum so the macro printing it is \thecodelinenum. By default we
don’t change its IATEX's definition which is equivalent to \arabic{codelinenum}.

Three more parameter macros, are \IndexPrefix, \EntryPrefix and \HLPre|
fix. All three are provided with the account of including multiple files in one doc-
ument. They are equal (almost) \@empty by default. The first may store main level
index entry of which all indexed macros and environments would be sub-entries, e.g.,
the name of the package. The third may or even should store a text to distinguish equal
codeline numbers of distinct source files. It may be the file name too, of course. The
second macro is intended for another concept, namely the one from ltxdoc class, to distin-
guish the codeline numbers from different files in the index by the file marker. Anyway,
if you document just one file per document, there’s no need of redefining those macros,
nor when you input multiple files with \DocInclude.

gmdoc automatically indexes the control sequences occurring in the code. Their index
entries may be ‘common’ or distinguished in two (more) ways. The concept is to distin-
guish the entries indicating the usage of the CS and the entries indicating the definition
of the CS.

The special formattings of ‘usage” and ‘def’ index entries are determined by \Usg |
Entry and \DefEntry one-parameter macros (the parameter shall be substituted with
the reference number) and by default are defined as \textit and \underline respec-
tively (as in doc).

There’s one more parameter macro, \CommonEntryCmd that stores the name of the
encapsulation for the ‘common’ index entries (not special) i.e., a word that’ll become
a CS that will be put before an entry in the .ind file. By default it’s defined as {re|
lax} and a nontrivial use of it you may see in the source of chapter 640, where \def%
\CommonEntryCmd{UsgEntry} makes all the index entries of the driver formatted as
‘usage’.

22

IndexColumns
\IndexMin

\IndexPrologue

\AtDIPrologue

\IndexLinksBlack

\IndexParms

\gaddtomacro

\actualchar
\quotechar
\levelchar
\encapchar

\verbatimchar

\StopEventually
\Finale

\AlsoImplementation

\OnlyDescription

\verb

\inverb

The index comes in a multicols environment whose columns number is deter-
mined by the IndexColumns counter set by default to 3. To save space, the index begins
at the same page as the previous text provided there is at least \IndexMin of the page
height free. By default, \IndexMin = 133.0pt.

The text put at the beginning of the index is declared with a one-argument \Ind |
exPrologue. Its default text at current index option you may admire on page 141. Of
course, you may write your own \IndexPrologue {{brand new index prologue)}, but if
you like the default and want only to add something to it, you are provided \AtDIPro|
logue one-argument declaration that adds the stuff after the default text. For instance,
I used it to add a label and hypertarget that is referred to two sentences eatlier.

By default the colour of the index entry hyperlinks is set black to let Adobe Reader
work faster. If you don’t want this, \1let\IndexLinksBlack\relax. That leaves the
index links colour alone and hides the text about black links from the default index
prologue.

Other index parameters are set with the \ IndexParms macro defined in line 6424 of
the code. If you want to change some of them, you don’t have to use \renewcommand*%
\IndexParms and set all of the parameters: you may \gaddtomacro\IndexParms{%
{only the desired changes)}. (\gaddtomacro is an alias for I“TgX’s \g@addto@macro
provided by gmutils.)

At the default gmdoc settings the .idx file is prepared for the default settings of
Makelndex (no special style). Therefore the index control chars are as usual. But if you
need to use other chars as Makelndex controls, know that they are stored in the four
macros: \actualchar, \quotechar, \levelchar and \encapchar whose mean-
ing you infer from their names. Any redefinition of them should be done in the preamble
because the first usage of them takes place at \begin{document} and on it depends
further tests telling TEX what characters of a scanned CS name it should quote before
writing it to the .idx file.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the
\verb’s delimiter for the index entries of the scanned CS names etc. gmdoc also uses
\verbatimchar but defines it as {&}. Moreover, a macro that wraps a CS name in
\verb checks whether the wrapped CS isn’t \ & and if it is, $ is taken as the delimiter.
So there’s hardly chance that you'll need to redefine \verbatimchar.

So strange delimiters are chosen deliberately to allow any ‘other” chars in the envi-
ronments names.

There’s a quadratus of commands taken from doc: \StopEventually, \Finale,
\AlsoImplementation and \OnlyDescription that should be explained simulta-
neously (in a polyphonic song e.g.).

The \OnlyDescription and \AlsoImplementation declarations are intended
to exclude or include the code part from the documentation. The point between the
description and the implementation part should be marked with \StopEventually{%
{the stuff to be executed anyway)} and \Finale should be typed at the end of file. Then
\OnlyDescription defines \StopEventually to expand to its argument followed
by \endinput and
\AlsoImplementation defines \StopEventually to do nothing but pass its argu-
ment to \Finale.

The narration macros

To print the control sequences’ names you have the \verb macro and its ‘shortverb’
version whatever you define (see the gmverb package).

For short verbatim texts in the in-line comments gmdoc provides the \ inverb<{a char)
(the name stands for ‘in-line verbatim’) command that redefines the gmverb breakables

23

...{achar)

\cs

\env

\incs
\inenv
\incmd

\nlperc
\+

\nlpercent

ilrr

\ilrr
\ilju

\pk
\file

\catletter
\catother
\catactive

\division
\subdivision
\subsubdivision

to break with % at the beginning of the lower line to avoid mistaking such a broken
verbatim commentary text for the code.

But nor \verb[*] neither \inverb will work if you put them in an argument of an-
other macro. For such a situation, or if you just prefer, gmdoc (gmutils) provides a robust
command \cs, which takes one obligatory argument, the macro’s name without the
backslash, e.g., \cs{mymacro} produces \mymacro. I take account of a need of print-
ing some other text verbatim, too, and therefore \cs has the first argument optional,
which is the text to be typeset before the mandatory argument. It’s the backslash by
default, but if you wish to typeset something without the \, you may write \cs[]{%
not_.a~macro}. Moreover, for typesetting the environments” names, gmdoc (gmutils)
provides the \env macro, that prints its argument verbatim and without a backslash,
e.g., \env{an, environment} produces an environment.

For usage in the in-line comments there are \incs and \inenv commands that take
analogous arguments and precede the typeset command and environment names with
a % if at the beginning of a new line. To those who like \cmd, there is also \incmd, an
in-line version of the former.

And for line breaking at \cs and \env there is \nlperc to ensure % at the beginning
of anew line and \+ to use in \cs and \env argument for a discretionary hyphen that’ll
break to - at the end of the upper line and % at the beginning of the lower line. By default
hyphenation of \cs and \env arguments is off, you can allow it only at \- or \+.

There is also \nlpercent if you wish a discretionary % without \incs or \inverb.

By default the multi-line in-line comments are typeset with a hanging indent (that is
constant relatively to the current indent of the code) and justified. Since vertical align-
ment is determined by the parameters as they are at the moment of \par, no one can
set the code line to be typeset ragged right (to break nicely if it’s long) and the following
in-line comment to be justified. Moreover, because of the hanging indent the lines of
multi-line in-line comments are relatively short, you may get lots of overfulls. Therefore
there is a Boolean switch i1rr (OCSR), whose name stands for ‘In-Line Ragged-Right’
and the in-line comments (and their codelines) are typeset justified in the scope of \1i1|
rrfalse which is the default. When you write \ilrrtrue, then all in-line comments
in its scope (and their codelines) will be typeset ragged right (and still with the hanging
indent). Moreover, you are provided \ilrr and \il ju commands thatset \ilrrtrue
and \ilrrfalse for the current in-line comment only. Note you can use them any-
where within such a comment, as they set \rightskip basically. \ilrr and \ilju
are no-ops in the stand-alone narration.

To print packages’ names sans serif there is a \pk one-argument command, and the
\file command intended for the filenames.

Because we play a lot with the \catcodes here and want to talk about it, there are
\catletter, \catother and \catactive macros that print ,,, ,, and ,; respectively
to concisely mark the most used char categories.

I wish my self-documenting code to be able to be typeset each package separately
or several in one document. Therefore I need some ‘flexible’ sectioning commands and
here they are: \division, \subdivision and \subsubdivision so far, that by de-
fault are \let to be \section, \subsection and \subsubsection respectively.

One more kind of flexibility is to allow using mwcls or the standard classes for the
same file. There was a trouble with the number and order of the optional arguments of
the original mwcls’s sectioning commands.

It’s resolved in gmutils so you are free at this point, and even more free than in the
standard classes: if you give a sectioning command just one optional argument, it will
be the title to toc and to the running head (that’s standard in scls®). If you give two

8 See gmutils for some subtle details.

24

\SetFileDiv

gmlonely
\skipgmlonely

\AmSTeX
\BibTeX
\S1iTeX
\PlainTeX
\Wieb
\TeXbook
\TB
\eTeX
\pdfeTeX
\pdfTeX
\XeTeX

\LaTeXpar
\ds

copyrnote

\gmdmarginpar

\stanza
\chunkskip

quotation

\GetFileInfo
\filedate
\fileversion
\fileinfo

\ProvideFileInfo

optionals, the first will go to the running head and the other to toc. (In both cases the
mandatory argument goes only to the page).

If you wish the \DocIncluded files make other sectionings than the default, you
may declare \SetFileDiv{<{sec name without backslash)}.

gmdoc.sty provides also an environment gmlonely to wrap some text you think you
may want to skip some day. When that day comes, you write \skipgmlonely before
the instances of gmlonely you want to skip. This declaration has an optional argu-
ment which is for a text that'll appear in(stead of) the first gmlonely’s instance in every
\DocInput or \DocIncluded file within \skipgmlonely’s scope.

An example of use you may see in this documentation: the repeated passages about
the installation and compiling the documentation are skipped in further chapters thanks
to it.

gmdoc (gmutils, to be precise) provides some TgX-related logos:
typesets AAMS-TEX,
BBTEX,
SUTEX,
Pran TEX,
WEB,
The TEX book,
The TEX book
&TEX,
pdfe-TEX
pdfTEX
XAIEX (the first E will be reversed if the graphics package is loaded or XgIEX is at work)
and
(INTRX.
DocStrip not quite a logo, but still convenient.

The copyrnote environment is provided to format the copyright note flush left in
\obeylines’ scope

To put an arbitrary text into a marginpar and have it flushed right just like the macros’
names, you are provided the \gmdmarginpar macro that takes one mandatory argu-
ment which is the contents of the marginpar.

To make a vertical space to separate some piece of text you are given two macros:
\stanza and \chunkskip. The first adds \stanzaskip while the latter \Macro|
Topsep. Both of them take care of not cumulating the vspaces.

The quotation environment is redefined just to enclose its contents in double
quotes.

If you don't like it, just call \RestoreEnvironment {quotation} after loading gm-
doc. Note however that other environments using quotation, such as abstract, keep
their shape.

The \GetFileInfo{{file namewithextension)} command defines \filedate, \fil
eversionand \fileinfo as the respective pieces of the info (the optional argument)
provided by \ProvidesClass/Package/File declarations. The information of the
file you process with gmdoc is provided (and therefore getable) if the file is also loaded
(or the \Provide... line occurs in a \StraightEOL scope).

If the input file doesn’t contain \Provides... in the code layer, there are com-
mands \ProvideFileInfo {{file name with extension)} [{info)]. ({info) should consist
of: {year)/{month)/{day) version number) <{a short note).)

25

Since we may documentally input files that we don’t load, doc in gmdoc e.g., we pro-
vide a declaration to be put (in the comment layer) before the line(s) containing \Pro |
\FileInfo vides.... The \FileInfo command takes the subsequent stuff till the closing] and
subsequent line end, extracts from it the info and writes it to the .aux and rescans the
stuff. We use an &-TgX primitive \scantokens for that purpose.
\filenote A macro for the standard note is provided, \filenote, that expands to “This file
has version number <{version number) dated {date).” To place such a note in the docu-
\thfileinfo ment’s title (or heading, with \DocInclude at the default settings), there’s \thfile|
info macro that puts \fileinfo in \thanks.

Since \noindent didn’t want to cooperate with my code and narration layers some-
\gndnoindent times, I provide \gmdnoindent that forces a not indented paragraph if \noindent
could not.

If you declare the code delimiter other than % and then want % back, you may write
\CDPerc \CDPerc instead of \CodeDelimx\%.

\CDAnd If you like & as the code delimiter (as I did twice), you may write \CDAnd instead of
\CodeDelim\é.
\CS To get ‘CS” which is “CS’ in small caps (in \acro to be precise), you can write \CS.

This macro is \protected so you can use it safely in \changes e.g. Moreover, it checks
whether the next token is a letter and puts a space if so so you don’t have to bother about
\CS\L.

To enumerate the list of command’s arguments or macro’s parameters there is the
enumargs enumargs environment which is a version of enumerate with labels like #7. You can
\mand use \itemor, at your option, \mand which is just an alias for the former. For an optional
\opt arguments use \opt which wraps the item label in square brackets. Moreover, to align
enumargsx optional and mandatory arguments digit under digit, use the enumargs* environment.
Both environments take an optional argument which is the number of #s. It's 1 by
default, but also can be 2 or 4 (other numbers will typeset numbers without a #). Please

feel free to notify me if you really need more hashes in that environment.

For an example driver file see chapter The driver.

A queerness of \label

You should be loyally informed that \1abel in gmdoc behaves slightly non-standard in
the \DocInput/ Included files: the automatic redefinitions of \ref at each code line
are global (since the code is typeset in groups and the \ refs will be out of those groups),
soa \reference in the narrative will point at the last code line not the last section, unlike
in the standard IXTgX.

doc-compatibility

One of my goals while writing gmdoc was to make compilation of doc-like files with
gmdoc possible. I cannot guarantee the goal has been reached but I did compile doc.dtx
with not a smallest change of that file (actually, there was a tiny little buggie in line 3299
which I fixed remotely with \AfterMacrocode tool written specially for that). So, if
\AfterMacrocode you wish to compile a doc-like file with my humble package, just try.

\AfterMacrocode {{mcnumber)} {{thestuff)} defines control sequence \gmd@mchook{mc
number) with the meaning {the stuff) which is put at the end of macrocode and oldmc
number {mc number) (after the group).

The doc commands most important in my opinion are supported by gmdoc. Some
commands, mostly the obsolete in my opinion, are not supported but give an info on
the terminal and in .log.

26

\0ldDocInput
\DocInclude
\olddocIncludes
macrocode

oldme

\OldMacrocodes

I assume that if one wishes to use doc’s interface then they won’t use gmdoc’s options
but just the default. (Some gmdoc options may interfere with some doc commands, they
may cancel them e.g.)

The main input commands compatible with doc are \OldDocInput and \DocIn]
clude, the latter however only in the \olddocIncludes declaration’s scope.

Within their scope/argument the macrocode environments behave as in doc, i.e.
they are a kind of verbatim and require to be ended with %.,......\end{macrocode[*]}.

The default behaviour of macrocode[x] with the ‘new” input commands is different
however. Remember that in the ‘new” fashion the code and narration layers philosophy
is in force and that is sustained within macrocode[x]. Which means basically that with
‘new’ settings when you write

% \begin{macrocode}

\alittlemacro % change it to \blaargh
%$\end{macrocode}

and \blaargh’s definition is {foo}, you'll get
\alittlemacro.% change it to foo

(Note that ‘my’ macrocode doesn’t require the magical %, \end.)

If you are used to the traditional (doc’s) macrocode and still wish to use gmdoc new
way, you have at least two options: there is the oldmc environment analogous to the
traditional (doc’s) macrocode (it also has the starred version), that’s the first option
(Ineeded the traditional behaviour once in this documentation, find out where & why).
The other is to write \OldMacrocodes. That declaration (OCSR) redefines macrocode
and macrocode* to behave the traditional way. (It's always executed by \OldDocIn]|
put and \olddocIncludes.)

For a more detailed discussion of what is doc-compatible and how, see the code sec-
tion doc-compatibility.

The driver part

In case of a single package, such as gmutils, a driver part of the package may look as
follows and you put it before \ProvidesPackage/Class.

% \skiplines we skip the driver
\ifnum\catcode \@=12

\documentclass[outeroff, pagella, fontspec=quiet] {gmdocc}
\usepackage{eufrak}% for |\continuum| in the commentary.
\twocoltoc

\begin{document}

\DocInput{\jobname.sty}
\PrintChanges
\thispagestyle{empty}
\typeout {%
Produce change log with”"*J%
makeindex -r -s gmglo.ist -o \jobname.gls \jobname.glo*"J
(gmglo.ist should be put into some texmf/makeindex
directory.)**J}
\typeout {%
Produce index with""J%
makeindex -r \jobname”"J}

27

\skiplines
\endskiplines

\afterfi{\end{document}}

\fi% of driver pass
%$\endskiplines

The advantage of \skiplines...\endskiplines over \iffalse..\fi is that the
latter has to contain balanced \ifs and \ fis while the former hasn’t because it sanitises
the stuff. More precisely, it uses the \dospecials list, so it sanitises also the braces.

Moreover, when the countalllines[*] option is in force, \skipfiles...\end|
skipfiles keeps the score of skipped lines.

Note $\iffalse ... $\fi in the code layer that protects the driver against being
typeset.

But gmdoc is more baroque and we want to see the driver typeset—behold.

2326 \ifnum\catcode" \@=12
2328 \errorcontextlines=100

2331 \documentclass|[countalllines, codespacesgrey, outeroff, ,
debug, . mwrep,
2332 pagella, trebuchet, cursor, fontspec=quiet] {gmdocc}

2334 \verbLongDashes

2336 \DoNot Index { \gmu@tempa, \gmu@tempb, \gmultempc, \gmultempd, %
\gmu@tempe, \gmu@Rtempf}

2338 \twocoltoc

2339 \title{The \pk{gmdoc} Package\\ i.e., \pk{gmdoc.sty} and

2310 \pk{gmdocc.cls}}

2311 \author{Grzegorz, Natror' Murzynowski}

2312 \date{\ifcase\month\relax\or January\or February\or March\or

April\or May\or
2313 June\or,_July\or_August\or, September\or October\or, November$
\or

2344 December\fi\, \the\year}
$\includeonly{gmoldcomm}

2348 \begin{document}

2354 \maketitle

2356 \setcounter{page}{2}% hyperref cries if it sees two pages numbered 1.
2358 \tableofcontents
2359 \DoIndex\maketitle

2362 \SelfInclude
2364 \DocInclude{gmdocc}

For your convenience I decided to add the documentations of the three auxiliary
packages:

2368 \skipgmlonely[\stanza, The remarks, about installation,and,,
compiling

2369 0f the documentation are analogous to those in the chapter

2370 \pk{gmdoc.sty}. and therefore omitted.\stanza]

2371 \DocInclude{gmutils}

2372 \DocInclude{gmiflink}

2373 \DocInclude {gmverb}

28

2375 \DocInclude{gmoldcomm}

2376 \typeout {%

2377 Produce,change log with*"*J%

2378 makeindex, -r. -s.gmglo.ist.—o.\jobname.gls, \jobname.glo”"J

2379 (gmglo.ist.,should, be put, into, some texmf/makeindex,,
directory.)*"*J}

2380 \PrintChanges

2381 \typeout {%

2382 Produce, index, with"*J%

2383 makeindex, —r \jobname”*"J}

2384 \PrintIndex

2386 \afterfi{%
2387 \end{document }

Makelndex shell commands:

2389 makeindex, ,—r, gmdoc
2390 Mmakeindex,,-r -s.gmglo.ist,—o.gmdocDoc.gls, gmdocDoc.glo

(gmglo.ist should be put into some texmf/makeindex directory.)
And “That’s all, folks” ;-).

2397 }\fi% of \ifnum\catcode \@=12, of the driver that is.

The code

For debug
2406 \catcode **C=9\relax

We set the \catcode of this char to ,; in the comment layer.

The basic idea of this package is to re\cat code "M (the line end char) and % (or any
other comment char) so that they start and finish typesetting of what’s between them as
the TgX code i.e., verbatim and with the bells and whistles.

The bells and whistles are (optional) numbering of the codelines, and automatic in-
dexing the CSes, possibly with special format for the ‘def” and “usage” entries.

As mentioned in the preface, this package aims at a minimal markup of the working
code. A package author writes their splendid code and adds a brilliant comment in $ed
lines and that’s all. Of course, if they wants to make a \section or \emphasise, they
has to type respective CSes.

I see the feature described above to be quite a convenience, however it has some price.
See section Life among queer EOLs for details, here I state only that in my opinion the
price is not very high.

More detailedly, the idea is to make *“M (end of line char) active and to define it to
check if the next char i.e., the beginning of the next line is a % and if so to gobble it and
just continue usual typesetting or else to start a verbatim scope. In fact, every such a line
end starts a verbatim scope which is immediately closed, if the next line begins with
(leading spaces and) the code delimiter.

Further details are typographical parameters of verbatim scope and how to restore
normal settings after such a scope so that a code line could be commented and still
displayed, how to deal with leading spaces, how to allow breaking a moving argument
in two lines in the comment layer, how to index and marginpar macros etc.

29

\if@linesnotnum

linesnotnum

\ifQuresetlinecount

uresetlinecount

\if@countalllines
\if@printalllinenos

countalllines

countalllines*

\if@noindex
noindex
\if@pageindex

pageindex

\if@indexallmacros

indexallmacros

\if@marginparsused

The package options

[o]

2455 \RequirePackage{gmutils}[2008/08/30]% includesredefinition of \newif to
make the switches \protected.

2457 \RequirePackage {xkeyval}% we need key-vals later, but maybe we’ll make the
option key-val as well.

Maybe someone wants the code lines not to be numbered.
2463 \newif\if@linesnotnum
2165 \DeclareOption{linesnotnum}{\@linesnotnumtrue}

And maybe he or she wishes to declare resetting the line counter along with some
sectioning counter him /herself.

2470 \newif\if@uresetlinecount
2472 \DeclareOption{uresetlinecount}{\Quresetlinecounttrue}
And let the user be given a possibility to count the comment lines.

2477 \newif\if@countalllines
2478 \newif\if@printalllinenos

2480 \DeclareOption{countalllines}{% to use the \inputlineno primitive and
print real line numbers in a file.

2482 \@countalllinestrue

2483 \@printalllinenosfalse}

2485 \DeclareOption{countalllines*}{%
2486 \@countalllinestrue
2487 \@printalllinenostrue}

Unlike in doc, indexing the macros is the default and the default reference is the code
line number.

2493 \newif\if@noindex

2495 \DeclareOption{noindex}{\@noindextrue}

2198 \newif\if@pageindex

2500 \DeclareOption{pageindex}{\@pageindextrue}

It would be a great honour to me if someone would like to document IXTEX source
with this humble package but I don't think it’s really probable so let’s make an option
that’ll switch index exclude list properly (see sec. Index exclude list).

2507 \newif\if@indexallmacros
2509 \DeclareOption{indexallmacros}{\@indexallmacrostrue}

Some document classes don’t support marginpars or disable them by default (as my
favourite Marcin Woliriski’s classes).

2519 \@ifundefined{if@marginparsused} {\newif\if@marginparsused}{}

This switch is copied from mwbk.cls for compatibility with it. Thanks to it loading an
mwcls with [withmarginpar] option shall switch marginpars on in this package, too.
To be compatible with the standard classes, let’s \ let:

2526 \@ifclassloaded{article}{\@marginparsusedtrue}{}

2529 \@ifclassloaded{report}{\@marginparsusedtrue}{}

30

withmarginpar

nomarginpar

codespacesblank

codespacesgrey

2531 \@ifclassloaded{book}{\@marginparsusedtrue}{}

And if you don’t use mwcls nor standard classes, then you have the options:
2534 \DeclareOption{withmarginpar}{\@marginparsusedtrue}
2536 \DeclareOption{nomarginpar}{\@marginparsusedfalse}

The order of the above conditional switches and options is significant. Thanks to it
the options are available also in the standard classes and in mwcls.

To make the code spaces blank (they are visible by default except the leading ones).

2546 \DeclareOption{codespacesblank}{%
2547 \AtEndOfPackage{% to allow codespacesgrey, .codespacesblank
2548 \AtBeginDocument {\CodeSpacesBlank}}}

2551 \DeclareOption{codespacesgrey}{%

2554 \AtEndOfPackage{% to put the declaration into the begin-document hook after
definition of \visiblespace.

2556 \AtBeginDocument { \CodeSpacesGrey}}}

2558 \ProcessOptions

The dependencies and preliminaries

We require another package of mine that provides some tricky macros analogous to the
I4TEX standard ones, such as \newgif and \@ifnextcat. Since 2008/08/08 it also
makes \if.. switches \protected (redefines \newif)

2567 \RequirePackage{gmutils}[2008/08/08]

A standard package for defining colours,
2570 \RequirePackage{xcolor}

and a colour definition for the hyperlinks not to be too bright
2572 \definecolor{deepblue}{rgb}{o, 0, .85}

And the standard package probably most important for gmdoc: If the user doesn’t
load hyperref with their favourite options, we do, with ours. If they has done it, we
change only the links’ colour.

2585 \@ifpackageloaded{hyperref} {\hypersetup{colorlinks=true,

2586 linkcolor=deepblue, j,urlcolor=blue, ,filecolor=blue}}{%

258; \RequirePackage[colorlinks=true, linkcolor=deepblue, .,
urlcolor=blue,

2588 filecolor=blue, pdfstartview=FitH, pdfview=FitBH,

2500 pdfpagemode=UseNone] {hyperref}}

Now a little addition to hyperref, a conditional hyperlinking possibility with the
\gmhypertarget and \gmiflink macros. It has to be loaded after hyperref.

2599 \RequirePackage{gmiflink}

And a slight redefinition of verbatim, \verb[*] and providing of \MakeShort |
Verb[*].

2602 \RequirePackage{gmverb}[2010/08/12]
2604 \Store@Macros{\@verbatim\verb}

2606 \1f@noindex

31

\CodeDelim
\Code@Delim@St

\Code@Delim

\narrationmark

\qmd@preverypar

\settexcodehangi

\TextIndent

260; \AtBeginDocument { \gag@index}% for the latter macro see line 5663.
2609 \else

2610 \RequirePackage {makeidx}\makeindex

2611 \fl

Now, a crucial statement about the code delimiter in the input file. Providing a spe-
cial declaration for the assignment is intended for documenting the packages that play
with %’s \catcode. Some macros for such plays are defined further.

The declaration comes in the starred and unstarred version. The unstarred version
besides declaring the code delimiter declares the same char as the verb(atim) “hyphen’.
The starred version doesn’t change the verb "hyphen’. That is intended for the special
tricks e.g. for the oldmc environment.

If you want to change the verb ‘hyphen, there is the \VerbHyphen\<{one char) dec-
laration provided by gmverb.

2642 \def\CodeDelim{\@bsphack\gmuRifstar\Code@Delim@St\Code@Delim}

2644 \def\Code@Delim@St#1{%

2645 {\escapechar\m@ne

2646 \@xa\gdef\@xa\code@delim\@xa{\string#1}}%
2647 \@esphack}

(\@xa is \expandafter, see gmutils.)
2650 \def\Code@Delim#1{\VerbHyphen{#1}\Code@Delim@St {#1}}

It is an invariant of gmdocing that \code@delim stores the current code delimiter (of
catcode 12).

The \code@delim should be ,, so a space is not allowed as a code delimiter. I don’t
think it really to be a limitation.

And let’s assume you do as we all do:

2659 \CodeDelim\$%
And to typeset this code delimiter pretty, let’s \def:

2662 \pdef\narrationmark{{\codett\verbhyphen}{\normalfont\enspace}$%
\ignorespaces}

We'll play with \everypar, a bit, and if you use such things as the {itemize}
environment, an error would occur if we didn’t store the previous value of \everypar
and didn’t restore it at return to the narration. So let’s assign a \toks list to store the
original \everypar:

2673 \newtoks\gmd@preverypar

2675 \newcommandx\settexcodehangi {%

2676 \hangindent=\verbatimhangindent, \hangafter=\@ne}% we’ll use it in
the in-line comment case. \verbatimhangindent is provided by the
gmverb package and = 3em by default.

2680 \@ifdefinable\@@settexcodehangi{\let\@Esettexcodehangi=%

\settexcodehangi}

We'll play a bit with \1eft skip, so let the user have a parameter instead. For normal
text (i.e. the comment):

2686 \newlength\Text Indent
I assume it’s originally equal to \leftskip,i.e. \z@. And for the TgX code:
2690 \newlength\CodeIndent

32

\CodeIndent

\stanzaskip

\UniformSkips
\CodeTopsep
\MacroTopsep

\NonUniformSkips

2693 \CodeIndent=1, sem\relax
And the vertical space to be inserted where there are blank lines in the source code:
2606 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}

I use \stanzaskip in gmverse package and derivatives for typesetting poetry.
A computer program code is poetry.

2701 \stanzaskip=\medskipamount

A vertical space between the commentary and the code seems to enhance readability
so declare

2708 \newskip\CodeTopsep
2709 \newskip\MacroTopsep

And let’s set them. For aesthetic minimality? let’s unify them and the other most im-
portant vertical spaces used in gmdoc. I think a macro that gathers all these assignments
may be handy.

2725 \def\UniformSkips{$%

2727 \CodeTopsep=\stanzaskip

2728 \MacroTopsep=\stanzaskip

2729 \abovedisplayskip=\stanzaskip

%$%.\abovedisplayshortskip remains untouched as it is 0.0 pt plus 3.0 pt by default.

27314 \belowdisplayskip=\stanzaskip

2735 \belowdisplayshortskip=.5\stanzaskip% due to DEK'’s idea of making
the short below display skip half of the normal.

2737 \advance\belowdisplayshortskip, by\smallskipamount

2738 \advance\belowdisplayshortskip, by-1\smallskipamount% Weadvance
% \belowdisplayshortskip forth and back to give it the \smallskip|
% amount’s shrink- and stretchability components.

2742 \topsep=\stanzaskip

2743 \partopsep=\z@

2744 }

We make it the default,
2746 \UniformSkips

but we allow you to change the benchmark glue i.e., \stanzaskip in the preamble
and still have the other glues set due to it: we launch \UniformSkips again after the
preamble.

2751 \AtBeginDocument { \UniformSkips}

So, if you don’t want them at all i.e., you don’t want to set other glues due to \stan|
zaskip, you should use the following declaration. That shall discard the unwanted
setting already placed in the \begin{document} hook.

2758 \newcommandx\NonUniformSkips{\@relaxen\UniformSkips}

Why do we launch \UniformSkips twice then? The first time is to set all the gmdoc-
specific glues somehow, which allows you to set not all of them, and the second time to
set them due to a possible change of \stanzaskip.

9 The terms ‘minimal” and ‘minimalist’ used in gmdoc are among others inspired by the South Park
cartoon’s episode Mr. Hankey The Christmas (...) in which ‘Philip Glass, a Minimalist New York composer’
appears in a ‘non-denominational non-offensive Christmas play’ ;-). (Philip Glass composed the music to
the Qatsi trilogy among others).

33

\chunkskip

\stanza

\nostanza

\ifedsdir

\DocInput

And let’s define a macro to insert a space for a chunk of documentation, e.g., to mark
the beginning of new macro’s explanation and code.

2768 \newcommandx\chunkskip{%

2769 \par\addvspace{%

2770 \glueexpr\MacroTopsep

2771 \if@codeskipput-\CodeTopsep\fi
2772 \relax

2773 } \@codeskipputgtrue}

And, for a smaller part of text,

2776 \pdef\stanza{%

2777 \par\addvspace{$%

2778 \glueexpr\stanzaskip

2779 \if@codeskipput-\CodeTopsep\fi
2780 \relax}\@codeskipputgtrue}

Since the stanza skips are inserted automatically most often (cf. lines 3247, 3726,
3267, 3607, 3779), sometimes you may need to forbid them.

2785 \newcommandx\nostanza{%

2787 \par

2788 \if@codeskipput\unless\if@nostanza\vskip—\CodeTopsep\relax$
\fi\fi

2789 \Qcodeskipputgtrue\@nostanzagtrue

2790 \@afternarrgfalse\Qaftercodegtrue}$% In the ‘code to narration’ case the
first switch is enough but in the counter-case ‘narration to code’ both the
second and third are necessary while the first is not.

To count the lines where they have begun not before them
2797 \newgif\if@newline

\newgif is \newif with a global effect i.e., it defines \...gtrue and \...gfalse
switchers that switch respective Boolean switch globally. See gmutils package for details.

To handle the DocStrip directives not any %<....
2805 \newgif\if@dsdir

This switch will be falsified at the first char of a code line. (We need a switch inde-
pendent of the one indicating whether the line has or has not been counted because of
two reasons: 1. line numbering is optional, 2. counting the line falsifies that switch before
the first char.)

The core

Now we define main \ inputing command that’ll change catcodes. The macros used by
it are defined later.

2820 \begingroup\catcode ' *"M=\active%
2821 \firstofone{\endgroup%
2822 \newcommandx{\DocInput}[1] {\begingroup$%

2825 \edef\gmd@inputname{#1}% we’ll use it in some notifications.

2827 \NamedInput@prepare{#1}% tomake thisinput“named”, as with \Named |
Input.

2830 \let\gmd@currentlabel@before=\@currentlabel% we store it because

we’ll do \xdefs of \@currentlabel to make proper references to the

34

/\/\M

\qnd@quardedinput

\qmd@textEOL

line numbers so we want to restore current \@currentlabel after our
group.

2835 \gmd@setclubpenalty% we wrapped the assignment of \clubpenalty in
a macro because we'll repeat it twice more.

2837 \@clubpenalty\clubpenalty. \widowpenalty=3333.% Mostparagraphs
of the code will be one-line most probably and many of the narration, too.

2842 \tolerance=1000.% asin doc.

2845 \@xa\@makeother\csname\code@Rdelim\endcsname%

2847 \gmd@resetlinecount$% due to the option uresetlinecount we reset the
line number counter or do nothing.

2850 \QueerEOL% It has to be before the begin-input-hook to allow change by that
hook.

2855 \@beginputhook% my first use of it is to redefine \maketitle just at this
point not globally.

2857 \everypar=\@xa{\@xa\Qcodetonarrskip\the\everypar}$%

2859 \edef\gmd@guardedinput {%

2860 \@nx\@@input, #1\relax% \@nxis \noexpand, see gmutils. \@@input is

the true TpX’s \input.

2864 \gmd@iihook$% cf. line 7953

2865 \@nx\EOFMark$% to pretty finish the input, see line 3074.

2867 \@nx\CodeDelim\@xanxcs{\code@Rdelim}$% to ensure the code delim-

iter is the same as at the beginning of input.

2872 \@nx**M\code@delim$%

2874 }% we add guardians after \ inputing a file; somehow an error occurred with-
out them.

2876 \catcode \%=9.% for doc-compatibility.

2877 \setcounter{CheckSum}{o}% we initialise the counter for the number of
the escape chars (the assignment is \global).

2879 \everyeof {\relax}% \@nx moved not to spoil input of toc e.g.

2880 \@xa\@xa\@xa”"M\gmdQ@guardedinput$

2881 \par$%

2883 \@endinputhook$% It’s a hook to let postpone some stuff till the end of input.
We use it e.g. for the doc-(not)likeliness notifications.

2886 \glet\@currentlabel=\gmd@currentlabel@before% we restore value
from before this group. In a very special case this could cause unexpected
behaviour of cross-refs, but anyway we acted globally and so acts hyperref.

2891 \NamedInput@finish% to clean up after a “named” input, as with \Named |
Input.

2893 \endgroup$%

2894 % end of \Doc@Input’s definition.
2895 } % end of \firstofone’s argument.

So, having the main macro outlined, let’s fill in the details.
First, define the queer EOL. We define a macro that **Mwill be let to. \gmd@textEOL
will be used also for checking the $" "M case (\@ifnextchar does \ifx).

2905 \pdef\gmd@textEOL{ % aspacejustlikeinnormal TeX. We put it first to cooperate
with \"*M’s \expandafter\ignorespaces. It's no problem since a space

Lo doesn’t drive TgX out of the vmode.
2909 \ifhmode\Qafternarrgtrue\@codeskipputgfalse\fi% being in the hor-
izontal mode means we’ve just typeset some narration so we turn the re-

35

\gmd@setclubpenalty

\AtEndInput
\@endinputhook

\AtBegInput
\@beginputhook

2916
2918
2919

2922

2028

2932
2933
2935
2936

2940
2041
2042
2943

spective switches: the one bringing the message ‘we are after narration” to
True (Gafternarr) and the ‘we have put the code-narration glue’ to False
(@codeskipput). Since we are in a verbatim group and the information
should be brought outside it, we switch the switches globally (the letter g in
both).

\@newlinegtrue$% to \refstep the lines’ counter at the proper point.

\@dsdirgtrue% to handle the DocStrip directives.

\@xa\@trimandstore\the\everypar\@trimandstore% we store the previ-
ous value of \everypar register to restore it at a proper point. See line 3815
for the details.

\begingroup%

\gmd@setclubpenalty% Most paragraphs will be one-line most probably. Since
some sectioning commands may change \clubpenalty, we set it again
here and also after this group.

\aftergroup\gmd@setclubpenalty$%

\let\par\@@par% inside the verbatim group we wish \par to be genuine.

\let\verbatimfont\codett, %

\ttverbatim% itapplies the code-layer font (\tt by default) and makes specials
other or \active-and-breakable. to turn verbatim specials off in \scan|
verbs.

\gmd@DoTeXCodeSpace$%

\@makeother\ |% because \ttverbatim doesn’'t do that.

\MakePrivateLetters$ see line 4168.

\@xa\€makeother\codeldelim% we are almost sure the code comment char is
among the chars having been ,,ed already. For ‘almost’ see the \IndexIn|
put macro’s definition.

So, we’ve opened a verbatim group and want to peek at the next character. If it’s %,
then we just continue narration, else we process the leading spaces supposed there are
any and, if after them is a %, we just continue the commentary as in the previous case or
else we typeset the TEX code.

2952
2954
2956
2957
2958

\texcode@hook$% we add some special stuff, e.g. in gmdocc.cls we make star low.
\@xa\@ifnextcharRS\@xa{\code@delim}{%
\gmd@continuenarration}{%
\gmd@dolspaces% it will launch \gmd@typesettexcode.
}% end of \@ifnextcharRS’s else.

2959 }% end of \gmd@textEOL’s definition.

2062 \emptify\texcode@hook

2064 \def\gmd@setclubpenalty{\clubpenalty=3333.}

For convenient adding things to the begin- and endinput hooks:

2968 \def\AtEndInput { \gRaddto@macro\@endinputhook}
2969 \def\@endinputhook{}

Simili modo

2972 \def\AtBegInput { \gladdto@macro\@beginputhook}
2973 \def\@beginputhook{}

For the index input hooking now declare a macro, we define it another way at line

7953.

2977 \emptify\gmd@iihook

And let’s use it instantly to avoid a disaster while reading in the table of contents.

36

\tableofcontents

\QifEQLactive

\@ifQueerEQL

\gfootnote

\gfootnotet

\qemph

\qemphg

\qmd@ABIOnce

2082 \AtBegInput {\let\gmd@@toc\tableofcontents
2983 \def\tableofcontents{$%

2984 \@ifQueerEOL

2985 {\StraightEOL\gmd@@toc\QueerEOL}$%

2086 {\gmd@@toc}$%

2087}
2988 }

o

As you'll learn from lines 3955 and 3942, we use those two strange declarations to
change and restore the very special meaning of the line end. Without such changes
\tableofcontents would cause a disaster (it did indeed). And to check the catcode
of “"Mis the role of \@ifEOLactive:

3000 \def\@ifEOLactive { %
% #1 what if end of line is active,
% #2 whatif not.
3005 \ifnum\catcode'**M=\active, \@xa\@firstoftwo\else\@xa%
\@secondoftwo\fi}

3007 \foone\obeylines{$%

3008 \def\@ifQueerEOL{%
% #1 what if line end is ‘queer’,
% #2 what if not ‘queer’.

3014 \@ifEOLactive{%

3015 \ifx**M\gmd@textEOL\Q@xa\@firstoftwo\else\@xa%
\@secondoftwo\fil}l%

3016 {\@secondoftwo}}% of \@QifQueerEOL

3017 }% of \foone

A footnote for the ‘queer’ line ends scope.

3020 \pdef\gfootnote{%

3021 \@ifQueerEOL

3022 {\begingroup\StraightEOL\gfootnote@}$%
3023 {\footnote}}

3025 \DeclareCommand\gfootnote@{o>Lm} {%

3026 \endgroup.% yes, we close the group: the arguments are already parsed and
passed to this macro.

328 \edef\gmu@tempa{$%

3029 \@nx\footnote, \IfValueT{#1}{[#1]}}%
3030 \gmu@tempa{#2}%
3031 }

An emphasis command for ‘queer” line ends.

3034 \pdef\gemph {%

3035 \@ifQueerEOL

3036 {\begingroup\StraightEOL\gemph@}%
3037 {\emph}}

3039 \pdef\gemph@#1 { \endgroup\emph{#1}}

The declaration below is useful if you wish to put sth. just in the nearest input/included
file and no else: at the moment of putting the stuff it will erase it from the hook. You
may declare several \AtBegInputOnces, they add up.

3051 \@emptify\gmd@ABIOnce
3052 \AtEndOfPackage { \AtBegInput \gmd@ABIOnce}

37

\AtBegInputOnce

\EOFMark

\gmd@DoTeXCodeSpace

\CodeSpacesBlank

\CodeSpacesSmall
\gmd@DoTeXCodeSpace

\qnd@texcodespace

\CodeSpacesGrey

\gmd@continuenarration

\gmd€countnarrlineg

3056 \1long\def\AtBegInputOnce#1{%
3060 \gaddtomacro\gmdRABIOnce{\g@emptify\gmd@RABIOnce#1}}

Many tries of finishing the input cleanly led me to setting the guardians as in line
2872 and to

3074 \def\EOFMark {\<eof>}

Other solutions did print the last code delimiter or would require managing a special
case for the macros typesetting TEX code to suppress the last line’s numbering etc.
If you don't like it, see line 8915.

Due to the codespacesblank option in the line ?? we launch the macro defined
below to change the meaning of a gmdoc-kernel macro.

3086 \begin{obeyspaces}$%

3087 \gdef\CodeSpacesVisible{%

3088 \def\gmd@DoTeXCodeSpace{%

3089 \obeyspaces\let, =\breakablevisspace}}%

3096 \gdef\CodeSpacesBlank{%
3097 \1let \gmd@DoTeXCodeSpace\gmobeyspaces%
3008 \let \gmd@texcodespace=\.}% the latter \let is for the \if...s.

3101 \gdef\CodeSpacesSmall{%

3102 \def\gmd@DoTeXCodeSpace{%

3103 \Obeyspaces\def, ,{\, \hskip\z@}}%

3104 \def\gmd@texcodespace{\, \hskip\z@}}%

3106 \end{obeyspaces}

3108 \def\CodeSpacesGrey{%

3111 \CodeSpacesVisible

3112 \VisSpacesGrey% defined in gmverb
3113 } %

Note that \CodeSpacesVisible doesn’t revert \CodeSpacesGrey.
3118 \CodeSpacesVisible
How the continuing of the narration should look like?

3122 \def\gmdQcontinuenarration{$%

3123 \endgroup

3124 \gmd@cpnarrline$ see below.

3125 \@xa\Q@trimandstore\the\everypar\Qtrimandstore

3126 \everypar=\@xa{\@xa\@codetonarrskip\the\everypar}%
3127 \@xa\gmd@checkifEOL\@gobble}

Simple, isn't it? (We gobble the ‘other’ code delimiter. Despite of \egroup it’s ;,
because it was touched by \futurelet contained in \@ifnextcharRS in line 2954.
And in line 3375 it’s been read as ,,. That’s why it works in spite of that % is of category
‘ignored”.)

3134 \if@countalllines

If the countalllines option is in force, we get the count of lines from the \in|
putlineno primitive. But if the option is countalllines*, we want to print the line
number.

3144 \def\gmd@countnarrline@{%

38

\gmd@qrefstep

\gmd@cpnarrline

\gmd@ctallsetup

3145 \gmd@grefstep{codelinenum}\@newlinegfalse

3146 \everypar=\@xa{%
3147 \@xa\@codetonarrskip\the\gmd@preverypar}$% the \hyperlab]

[o]

% el@line macro puts a hypertarget in a \raise i.e., drives TgX
into the horizontal mode so \everypar shall be issued. Therefore
we should restore it.

3152 }% of \gmd@countnarrline@
3154 \def\gmd@grefstep#1{% instead of diligent redefining all possible com-

mands and environments we just assign the current value of the respec-
tive TEX’s primitive to the codelinenum counter. Note we decrease it by
—1 to get the proper value for the next line. (Well, I don’t quite know why,
but it works.)

3161 \ifnum\value{#1}<\inputlineno
3162 \csname, c@#1\endcsname\numexpr\inputlineno-1\relax
3163 \ifvmode\leavevmode\fi% this lineis added 2008/08/10 after an all-

night debuggery ;-) that showed that at one point \gmd@grefstep
was called in vmode which caused adding \penalty 10000 to
the main vertical list and thus forbidding page break during entire
% oldmc.
3169 \grefstepcounter{#1}%
3170 \fi}% We wrap stepping the counter in an \ifnum to avoid repetition of
the same ref-value (what would result in the “multiply defined labels”
warning).

The \grefstepcounter macro, defined in gmverb, is a global version of \ref |
stepcounter, observing the redefinition made to \refstepcounter by hyperref.

3180 \if@printalllinenos% Note that checking this switch makes only sense
when countalllines is true.

3182 \def\gmd@cpnarrline{% countand print narration line

3183 \if@newline

3184 \gmd@countnarrline@

3185 \hyperlabel@line

3186 {\LineNumFont\thecodelinenum}\, \ignorespaces}%

3187 \fi}

3188 \else% notprintalllinenos

3189 \emptify\gmd@cpnarrline

3190 \fi

3192 \def\gmd@ctallsetup{% In the oldmc environments and with the \FileInfo
declaration (when countalllines option is in force) the code is gob-
bled as an argument of a macro and then processed at one place (at
the end of oldmc e.g.) so if we used \inputlineno, we would have
got all the lines with the same number. But we only set the counter
not \refstep it to avoid putting a hypertarget.

3199 \setcounter{codelinenum}{\inputlineno}$% it’s global.

3200 \let\gmd@Qgrefstep\hgrefstepcounter}

3202 \else% not countalllines (and therefore we won't print the narration lines’
numbers either)

304 \@emptify\gmd@cpnarrline

3205 \let\gmd@grefstep\hgrefstepcounter$ if we don’t want to count all the
lines, we only \ref-increase the counter in the code layer.

3208 \emptify\gmd@ctallsetup

39

\skiplines

\gmd@typesettexcode

/\/\M
\@newlinegtrue

3209 \fi% of \if@countalllines

3211 \def\skiplines{\bgroup

3212 \let\do\@makeother \dospecials, % not \@sanitize because the latter
doesn’t recatcode braces and we want all to be quieten.

3216 \gmd@skiplines}

3218 \edef\gmu@tempa{$%

3219 \long\def\@nx\gmd@skiplines##1\bslash endskiplines{$%
\egroup}}

3220 \gmu@tempa

And typesetting the TEX code?

3224 \foone\obeylines{$%

3225 \def\gmd@typesettexcode{%

3226 \gmd@parfixclosingspace$ it’s to eat a space closing the paragraph, see
below. It contains \par.

A verbatim group has already been opened by \ttverbatimand additional \cat |
code.

3233 \everypar={\@@settexcodehangi}% At firstattemptwe thought of giving
the user a \toks list to insert at the beginning of every code line, but what
for?

3237 \def**M{% TgX code EOL

3238 \Enewlinegtrue% to \refstep the counter in proper place.

3239 \@dsdirgtrue% to handle the DocStrip directives.

3240 \global\gmd@closingspacewd=\z@% wedon't wish to eata closing space

after a codeline, because there isn’t any and a negative rigid \hskip
added to \parfillskip would produce a blank line.

3244 \ifhmode\par\@codeskipputgfalse\else%

3245 \if@codeskipput%

3246 \else\addvspace{\stanzaskip}\@codeskipputgtrue%

3247 \fi% if we'vejust meta blank (code) line, we inserta \stanzaskip glue.

3250 \ fi%

3251 \prevhmodegfalse$% we want to know later that now we are in the vmode.

3254 \@ifnextcharRS{\gmd@texcodespace}{$%

3255 \@dsdirgfalse\gmd@dolspaces}{\gmd@charbychar}$%

3256 }% end of **M'’s definition.

3258 \let\gmd@texcodeEOL=""M$% for further checks inside \gmd@charbychar.

3259 \raggedright\leftskip=\CodeIndent$%

3260 \if@aftercode$%

3261 \gmd@nocodeskipi{iaC}$%

3262 \else%

3263 \if@afternarr$

3265 \if@codeskipput\else%

3266 \gmd@codeskipi\@aftercodegfalse%

3267 \ fi%

3268 \else\gmd@nocodeskipi{naN}%

3269 \ fi%

3270 \fi% if now we are switching from the narration into the code, we insert
a proper vertical space.

3273 \Qaftercodegtrue\@afternarrgfalse$%

3275 \ifdim\gmd@ldspaceswd>\z@% and here the leading spaces.

40

\gmd@spacewd
\gnd@ldspaceswd

\qnd@texcodespace

\gmd@dolspaces

3276 \leavevmode\@dsdirgfalse%

3277 \if@newline\gmd@grefstep{codelinenum}\@newlinegfalse%

3278 \fi%

3279 \printlinenumber% if we don’t want the lines to be numbered, the re-
spective option \lets this CS to \relax.

3281 \hyperlabel@line$%

3283 \mark@envir$ index and/or marginize an environment if there is some to
be done so, see line 5537.

3285 \hskip\gmd@ldspaceswd$%

3286 \advance\hangindent, by\gmdQ@ldspaceswd%

3287 \xdef\settexcodehangi{$%

3288 \@nx\hangindent=\the\hangindent% and also set the hanging in-

dent setting for the same line comment case. BTW., this % or rather
lack of it costed me five hours of debugging and rewriting. Active
line ends require extreme caution.

3203 \@nx\hangafter=1\space}%
3294 \else%
3295 \glet\settexcodehangi=\Q@@settexcodehangi$%

% \printlinenumber here produced line numbers for blank lines
which is what we don’t want.

3298 \fi% of\ifdim

3299 \gmd@ldspaceswd=\zR@%

3300 \prevhmodegfalse% we have done \par so we are not in the hmode.

3302 \@aftercodegtrue% we want to know later that now we are typesetting
a codeline.

3304 \if@ilgroup\aftergroup\egroup\@ilgroupfalse\fi% whenwearein

the in-line comment group (for ragged right or justified), we want to close
it. But if we did it here, we would close the verbatim group for the code.
But we set the switch false not to repeat \aftergroup\egroup.

3311 \gmd@charbychar% we’ll eat the code char by char to scan all the macros and
thus to deal properly with the case \ % in which the $ will be scanned and
won't launch closing of the verbatim group.

3315 1% of \gmd@typesettexcode.

3316 } % of \foone\obeylines.

Now let’s deal with the leading spaces once forever. We wish not to typeset ..s but
to add the width of every leading space to the paragraph’s indent and to the hanging
indent, but only if there’ll be any code character not being % in this line (e.g., the end of
line). If there’ll be only %, we want just to continue the comment or start a new one. (We
don’t have to worry about whether we should \par or not.)

3328 \newlength\gmd@spacewd$ to store the width of a (leading) . .y,.
1331 \newlength\gmd@ldspaceswd$ to store total length of gobbled leading spaces.

It costed me some time to reach that in my verbatim scope a space isn’t ,, but 45,
namely \let to \breakablevisspace. Solet us \let for future:

3339 \let \gmd@texcodespace=\breakablevisspace
And now let’s try to deal with those spaces.

3342 \def\gmd@dolspaces{%

3343 \ifx\gmdQ@texcodespace\@let@token

3344 \@dsdirgfalse

3345 \afterfi{\settowidth{\gmd@spacewd}{\visiblespace}l$%
3346 \gmd@ldspaceswd=\z@

41

\gmd@eat1space

\gmd@charbychar

3347 \gmd@eatlspace}$
348 \else\afterfi{$% about this smart macro and other of its family see gmutils

sec. 3.
3354 \ifQafternarr\if@Qaftercode

3355 \ifilrr\bgroup. \gmd@setilrr\fi
3356 \fi\fi

3357 \par% possibly after narration

3358 \ifQafternarr\ifQaftercode

3359 \ifilrr\egroup\fi

3360 \fi\fi

3361 \gmd@typesettexcode}%

3362 \fi}

And now, the iterating inner macro that’ll eat the leading spaces.

3366 \def\gmd@eatlspace#1{$%

3367 \ifx\gmd@texcodespace#1%

3368 \advance\gmd@ldspaceswd, by\gmd@spacewd% we don’t \advance
it \globally because the current group may be closed iff we meet % and
then we’ll won’t indent the line anyway.

3371 \afteriffifi\gmdQ@eatlspace

3372 \else

3373 \if\code@delim\@nx#l%

3374 \gmd@ldspaceswd=\z@

3375 \afterfifi{\gmd@continuenarration\narrationmark}$%
3377 \else \afterfifi{\gmd@typesettexcode#1}%

3378 \fi

3379 \fi}%

We want to know whether we were in hmode before reading current \code@delim.
We'll need to switch the switch globally.

3384 \newgif\ifprevhmode

And the main iterating inner macro which eats every single char of verbatim text to
check the end. The case \% should be excluded and it is indeed.

3392 \def\gmd@charbychar#1{%
3393 \ifhmode\prevhmodegtrue
3304 \else\prevhmodegfalse

3396 \fi

3397 \if\code@delim\@nx#1%

3398 \def\next {$ occurs when nexta \hskip4.875pt is to be put

3400 \gmd@percenthack$ to typeset % if a comment continues the codeline.

3402 \endgroup$%

3403 \gmd@checkifEOLmixd}$% to see if nextis "M and then do \par.

3404 \else$% i.e., we've not met the code delimiter

3405 \ifx\relax#i\def\next{%

3407 \endgroup}$% special case of end of file thanks to \everyeof.

3408 \else

3409 \if\code@escapel@char\@nx#1%

3410 \@dsdirgfalse% yes, just here not before the whole \if because then
we would discard checking for DocStrip directives doable by the
active % at the ‘old macrocode’ setting.

3413 \def\next { %

3415 \gmd@counttheline#1\scan@macro}$%

42

3416 \else

3417 \def\next {%

3419 \gmd@EOLorcharbychar#1}%
3420 \fi

3421 \fl

3422 \fi\next}

\debug@special 3424 \def\debug@special#1{$%
325 \ifhmode\special{color push.gray. o.#1}%
326 \else\special{color push, gray. o.#1000}\fi}

One more inner macro because *“M in TgX code wants to peek at the next char and
possibly launch \gmd@charbychar. We deal with counting the lines thoroughly. In-
creasing the counter is divided into cases and it’s very low level in one case because
\refstepcounter and \stepcounter added some stuff that caused blank lines, at
least with hyperref package loaded.

\qmd@EOLorcharbychar 3434 \def\gmdQREOLorcharbychar#1{$%
336 \ifx\gmd@texcodeEOL#1%

3437 \if@newline

3441 \@newlinegfalse

3442 \fi

3443 \afterfi{#1}% here we print #1.

3444 \else% ie., #1 is not a (very active) line end,
3445 \afterfi

3446 {%

3447 \gmd@counttheline#1\gmd@charbychar}% orherewe print #1. Here we would
also possibly mark an environment but there’s no need of it because declaring
an environment to be marked requires a bit of commentary and here we are
after a code "M with no commentary:.

3452 \fi}

\gqndecounttheline 3454 \def\gmd@counttheline{%
355 \ifvmode

3456 \if@newline

3457 \leavevmode

3459 \gmd@grefstep{codelinenum}\@newlinegfalse
3460 \hyperlabel@line

3461 \fi

3463 \printlinenumber

3465 \markQenvir

3466 \else% not vmode

3467 \if@newline

3469 \gmd@grefstep{codelinenum}\@newlinegfalse
3470 \hyperlabel@line

3471 \fi

3472 \fi}

If before reading current % char we were in horizontal mode, then we wish to print
% (or another code delimiter).

\qnd@percenthack 3477 \def\gmd@percenthack{%
3478 \ifprevhmode\aftergroup\narrationmark% We add a space after %, be-
cause I think it looks better. It's done \aftergroup to make the spaces
possible after the % not to be typeset.

43

\ifgmd@dsVerb

\gmd@dsVerbChecker

\gmd@modulehashone

\gmd@dsChecker

\gmd@dsNarrChecker

3484 \else\aftergroup\gmd@dsNarrChecker% remember that \gmd@precent |
hack is only called when we’ve the code delimiter and soon we’ll close the
verbatim group and right after \endgroup there waits \gmd@checkifEOLmixd.

3488 \fi}

We want to handle the case of the verbatim mode’s closing directive, which may by
merely any text from % to the end of line.

3193 \newif\ifgmd@dsvVerb

the informer whether we should look at such a closing at all (hope it will speed up
parsing)

3497 \foone{\obeylines}$%

3498 {%

3499 \def\gmd@dsVerbChecker%

3500 #1% stuff for checking normal directive

3501 #2% line contents

3502 AMM{%

3503 \typeout {verb,,checker 1.\the\inputlineno}%

3504 \ifnum\strcmp{\detokenize{#2}}{\gmd@dsVerbDelim}=\z@%

3505 \global\gmd@dsVerbfalse%

3506 \def\gmd@modulehashone{%

3507 \ModuleVerbClose{\gmd@dsVerbDelim}$%
3508 \global\emptify\gmd@dsVerbDelim$%
3509 \Qafternarrgfalse\@aftercodegtrue$%
3510 \Qcodeskipputgfalse %

3511 }%

3512 \@xa\@firstoftwo%

3513 \else, \@xa\@secondoftwo, %

3514 \fi%

3515 {\gmd@textEOL\gmd@modulehashone””"M}%
3516 {\begingroup%

3517 \endlinechar=\m@ne %

3518 \@XA{ %

3519 \endgroup#1}\scantokens{#2}""M% note that \scantokens adds

char \endlinechar which we assure to be **M
3521 1%
3522 }% of \gmd@dsVerbChecker
3523 } 5 of \obeylines

3526 \def\gmd@dsChecker#1{%
3527 \Q@dsdirgfalse
3528 \ifgmd@dsVerb

3529 \@xa\@firstofone
3530 \else

3531 \@xa\@secondoftwo
3532 \fi

3533 {\gmd@dsVerbChecker}%

3534 {#11%
3535 } % of \gmd@dsChecker

3537 \def\gmd@dsNarrChecker#1{%

3538 \gmd@dsChecker

3539 {\@ifnextcharRS<{%

3540 \@xa\gmd@docstripdirective\@gobble} {#1}1%

44

3511 1% of \gmd@dsNarrChecker

The macro below is used to look for the $*"M case to make a commented blank line
make a new paragraph. Long searched and very simple at last.

\qmd@checkifEOL 3551 \def\gmd@checkifEOL{%
3552 \gmd@cpnarrline
3553 \everypar=\@xa{\@xa\Q@codetonarrskip% we add the macro that'll insert
a vertical space if we leave the code and enter the narration.
3556 \the\gmd@preverypar}%
3557 \@ifnextcharRS{\gmd@textEOL}{%
3559 \@dsdirgfalse

3560 \par\ignorespaces}{%
3561 \gmd@narrcheckifds}}%

We check if it’s %<, a DocStrip directive that is.

\gmd@narrcheckifds 3564 \def\gmd@narrcheckifds{$%
3565 \gmd@dsNarrChecker{\ignorespaces}}

In the ‘mixed’ line case it should be a bit more complex, though. On the other hand,
there’s no need to checking for DocStrip directives.

\gmd@checkifEOLmixd 3571 \def\gmd@checkifEOLmixd{%
3572 \gmd@cpnarrline
3573 \everypar=\@xa{\Q@xa\Qcodetonarrskip\the\gmd@preverypar}$%
3576 \@afternarrgfalse\Qaftercodegtrue
3577 \ifhmode\@codeskipputgfalse\fi
3578 \@ifnextcharRS{\gmd@textEOL}{$%
3580 {\raggedright\gmd@endpe\par}% without \raggedright this \par would
be justified which is not appropriate for a long codeline that should be

broken, e.g., 3573.
3584 \prevhmodegfalse
3585 \gmd@endpe\ignorespaces} {%
If a codeline ends with % (prevhmode == True) first \gmd@endpe sets the param-

eters at the TgX code values and \par closes a paragraph and the latter \gmd@endpe
sets the parameters at the narration values. In the other case both \gmd@endpes do the
same and \par between them does nothing.

\par 3593 \def\par{% the narration \par.
3594 \ifhmode% (I added this \ifhmode as a result of a heavy debug.)
3596 \ifQafternarr\ifQaftercode
3597 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi
3598 \ifilrr\gmd@setilrr\fi
3599 \fi\fi
3600 \@ @par
3601 \if@afternarr
3602 \ifQaftercode
3603 \ifQilgroup\egroup\£fi% if we are both after code and after narra-

tion it means we are after an in-line comment. Then we probably
end a group opened in line 3646

3607 \if@codeskipput\else\gmd@codeskip2%
\Qaftercodegfalse\fi

3609 \else\gmd@nocodeskip2{naC}%

3610 \fl

3611 \else\gmd@nocodeskip2{naN}%

45

\gmd@endpe

\ifilrr

\ilrr

\if@ilgroup
\qnd@setilrr
\ilju

\verbcodecorr

3612 \fl

3613 \prevhmodegfalse\gmd@endpe% when taken out of \ifhmode, this
line caused some codeline numbers were typeset with \1left skip =
0.

3616 \everypar=\@xa{%

3617 \@xa\@codetonarrskip\the\gmd@preverypar}%

3618 \let\par\@@par%

3619 \fi}% of \par.

3620 \gmd@endpe\ignorespaces}}

As we announced, we play with \left skip inside the verbatim group and therefore
we wish to restore normal \leftskip when back to normal text i.e. the commentary.
But, if normal text starts in the same line as the code, then we still wish to indent such
a line.

3627 \def\gmd@endpe{%

3628 \ifprevhmode

3629 \settexcodehangi% ndent
3630 \leftskip=\CodeIndent
3632 \else

3633 \leftskip=\TextIndent
3634 \hangindent=\zQ

3635 \everypar=\@xa{%
3636 \@xa\@codetonarrskip\the\gmd@preverypar}$%
3638 \fi}

Now a special treatment for an in-line comment:
3642 \newif\ifilrr

3644 \def\ilrr{$%

3645 \ifQaftercode

3646 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi% If we are ‘aftercode’,
then we are in an in-line comment. Then we open a group to be able to
declare e.g. \raggedright for that comment only. This group is closed
in line 3603 or 3304.

3651 \ilrrtrue

3652 \f i }

3654 \newif\if@ilgroup
3656 \def\gmd@setilrr{\rightskipoptplus\textwidth}

3658 \def\1i1lju{% when in-line comments are ragged right in general but we want just
this one to be justified.

3660 \if@aftercode

3661 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi

3662 \ilrrfalse

3663 \fi}

3665 \def\verbcodecorr{% a correction of vertical spaces between a verbatim and
code. We put also a \par to allow parindent in the next commentary.
3669 \vskip-\lastskip\vskip-4\CodeTopsep\vskip3\CodeTopsep\par}

Numbering (or not) of the lines

Maybe you want codelines to be numbered and maybe you want to reset the counter
within sections.

46

\resetlinecountwith
codelinenum

DocInputsCount
codelinenum

\gmd@resetlinecount

\printlinenumber

\LineNumFont

\hyperlabel@line

\gmd@codeskip

@codeskipput

\if@codeskipput

3677 \if@uresetlinecount?¥ with uresetlinecount option...
3678 \@relaxen\gmd@resetlinecount$% ... we turn resetting the counter by \Doc |

% Input off...
3680 \newcommandx\resetlinecountwith[1]{$%
3681 \newcounter{codelinenum} [#1]}% ... and provide a new declaration of

the counter.
3683 \else$ With the option turned off...
3684 \newcounter{DocInputsCount}$%
3685 \newcounter{codelinenum} [DocInputsCount]$% ... wedeclarethe \DocIn|
puts’ number counter and the codeline counter to be reset with stepping of
it.

3691 \newcommandx\gmd@resetlinecount {\stepcounter{DocInputsCount}}% ...

and let the \DocInput increment the \DocInputs number count and thus
reset the codeline count. It’s for unique naming of the hyperref labels.
3695 \fi

Let’s define printing the line number as we did in gmvb package.

3699 \newcommandx\printlinenumber{%

3700 \leavevmode\llap{\rlap{\LineNumFont$3\1llap{%
\thecodelinenum}}%

3701 \hskip\leftskip} }

3703 \def\LineNumFont {\normalfont\tiny}
3705 \1f@linesnotnum\@relaxen\printlinenumber\fi

3707 \newcommand*\hyperlabel@Qline{%

3708 \if@pageindex% It’s good to be able to switch it any time not just define it once
according to the value of the switch set by the option.

3711 \e 1se

3712 \raisebox{z2ex}[1ex] [\z@] {\gmhypertarget [clnum.%
3713 \HLPrefix\arabic{codelinenum}]{}}%
3714 \fi}

Spacing with \everypar

Last but not least, let’s define the macro inserting a vertical space between the code and
the narration. Its parameter is a relic of a very heavy debug of the automatic vspacing
mechanism. Let it remain at least until this package is 2.0 version.

3724 \newcommand*x\gmd@codeskip[1] {%
3725 \@@par\addvspace\CodeTopsep
3726 \Qcodeskipputgtrue\@nostanzagfalse}

Sometimes we add the \CodeTopsep vertical space in \everypar. When this hap-
pens, first we remove the \parindent empty box, but this doesn’t reverse putting
\parskip to the main vertical list. And if \parskip is put, \addvspace shall see
it not the “true’ last skip. Therefore we need a Boolean switch to keep the knowledge of
putting similar vskip before \parskip.

3737 \newgif\if@codeskipput

A switch to control \nostanzas:
3740 \newgif\if@nostanza

The below is another relic of the heavy debug of the automatic vspacing. Let’s give
it the same removal clause as above.

47

\gmd@nocodeskip

\gmd@codeskip

\gmd@nocodeskip

\ifRaftercode

\if@afternarr

\@codetonarrskip

3745 \newcommandx\gmd@nocodeskip[2]{}

And here is how the two relic macros looked like during the debug. As you see, they
are disabled by a false \1if (look at it closely ;-).

3750 \if1,.1

3751 \renewcommandx\gmd@codeskip[1] {%
3752 \hbox{\rule{lcm}{3pt}._.#1! 111}

3753 \renewcommandx\gmd@nocodeskip[2] {%
3754 \hbox{\rule{icm}{o.5pt} #1: #2.}}
3755 \f1

We'll wish to execute \gmd@codeskip wherever a codeline (possibly with an in-
line comment) is followed by a homogeneous comment line or reverse. Let us dedicate
a Boolean switch to this then.

3761 \newgif\if@aftercode

This switch will be set true in the moments when we are able to switch from the TEX
code into the narration and the below one when we are able to switch reversely.

3766 \newgif\if@afternarr

To insert vertical glue between the TEX code and the narration we’ll be playing with
\everypar. More precisely, we'll add a macro that the \parindent box shall move
and the glue shall put.

3771 \def\@codetonarrskip{%

3772 \i1f@codeskipput\else

3773 \if@afternarr\gmd@nocodeskip4{iaN}\else
3774 \if@aftercode

We are at the beginning of \everypar, i.e., TX has just entered the hmode and put
the \parindent box. Let’s remove it then.

3777 {\setboxo=\lastbox}$%

Now we can put the vertical space and state we are not ‘aftercode’.

3779 \gmd@codeskip4%

3781 \else\gmd@nocodeskip4{naC}%
3782 \ fi

3783 \fi

3784 \fi

385 \leftskip\TextIndent$% this line is a patch against a bug-or-feature that in
certain cases the narration \leftskip is left equal the code leftskip. (It
happens when there are subsequent code lines after an in-line comment not
ended with an explicit \par.) Before vo.g9n it was just after line 3779.

3790 \Qaftercodegfalse\@nostanzagtrue

3792 }

But we play with \everypar for other reasons too, and while restoring it, we don’t
want to add the \@codetonarrskip macro infinitely many times. So let us define
a macro that’ll check if \everypar begins with \@codetonarrskip and trim it if so.
We'll use this macro with proper \expandaftering in order to give it the contents
of \everypar. The work should be done in two steps first of which will be checking
whether \everypar is nonempty (we can’t have two delimited parameters for a macro:
if we define a two-parameter macro, the first is undelimited so it has to be nonempty; it
costed me some one hour to understand it).

48

\@trimandstore
\@trimandstorefhash

\@trimandstore@ne
\trimmed@everypar

/\/\B
\QueerCharTwo

/\/\V
\QueerV
\gmd@V@percent

\gqmd@QueerV

3804 \long\def\@trimandstore#1\@trimandstore{%

3805 \def\@trimandstore@hash{#1}%

3806 \1fx\@trimandstore@hash\@empty% we check if #1 is nonempty. The \if%
% \relax#i\relax trick is not recommended here because using it we
couldn’t avoid expanding #1 if it'd be expandable.

3810 \gmd@preverypar={1}%

3811 \e 1se

3812 \afterfi{\@xa\Qtrimandstore@ne\the\everypar$%
\Qtrimandstore}%
3813 \fi}

3815 \long\def\@trimandstore@ne#1#2\Q@trimandstore{%
3816 \def\trimmed@everypar{#2}%

3817 \ifx\Qcodetonarrskip#1%

3818 \gmd@preverypar=\@xa{\trimmedQReverypar}$%
3819 \else

3820 \gmd@preverypar=\@xa{\the\everypar}%

3821 \fl}

We prefer not to repeat #1 and #2 within the \ifs and we even define an auxiliary
macro because \everypar may contain some \ifs or \fis.

Life among queer EOLs

When I showed this package to my TEX Guru he commended it and immediately pointed
some disadvantages in the comparison with the doc package.

One of them was an expected difficulty of breaking a moving argument (e.g., of a sec-
tioning macro) in two lines. To work it around let’s define a line-end eater:

3836 \catcode " \""B=\active% note we re\catcode {charz) globally, for the entire
document.

3838 \catcode \"*V=\active % the same for *"V.

3839 \foone{\obeylines}%

3840 { \pdef\QueerCharTwo{%

3841 \protected\def*"B##1*"M{%

3843 \ifhmode\unskip\space\ignorespaces\fi}}% Itshouldn’tbe \ not
to drive TgX into hmode.

3847 \pdef\QueerV{%

3848 \unless\ifdefined\gmd@QueerV$

3850 \def\gmd@V@percent {\global\let\verb@balance@group%
\@emptyuu%

%% \hyphenchar\font=\gmv@storedhyphenchar % it works back for the

current paragraph so destroys our special hyphenchar.

3853 \egroup\endgroup..%

3854 }% of \gmd@V@percent

3856 \@xa\def\@xa\verbl@egroupV\@exa{$%

3857 \gmd@V@percent, ,* "M%

3858 }% of \verb@egroupQV.

3860 \addtomacro\gmd@V@percent {\narrationmark}%

3862 \pdef\gmd@Queerv{$%

3863 \scantokens\@xa{\code@delim %

3864 \fooatletter{\@ifQueerEOL\Qgobble}{}%

49

/\/\A
\QueerCharOne

\gmd@gobbleuntilM

3865 }% of \scantokens

3867 \par$%

3868 {\codett\verbhyphen}\narrationmark, %
3869 \begingroup %

3870 \catcode **M=\active_ %

3872 \let\verblegroup=\verblegrouplV. %

3873 \verb”*M$%

3875 \begingroup. %

3876 \@xa\lccode\@xa" \@xa~\@xa" \code@delim$
3877 \lowercase{\endgroup\let~\gmd@V@percent. }%
3878 \@xa\catcode\@xa" \codeQRdelim\active %
3879 1%

3882 \fi% of unless \gmdQ@QueerV defined

3883 \let**V\gmd@QueervV$

3884 \catcode *"*V=\active$%

3885 % of \QueerV
3886 }% of \foone

3888 \QueerCharTwo
3889 \QueerV

3892 \AtBegInput {\QifEOLactive{\catcode **B\active}{}\QueerCharTwo}%
We repeat redefinition of {charz) at begin of the documenting input, because
doc.dtx suggests that some packages (namely inputenc) may re\catcode such
unusual characters.

As you see the **B active char is defined to gobble everything since itself till the end
of line and the very end of line. This is intended for harmless continuing a line. The
price is affecting the line numbering when countalllines option is enabled.

I also liked the doc’s idea of comment? i.e., the possibility of marking some text so
that it doesn’t appear nor in the working version neither in the documentation, got by
making *"A (i.e., {char1)) a comment char.

However, in this package such a trick would work another way: here the line ends
are active, a comment char would disable them and that would cause disasters. So let’s
doitan \active way.

3914 \catcode ™ \""A=\active% note we re\catcode {char1) globally, for the entire
document.
3916 \foone\obeylines{%

3917 \def\QueerCharOne{%
3918 \def""A{%

3920 \bgroup\let\do\@makeother\dospecials\gmd@gobbleuntilM}}%
3921 \def\gmd@gobbleuntilM#1”*M{\egroup\ignorespaces”*"M}%
3922 }

3924 \QueerCharOne

3926 \AtBegInput { \@ifEOLactive{\catcode \""A%
\active}\QueerCharOne}% see note after line
3892.

As I suggested in the users’ guide, \Straight EOL and \QueerEOL are intended to
cooperate in harmony for the user’s good. They take care not only of redefining the line
end but also these little things related to it.

One usefulness of \StraightEOL is allowing line-breaking of the command argu-
ments. Another—making possible executing some code lines during the documentation
pass.

50

\StraightEOL

\QueerEQL

gmd@parfixclosingspace

\gmd@closingspacewd
\gmd@setclosingspacewd

\gmd@bs1ashEOL

\gmd@bs1ashEOL

3942 \def\StraightEOL { %
3943 \catcode'\""M=5
3944 \catcode \""A=14
3945 \catcode \""B=14
3046 \def\"*"M{_}}

3954 \foone\obeylines{%
3955 \def\QueerEOL{%

3956 \catcode *"M=\active$%

3957 \let*"M\gmd@textEOL%

3958 \catcode ' *"*A=\active$%

3959 \catcode *"B=\active$% I only re\catcode {char1) and {charz) hoping

no one but me is that perverse to make them \active and (re)define.
(Let me know if I'm wrong at this point.)
3962 \let*"M=\gmd@bslashEOL}%

3975 }

To make "M behave more like a ‘normal’ line end I command it to add a ,, at
first. It works but has one unwelcome feature: if the line has nearly \textwidth, this
closing space may cause line breaking and setting a blank line. To fix this I \advance
the \parfillskip:

3089 \def\gmd@parfixclosingspace{{%

3990 \advance\parfillskip by-\gmd@closingspacewd

3991 \if@aftercode\ifilrr, \gmd@setilrr \fi\fi

3992 \par}%

3993 \if@ilgroup\aftergroup\egroup\@ilgroupfalse\fi% we are in the ver-
batim group so we close the in-line comment group after it if the closing is
not yet set.

3996 }

We'll put it in a group surrounding \par but we need to check if this \par is ex-
ecuted after narration or after the code, i.e., whether the closing space was added or
not.

4000 \newskip\gmd@closingspacewd

4001 \newcommandx\gmd@setclosingspacewd{%

4002 \global\gmd@closingspacewd=\fontdimen2\font$%

4003 plus\fontdimen3\font minus\fontdimeng\font\relax}

See also line 3240 to see what we do in the codeline case when no closing space is
added.

And one more detail:

4009 \foone\obeylines{$%

4010 \ if ulnl %

4011 \protected\def\gmd@bslashEOL{\ \@xa\ignorespaces”"M}%
4012 }% of \foone. Note we interlace here \if with a group.

4013 \else%

4014 \protected\def\gmd@bslashEOL{%

4015 \ifhmode\unskip\fi\. \ignorespaces}

4017 \fi

The \QueerEOL declaration will \let it to \""M to make \""M behave properly.
If this definition was omitted, **M would just expand to \., and thus not gobble the
leading % of the next line leave alone typesetting the TgX code. I type \., etc. instead of

51

\@verbatim

\check@percent

\AddtoPrivateOthers

\qm@verbgeol
\verb@egroup

\verbatimfont
\codett

\texttt

\ResultsIn

just M which adds a space itself because I take account of a possibility of redefining
the \ ., CS by the user, just like in normal TgX.

We'll need it for restoring queer definitions for doc-compatibility.

Adjustments of verbatim and \verb
To make verbat im[*] typeset its contents with the TgX code’s indentation:
4040 \gaddtomacro\@verbatim{\leftskip=\CodeIndent}

And a one more little definition to accommodate \verb and pals for the lines com-
mented out.

4044 \AtBegInput {\long\def\check@percent#1{$%

4045 \gmd@cpnarrline$% tocountthe verbatim lines and possibly print their num-
bers. This macro is used only by the verbatim end of line.

4047 \@xa\ifx\code@delim#i\else\afterfi{#1}\fi}}

We also redefine gmverb’s \Addt oPrivateOthers that has been provided just with
gmdoc’s need in mind.

4050 \def\AddtoPrivateOthers#1{%
4051 \@xa\def\@xa\doprivateothers\@xa{$%
4052 \doprivateothers\do#1}}%

We also redefine an internal \verb’s macro \gm@verb@eol to put a proper line end
if a line end char is met in a short verbatim: we have to check if we are in ‘queer” or
‘straight” EOLs area.

1063 \begingroup
1064 \Obeylines%
4065 \AtBegInput { \def\gm@verbQeol { \obeylines%

4066 \def**M{\verblegroup\@latex@Qerror{$%
4067 \@nx\verb, ended by, end of line}%
4068 \QifEOLactive{~"M}{\@Qehc}}}}%

4069 \endgroup

To distinguish the code typewriter from the narrative typewriter:

(2010/08/14, v0.993:) due to troubles with bad fontification in the narration layer I
implement the counterpart to \narrativett: \codett, which is \tt by default so it
even may be transparent to the users.

4079 \def\verbatimfont {\narrativett}
4080 \def\codett {\tt}

4082 \pdef\texttt#1{{\narrativett#1}}

To rescan the verbatim’s contents and show its effect, the gmverb package provides a
modifier of the inner macros to make them throw the verbatim contents as a contents of
a macro. Let’s do that.

4089 \VerbatimPitch
4091 \def\ResultsIn{results, in:}

4093 \DeclareEnvironment {verbatim@p} {}
4094 { \begingroup

4095 \verbatim

4096 }

4097 {\endverbatim

52

1098 \endgroup
1099 \ResultsIn
s00 \[\parbox{o, 85\textwidth}{%

4101 \newlinechar=\endlinechar

4102 \StraightEOL

4103 \scantokens\@xa{\VerbatimContents}$%
4104 }% of parbox

g5 \1%

4106 }

(Note that gmverb provides a reverse: macro that first executes its

Macros for marking of the macros

A great inspiration for this part was the doc package again. I take some macros from it,
and some tasks I solve a different way, e.g., the \ (or another escape char) is not active,
because anyway all the chars of code are scanned one by one. And exclusions from
indexing are supported not with a list stored as \ t oks register but with separate control
sequences for each excluded CS.

The doc package shows a very general approach to the indexing issue. It assumes us-
ing a special Makelndex style and doesn’t use explicit MakeIndex controls but provides
specific macros to hide them. But here in gmdoc we prefer no special style for the index.

\actualchar 4140 \edef\actualchar{\string @}
\quotechar 4141 \edef\quotechar{\string "}
\encapchar 4142 \edef\encapchar{\xiiclub}
\levelchar 4143 \edef\levelchar{\string, !}

However, for the glossary, i.e., the change history, a special style is required, e.g., gm-
glo.ist, and the above macros are redefined by the \changes command due to gmglo.ist
and gglo.ist settings.

Moreover, if you insist on using a special Makelndex style, you may redefine the
above four macros in the preamble. The \edefs that process them further are postponed
till \begin{document}.

\CodeEscapeChar 4155 \def\CodeEscapeChar#1{%
s56 \begingroup
1157 \escapechar\m@ne
\code@escapelchar 4158 \xdef\code@escape@char{\string#1}%
1159 \endgroup}

As you see, to make a proper use of this macro you should give it a \{one char)
CS as an argument. It’s an invariant assertion that \code@escape@char stores ‘other’
version of the code layer escape char.

1165 \CodeEscapeChar\\
As mentioned in doc, someone may have some chars ,,ed.

4168 \@ifundefined{MakePrivateletters}{%
\MakePrivateLetters 4169 \def\MakePrivateletters{\makeatletter\catcode *=11,.}}{}

A tradition seems to exist to write about e.g., ‘command \section and command
\section*”and such an understanding also of ‘macro’ is noticeable in doc. Making the
* a letter solves the problem of scanning starred commands.

And you may wish some special chars to be ;5.

53

\MakePrivateOthers

\doprivateothers

\scan@macro

\scan@macro@

1177 \def\MakePrivateOthers{\let\do=\@makeother \doprivateothers}

We use this macro to re\catcode the space for marking the environments” names
and the caret for marking chars such as *"M, see line 5727. So let’s define the list:

1181 \def\doprivateothers{\do\. \do\"}

Two chars for the beginning, and also the \MakeShortVerb command shall this list
enlarge with the char(s) declared. (There’s no need to add the backslash to this list since
all the relevant commands \string their argument whatever it is.)

Now the main macro indexing a macro’s name. It would be a verbatim :-) copy of
the doc’s one if I didn’t omit some lines irrelevant with my approach.

4195 \foone\obeylines{$%

4196 \def\scan@macro#i{$%

4197 \ifx#1**M\@xa#1\else\afterfi{\scan@macro@#1}\fi%
1198 }% of \scan@macro,

4199 }% of \foone.

4202 \def\scan@macro@#1{% we are sure to scan at least one token which is not the line
end and therefore we define this macro as one-parameter.

Unlike in doc, here we have the escape char ,, so we may just have it printed during
main scan char by char, i.e., in the lines 3443 and 3447.
So, we step the checksum counter first,

4209 \step@checksum$ (see line 7031 for details),

Then, unlike in doc, we do not check if the scanning is allowed, because here it’s
always allowed and required.

Of course, I can imagine horrible perversities, but I don’t think they should really be
taken into account. Giving the letter a \catcode other than ,, surely would be one of
those perversities. Therefore I feel safe to take the character a as a benchmark letter.

4218 \ifcat.a\@nx#1$%

4219 \quote@char#1%

4220 \xdef\macro@iname{\gmd@maybequote#1}% globalfor symmetry withline
4238.

4222 \xdef\macro@pname{\string#1}% we'll print entire name of the macro
later.

We \string it here and in the lines 4242 and 4254 to be sure it is whole ,, for easy
testing for special index entry formats, see line 5149 etc. Here we are sure the result of
\st ringis 4, since its argument is 4.

4229 \afterfi{\@ifnextcat{a}{\gmd@finishifstar#i}{%
\finish@macroscan}}$%
4230 \else% #1 isnota letter, so we have just scanned a one-char CS.

Another reasonable \cat codes assumption seems to be that the digits are ,,. Then
we don’t have to type (%)\expandafter\@gobble\string\a. We do the \uccode
trick to be sure that the char we write as the macro’s name is ;..

4237 {\uccode 9="#1%

4238 \uppercase{\xdef\macro@iname{g}}%

4239 1%

4240 \quote@char#1$%

4241 \xdef\macro@iname{\gmd@maybequote\macro@iname}%
4242 \xdef\macro@pname{\xiistring#1}%

54

\continue@macroscan

\qnd@finishifstar

\quote@char

4243 \afterfi \finish@macroscan
4244 \fi}% of \scan@macro@. The \xiistring macro, provided by gmutils, is used
instead of original \ st ring because we wish to get .,,(‘other’ space).

Now, let’s explain some details, i.e., let’s define them. We call the following macro
having known #1 to be ,,.

4251 \def\continue@macroscan#i{%

4252 \quote@char#i%

1253 \xdef\macro@iname{\macro@iname, \gmd@maybequote#1}%

4254 \xdef\macro@pname {\macro@pname, \string#1}% we know#1 to be ,;, so
we don't need \xiistring.

4257 \@ifnextcat{a}{\gmd@finishifstar#1}{\finish@macroscan}$%

4258 }

As you may guess, \@ifnextcat is defined analogously to \@ifnextchar but the
test it does is \ifcat (not \ifx). (Note it wouldn’t work for an active char as the ‘pat-
tern”.)

We treat the star specially since in usual IXTgX it should finish the scanning of a CS
name—we want to avoid scanning \commandxargum as one CS.

4267 \def\gmd@finishifstar#1{%

4268 \ifx\@nx#1\afterfi\finish@macroscan% note we protect #1 against ex-
pansion. In gmdoc verbatim scopes some chars are active (e.g. \).

4271 \else\afterfilcontinue@macroscan

4272 \fi}

If someone really uses * as a letter please let me know.

4276 \def\quote@char#i{{\uccode 9="#1% atfirstItookdigit1 for this \uccodeing
but then #1 meant #{#1) in \uppercase’s argument, of course.
4279 \uppercase{$%

4280 \Q@ifinmeaning.9\of \indexcontrols
4281 {\glet\gmd@maybequote\quotechar}%
4282 {\g@emptify\gmd@maybequote}%

4283 1%

4284 }}

This macro is used for catching chars that are Makelndex’s controls. How does it
work?

\quote@char sort of re\catcodes its argument through the \uccode trick: as-
signs the argument as the uppercase code of the digit 9 and does further work in the
\uppercase’s scope so the digit 9 (a benchmark ‘other’) is substituted by #1 but the
\catcode remains so \gmd@ifinmeaning gets \quote@char’s #1 ‘other’ed as the
first argument.

In \quote@char the second argument for gmutils \@ifinmeaning is \index|
controls defined as the (expanded and ‘other’) sequence of the Makelndex controls.
\@ifinmeaning defines its inner macro \gmd@in@@ to take two parameters separated
by the first and the second \@ifinmeaning’s parameter, which are here the char inves-
tigated by \quote@char and the \indexcontrols list. The inner macro’s parameter
string is delimited by the macro itself, why not. \gmd@in@@ is put before a string con-
sisting of \@ifinmeaning’s second and first parameters (in such a reversed order) and
\gmd@in@Q itself. In such a sequence it looks for something fitting its parameter pat-
tern. \gmd@in@@ is sure to find the parameters delimiter (\gmd@in@@ itself) and the
separator, \1fismember’s #1 i.e., the investigated char, because they are just there. But
the investigated char may be found not near the end, where we put it, but among the

55

Makelndex controls’ list. Then the rest of this list and \1fismember’s #1 put by us be-
come the second argument of \gmd@in@E. What \gmd@in@@ does with its arguments,
is just a check whether the second one is empty. This may happen iff the investigated
char hasn’t been found among the MakeIndex controls’ list and then \gmd@in@@ shall
expand to \iffalse, otherwise it'll expand to \iftrue. (The \after... macros are
employed not to (mis)match just got \if... with the test’s \fi.) “(Deep breath.) You
got that?” If not, try doc’s explanation of \ifnot@excluded, pp.36—37 of the v2.1b
dated 2004 /02/09 documentation, where a similar construction is attributed to Michael
Spivak.

Since version 0.99g \@ifinmeaning is used also in testing whether a detector is
already present in the carrier in the mechanism of automatic detection of definitions
(line 4489).

And now let’s take care of the MakeIndex control characters. We'll define a list of
them to check whether we should quote a char or not. But we’ll do it at \begin{%
document} to allow the user to use some special Makelndex style and in such a case
to redefine the four Makelndex controls” macros. We enrich this list with the backslash
because sometimes Makelndex didn't like it unquoted.

\indexcontrols 4338 \AtBeginDocument {\xdef\indexcontrols{%
4339 \bslash\levelchar\encapchar\actualchar\quotechar}}

\ifgmd@qglosscs 4343 \newif\ifgmd@glosscs% we use this switch to keep the information whether
a history entry is a CS or not.

\finish@macroscan 4347 \newcommandx\finish@macroscan{%

First we check if the current CS is not just being defined. The switch may be set true

in line 4386
350 \ifgmd@adef@cshook$ if so, we throw it into marginpar and index as a def en-
try...

4352 \gmu@ifundefined{gmd/iexcl/\macro@pname\space}{% ... if it's not
excluded from indexing.

4354 \@xa\Code@MarginizeMacro\@xa{\macro@pname}%

4355 \@xa\@defentryze\@xa{\macro@pname}{1}}{}% here we declare the

kind of index entry and define \1last@defmark used by \changes

4357 \global\gmdRadef@cshookfalse$% we falsify the hook that was set true

just for this CS.

4359 \fi

We have the CS’s name for indexing in \macro@iname and for printin \macro@pname.
So we index it. We do it a bit counter-crank way because we wish to use more general
indexing macro.

w364 \if\verbatimchar\macro@pname% it’simportantthat\verbatimchar comes
before the macro’s name: when it was reverse, the \tt CS turned this test
true and left the \verbatimchar what resulted with ‘\+tt’ typeset. Note
that this test should turn true iff the scanned macro name shows to be the
default \verb’s delimiter. In such a case we give \verb another delimiter,

namely S:
\in@firstpar 4371 \def\im@firstpar{[$%
4372 11%
\im@firstpar 4373 \else\def\im@firstpar{}%

sy \fi
4375 \@xa,\index@macro\im@firstpar\macro@iname\macro@pname
4377 \maybe@marginpar\macro@pname

56

\maybe@marginpar

4378 \if\xiispace\macro@pname\relax\gmd@texcodespace
p79 \else

4380 {\noverbatimspecials\Restore@Macro\verb
4381 \@xa\scanverb\@xa{\macro@pname}}% we typeset scanned CS.
s \fi

1385 \let\next\gmd@charbychar
4386 \gmd@detectors$% for automatic detection of definitions. Defined and ex-
plained in the next section. It redefines \next if detects a definition com-
mand and thus sets the switch of line 4347 true.
4391 \next
4393 }
Now, the macro that checks whether the just scanned macro should be put into

a marginpar: it checks the meaning of a very special CS: whose name consists of
gmd/2marpar/ and of the examined macro’s name.

4399 \def\maybe@marginpar#i{%
400 \gmu@ifundefined{gmd/2marpar/\@xa\detokenize\@xa{#1}}{}{$%

4401 \edef\gmu@tempa{$%

4402 \unexpanded{\Text@Marginizex}%
4403 {\bslash\@xa\unexpanded\@xa{#1}}%
4404 }\gmu@tempa

\macro@pname, which will be the only possible argument to \maybe@marg|
% inpar, contains the macro’s name without the escape char so we

added it here.
4413 \@xa\g@relaxen
4414 \csname, ,gmd/2marpar/\@xa\detokenize\@xa{#1}\endcsname$% were-

set the switch.
a5 }}

Since version 0.99g we introduce automatic detection of definitions, it will be imple-
mented in the next section. The details of indexing CSes are implemented in the section
after it.

Automatic detection of definitions

To begin with, let’s introduce a general declaration of a defining command. \Declare|
Defining comes in two flavours: ‘sauté’, and with star. The ‘sauté” version without an
optional argument declares a defining command of the kind of \def and \newcommand:
whether wrapped in braces or not, its main argument is a CS. The star version without
the optional argument declares a defining command of the kind of \newenvironment
and \DeclareOpt ion: whose main mandatory argument is text. Both versions provide
an optional argument in which you can set the keys. Probably the most important key is
star. It determines whether the starred version of a defining command should be taken
into account. For example, \newcommand should be declared with [star=true] while
\def with [star=false]. You can also write just [star] instead of [star=true].
It’s the default if the star key is omitted.

Another key is t ype. Its possible values are the (backslashless) names of the defining
commands, see below.

We provide now more keys for the xkeyvalish definitions: KVpref (the key prefix)
and KVfam (the key family). If not set by the user, they are assigned the default values
as in xkeyval: KVpref letters KV and KVfam the input file name. The latter assignment
is done only for the \DeclareOptionX defining command because in other xkeyval
definitions (\define(@[...]key) the family is mandatory.

57

\DeclareDefining

\Declare@Dfng

\Declare@Dfng@inner

\gmd@adef@currdef

\DeclareDefining and the detectors

Note that the main argument of the next declaration should be a CS without star, unless
you wish to declare only the starred version of a command. The effect of this command
is always global.

4157 \outer\def\DeclareDefining{\begingroup

4458
4459
4460
4461

4462 }

\MakePrivatelLetters

\gmu@ifstar
{\gdef\gmdQRadef@defaulttype{text}\Declare@Dfng}%
{\gdef\gmdQRadef@defaulttype{cs}\Declare@Dfng}%

The keys except star depend of \gmd@adef@currdef, therefore we set them hav-

ing known both arguments

4466 \newcommandx\Declare@Dfng[2] []1{%

4467
4468
4469

4471

4475

4479
4480

\endgroup
\Declare@Dfng@inner{#1}{#21}%
\ifgmd@adef@star% thisswitch may besetfalsein first \Declare@Dfng@inner
(it’s the star key).
\Declare@Dfng@inner{#1} {#2%}% The catcode of * doesn’t matter since
it’s in \csname...\endcsname everywhere.

\fi}
178 \def\Declare@Dfng@inner#i1#2{%
\edef\gmd@resa{%
\@nx\setkeys[gmd] {adef} {type=\gmd@adef@defaulttype}}%
\gmd@resa

4481
4482
4483
4485
4486
4487
4488
4489
4491
4492
4493

4497

4498
4499
4500
4501
4502
4503
4504
4505

4506
4507

{\escapechar\m@ne
\xdef\gmd@adefQcurrdef{\string#2}%
1%
\gmd@adef@setkeysdefault
\setkeys[gmd] {adef} {#1}%
\@xa\@ifinmeaning
\csname, gmd@detect@\gmdRadef@currdef\endcsname
\of\gmd@detectors{}{%
\@xa\gaddtomacro\@xa\gmd@detectors\@xa{%
\csname, gmd@detect@\gmd@adef@currdef\endcsname}}% weadd
acCs
% \gmd@detect@<{def name) (a detector) to the meaning of the de-
tectors’ carrier. And we define it to detect the #2 command.
\@xa\xdef\csname, gmd@detectname@\gmd@adef@currdef$%
\endcsname{%
\gmd@adef@currdef}%
\edef\gmultempa{$% this \edef is to expand \gmd@adef@TYPE.
\global\@nx\@namedef{gmd@detect@\gmd@adef@currdef}{%

\enx\ifx
\@xanxcs{gmd@detectname@\gmdRadef@currdef}%
\@nx\macro@pname

\@nx\n@melet {next}{gmd@adef@\gmdRadef@TYPE}$%
\@nx\n@melet {gmdRadef@currdef}{gmd@detectname@$%
\gmd@adef@currdef}%
\@nx\fi}}$%
\gnmu@tempa

58

md@adef@setkeysdefault

star

prefix

Kvpref

KVfam

4508 \SMglobal\Store@MacroSt, {gmd@detect@\gmd@adef@currdef}% westore
the CS to allow its temporary discarding later.

4510 }

1513 \def\gmdQRadef@setkeysdefault {%
1514 \setkeys[gmd] {adef}{star, prefix, KVpref}}

Note we don’t set KVfam. We do not so because for \definelkey-likes family is
a mandatory argument and for \DeclareOptionX the default family is set to the input
file name in line 4687.

1520 \define@boolkey[gmd] {adef}{star} [true] {}

The prefix@{command) key-value will be used to create additional index entry for
detected definiendum (a definiendum is the thing defined, e.g. in \newenvironment {%
foo} the env. £00). For instance, \newcounter is declared with [prefix=\bslash,,
c@] in line 4952 and therefore \newcounter{foo} occurring in the code will index
both foo and \c@foo (as definition entries).

1529 \define@key[gmd] {adef} {prefix} []{%

4530 \edef\gmd@resa{%

4531 \def\@xanxcs{gmdRadef@prefix@\gmd@adef@currdef } {%
4532 #111%

4533 \gmd@resa}

4536 \def\gmd@KVprefdefault {KV}% in a separate macro because we’ll need it in
\ifx.

A macro \gmd@adef@KVprefixset@{command) if defined, will falsify an \ifnum
test that will decide whether create additional index entry together with the tests for
prefix{command) and

4544 \defineQkey[gmd] {adef} {KVpref} [\gmd@KVprefdefault] {%

4505 \edef\gmd@resa{#1}%

4546 \1fx\gmd@resa\gmd@KVprefdefault

4547 \else

4548 \@namedef {gmdRadef@KVprefixset@\gmd@adef@currdef}{1}%

4549 \gmd@adef@setKV% whenever the KVpreffix is set (not default), the declared
command is assumed to be keyvalish.

4550 \fi

1552 \edef\gmd@resa{#1}% because \gmdRadef@setKV redefined it.

1553 \edef\gmd@resa{$%

4554 \def\@xanxcs{gmdRadef@KVpref@\gmd@adef@currdef}{$%

4555 \ifx\gmd@resa\empty

4556 \else#1@\fi}}% asin xkeyval, if the KV prefix is not empty, we add @ to it.

4558 \gmd@resa}

Analogously to KVpref, KVfam declared in \DeclareDefining will override the
family scanned from the code and, in \DeclareOpt ionX case, the default family which
is the input file name (only for the command being declared).

1565 \define@key[gmd] {adef} {KVfam} []{%

4566 \edef\gmd@resa{#1}%

4567 \@namedef {gmd@adef@KVfamset@\gmdRadef@currdef}{1}%
4568 \edef\gmd@resa{$%

4569 \def\@xanxcs{gmd@adef@KVfam@\gmd@adef@currdef}{$%

4570 \ifx\gmd@resa\empty
4571 \else#l@\fi}}%

59

type

4572
4573

4577
4578
4579
4580
4581
4582

4585
4586

4589

4591
4592

4594
4595

4598

4599
4600

4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619

4625

\gmd@resa
\gmdQRadef@setKV}% whenever the KVfamily is set, the declared command is

assumed to be keyvalish.

\define@choicekey[gmd] {adef} {type}
[\gmd@adef@typevals\gmd@adef@typenr]
{% the list of possible types of defining commands

}

def,

newcommand,

cs, % equivalent to the two above, covers all the cases of defining a CS, includ-
ing the Prain TgX \new ... and IXTEX \newlength.

newenvironment,

text, % equivalent to the one above, covers all the commands defining its first
mandatory argument that should be text, \DeclareOptione.g.

define@key, % special case of more arguments important; covers the xkeyval
defining commands.

dk, % a shorthand for the one above.

DeclareOptionX, % another case of special arguments configuration, covers
the xkeyval homonym.

dox, % a shorthand for the one above.

kvo% one of option defining commands of the kvoptions package by Heiko
Oberdiek (a package available o CTAN in the oberdiek bundle).

In fact we collapse all the types just to four so far:
\ifcase\gmdRadef@typenr% if def
\gmd@adef@settype{cs}{o}%
\or% when newcommand
\gmd@adef@settype{cs}{o}%
\or% when cs
\gmdRadef@settype{cs}{o}%
\or% when newenvironment
\gmdRadef@settype{text}{o}%
\or% when text
\gmd@adef@settype{text}{o}%
\or% when defineQkey
\gmd@adef@settype{dk}{1}%
\or% when dk
\gmd@adef@settype{dk}{1}%
\or% when DeclareOptionX
\gmd@adef@settype{dox}{1}%
\or% when dox
\gmd@adef@settype{dox}{1}%
\or% when kvo
\gmdQRadef@settype{text}{1}% The kvoptions option definitions take
first mandatory argument as the option name and they define a keyval
key whose macro’s name begins with the prefix/family, either default
or explicitly declared. The kvoptions prefix/family is supported in gm-
doc with [KVpref=, A KVEam={family)].
\fi}

1627 \def\gmd@adef@settype#i#2{%
\def\gmdRadef@TYPE{#1}%
\ifnumi=#2,% now we define (or not) a quasi-switch that fires for the keyvalish

4628
4629

definition commands.

60

\ifgnd@adef@cshook

4631 \gmdRadef@setKV
4632 \fi}

4634 \def\gmdQRadef@setKV{%

4635 \edef\gmd@resa{%

4636 \def\@xanxcs{gmdRadef@KV@\gmdRadef@currdef}{1}%
4637 }%

1638 \gmd@resa}

We initialise the carrier of detectors:
4642 \emptify\gmd@detectors

The definiendum of a command of the cs type is the next control sequence. There-
fore we only need a self-relaxing hook in \finish@macroscan.

4648 \newif\ifgmd@adef@cshook
4650 \def\gmd@adef@cs{\global\gmdRadef@cshooktrue\gmd@charbychar}

For other kinds of definitions we’ll employ active chars of their arguments’ opening
braces, brackets and sergeants. In gmdoc code layer scopes the left brace is active so we
only add a hook to its meaning (see line ?? in gmverb) and here we switch it according to
the type of detected definition.

4658 \def\gmdQRadef@text {\gdef\gmd@lbracecase{1}\gmd@charbychar}

4660 \foone{%

4661 \catcode'\[\active
4663 \catcode'\<\active}
4664 {%

The detector of xkeyval \define@[...]key:

4666 \def\gmdRadef@dk{%

4667 \let [\gmd@adef@scanKVpref

4668 \catcode\[\active

4670 \gdef\gmd@lbracecase{2}%

4671 \gmd@adef@dfKVpref\gmd@KVprefdefault% We set the default value of
the xkeyval prefix. Each time again because an assignment
in \gmd@adefQRdfKVpref is global.

4674 \gmd@adef@checklbracket}

The detector of xkeyval \DeclareOptionX:

4677 \def\gmd@adef@dox{%

4678 \let [\gmdRadef@scanKVpref

4679 \let<\gmd@Radef@scanDOXfam

4680 \catcode® [\active

4682 \catcode <\active

4683 \gdef\gmd@lbracecase{1}%

4684 \gmdQadef@dfKVpref\gmd@KVprefdefault% We set the default values of
the xkeyval prefix...

4686 \edef\gmd@adef@fam{\gmd@inputname}% ... and family.

4687 \gmdRadef@dofam

4689 \gmd@adef@checkDOXopts}$%

4690 }

The case when the right bracket is next to us is special because it is already touched
by \futurelet (of CSes scanning macro’s \@ifnextcat), therefore we need a ‘future’
test.

61

4605 \def\gmd@adef@checklbracket {%

4696 \@ifnextchar([$%

4697 \gmdQadef@scanKVpref\gmd@charbychar}$% note that the prefix scanning
macro gobbles its first argument (undelimited) which in this case is [.

After a \DeclareOptionX-like defining command not only the prefix in square
brackets may occur but also the family in sergeants. Therefore we have to test presence
of both of them.

4705 \def\gmdQRadef@checkDOXopts{$%
4706 \@ifnextchar[\gmd@adef@scanKVpref%
4707 {\@ifnextchar<\gmdRadef@scanDOXfam\gmd@charbychar}}

4711 \def\gmdQRadef@scanKVpref#i1#2]{$%
4712 \gmdQRadef@dfKVpref{#2}%
4713 [#2]\gmd@charbychar}

4716 \def\gmdR@adefRdfKVpref#1{%
4717 \1fnumi=o\csname gmd@adef@KVprefixset@\gmd@adefQcurrdef%

\endcsname
4718 \relax
4719 \else
4720 \edef\gmu@resa{$%
4721 \gdef\@xa\@nx
4722 \csname, gmd@adef@KVpref@\gmdRadef@currdef\endcsname{%
4723 \ifx\relax#i\relax
4724 \else#1@%
4725 \fi}}%
4726 \gmu@resa

4727 \fi}

4730 \def\gmdQRadef@scanDOXfam{%

4731 \ifnumiz=\catcode \>\relax

4732 \let\next\gmd@adef@scanfamoth
4733 \else

4734 \ifnumi3=\catcode \>\relax

4735 \let\next\gmdQRadef@scanfamact

4736 \else

4737 \PackageError{gmdoc}{>_neither, ‘other' nor. ‘active'!,
Make it

4738 ‘other' with,\bslash AddtoPrivateOthers\bslash\>.}{}%

4739 \fi

4740 \fi

4741 \next}

4743 \def\gmdRadef@scanfamoth#i>{%

4744 \edef\gmd@adef@fam{\@gobble#1}% there is always \gmd@charbychar
first.

4746 \gmd@adef@dofam

4747 <\gmd@adef@fam>%

4748 \gmd@charbychar}

4750 \foone{\catcode" \>\active}

4751 {\def\gmd@adef@scanfamact#1>{%

4752 \edef\gmd@adef@fam{\Qgobble#1}% thereisalways \gmd@charbychar
first.

62

4754 \gmd@adef@dofam

4755 <\gmdRadef@fam>%
4756 \gmd@charbychar}$%
4757 '}

The hook of the left brace consists of \ifcase that logically consists of three sub-

cases:

o —the default: do nothing in particular;

1 —the detected defining command has one mandatory argument (is of the text type,
including kvoptions option definition);

2-3 —we are after detection of a \define@key-like command so we have to scan two
mandatory arguments (case 2 is for the family, case 3 for the key name).

4772 \def\gm@lbracehook {%
4773 \ifcase\gmd@lbracecase\relax
4774 \or% when 1

4775 \afterfi{%
4776 \gdef\gmd@lbracecase{0}%
4777 \gmd@adef@scanname}$%

4778 \or% when 2—the first mandatory argument of two (\defineg@|...]key)
4779 \afterfi{%

4780 \gdef\gmd@lbracecase{3}%

4781 \gmd@adef@scanDKfam}$%

4782 \or% when 3—the second mandatory argument of two (the key name).
4783 \afterfi{%

4784 \gdef\gmd@lbracecase{o}%
4785 \gmd@adef@scanname}%
4786 \fi}

4788 \def\gmd@lbracecase{o}% we initialise the hook caser.
And we define the inner left brace macros:

4793 \foone{\catcode '\ [1.\catcode \]2.\catcode ' \}12,}
4794 [% Note that till line 4817 the square brackets are grouping and the right brace is
‘other”.

Define the macro that reads and processes the \defineQkey family argument. It has
the parameter delimited with ‘other’ right brace. An active left brace that has launched
this macro had been passed through iterating \gmd@charbychar that now stands next
right to us.

4801 \def\gmd@adef@scanDKfam#1}[%

4802 \edef\gmd@adef@fam[\@gobble#1]% there is always \gmd@charbychar
first.

4804 \gmd@adef@dofam

4805 \gmdQ@adef@fam}%

4806 \gmd@charbychar]

4809 \def\gmd@Radef@scanname#1} [%

4810 \@makeother\ [%
4811 \@makeother\<%

The scanned name begins with \gmd@charbychar, we have to be careful.

4814 \gmd@adef@deftext [#1]%
4815 \Qgobble#1}%
4816 \gmd@charbychar]

4817]

4820 \def\gmdQRadef@dofam{%
4821 \ifnumi=o\csname gmdRadef@KVfamset@\gmd@adef@currdef$%
\endcsname
4822 \relax$% a family declared with \DeclareDefining overrides the one cur-
rently scanned.
4824 \else

4825 \edef\gmu@resa{%

4826 \gdef\@xa\@nx

4827 \csname, gmdRadef@KVfam@\gmdRadef@currdef\endcsname
4828 {\ifx\gmdQRadef@fam\empty

4829 \else\gmd@adef@fam @%

4830 \fi}}%

4831 \gmu@resa

4832 \fl}

4831 \def\gmdRadef@deftext#1{%

4835 \@xa\def\@xa\macro@pname\@xa{\@gobble#1}% wegobble \gmd@charbychar,
cf. above.

4836 \edef\macro@pname{\@xa\detokenize\@xa{\macro@pname} }% note the
space at the end.

4838 \edef\macro@pname{\@xa\@xiispaces\macro@pname\@nil}$%

4839 \@xa\Text@Marginize\@xa{\macro@pname}%

4820 \gmdQadef@indextext

4851 \edef\gmd@adef@altindex{%

4842 \csname, ,gmd@adef@prefix@\gmd@adef@currdef, \endcsname}%

and we add the xkeyval header if we are in xkeyval definition.

4845 \ifnumi=o\csname_gmdRadef@KV@\gmdRadef@currdef, \endcsname%
\relax$ The
CS \gmd@ade fQKVQ{def. command) is defined {1} (so \ifnum gets
1=01\relax—true) iff {def. command) is a keyval definition. In
that case we check for the KVprefix and KVfamily. (Otherwise
\gmdQRade £@KVQ<{def. command) is undefined so \ifnum gets
1=0\relax—false.)

4851 \edef\gmdRadefRaltindex{%

4852 \gmd@adef@altindex

4853 \csname, gmdRadef@KVpref@\gmdRadef@currdef \endcsname}%
4854 \edef\gmdRadef@altindex{%

4855 \gmd@adef@altindex

4856 \csname, gmdRadef@KVfam@\gmdRadef@currdef, \endcsname}$%
4857 \fi

4858 \ifx\gmdRadef@altindex\empty
4850 \else% we make another index entry of the definiendum with prefix/KVheader.

4860 \edef\macro@pname{\gmd@adef@altindex\macro@pname}$%
4861 \gmd@adef@indextext
4862 \fi}

4864 \def\gmdQRadef@indextext {%

4865 \@xa\@defentryze\@xa{\macro@pname}{o}% declare the definiendum has
to have a definition entry and should appear without backslash in the
changes history.

4868 \gmd@doindexingtext$ redefine \do to an indexing macro.

64

\pdef

\provide
\pprovide

\newcount
\newdimen
\newskip

\newtoks

\newbox

\newread

\newwrite

\newlength
DeclareDocument Command
\DeclareCommand

\renewcommand
\DeclareRobustCommand

\DeclareTextCommand
1areTextCommandDefault

\DeclareOption

1870 \@xa\do\@xa{\macroQpname}}

So we have implemented automatic detection of definitions. Let’s now introduce
some.

Default defining commands
Some commands are easy to declare as defining:

4884 \DeclareDefining[star=false]\def

4885 \DeclareDefining[star=false] \pdef% it’sagmutils’shorthand for \protected

% \def.
4886 \DeclareDefining[star=false] \provide% a gmutils’ conditional \def
4887 \DeclareDefining[star=false] \pprovide% a gmutils’ conditional \pdef.

But \def definitely not always defines an important macro. Sometimes it’s just
a scratch assignment. Therefore we define the next declaration. It turns the next oc-
currence of \def off (only the next one).

4895 \def\UnDef{{%
4899 \gmd@adef@selfrestore\def
4900 }}

1903 \def\UnPdef{{\gmdRadef@selfrestore\pdef}}
4905 \Store@Macro\UnDef% because the ‘hiding’ commands relax it.

4907 \def\HideDef {%

4909 \gmu@ifstar\UnDef{\HideDefining\def\relaxen\UnDef}}
4911 \def\ResumeDef{%

4912 \ResumeDefining\def

4913 \Restore@Macro\UnDef}

Note that I don’t declare \gdef, \edef neither \xdef. In my opinion their use as
‘real’ definition is very rare and then you may use \Define implemented later.

4920 \DeclareDefining[star=false] \newcount

4921 \DeclareDefining[star=false] \newdimen

4922 \DeclareDefining[star=false] \newskip

4923 \DeclareDefining[star=false] \newif

4924 \DeclareDefining[star=false] \newtoks

4925 \DeclareDefining[star=false] \newbox

4926 \DeclareDefining[star=false] \newread

4927 \DeclareDefining[star=false] \newwrite

1928 \DeclareDefining[star=false] \newlength

1929 \DeclareDefining[star=false] \DeclareDocumentCommand
4930 \DeclareDefining[star=false] \DeclareCommand

1934 \DeclareDefining\newcommand

1935 \DeclareDefining\renewcommand

1936 \DeclareDefining\providecommand

1937 \DeclareDefining\DeclareRobustCommand

1938 \DeclareDefining\DeclareTextCommand

1939 \DeclareDefining\DeclareTextCommandDefault

1921 \DeclareDefiningx\newenvironment
1942 \DeclareDefiningx\renewenvironment
4943 \DeclareDefiningx[star=false]\DeclareOption

\newcounter

\define@key
\define@boolkey

\define@choicekey
\DeclareOptionX

\DeclareDOXHead

\DeclareOptionX

ChneOelze

\DeclareStringOption
\DeclareBoolOption
areComplementaryOption

\DeclareVoidOption

%\DeclareDefiningx\@namedef

4952 \DeclareDefiningx[prefix=\bslash.c@] \newcounter$% thisprefix provides
indexing also \c@{counter).

1955 \DeclareDefining [type=dk, prefix=\bslash]\definelkey

1956 \DeclareDefining[type=dk, prefix=\bslash, if]\define@boolkey$% the
alternate index entry will be \1£{KVpref >@{KVfam)@<{key name)

1959 \DeclareDefining[type=dk, prefix=\bslash]\define@Rchoicekey

1961 \DeclareDefining[type=dox, prefix=\bslash]\DeclareOptionX$% theal-
ternate index entry will be \{KVpref »@{KVfamy@<option name).

For \DeclareOptionX the default KVfamily is the input file name. If the source
file name differs from the name of the goal file (you TgX a .dtx not .sty e.g.), there is the
next declaration. It takes one optional and one mandatory argument. The optional is
the KVpref, the mandatory the KVfam.

4970 \newcommandx\DeclareDOXHead[2] [\gmd@KVprefdefault] {%
4971 \csname, DeclareDefining\endcsname

4972 [type=dox, prefix=\bslash, KVpref=#1, KVfam=#2]%
4973 \DeclareOptionX

4974 }

An example:
4980 \DeclareOptionX[Berg]<Lulu>{EvelynLear}{}

Check in the index for EvelynLear and \Berg@LuluQEvelynLear. Now we set
in the comment layer \DeclareDOXHead [Webern] {Lieder} and

1985 \DeclareOptionX<AntonW>{ChneOelze}

The latter example shows also overriding the option header by declaring the default.
By the way, both the example options are not declared in the code actually.

Now the Heiko Oberdiek’s kvoptions package option definitions:
1994 \DeclareDefining[type=kvo, .prefix=\bslash, KVpref=]%

\DeclareStringOption
1995 \DeclareDefining[type=kvo, .prefix=\bslash, KVpref=1%
\DeclareBoolOption

1996 \DeclareDefining[type=kvo, prefix=\bslash, KVpref=]%
\DeclareComplementaryOption

1997 \DeclareDefining[type=kvo, prefix=\bslash, KVpref=]%
\DeclareVoidOption

The kvoptions option definitions allow setting the default family /prefix for all defini-
tions forth so let’s provide analogon:

s001 \def\DeclareKVOFam#1{%

5002 \def\do##l{%

5003 \csname, DeclareDefining\endcsname

5004 [type=kvo, prefix=\bslash, KVpref=, KVfam=#1]##1}$%
so05 \do\DeclareStringOption

5006 \do\DeclareBoolOption

500, \do\DeclareComplementaryOption

5008 \do\DeclareVoidOption

5009 }

66

As a nice exercise I recommend to think why this list of declarations had to be pre-
ceded (in the comment layer) with \HideAl1lDefining and for which declarations of
the above \DeclareDefining\DeclareDefining did not work. (The answers are
commented out in the source file.)

One remark more: if you define (in the code) a new defining command (I did: a short-
hand for \DeclareOptionX[gmcc] <>), declare it as defining (in the commentary) after
it is defined. Otherwise its first occurrence shall fire the detector and mark next CS or
worse, shall make the detector expect some arguments that it won't find.

Suspending (‘hiding’) and resuming detection

Sometimes we want to suspend automatic detection of definitions. For \de f we defined
suspending and resuming declarations in the previous section. Now let’s take care of
detection more generally.

The next command has no arguments and suspends entire detection of definitions.

5046 \def\HideAllDefining{%

so47 \ifnumo=o0\csname gmdRadef@allstored\endcsname

5048 \SMglobal\Store@Macro\gmd@detectors

5049 \global\@namedef{gmd@adef@allstored}{1}%

5050 \fi

so51 \global\emptify\gmd@detectors}% we make the carrier \empty not \re|
lax to be able to declare new defining command in the scope of \Hide|
All...

The \ResumeAllDefining command takes no arguments and restores the meaning
of the detectors’ carrier stored with \HideAl1Defining

5057 \def\ResumeAllDefining{%

5058 \ifnumi=o\csname gmdladef@allstored\endcsname\relax
5059 \SMglobal\Restore@Macro\gmd@detectors

5060 \SMglobal\Restore@Macro\UnDef

5061 \global\@namedef{gmd@adefRallstored}{o}%

5062 \fi}

Note that \ResumeAllDefining discards the effect of any \DeclareDefining
that could have occurred between \HideAllDefining and itself.

The \HideDefining command takes one argument which should be a defining
command (always without star). \HideDefining suspends detection of this command
(also of its starred version) until \ResumeDefining of the same command or \Re]
sumeAllDefining.

so74 \def\HideDefining{\begingroup
sor7 \MakePrivateletters
508 \gmu@ifstar\Hide@DfngOnce\Hide@Dfng}

5080 \def\Hide@Dfng#1{$%

5081 \escapechar\m@ne

5082 \gn@melet {gmd@detect@\string#1}{relax}$%
5083 \gn@melet {gmd@detect@\string#i*}{relax}%
5084 \i1fx\def#1\global\relaxen\UnDef\fi

5085 \endgroup}

5087 \def\Hide@DfngOnce#1{%
5088 \gmd@adef@selfrestore#i%
5089 \endgroup}

5091 \def\gmd@adef@selfrestore#i{%
5093 \@ifundefined{gmd@detect@\stripRbslash{#1}}{%
5004 \SMglobal\@xa\Store@Macro

5095 \csname, gmd@detect@\strip@bslash{#1}\endcsname}{}%
5097 \global\@nameedef{gmd@detect@\strip@bslash{#1}}{%

5098 \@nx\gmu@if x%

5099 {\@xanxcs{gmd@detectname@\strip@bslash{#1}}%

5100 \@nx\macro@pname}% wecompare the detect(ed) name with \macro@pname.
5103 {\def\@nx\next {% this \next will be executed in line 4391.

5105 \SMglobal\Restore@Macro,.% they both are \protected.
5106 \@xanxcs{gmd@detect@\string#1}%

5107 \@nx\gmd@charbychar}%

5116 \@nx}%

5117 {}% or do nothing if the CS’ names are unequal.

5118 % of \@nameedef.
5119 } % of \gmdQ@adef@selfrestore.

The \ResumeDefining command takes a defining command as the argument and
resumes its automatic detection. Note that it restores also the possibly undefined de-
tectors of starred version of the argument but that is harmless I suppose until we have
millions of CSes.

5125 \def\ResumeDefining{\begingroup
5126 \MakePrivateletters
5127 \gmd@ResumeDfng}

5129 \def\gmdQ@ResumeDfng#1{%

5130 \escapechar\m@ne

5131 \SMglobal\Restore@MacroSt {gmd@detect@\string#1}%
5132 \SMglobal\Restore@MacroSt {gmd@detect@\string#1*}%
5133 \endgroup}

Indexing of CSes

The inner macro indexing macro. #1 is the \verb’s delimiter; #2 is assumed to be the
macro’s name with MakeIndex-control chars quoted. #3 is a macro storing the ,, macro’s
name, usually \macro@pname, built with \stringing every char in lines 4222, 4242
and 4254. #3 is used only to test if the entry should be specially formatted.

\index@macro si45 \newcommandx\index@macro[3] [\verbatimchar] {{%
5146 \gmu@ifundefined{gmd/iexcl/\@xa\detokenize\@xa{#3.}}%

5147 {% #3 is not excluded from index

5149 \gmu@ifundefined{gmd/defentry/\@xa\detokenize\@xa{#3.}}%
5150 {% #3isnotdefentry

5151 \gmu@ifundefined{gmd/usgentry/\@xa\detokenize\Q@xa{#3.}}%
5152 {% #3isnotusg. entry

5153 \edef\kind@fentry{\CommonEntryCmd}}%

5154 {% #3isusg. entry

5155 \def\kind@fentry{UsgEntry}%

5156 \un@usgentryze{#3}}%

5157 1%

5158 {% #3isdefentry

5159 \def\kind@fentry{DefEntry}%

5160 \un@defentryze{#3}%

5161 }% of gmd/defentry/ test’s ‘else’

68

\if@pageinclindex
\quoted@eschar

5162 \if@pageindex\@pageinclindexfalse\fi% should itbe here or there?
Definitely here because we’ll wish to switch the switch with a declara-

tion.

5165 \if@pageinclindex

5166 \edef\gmultempa{gmdindexpagecs{\HLPrefix}{%
\kind@fentry}{\EntryPrefix}}%

5167 \else

5168 \edef\gmultempa{gmdindexrefcs{\HLPrefix}{%
\kind@fentry}{\EntryPrefix}}%

5169 \ fi

5170 \edef\gmu@tempa{\IndexPrefix#2\actualchar%

5171 \quotechar\bslash, verbx#i\quoted@eschar#2#1% Thelastmacro
in this line usually means the first two, but in some cases it’s rede-
fined to be empty (When we use \index@macro to index not a CS).

5175 \encapchar\gmu@tempa}$%

5176 \@xa\special@index\@xa{\gmu@tempa}% We give the indexing macro
the argument expanded so that hyperref may see the explicit encap-
char in order not to add its own encapsulation of |hyperpage when
the (default) hyperindex=true option is in force. (After this setting
the \edefs in the above may be changed to \defs.)

5188 }{}% closing of gmd/iexcl/ test.

5189 }}

5193 \def\un@defentryze#1{$%
5194 \ifcsname, ,gmd/defentry/\@xa\detokenize\@xa{#1.,}\endcsname
5195 \@xa\g@relaxen\csname gmd/defentry/\@xa\detokenize\@xa{#1,.}%

\endcsname
5196 \fl
5197 \ifx\gmd@detectors\empty
5198 \g@relaxen\last@defmark

5199 \fi}% thelast macro (assuming \f1i is not a macro :-) is only used by \changes.
If we are in the scope of automatic detection of definitions, we want to
be able not to use \Define but write \changes after a definition and
get proper entry. Note that in case of automatic detection of definitions
\last@defmark’s value keeps until the next definition.

5206 \def\unQusgentryze#1{%

520, \ifcsname, ,gmd/usgentry/\@xa\detokenize\@xa{#1.,}\endcsname

5208 \@xa\gQ@relaxen\csname gmd/usgentry/\@xa\detokenize\@xa{#1,}%
\endcsname

5200 \fi}

5211 \@emptify\EntryPrefix$ this macro seems to be obsolete now (vo0.98d).

For the case of page-indexing a macro in the commentary when codeline index op-
tion is on:

5216 \newif\if@pageinclindex

5218 \newcommandx\quoted@eschar{\quotechar\bslash}% we’ll redefine it when
indexing an environment.

Let’s initialise \ IndexPrefix
5222 \def\IndexPrefix{}

The \IndexPrefix and \HLPrefix (‘HyperLabel Prefix’) macros are given with
account of a possibility of documenting several files in(to) one document. In such case

69

the user may for each file \def\IndexPrefix{{package name)!} for instance and it
will work as main level index entry and \def\HLPrefix{<{package name)} as a prefix
in hypertargets in the codelines. They are redefined by \DocInclude e.g.

5231 \1f@linesnotnum\@pageindextrue\fi

5232 \AtBeginDocument {$%

5233 \if@pageindex

5234 \def\gmdindexrefcs#1#2#3#4{\csname#2\endcsname{%
\hyperpage{#4}}}% in the page case we gobble the third argument
that is supposed to be the entry prefix.

5237 \let\gmdindexpagecs=\gmdindexrefcs

5238 \else

5241 \def \gmdindexrefcs#i#2#3#4{\gmiflink [clnum.#4]{%

5242 \csname#2\endcsname{#4}}}%
5243 \def \gmdindexpagecs#i1#2#3#4{\hyperlink{page.#4}{%
5244 \csname#2\endcsname{\gmd@revprefix{#3}#41}}}%
5246 \def\gmd@revprefix#1{$%
5247 \def\gmu@tempa{#1}%
5248 \ifx\gmu@tempa\@empty, p.\, \fi}
\HLPrefix s250 \providecommand*\HLPrefix{}% it'll be the hypertargets names’ prefix in

multi-docs. Moreover, it showed that if it was empty, hyperref saw du-
plicates of the hyper destinations, which was perfectly understandable
(codelinenum.123madeby \refstepcounterand codelinenum.123
made by \gmhypertarget). But since vo.98 it is not a problem anymore
because during the automatic \hypertargeting the lines are labelled
clnum.{number)>. When \HLPrefix was defined as dot, MakeIndex re-
jected the entries as ‘illegal page number’.
5262 \ fi }

The definition is postponed till \begin{document} because of the \PageIndex
declaration (added for doc-compatibility), see line 8567.

I design the index to contain hyperlinking numbers whether they are the line num-
bers or page numbers. In both cases the last parameter is the number, the one before
the last is the name of a formatting macro and in line number case the first parameter is
a prefix for proper reference in multi-doc.

I take account of three kinds of formatting the numbers: 1. the ‘def’ entry, 2. a “us-
age’ entry, 3. a common entry. As in doc, let them be underlined, italic and upright
respectively.

5277 \def\DefEntry#1{\underline{#1}}
5278 \def\UsgEntry#1{\textit {#1}}

The third option will be just \relax by default:
5280 \def\CommonEntryCmd{relax}

Inline 5153 it’s \edefed to allow an ‘unmoglich’ situation that the user wants to have
the common index entries specially formatted. I use this to make all the index entries of
the driver part to be “usage’, see the source of chapter 640.

Now let’s \de f the macros declaring a CS to be indexed special way. Each declaration
puts the ;,ed name of the macro given it as the argument into proper macro to be \ i fxed
in lines 5149 and 5151 respectively.

Now we are ready to define a couple of commands. The * versions of them are for
marking environments and implicit CSes.

70

\last@defmark

5296 \outer\def\DefIndex{\begingroup
5297 \MakePrivateletters

5208 \gmu@ifstar

52090 {\@sanitize\MakePrivateOthers$%
5300 \Code@DefIndexStar}$%

5301 {\Code@DefIndex}}

5306 \long\def\Code@DefIndex#1{\endgroup{%

5307 \escapechar\m@ne$% because we will compare the macro’s name with a string
without the backslash.

5309 \@defentryze{#l}{l}}}

5313 \long\def\Code@DefIndexStar#1{%
5314 \endgroup{$%

5315 \addtoQestoindex{#11}%

5316 \Qdefentryze{#1}{o0}}%

5317 }

5319 \def\gmd@justadot{ .}

5321 \long\def\@defentryze#1#2{%
5322 \@xa\glet\csname gmd/defentry/\detokenize{#1.}\endcsname$
\gmd@justadot% The
I4TEX \@namedef macro could not be used since it’s not ‘long’. The space
to sound with the checker.
5326 \ifcat\relax\@xa\@nx\Q@firstofmany#1\@nil
if we meet a CS, then maybe it’s a CS to be “defentryzed” or maybe it’s a ‘verbatim
special” CS. The only way to distinguish those cases is to assume there shouldn’t
be a verbatim containing only a ‘verbatim special” CS.

5331 \@xa\def\@xa\gmu@tempa\@xa{\@allbutfirstof#1\@nil}%
5332 \ifx\gmu@tempa\@empty

5333 \afterfifi\@firstoftwo$% if #1 is a single CS, we \xiistring it. Oth-
erwise we \detokenize it.

5335 \else\afterfifi\@secondoftwo

5336 \fi

5337 \else\@xa\@secondoftwo

5338 \fi

5330 {\xdef\lastQdefmark{\xiistring#1}}% we \string the argument justin
case it’s a control sequence. But when it can be a CS, we \@defentryze
in a scope of \escapechar=-1, so there will never be a backslash at the
beginning of \last@defmark’s meaning (unless we \@defentryze \\).

5344 {\xdef\last@defmark{\detokenize{#1}}}%

5345 \@xa\gdef\csname gmd/isaCS/\last@defmark\endcsname{#2}% #2isei-
ther o or 1. It is the information whether this entry is a CS or not.

5348 } 5 of \@defentryze.

5350 \long\def\@usgentryze#1{%
5351 \@xa\let\csname gmd/usgentry/\detokenize{#1}\endcsname%
\gmd@justadot }

Initialise \envirs@toindex
5354 \Qemptify\envirs@toindex
Now we’ll do the same for the ‘usage” entries:

5357 \outer\def\CodeUsgIndex{\begingroup

71

5358 \MakePrivateletters

5350 \gmu@ifstar

5360 {\@sanitize\MakePrivateOthers$%
5361 \Code@QUsgIndexStar}%

532 {\Code@UsgIndex}}

The * possibility is for marking environments etc.

5365 \long\def\Code@UsgIndex#1{%
5366 \endgroup{$%

5367 \escapechar\m@ne

5368 \global\@usgentryze{#1}}}

5371 \long\def\Code@UsgIndexStar#1{$%
5372 \endgroup

5373 (%

5374 \addtoQestoindex{#11}%

5375 \Qusgentryze{#1}}%

5376 }

For the symmetry, if we want to mark a control sequence or an environment’s name
to be indexed as a ‘normal’ entry, let’s have:

5380 \outer\def\CodeCommonIndex{\begingroup

5381 \MakePrivateletters

5382 \gmu@ifstar

5383 {\MakePrivateOthers\@sanitize\Code@CommonIndexStar}$%
5384 {\Code@CommonIndex}}

5387 \long\def\Code@CommonIndex#1 {\endgroup}

5390 \long\def\Code@CommonIndexStar#i{%
531 \endgroup\addto@estoindex{#1}}

And now let’s define commands to index the control sequences and environments
occurring in the narrative.

5306 \long\def\text@indexmacro#i{%

5397 {\escapechar\m@ne, \xdef\macro@pname{\xiistring#1}}%

5399 \@xa\quote@mname\macro@pname\relax$ we process the CS’s name char by
char and quote MakeIndex controls. \relax is the iterating macro’s stop-
per. The scanned CS’s quoted name shall be the expansion of \macro@iname.

s403 \if\verbatimchar\macro@pname

5404 \def\im@firstpar{[S]}%

s405 \else\def\im@firstpar{}%

5406 \fi
5207 {\do@properindex$% see line 5826.
5408 \@xa \index@macro\im@firstpar\macro@iname\macro@pname}}

The macro defined below (and the next one) are executed only before a ,, macro’s
name i.e. a nonempty sequence of ,, character(s). This sequence is delimited (guarded)
by \relax.

5413 \def\quotelmname {$%
5414 \def\macro@Qiname{}%
5415, \quote@charbychar}

5417 \def\quote@Qcharbychar#1{%
5418 \ifx\relax#1% finish quoting when you meet \relax or:

72

5419 \e 1se

5420 \ifnumo\ifcat\@nx#1\@nx~1\fi\ifcat\@nx#1i\relaxi\fi>o0 % wecan
meet active char and/or control sequences (made by) verbatim specials,
therefore we check whether #1 is an active char and if it is a CS.

5424 \afterfifi{% we can meet an active char or a CS iff we use verbatim spe-
cials.

5426 \ifdefined\verbatim@specials@list

5427 \afterfi{%

5428 \begingroup

5429 \escapechar\@xa\@xa\@xa \@xa\@firstofmany%

\verbatim@specials@list\@nil
5430 \@xa\endgroup
5431 \@xa\quote@charbychar\detokenize{#1}% foraCS \detokenize

adds a space but if so, it will be ignored by the argument scanner.
5434 % of \afterfi

5435 \else\PackageError{gmdoc}{Please report, a\space bug, in
5436 \bslash, quote@charbychar in, line 4934}{}%

5437 \fi% of \ifdefined\verbatim@specials@list.

5438 }% of \afterfifi.

5439 \else

5440 \quotel@char#1%

5441 \xdef\macro@iname{\macro@iname, \gmd@maybequote#1}%

5442 \afterfifi\quote@charbychar

5443 \fi

5444 \fi}

The next command will take one argument, which in plain version should be a con-
trol sequence and in the starred version also a sequence of chars allowed in environment
names or made other by \MakePrivateOthers macro, taken in the curly braces.

5450 \def\TextUsgIndex{\begingroup

sa51. \MakePrivateLetters

sa52 \gmu@ifstar{\MakePrivateOthers\Text@UsgIndexStar}{%
\Text@UsgIndex}}

5455 \long\def\Text@UsgIndex#1{%
s456 \endgroup\Qusgentryze#1%
5457 \text@indexmacro#1}

5460 \long\def\Text@UsgIndexStar#1{\endgroup\Qusgentryze{#1}%
5461 \text@indexenvir{#1}}

5463 \long\def\text@indexenvir#i{%

s464 {\verbatim@specials

5465 \edef\macro@pname{\xiistring#1}%

5466 \if\bslash\@xa\@firstofmany\macro@Qpname\@nil% if \stringed #1 be-
gins with a backslash, we will gobble it to make MakeIndex not see it.

5469 \edef\gmu@tempa{\@xa\@gobble\macro@pname}%

5470 \Qtempswatrue

5471 \else

5472 \let\gmu@tempa\macro@pname
5473 \Qtempswafalse

5474 \fi

5476 \@xa\quotelmname\gmu@tempa\relax% we process \stringed #1 char by
char and quote Makelndex controls. \relax is the iterating macro’s stop-
per. The quoted \stringed #1 shall be the meaning of \macro@iname.

73

5480 \if@tempswa
5481 \def\quoted@eschar{\quotechar\bslash}$%

5482 \else\@emptify\quoted@eschar\fi% we won't print any backslash be-
fore an environment’s name, but we will before a CS’s name.

5484 \do@properindex$% see line 5826.

5485 \index@macro\macro@iname\macro@pname}}

5487 \def\TextCommonIndex{\begingroup

5488 \MakePrivateletters

54809 \gmu@ifstar{\MakePrivateOthers\Text@CommonIndexStar}{%
\Text@CommonIndex}}

5492 \long\def\Text@CommonIndex#1{\endgroup
5403 \text@indexmacro#i1}

5496 \long\def\Text@CommonIndexStar#1{\endgroup
5497 \text@indexenvir{#1}}

As you see in the lines 5160 and 5156, the markers of special formatting are reset after
first use.

But we wish the CSes not only to be indexed special way but also to be put in margin-
pars. So:

5504 \outer\def\CodeMarginize{\begingroup

5505 \MakePrivateletters

5506 \gmu@ifstar

5507 {\MakePrivateOthers\egCode@MarginizeEnvir}
5508 {\egCode@MarginizeMacro}}

One more expansion level because we wish \Code@MarginizeMacro not to begin
with \endgroup because in the subsequent macros it’s used after ending the re\cat |
codeing group.

5514 \long\def\egCode@MarginizeMacro#1{\endgroup
5515, \Code@MarginizeMacro#1}

5518 \long\def\Code@MarginizeMacro#1{{% #1 isalwaysa CS.

5521 \escapechar\m@ne

5522 \@xa\glet\csname, gmd/2marpar/\xiistring#1\endcsname$%
\gmd@justadot

5524 }}

5527 \long\def\egCode@MarginizeEnvir#1{\endgroup
5528 \Code@MarginizeEnvir{#1}}

5531 \long\def\Code@MarginizeEnvir#i{\addtoRestomarginpar{#1}}

And a macro really putting the environment’s name in a marginpar shall be triggered
at the beginning of the nearest codeline.
Here it is:

5537 \def\mark@envir{$%
5538 \ifx\envirs@tomarginpar\@empty
553 \else

5540 \def\do{\Text@Marginizex}%

5541 \envirs@tomarginpar$%

5542 \glemptify\envirs@tomarginpar$%
5543 \fi

74

5544 \ifx\envirs@toindex\Qempty
5545 \else

5546 {\verbatim@specials

5547 \gmd@doindexingtext

5548 \envirs@toindex

5549 \gRemptify\envirs@toindex}%
5550 \fi}

5552 \def\gmd@Rdoindexingtext {%
5553 \def\do##1{% the \envirsQtoindex list contains \stringed macros or en-
vironments’ names in braces and each preceded with \do. We extract the
definition because we use it also in line 4868.
5557 \if\bslash\@firstofmany##1\@nil% if ##1 begins with a backslash, we
will gobble it for Makelndex not see it.
5560 \edef\gmd@resa{\Qgobble##1}%

5561 \Qtempswatrue

5562 \ else

5563 \edef\gmd@resa{##1}\@tempswafalse

5564 \ fi

5565 \@xa\quote@mname\gmd@resa\relax$ see line 5476 & subs. for commen-
tary.

5567 {\if@tempswa

5568 \def\quoted@eschar{\quotechar\bslash}%

5569 \else\@emptify\quoted@eschar

5570 \fi

5571 \index@macro\macroQiname {##1}}}%

5572 }

One very important thing: initialisation of the list macros:

5576 \@emptify\envirs@tomarginpar
5577 \@emptify\envirs@toindex

For convenience we’ll make the ‘private letters’ first not to bother ourselves with
\makeat letter forinstance when we want mark some CS. And \MakePrivateOthers
for the environment and other string case.

5584 \outer\def\Define{% note that since it's \outer, it doesn’t have to be \pro|
tected

5586 \begingroup

5587 \MakePrivateletters

We do \MakePrivateLetters before \gmu@ifstar in order to avoid a situation
that TEX sees a control sequence with improper name (another CS than we wished) (be-
cause \gmu@ifstar establishes the \catcodes for the next token):

5502 \gmu@ifstar{\@sanitize%
5593 \Code@DefEnvir}{\Code@DefMacro}}

5505 \outer\def\CodeUsage{\begingroup
5506 \MakePrivateletters
557 \gmu@ifstar{%

5598 \@sanitize%
5599 \MakePrivateOthers

5600 \CodeQUsgEnvir}{\Code@RUsgMacro}}

And then we launch the macros that close the group and do the work.

75

\Code@DefMacro 5603 \DeclareCommand\Code@DefMacro\long{om} {%
5604 \Code@DefIndex#2% we use the internal macro; it'll close the group.
s605 \IfValueTF{#1}%
5606 {\Code@MarginizeMacro#1}$%
5607 {\Code@MarginizeMacro#2}%
5608 }

\Code@UsgMacro 5612 \DeclareCommand\Code@UsgMacro\long{om}{%
5613 \Code@UsgIndex#2% here also the internal macro; it'll close the group
5615 \IfValueTF{#1}%
5616 {\Code@MarginizeMacro#1}%
5617 {\Code@MarginizeMacro#2}%
5618 }

The next macro is taken verbatim ;-) from doc and the subsequent \lets, too.

5623 \def\codeline@wrindex#1{\if@filesw

5624 \immediate\write\@indexfile

5625 {\string\indexentry{#1}%

5626 {\BLPrefix\number\c@codelinenum}}\fi}

5630 \def\codeline@glossary#1{% It doesn’t need to establish a group since it is al-
ways called in a group.

5632 \1f@pageinclindex

5633 \edef\gmu@tempa{gmdindexpagecs{\HLPrefix}{relax}{$%
\EntryPrefix}}%

5634 \else

5635 \edef\gmu@tempa{gmdindexrefcs{\HLPrefix}{relax}{%
\EntryPrefix}}% relax stands for the formatting command. But
we don’t want to do anything special with the change history entries.

5636 \f i

5637 \protected@edef\gmuQtempa{%

5638 \@nx\protected@write\@nx\@glossaryfile{}%

5639 {\string\glossaryentry{#1i\encapchar\gmu@tempa}$%
5640 {\HLPrefix\number\c@codelinenum}}}%

5641 \gmu@tempa

5642 }

We initialise it due to the option (or lack of the option):

5650 \AtBeginDocument {%

5651 \1f@pageindex

5652 \let\special@index=\index

5653 \let\gmd@glossary\glossary

s654 \else

5656 \let\special@index=\codeline@wrindex

5657 \let\gmd€glossary\codeline@glossary

5650 \fi}% postponed till \begin{document} with respect of doc-like declarations.

And in case we don’t want to index:

5663 \def\gag@index{\let\index=\@gobble
5665 \let\codeline@wrindex=\Q@gobble}

We'll use it in one more place or two. And we’ll wish to be able to undo it so let’s
copy the original meanings:

5670 \Store@Macros{\index\codeline@Qwrindex}

76

\Code@DefEnvir

\CodeQUsgEnvir

\Text@UsgMacro

\TextQUsgEnvir

5672 \def\ungag@index{\Restore@Macros,{\index\@@codeline@wrindex}}

Our next task is to define macros that’ll mark and index an environment or other
string in the code. Because of lack of a backslash, no environment’s name is scanned so
we have to proceed different way. But we wish the user to have symmetric tools, i.e., the
‘def” or “usage’ use of an environment should be declared before the line where the envi-
ronment occurs. Note the slight difference between these and the commands to declare
a CS marking: the latter do not require to be used immediately before the line containing
the CS to be marked. We separate indexing from marginizing to leave a possibility of
doing only one of those things.

5688 \DeclareCommand\Code@DefEnvir\long{om} {%
5689 \endgroup

5691 {%

5692 \IfValueTF{#1}%

5603 {\addto@estomarginpar{#1}}%
5694 {\addto@estomarginpar{#2}}%
5695 \addto@estoindex{#2}%

5696 \Q@defentryze{#2}{o}}}

5699 \DeclareCommand\Code@UsgEnvir\long{om} {%
5700 \endgroup

5701 {%

5702 \IfValueTF{#l}%

5703 {\addto@estomarginpar{#1}1}%
5704 {\addto@estomarginpar{#2}1%
5705 \addto@estoindex{#2}%

5706 \@usgentryze{#2}}}

5709 \long\def\addto@estomarginpar#i{$%
5714 \gaddtomacro\envirs@tomarginpar{\do{#1}}}

5716 \long\def\addto@estoindex#1{%
5720 \gaddtomacro\envirs@toindex{\do{#1}}}

And now a command to mark a “usage’ occurrence of a CS, environment or another
string in the commentary. As the ‘code’ commands this also has plain and starred ver-
sion, first for CSes appearing explicitly and the latter for the strings and CSes appearing
implicitly.

5727 \def\TextUsage { \begingroup

5731 \MakePrivateletters

5732 \gmu@ifstar{\@sanitize\MakePrivateOthers
5734 \Text@UsgEnvir}{\Text@UsgMacro}}

5737 \DeclareCommand\TextQUsgMacro\long{om} {%

5738 \endgroup

5742 \IfValueTF{#l}%

5743 {\Text@Marginizex{#1}{\scanverbx{#1}}}%

5744 {\Text@Marginizex{#2}{\scanverbx{#2}}1}%

5745 \begingroup\Code@UsgIndex#2% we declare the kind of formatting of the en-
try.

5746 \text@indexmacro#2}

5749 \DeclareCommand\Text@UsgEnvir\long{om} {%

575 \endgroup

5753 \IfValueTF{#l}%

77

5754 {\Text@Marginizex{#1}{\scanverbx{#1}}1}1%

5755 {\Text@Marginizex{#2}{\scanverbx{#2}}}%

5756 \@usgentryze{#2}% we declare the ‘usage’ kind of formatting of the entry and
index the sequence #1.

5758 \text@indexenvir{#2}}

We don’t provide commands to mark a macro’s or environment’s definition present
within the narrative because we think there won’t be any: one defines macros and envi-
ronments in the code not in the commentary.

5764 \pdef\TextMarginize{\@bsphack\begingroup

5767 \MakePrivateletters

5768 \gmuQ@ifstar{$%

5769 \MakePrivateOthers\egText@MarginizeEnv} {%
\egText@MarginizeCS}}

5772 \long\def\egText@MarginizeEnv#1{\endgroup
5773 \Text@Marginizex{#1}%
5775 \@esphack}

5777 \long\def\egText@MarginizeCS#1{%
5778 \endgroup

5779 \Text@Marginizex{#1}%

5780 }

We check whether the margin pars are enabled and proceed respectively in either
case.

5784 \1f@marginparsused
5785 \reversemarginpar
5786 \marginparpush\z@
5787 \marginparwidth8pc\relax

You may wish to put not only macros and environments to a marginpar.

5792 \long\def\gmdmarginpar#i{$%

5793 \marginpar{\raggedleft\strut
5794 \hskipoptplusiooptminusioopt%
5795 #111%

5797 \else

5798 \long\def\gmdmarginpar#i{}%

5799 \f1

5801 \let\gmu@tempalall@stars

5802 \@xa\addtomacro\@xa\gmu@tempa\@xa{\all@unders}
5803 \@xa\DeclareCommand\@xa\Text@Marginize\@xa!$%
5804 \@xa{\@xa, Q\Exa{\gmultempa}m}{%

5805 \gmdmarginpar{$%

5806 \addtomacro\verb@lasthook{\marginpartt}%
5807 \IfValueTF{#1}{\scanverb#1}{\scanverb}{#2}1%

5808 } 5 of \Text@Marginize.

Note that the above command will just gobble its arguments if the marginpars are
disabled.

It may be advisable to choose a condensed typewriter font for the marginpars, if there
is any. (The Latin Modern font family provides a light condensed typewriter font, it’s
set in gmdocc class.)

78

macrocodex

macrocode

oldmc

oldmcx

5816 \let \marginpartt\narrativett

If we print also the narration lines” numbers, then the index entries for CSes and
environments marked in the commentary should have codeline numbers not page num-
bers and that is \let in line 5657. On the other hand, if we don’t print narration lines’
numbers, then a macro or an environment marked in the commentary should have page
number not codeline number. This we declare here, among others we add the letter p
before the page number.

5826 \def\do@properindex{%
5827 \if@printalllinenos\else

5828 \@pageinclindextrue
5829 \let\special@index=\index
5830 \fi}

In doc all the ‘working” TgX code should be braced in(to) the macrocode environ-
ments. Here another solutions are taken so to be doc-compatible we only should nearly-
ignore macrocode[*]s with their Percent and The Four Spaces Preceding ;-). Le., to
ensure the line ends are ‘queer’. And that the DocStrip directives will be typeset as the
DocStrip directives. And that the usual code escape char will be restored at \end{%
macrocode}. And to add the vertical spaces.

If you know doc conventions, note that gmdoc does not require \end{macrocode} to
be preceded with any particular number of any char :-).

5850 \newenvironmentx{macrocodex} {%

5851 \i1f@codeskipput\else\par\addvspace\CodeTopsep%
\@codeskipputgtrue\fi

5852 \QueerEOL}%

5853 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Let’s remind that the starred version makes ., visible, which is the default in gmdoc
outside macrocode.
So we should make the spaces invisible for the unstarred version.

5861 \newenvironmentx{macrocode} {%

582 \if@codeskipput\else\par\addvspace\CodeTopsep%
\@codeskipputgtrue\fi

5863 \QueerEOL}%

5864 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Note that at the end of both the above environments the \’s role as the code escape
char is restored. This is crafted for the \SpecialEscapechar macro’s compatibility:
this macro influences only the first macrocode environment. The situation that the user
wants some queer escape char in general and in a particular macrocode yet another
seems to me “unmdglich, Prinzessin”*°.

Since the first .dtx I tried to compile after the first published version of gmdoc uses a lot
of commented out code in macrocodes, it seems to me necessary to add a possibility to
typeset macrocodes as if they were a kind of verbatim, that is to leave the code layer
and narration layer philosophy.

5883 \1let \oldmc\macrocode

5884 \let \endoldmc\endmacrocode

5886 \n@melet {oldmcx} {macrocodex}

5887 \n@melet {endoldmc*} {endmacrocodex}

10 Richard Strauss after Oscar Wilde, Salome.

79

Now we arm oldmc and olmcx with the macro looking for %....\end{<{envir
namey}.

5891 \addtomacro\oldmc{\@oldmacrocode@launch}%
5892 \@xa\addtomacro\csname, ,oldmcx\endcsname {%
5803 \Qoldmacrocode@launch}

5896 \def\Qoldmacrocode@Rlaunch{%

5807 \emptify\gmd@textEOL% todisableitin \gmd@docstripdirective launched
within the code.

5809 \gmd@ctallsetup

s900 \glet\stored@code@delim\code@delim

5901 \@makeother**B\CodeDelimx*"B%

5902 \ttverbatim \gmd@DoTeXCodeSpace

s903 \@makeother\|% because \ttverbatimdoesn't do that.

s904 \MakePrivateLetters% see line 4168.

5906 \docstrips@percent,,\@makeother\>%

sine qua non of the automatic delimiting is replacing possible *,,in the environ-
ment’s name with %;,. Not to complicate assume * may occur at most once and only
at the end. We also assume the environment’s name consists only of character tokens
whose catcodes (except of *) will be the same in the verbatim text.

5013 \@xa\gmdQcurrenvxistar\@Qcurrenvirkx\relax
59014 \Qoldmacrocode}

5916 \foone {\catcode *11,,}
5917 { \def\gmu@xistar{*}}

5019 \def\gmd@currenvxistar#ix#2\relax{%
5020 \edef\Q@currenvir{#i1\if*#2\gmu@xistar\fi}}

The trick is that #2 may be either *,, or empty. If it’s %, the test is satisfied and
\if...\fi expands to \gmu@xistar. If #2 is empty, the test is also satisfied since
\gmu@xistar expands to * but there’s nothing to expand to. So, if the environment’s
name ends with *,,, it'll be substituted with *,,0r else nothing will be added. (Note that
a * not at the end of env. name would cause a disaster.)

5%o\foone{%

5931 \catcode® [=1,.,\catcode"]=2

5932 \catcode '\ {=\active \@makeother\}

5033 \@makeother**B

5934 \catcode' /=0, \catcode \\=\active

5935 \catcode ' &=14,,\catcode *x=11

5936 \catcode \%$=\active, \obeyspaces}& %

5937 [& here the \foone’s second pseudo-argument begins

5939 /def/Qoldmacrocode [&

5040 /bgroup/let, =/relax& to avoid writing /@nx,, four times.

5941 /xdef/oldmc@def [&

5942 /def/@nx/oldmcRend####1/@nx% ., ../@nx\end&

5043 /@nx{/@currenvir} [&

s044 ####17"B/@nx/gmd@oldmcfinis]] &

5045 /egroup& now \oldmcQedef is defined to have one parameter delimited with
& \end{<current env.’s name)}

5047 /0ldmc@def&

5948 /0ldmc@end] &

8o

macro

macro

5949]

5951 \def\gmd@oldmcfinis{%

5052 \def\gmu@tempa{\end{\Qcurrenvir}}%

5953 \@xa\gmu@tempa\@xa\def\@xa\gmd@lastenvir\@xa{\Qcurrenvir}%
5954 \@xa\CodeDelim\@xa*x\stored@RcodeRdelim

5055 \gmd@mchook}$% see line 8203

5957 \def\OldMacrocodes {%
5959 \let\macrocode\oldmc
s960 \n@melet {macrocodex}{oldmcxk}}

To handle DocStrip directives in the code (in the old macrocodes case that is).

5968 \foone {\catcode \%\active}
5069 { \def\docstrips@percent {\catcode \%\active
5970 \let%\gmd@codecheckifds}}

The pointis, the active % will be expanded when just after itis the \gmd@charbychar
cs token and next is some char, the **B code delimiter at least. So, if that char is <, we
wish to launch DocStrip directive typesetting. (Thanks to \ttverbatim all the < are
‘other”.)

5978 \def\gmd@codecheckifds#1#2{% notethat#1 isjustto gobble \gmd@charbychar
token.

5081 \typeout {QRQRQRQ, ,codecheckifds hash,1: »\unexpanded{#1}«, .2:.»%
\unexpanded{#2}«}%

5082 \ifnum , \if@dsdir 1\else o\fi\ifgmd@dsVerb, 1\fi>\z@

5983 \afterfi{%

5984 \gmd@dsChecker{%

5985 \if\@nx<\@nx#2\afterfi\gmd@docstripdirective
5986 \else\afterfi{\xiipercent#1#2}%

5987 \fi}% of the checker’s arg

5988 % of \afterfi

5089 \else\afterfi{\xiipercent#i1#2}%

5900 \fi}

Almost the same we do with the macro[*] environments, stating only their argument
to be processed as the ‘def” entry. Of course, we should re\catcode it first.

5997 \Newenvironment {macro} {$%

5998 \@tempskipa=\MacroTopsep

5999 \if@codeskipput\advance\@tempskipa, by-\CodeTopsep\fi

600 \par\addvspace{\Qtempskipa}\@codeskipputgtrue

6001 \begingroup\MakePrivateLetters\MakePrivateOthers% we make also
the ‘private others’ to cover the case of other sequence in the argument.
(We'll use the \macro macro also in the environment for describing and
defining environments.)

6005 \gmd@ifonetoken\Hybrid@DefMacro\Hybrid@DefEnvir}%

endmacro
600; {\par\addvspace\MacroTopsep\@codeskipputgtrue}

It came out that the doc’s author(s) give the macro environment also starred versions
of commands as argument. It's OK since (the default version of) \MakePrivateLet |
ters makes *x a letter and therefore such a starred version is just one CS. However, in

81

macrok

doc.dtx occur macros that mark implicit definitions i.e., such that the defined CS is not
scanned in the subsequent code.

And for those who want to to use this environment for marking implicit definitions,
define the star version:

6020 \@namedef {macrox} {\let\gmd@ifonetoken\@secondoftwo\macro}
endmacro*
6022 \@xa\let \csname endmacrox\endcsname\endmacro

Note that macro and macrox have the same effect for more-than-one-token ar-
guments thanks to \gmd@ifonetoken’s meaning inside unstarred macro (it checks
whether the argument is one-token and if it isn’'t, \gmd@ifonetoken switches execu-
tion to ‘other sequence’ path).

The two environments behave different only with a one-token argument: macro
postpones indexing it till the first scanned occurrence while macrox till the first code
line met.

Now, let’s complete the details. First define an \if-like macro that turns true when
the string given to it consists of just one token (or one {{text)}, to tell the whole truth).

6os0 \def\gmd@ifsingle#1#2\C@nil{%
6os1 \def\gmuQtempa{#2}%
6os2 \ifx\gmu@tempa\@empty}

Note it expands to an open \if... test (unbalanced with \fi) so it has to be used
as all the \ifs, with optional \else and obligatory \fi. And cannot be used in the
possibly skipped branches of other \if...s (then it would result with ‘extra \fi/extra
\else’ errors). But the below usage is safe since both \gmd@ifsingle and its \else
and \fi are hidden in a macro (that will not be \expandaftered).

Note also that giving \gmd@ifsingle an \if... or so as the first token of the ar-
gument will not confuse TEX since the first token is just gobbled. The possibility of
occurrence of \if... or so as a not-first token seems to be negligible.

6055 \def\gmd@ifonetoken#i#2#3{%

6056 \def\gmu@tempb{#3}% We hide #3 from TgX in case it’s \if... or
so. \gmu@tempa is used in \gmd@ifsingle.

6058 \gmd@ifsingle#3\@nil

6059 \afterfi{\@xa#1i\gmu@tempb}%

6060 \else

6061 \edef\gmu@tempa{\@xa\string\gmu@tempb}$%

6062 \afterfi{\@xa#2\@xa{\gmuRtempa}}%

6063 \fi}

Now, define the mysterious \Hybrid@DefMacro and \Hybrid@DefEnvir macros.
They mark their argument with a certain subtlety: they put it in a marginpar at the point
where they are and postpone indexing it till the first scanned occurrence or just the first
code line met.

6068 \1long\def\Hybrid@DefMacro#1{%
6069 \Code@DefIndex{#1}% this macro closes the group opened by \macro.
6070 \Text@MarginizeNext {*{#1}}}

6072 \long\def\Hybrid@DefEnvir#i{%
6073 \Code@DefIndexStar{#1}% thismacroalso closesthe group begunby \macro.
6075 \Text@MarginizeNext {*{#1}}}

6077 \long\def\Text@MarginizeNext#1{$%

82

\qnd@oncenum

environment

6078 \gmd@evpaddonce{\Text@Marginize#1\ignorespaces}}

The following macro adds its argument to \everypar using an auxiliary macro to
wrap the stuff in. The auxiliary macro has a self-destructor built in so it \relaxes itself
after first use.

6084 \1long\def\gmdQRevpaddonce#1{%
6085 \global\advance\gmd@oncenum\@ne
6086 \@xa\long\@xa\edef%

6087 \csname, ,gmd/evp/NeuroOncer\the\gmd@oncenum\endcsname {%
6088 \@nx\gl@relaxen
6089 \csname, gmd/evp/NeuroOncer\the\gmd@oncenum$

\endcsname }%$ Why does it work despite it shouldn’t? Because
when the CS got with \csname »..\endcsname is undefined, it’s
equivalent to \relax and therefore unexpandable. That’s why it
passes \edef and is able to be assigned.

6094 \@xa\addtomacro\csname, ,gmd/evp/NeuroOncer\the\gmd@oncenum$

\endcsname{#1}%
6095 \@xa\addto@hook\@xa\everypar\@xa{$%
6096 \csname, ,gmd/evp/NeuroOncer\the\gmd@oncenum\endcsname}%

6097 }
6099 \newcount \gmdQoncenum

Wrapping a description and definition of an environment in a macro environment
would look inappropriate (‘zgrzytalo by’ in Polish) although there’s no TgXnical obstacle
to do so. Therefore we define the environment, because of a sthetic and psychological
reasons.

6110 \@xa\let\@xa\environment \csname, macrox\endcsname
6111 \@xa\let\@xa\endenvironment \csname_endmacrox\endcsname

Index exclude list

We want some CSes not to be indexed, e.g., the IXTEX internals and TgX primitives.

doc takes \index@excludelist to be a \toks register to store the list of expelled
CSes. Here we’ll deal another way. For each CS to be excluded we’ll make (\let, to be
precise) a control sequence and then we’ll be checking if it’s undefined (\ i fx-equivalent
to \relax)."

6126 \def\DoNotIndex{\bgroup\MakePrivateLetters\DoNot@Index}

6134 \long\def\DoNot@Index#1{\egroup% we close the group,

6135 \let\gmd@iedir\gmd@justadot% we declare the direction of the {?)cluding
to be excluding. We act this way to be able to reverse the exclusions easily
later.

6138 \dont@index#1.}

6141 \long\def\dont@index#1{%

6142 \def\gmu@tempa{\@nx#1}% My TgX Guru’s trick to deal with \fi and such,
i.e., to hide from TgX when it is processing a test’s branch without expand-
ing.

6145 \if\gmu@tempa.% a dot finishes expelling

6146 \else

6147 \if\gmu@tempa, $ The list this macro is put before may contain commas and

that’s O.K., we just continue the work.

11 This idea comes from Marcin Wolifiski.

6149 \afterfifi\dont@index

6150 \else% what is else shall off the Index be expelled.

6151 {\escapechar\m@ne

6152 \xdef\gmu@tempa{\string#1..}}% its to sound with \detokenizes
in tests.

6154 \@xa\let$%

6155 \csname, gmd/iexcl/\gmu@tempa\endcsname=\gmdQRiedir% Inthede-

fault case explained e.g. by the macro’s name, the last macro’s meaning
is such that the test in line 5146 will turn false and the subject CS shall
not be indexed. We \let not \def to spare TEX's memory.

6160 \afterfifildont@index
6161 \fi
6162 \fi}

Let’s now give the exclude list copied ~verbatim ;-) from doc.dtx. I give it in the code
layer because I suppose one will document not I4TEX source but normal packages.

6171 \DoNotIndex\{ \DoNotIndex\}% the index entries of these two CSes would be
rejected by Makelndex anyway.

6174 \begin{MakePrivateLetters}% Yes, \DoNotIndex does \MakePrivatelLet |
ters onits own but No, it won't have any effect if it’s given in another macro’s
\def.
DefaultIndexExclusions 61,8 \gdef\DefaultIndexExclusions{%
6179 \DoNotIndex{\Q@ \QQpar \@beginparpenalty \@empty}%
6180 \DoNotIndex{\@flushglue \@gobble \@input}%
6181 \DoNotIndex{\@makefnmark \@makeother \@maketitle}%
6182 \DoNotIndex{\@namedef \@ne \@spaces \Qtempa}*%
6183 \DoNotIndex{\Q@tempb \@tempswafalse \@tempswatrue}%
6184 \DoNotIndex{\@thanks \@thefnmark \@topnum}%
6185 \DoNotIndex{\@@ \@elt \@forloop \@fortmp \@gtempa
\@totalleftmargin}$%
6186 \DoNotIndex{\" \/ \@ifundefined \@nil \@verbatim
\@vobeyspaces}$%

6187 \DoNotIndex{\| \~\ \active \advance \aftergroup \begingroup
\bgroup}%

6188 \DoNotIndex{\mathcal \csname \def \documentstyle \dospecials
\edef}%

6189 \DoNotIndex{\egroup}%

6190 \DoNotIndex{\else \endcsname \endgroup endinput
\endtrivlist}%

6191 \DoNotIndex{\expandafter \fi \fnsymbol \futurelet \gdef
\global}$%

6192 \DoNotIndex{\hbox \hss \if \if@inlabel \if@tempswa
\if@twocolumn}$%

6193 \DoNotIndex{\ifcase}%

6194 \DoNotIndex{\ifcat \iffalse \ifx \ignorespaces \index \input
\item}$%

6195 \DoNotIndex{\ jobname \kern \leavevmode \leftskip \let \1llap
\lower}$%

6196 \DoNot Index{\m@ne \next \newpage \nobreak \noexpand

\nonfrenchspacing}$%
6197 \DoNotIndex{\obeylines \or \protect \raggedleft \rightskip \rm
\sc}$%

84

6198 \DoNotIndex{\setbox \setcounter \small \space \string

\strut}$%

6199 \DoNotIndex{\strutbox}%

6200 \DoNotIndex{\thefootnote \thispagestyle \topmargin \trivlist
\tt}%

6201 \DoNot Index{\twocolumn \typeout \vss \vtop \xdef \z@}$%

6202 \DoNotIndex{\, \@bsphack \@esphack \@noligs \@vobeyspaces
\@xverbatim}%

6203 \DoNotIndex{\" \catcode \end \escapechar \frenchspacing
\glossary}$%

6204 \DoNotIndex{\hangindent \hfil \hfill \hskip \hspace \ht \it
\langle}$%

6205 \DoNotIndex{\leaders \long \makelabel \marginpar \markboth
\mathcode}$%

6206 \DoNotIndex{\mathsurround \mbox}% % \newcount \newdimen \newskip

6207 \DoNotIndex{\nopagebreak}$%

6208 \DoNotIndex{\parfillskip \parindent \parskip \penalty \raise
\rangle}%

6209 \DoNotIndex{\section \setlength \TeX \topsep \underline
\unskip}%

6210 \DoNotIndex{\vskip \vspace \widetilde \\ \% \@date \@defpar}%

6211 \DoNotIndex{\[\]}% seeline 6171.

6212 \DoNotIndex{\count@ \ifnum\loop \today \uppercase \uccode}%

6213 \DoNotIndex{\baselineskip \begin \tw@}%

6214 \DoNotIndex{\a\b\c\d\e\f\g\h\i\j\k\1\m\n\o\p\qg}$%

6215 \DoNotIndex{\r \s \t \u\v\w\x\y\z\A\B\C\D\E\F\G\H}%

6216 \DoNotIndex{\I \J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z}%

6217 \DoNotIndex{\1\2 \3\4 \5\6\7 \8\9\0}%

6218 \DoNotIndex{\! \#\SN\&\" N (\) \. \:\; \<\=\>\?2_1}% \+ seems to

be so rarely used that it may be advisable to index it.

6220 \DoNotIndex{\discretionary \immediate \makeatletter
\makeatother}%

6221 \DoNotIndex{\meaning \newenvironment \par \relax
\renewenvironment}%

6222 \DoNotIndex{\repeat \scriptsize \selectfont \the
\undefined}%

6223 \DoNotIndex{\arabic \do \makeindex \null \number \show \write
\Qehc}$%

6224 \DoNotIndex{\Qauthor \@ehc \@ifstar \@sanitize \@title}$%

6225 \DoNotIndex{\if@minipage \if@restonecol \ifeof \ifmmode}$%

6226 \DoNotIndex{\lccode $ %$\newtoks

6227 \onecolumn \openin \p@ \SelfDocumenting}$%

6228 \DoNotIndex{\settowidth \@resetonecoltrue \Qresetonecolfalse
\bf}%

6229 \DoNotIndex{\clearpage \closein \lowercase \@inlabelfalse}%

6230 \DoNotIndex{\selectfont \mathcode \newmathalphabet
\rmdefault}%

6231 \DoNotIndex{\bfdefault}%

From the above list I removed some \new... declarations because I think it may
be useful to see gathered the special \new...s of each kind. For the same reason
I would not recommend excluding from the index such declarations as \AtBegin|
Document, \AtEndDocument, \AtEndOfPackage, \DeclareOption, \DeclareRo|

85

bustCommand etc. But the common definitions, such as \(new|provide)command and
\(e|g|x)defs, as the most common, in my opinion excluded should be.

6244
6245
6246

6248
6249
6250
6251
6252
6253

6254
6255
6256
6257

6259
6260

6261
6262
6263
6264

6265

6266
6269

6270

6271
6272
6273
6274
6275

6277
6278
6279

6283
6284
6285
6286
6287

6288
6289
6290

And some my exclusions:

\DoNotIndex{\@@input \Gauxout \@currentlabel \@dblarg}%
\DoNotIndex{\@ifdefinable \@ifnextchar \@ifpackageloaded}$%
\DoNotIndex{\@indexfile \@let@token \@sptoken \"}% thelatter comes
from CSes like *"M, see sec. 668.
\DoNotIndex{\addto@hook \addvspace}$%
\DoNotIndex{\CurrentOption}$%
\DoNotIndex{\emph \empty \firstofone}%
\DoNotIndex{\font \fontdimen \hangindent \hangafter}%
\DoNotIndex{\hyperpage \hyperlink \hypertarget}%
\DoNotIndex{\ifdim \ifhmode \iftrue \ifvmode
\medskipamount}%
\DoNotIndex{\message}%
\DoNotIndex{\NeedsTeXFormat \newcommand \newif}%
\DoNotIndex{\newlabel}$%
\DoNotIndex{\of}%
\DoNotIndex{\phantom \ProcessOptions \protectedledef}%
\DoNotIndex{\protected@xdef \protected@writel}%
\DoNot Index{\ProvidesPackage \providecommand}$%
\DoNotIndex{\raggedright}$%
\DoNotIndex{\raisebox \refstepcounter \ref \rlap}%
\DoNotIndex{\reserved@a \reserved@b \reserved@c
\reserved@d}$%
\DoNotIndex{\stepcounter \subsection \textit \textsf \thepage
\tiny}$%
\DoNotIndex{\copyright \footnote \label \LaTeX}%
\DoNotIndex{\@eha \@endparenv \if@endpe \@endpefalse
\@endpetrue}%
\DoNotIndex{\@evenfoot \@oddfoot \@firstoftwo
\@secondoftwo}%
\DoNotIndex{\@for \Qgobbletwo \@idxitem\Qifclassloaded}$%
\DoNotIndex{\@ignorefalse \@ignoretrue \if@ignore}$%
\DoNotIndex{\@input@ \@input}%
\DoNotIndex{\@latex@error \@mainaux \@nameuse}$%
\DoNotIndex{\@nomath \@oddfoot}% %$\@onlypreamble shouldbeindexed
IMHO.
\DoNotIndex{\Qouterparskip \@partaux \@partlist \@plus}$%
\DoNotIndex{\@sverb \@sxverbatim}%
\DoNotIndex{\@tempcnta \@tempcntb \@tempskipa \@tempskipb}$%
I think the layout parameters even the kernel, should not be excluded:
% \Qtopsep \Q@topsepadd \abovedisplayskip \clubpenalty etc.
\DoNotIndex{\Qwriteckpt}$%
\DoNotIndex{\bfseries \chapter \part \section \subsection}$%
\DoNotIndex{\subsubsection}%
\DoNotIndex{\char \check@mathfonts \closeout}$%
\DoNotIndex{\fontsize \footnotemark \footnotetext
\footnotesize}%
\DoNotIndex{\gQRaddto@macro \hfilneg \Huge \huge}%
\DoNotIndex{\hyphenchar \if@partsw\IfFileExists }%
\DoNotIndex{\include \includeonly \indexspacel}%

86

6291 \DoNotIndex{\itshape \language \LARGE \Large \large}%
6292 \DoNotIndex{\lastbox \lastskip \m@th \makeglossary}%
6293 \DoNotIndex{\maketitle \math@fontsfalse \math@fontstrue

\mathsf}$%

6294 \DoNotIndex{\MessageBreak \noindent \normalfont
\normalsize}%

6295 \DoNotIndex{\on@line \openout \outer}$%

6296 \DoNot Index{\parbox \part \rmfamily \rule \sbox}$%

6297 \DoNotIndex{\sf@size \sffamily \skip}%

6298 \DoNotIndex{\textsc \textup \toks@ \ttfamily \vbox}%

%% \DoNot Index{\begin*} maybe in the future, if the idea gets popular...

6304 \DoNot Index{\hspacex \newcommand* \newenvironmentx
\providecommandx}%

6305 \DoNotIndex{\renewenvironmentx \sectionx \chapterx}$%

6306 }% of \DefaultIndexExclusions

I put all the expellings into a macro because I want them to be optional.
6309 \end{MakePrivatelLetters}

And we execute it due to the (lack of) counter-corresponding option:

6313 \if@indexallmacros\else
6314 \DefaultIndexExclusions
6315 \fl

If we expelled so many CSes, someone may like it in general but he/she may need
one or two expelled to be indexed back. So

6321 \def\DoIndex{\bgroup\MakePrivateLetters\Do@Index}

6328 \long\def\Do@Index#1{\egroup\@relaxen\gmd@iedir\dont@index#1.}% note
we only redefine an auxiliary CS and launch also \dont@index inner macro.

And if a user wants here make default exclusions and there do not make them,
they may use the \DefaultIndexExclusions declaration themself. This declaration
OCSR, but anyway let’s provide the counterpart. It OCSR, too.

6337 \def\UndoDefaultIndexExclusions{$%
6338 \Store@Macro\DoNotIndex

6340 \let\DoNotIndex\DoIndex

6342 \DefaultIndexExclusions

6344 \Restore@Macro\DoNotIndex}

Index parameters

“The \IndexPrologue macro is used to place a short message into the document above
the index. It is implemented by redefining \index@prologue, a macro which holds
the default text. We’d better make it a \long macro to allow \par commands in its
argument.”

6356 \long\def\IndexPrologue#1i{\@bsphack\def\index@prologue{#1}$%
\@esphack}

6350 \def\indexdiv{\@ifundefined{chapter}{\section*}{\chapterx}}
6363 \@ifundefined{index@prologue} {\def\index@prologue{\indexdiv{$%

Index}%
6364 \markboth{Index}{Index}%

\IndexMin

\c@IndexColumns
theindex

6365 Numbers, written, in italic_refer to,_the \if@pageindex.,

pages.\else

6366 code_ lines, \fi_where the

6367 corresponding. entry.is.described; numbers, underlined,,
refer to_the

6368 \if@pageindex\else code line of the \fi definition;.
numbers,,in

6369 roman, refer to the \if@pageindex, pages\else code lines. %
\fi where

6370 the entry.is used.

6371 \if@pageindex\else

6372 \ifx\HLPrefix\@empty

6373 The numbers, preceded, with, p.'.are page numbers.

6374 \else The, numbers, with, no prefix are page numbers.

6375 \ fi \ fi

6376 \ifx\IndexLinksBlack\relax\else

6377 All, the numbers, are hyperlinks.

6380 \ fi

6381 \gmd@dip@hook$% this hook is intended to let a user add something without
redefining the entire prologue, see below.

6383 }1}{}

During the preparation of this package for publishing I needed only to add some-
thing at the end of the default index prologue. So

6388 \@emptify\gmd@dipQ@hook
6389 \long\def\AtDIPrologue#1{\gladdtolmacro\gmdedip@hook {#1}}

Now we can rollback the \ampulexdef made to \verb:

6393 \AtDIPrologue{%
6394 \ampulexdef\verb\ttverbatim\verbatim@specials
6395 {\ttverbatim\verbatim@specials}}

The Author(s) of doc assume multicol is known not to everybody. My assumption is
the other so

6401 \RequirePackage{multicol}

“If multicol is in use, when the index is started we compute the remaining space on
the current page; if it is greater than \IndexMin, the first part of the index will then be
placed in the available space. The number of columns set is controlled by the counter
\c@IndexColumns which can be changed with a \setcounter declaration.”

6410 \newdimen\IndexMin, \IndexMin, = 133pt\relax$% originally it was set 8o pt,
but with my default prologue there’s at least 4.7 cm needed to place the pro-
logue and some index entries on the same page.

6413 \newcount \c@IndexColumns, \c@IndexColumns, =3

6414 \renewenvironment {theindex}

6415 {\begin{multicols}\c@IndexColumns|[\index@prologue] [%

\IndexMin]%

6416 \IndexLinksBlack
6417 \IndexParms \let\item\@idxitem \ignorespaces}$%
6418 {\end{multicols}}

6420 \def\IndexLinksBlack{\hypersetup{linkcolor=black}}% Tomake Adobe
Reader work faster.

88

6423 \@ifundefined{IndexParms}
6424 {\def\IndexParms{$%

6426 \parindent,\z@

6427 \columnsep.,15pt

6428 \parskip, opt._ plus.ipt

6429 \rightskip.15pt

6430 \mathsurround, \z@

6431 \parfillskip=-15pt.plus.1.,£il, % doc defines this parameter rigid

but that’s because of the stretchable space (more precisely, a \dot |
f£ill) between the item and the entries. But in gmdoc we define no
such special delimiters, so we add an infinite stretch.

6436 \small

6437 \def\@idxitem{\par\hangindent, 3opt}$%

6438 \def\subitem{\@idxitem\hspacex{1i5pt}}$%

6439 \def\subsubitem{\@idxitem\hspacex{25pt}}$%

6440 \def\indexspace{\par\vspace{1opt, plus, 2pt.minus, 3pt}}%

6441 \ifx\EntryPrefix\@empty\else\raggedright\£fi% long (actually, a quite

short but nonempty entry prefix) made space stretches so terribly large in

the justified paragraphs that we should make \raggedright rather.
6445 \ifnum\c@IndexColumns>\tw@\raggedright\fi% the numbersinnar-

row columns look better when they are \raggedright in my opinion.

6447 FH{}

6449 \def\PrintIndex{% we ensure the standard meaning of the line end character not
to cause a disaster.

6451 \@ifQueerEOL{\StraightEOL\printindex\QueerEOL}%

6452 {\printindex}}

Remember that if you want to change not all the parameters, you don’t have to re-
define the entire \IndexParms macro but you may use a very nice I4TEX command
\g@addto@macro (it has \global effect, also with an apeless name (\gaddtomacro)
provided by gmutils. (It adds its second argument at the end of definition of its first argu-
ment provided the first argument is a no-argument macro.) Moreover, gmutils provides
also \addtomacro that has the same effect except it’s not \global

The DocStrip directives

6524 \foone {\@makeother\<\@makeother\>

6525 \glet\sgtleftxii=<}

6526 {

6527 \def\gmd@docstripdirective{%

6528 \begingroup\let\do=\@makeother

6529 \do*\do\/\do\+\do\-\do\, \do\&\do\ | \do\!\do\ (\do\) \do\>\do%

\<%
6532 \@ifnextchar{<}{%
6533 \let\do=\@makeother \dospecials
6534 \gmd@docstripverb}
6535 {\gmd@docstripinner}}%
6537 \def\gmd@docstripinner#i>{%
6538 \endgroup
6539 \def\gmd@modulehashone{$%
6540 \Module{#1}\space
6541 \Qafternarrgfalse\@aftercodegtrue\@codeskipputgfalse}%

6543 \gmd@textEOL\gmd@modulehashone}

\Module

\ModuleVerb

A word of explanation: first of all, we close the group for changed \catcodes; the
directive’s text has its \catcodes fixed. Then we put the directive’s text wrapped with
the formatting macro into one macro in order to give just one token the gmdoc’s TgX code
scanner. Then launch this big TgX code scanning machinery by calling \gmd@textEOL
which is an alias for the ‘narrative’ meaning of the line end. This macro opens the verba-
tim group and launches the char-by-char scanner. That is this scanner because of what
we encapsulated the directive’s text with the formatting into one macro: to let it pass
the scanner.

That’s why in the ‘old” macrocodes case the active % closes the group before launch-
ing \gmd@docstripdirective.

The “verbatim’ directive macro works very similarly.
6566 }

6568 \foone {\@makeother\<\@makeother\>
6560 \glet\sgtleftxii=<
6570 \catcode *"M=\active}$%

6571 { %

6572 \def\gmd@docstripverb<#1"*M{%

6573 \endgroup$%

6574 \def\gmd@modulehashone{$%

6575 \ModuleVerb{#1}\@afternarrgfalse\@aftercodegtrue%
6576 \@codeskipputgfalse}$%

$% \global\gmdQ@dsVerbtrue$% see below.

6579 \xdef\gmd@dsVerbDelim{\detokenize{#1}}%
6580 \gmd@textEOL\gmd@modulehashone”"M}%
6581 }

6583 \edef\gmd@dsVerbDelim{\detokenize{%
#@SSSS#_() (L) *981-71092519-40**A""B} }

So far proper handling of the checks for the closing directive is too expensive to im-
plement so we only provide a macro to be put in a line before the closing directive.
The problem is of course with the verbatim commands that are very difficult to rescan
(\scantokens doesn't do the job).

It’s not necessary to put it right before the line with the closing directive. The only
requirement is that the lines between this macro and the closing directive don’t contain
any recatcode’ing in the narration layer.

6597 \pdef\dsVerbClose{$%
6508 \global\gmd@dsVerbtrue}

(~Verbatim ;-) from doc:)

6602 \providecommandx\Module[1]{{%
6603 \mod@math@codes$\langle\mathsf{#1}\rangle$}}

6605 \providecommandx\ModuleVerb[1]{{$%
6606 \mod@math@codes$\langle\langle\mathsf{#1}5}}

6608 \def\ModuleVerbClose#1{{$%

6609 \xiipercent
6610 \mod@math@codes$\mathsf{#1}$
6611 {\normalfont[\ds_ verbatim closing, dir.]}}}

6613 \def\mod@math@codes{\mathcode \|="226A \mathcode \&="2026,,}

90

The changes history

The contents of this section was copied ~verbatim from the doc’s documentation, with
only smallest necessary changes. Then my additions were added :-)).

“To provide a change history log, the \changes command has been introduced.
This takes [one optional and] three [mandatory] arguments, respectively, [the macro
that'll become the entry’s second level,] the version number of the file, the date of the
change, and some detail regarding what change has been made [i.e., the description of
the change]. The [second] of these arguments is otherwise ignored, but the others are
written out and may be used to generate a history of changes, to be printed at the end of
the document. [... I omit an obsolete remark about then-older Makelndex’s versions.]

The output of the \changes command goes into the {Glossary_File) and therefore
uses the normal \glossaryentry commands. Thus Makelndex or a similar program
can be used to process the output into a sorted “glossary”. The \changes command
commences by taking the usual measures to hide its spacing, and then redefines \pro |
tect for use within the argument of the generated \indexentry command. We re-
code nearly all chars found in \@sanitize to letter since the use of special package
which make some characters active might upset the \changes command when writing
its entries to the file. However we have to leave % as comment and ., as {space) otherwise
chaos will happen. And, of course the \ should be available as escape character.”

We put the definition inside a macro that will be executed by (the first use of)
\RecordChanges. And we provide the default definition of \changes as a macro
just gobbling its arguments. We do this to provide no changes” writing out if \Record |
Changes is not used.

6659 \def\gmd@DefineChanges{%

6660 \outer\long\def\changes{$%
6661 \gmd@changes@init

6662 \changes@}}

6664 \def\gmd@changes@init {$%

6665 \@bsphack\begingroup\@sanitize

6666 \catcode'\\\z@_ \catcode '\, 10, \MakePercentIgnore
6667 \catcode " \"*=7

6668 \MakePrivateLetters, \StraightEOL

6669 \MakeGlossaryControls}

\changes 6671 \newcommand\changes[4] []{\PackageWarningNoLine{gmdoc}{%

6672 ~~JThe, \bslash changes, command used \on@line
6673 A Jwith,no, \string\RecordChanges\space declared.
6674 A*JIshall not, warn you.again,about it}%
\changes 6676 \renewcommand\changes[4][]{%
6677 }}

6679 \def\MakeGlossaryControls{%

6680 \edef\actualchar{\string=}\edef\quotechar{\string!}%

6681 \edef\levelchar{\string>}\edef\encapchar{\xiiclub}}$% fortheglos-
sary the “actual’, the ‘quote” and the ‘level” chars are respectively =, ! and >,
the ‘encap’ char remains untouched. I decided to preserve the doc’s settings
for the compatibility.

\changest 668y \newcommand\changes@[4] [\generalname] {%
6690 \1f@RecentChange{#31}% if the date is later than the one stored in \c@Chang |

% esStartDate,
6692 \Q@tempswafalse

91

6693 \ifx\generalname#1% then we check whether a CS-entry is given in the op-

tional first argument or is it unchanged.

6695 \ifx\last@defmark\relax\else% if no particular CS is specified in #1,
we check whether \last@defmark contains something and if so, we
put it into \gmu@tempb scratch macro.

6698 \@tempswatrue

6699 \edef\gmultempb{% it’s a bug fix: while typesetting traditional .dtxes,

% \last@defmark came out with \ at the beginning (which re-

ulted with \\{name) in the change log) but while typesetting the
‘new’” way, it occurred without the bslash. So we gobble the bslash
if it’s present and two lines below we handle the exception of
% \last@defmark = {\} (what would happen if a definition of
% \\ was marked in new way gmdocing).

6707 \if\bslash\lastQdefmark\else\last@defmark\fi}%

6708 \ifx\last@defmark\bslash\let\gmu@tempb\last@defmark$%
\fi%

6709 \n@melet {gmd@glossCStest}{gmd/isaCS/\last@defmark}%

6710 \fl

6711 \else$% the first argument isx not \generalname i.e., a particular CS is spec-

ified by it (if some day one wishes to \changes \generalname, they
should type \changes [generalname]...)

6715 \Qtempswatrue

6716 {\escapechar\m@ne

6717 \xdef\gmu@tempb{\string#1}}%

6718 \if\bslash\@xa\@firstofmany\string#i\relax\@nil% we check
whether #1 is a CS...

6720 \def\gmd@glossCStest{1}% ... and tell the glossary if so.

6721 \fl

6722 \fl

6723 \@ifundefined{gmd@glossCStest}{\def\gmdeglossCStest{o}}{}%
6724 \protected@edef\gmultempa{\@nx\gmd@glossary{$%

6725 \if\relax\GeneralName\relax\else

6726 \GeneralName$% it’s for the \DocInclude case to precede every \changes
of the same file with the file name, cf. line 7238.

6729 \fi

6730 #2\levelchar%

6731 \if@tempswa$ If the macro \last@defmark doesn’t contain any CS

name (i.e., is empty) nor #1 specifies a CS, the current changes entry
was done at top-level. In this case we precede it by \generalname.
6736 \gmu@tempb

6737 \actualchar\bslash, verbx%

6738 \if\verbatimchar\gmu@tempb$\else\verbatimchar\fi
6739 \if1\gmd@glossCStest\quotechar\bslash\fi, \gmu@tempb
6740 \if\verbatimchar\gmu@tempb$\else\verbatimchar\fi
6741 \else

6742 \space\actualchar\generalname

6743 \fi

6744 :\levelchar%

6745 #4%

6746 H%

6747 \gnmu@tempa

6748 \grelaxen\gmd@glossCStest
67490 \fi% of \if@recentchange

92

6751 \endgroup\@esphack}
Let’s initialise \last@defmark and \GeneralName.

6754 \@relaxen\last@defmark
6755 \@empt ify\GeneralName

6757 \def\ChangesGeneral {\grelaxen\last@defmark}$% If automatic detection of
definitions is on, the default entry of \changes is the meaning of \1last @defmark,
the last detected definiendum that is. The declaration defined here serves to
start a scope of ‘general’ \changes’ entries.

6763 \AtBegInput { \ChangesGeneral}

Let’s explain \if@RecentChange. We wish to check whether the change’s date
is later than date declared (if any limit date was declared). First of all, let’s establish
a counter to store the declared date. The untouched counters are equal o so if no date is
declared there’ll be no problem. The date will have the <YYYYMMDD) shape both to
be easily compared and readable.

\c@ChangesStartDate 6771 \newcount\c@ChangesStartDate

6774 \def\if@RecentChange#1{%
6775, \gmd@setChDate#1\@nil\Q@tempcnta
6776 \ifnum\@tempcnta>\c@ChangesStartDate}

6778 \def\gmd@setChDate#1/#2/#3\@nil#4{% the last parameter will be a \count
register.
6780 #4=\numexpr#ix\@M+#2*x100+#3\relax

(2010/06/23, changed:) from TgX’s arithmetic to \numexpr
6783 }

Having the test defined, let’s define the command setting the date counter. #1 is to
be the version and #2 the date {{year)/{month)/{day)}.

6789 \def\ChangesStart#1#2{%
6792 \gmd@setChDate#2\@nil\c@ChangesStartDate
6793 \typeout{”*”~JPackage, gmdoc,info: "*JChanges' start,date #1.,

memorised
6794 as. \string<\the\c@ChangesStartDate\string> \on@line.”**J}
6795 \advance\c@ChangesStartDate\m@ne% we shall show the changes at the spec-
ified day and later.
6797 \ifnum\c@ChangesStartDate>19820900.% ** see below.
6801 \edef\gmu@tempa{$%
6802 \@nx\gladdto@macro\@nx\glossary@prologue{%
6803 The,changes
6804 \if\relax\GeneralName\relax\else of, \GeneralName%
\space\fi
6805 earlier, than
6806 #1.\if\relax#i\relax, #2\else(#2) \fi\space. are not,,
shown.}}%
6807 \gnu@tempa
6808 \fi}

(Explanation to line 6797.) My TgX Guru has remarked that the change history tool
should be used for documenting the changes that may be significant for the users not

12 DEK writes in TgX, The Program of September 1982 as the date of TEX Version o.

93

\GlossaryMin

\c@GlossaryColumns

theglossary

only for the author and talking of what may be significant to the user, no changes should
be hidden since the first published version. However, the changes’ start date may be
used to provide hiding the author’s “personal” notes: they should only date the ‘public’
changes with the four digit year and the ‘personal” ones with two digit year and set
\ChangesStart{}{1000/0/0} orso.

In line 6797 I establish a test value that corresponds to a date earlier than any TgX
stuff and is not too small (early) to ensure that hiding the two digit year changes shall
not be mentioned in the changes prologue.

“The entries [of a given version number] are sorted for convenience by the name
of [the macro explicitly specified as the first argument or] the most recently introduced
macro name (i.e., that in the most recent \begin{macro} command [or \Define]). We
therefore provide [\last@defmark] to record that argument, and provide a default
definition in case \changes is used outside a macro environment. (This is a wicked
hack to get such entries at the beginning of the sorted list! It works providing no macro
names start with ! or ".)

This macro holds the string placed before changes entries on top-level.”

6846 \def\generalname {General}

“To cause the changes to be written (to a .glo) file, we define \RecordChanges to
invoke IATEX’s usual \makeglossary command.”

Iadd toitalso the \writeing definition of the \changes macro to ensure no changes
are written out without \RecordChanges.

6858 \def\RecordChanges{\makeglossary\gmd@DefineChanges
6859 \@relaxen\RecordChanges}

“The remaining macros are all analogues of those used for the theindex environ-
ment. When the glossary is started we compute the space which remains at the bottom of
the current page; if this is greater than \GlossaryMin then the first part of the glossary
will be placed in the available space. The number of columns set [is] controlled by the
counter \c@GlossaryColumns which can be changed with a \setcounter declara-
tion.”

6871 \newdimen\GlossaryMin \GlossaryMin = 8opt
c@GlossaryColumns
6873 \newcount\c@GlossaryColumns \c@GlossaryColumns =2

“The environment theglossary is defined in the same manner as the theindex
y
environment.”

6879 \newenvironment {theglossary} {%
6881 \begin{multicols}\c@GlossaryColumns

6882 [\glossary@prologue] [\GlossaryMin]%
6883 \GlossaryParms, \IndexLinksBlack
6884 \let\item\@idxitem \ignorespaces}$%

6885 {\end{multicols}}

Here is the MakeIndex style definition:

6890 </ dOC>

6891 {gmglo) preamble

6892 {gmglo) "\n,\\begin{theglossary}.\n
6893 {gmglo) \\makeatletter\n"

6894 {gmglo) postamble

6895 <gmglo> "\n\n,\\end{theglossary}\n"

94

\GlossaryParms

\PrintChanges

6896 {gmgloy keyword,_"\\glossaryentry"
6897 {gmglo) actual,'="

6898 {gmglo) quote,'!'

6899 {gmglo) level,'>'

6900 {*doc)

The MakelIndex shell command for the glossary should look as follows:
makeindex, —r.-s.gmglo.ist, —o.{myfile).gls. {myfile).glo

where —-r commands Makelndex not to make implicit page ranges, -s commands
Makelndex to use the style stated next not the default settings and the —o option with
the subsequent filename defines the name of the output.

“The \GlossaryPrologue macro is used to place a short message above the glos-
sary into the document. It is implemented by redefining \glossary@prologue, a
macro which holds the default text. We better make it a long macro to allow \par
commands in its argument.”

6919 \1long\def\GlossaryPrologue#1i{\@bsphack
6920 \def\glossary@prologue{#1}%
6921 \@esphack}

“Now we test whether the default is already defined by another package file. If not
we define it.”

6926 \@ifundefined{glossary@prologue}

6927 {\def\glossary@prologue{\indexdiv{{Change History}}%
6928 \markboth{{Change History}}{{Change History}}%
6929 P}

“Unless the user specifies otherwise, we set the change history using the same pa-
rameters as for the index.”

6933 \AtBeginDocument {%
6934 \@ifundefined{GlossaryParms}{\let\GlossaryParms$%
\IndexParms}{}}

“To read in and print the sorted change history, just put the \PrintChanges com-
mand as the last (commented-out, and thus executed during the documentation pass
through the file) command in your package file. Alternatively, this command may form
one of the arguments of the \StopEventually command, although a change history
is probably not required if only the description is being printed. The command assumes
that MakeIndex or some other program has processed the .glo file to generate a sorted
.gls file.”

6946 \def\PrintChanges{% to avoid a disaster among queer EOLs:
6947 \@ifQueerEOL
6948 {\StraightEOL\Q@input@{\jobname.gls}\QueerEOL}%
6949 {\@input@{\jobname.gls}}%
6950 \gQemptify\PrintChanges}
6952 \pdef\toCTAN (%

% #1 {year/month/day) version number)

6950 \gmd@changes@init
6960 \gmd@toCTANQ}

6962 \def\gmd@toCTAN@#1 {%
6963 \edef\gmu@tempa{\gmd@chgs@parse#1,,\@nil}%
6964 \edef\gmultempa {%

95

\gmd@chgs

\gnd@chgsplus

6965 \unexpanded{\changes@[\generalname] }%

6966 {\@xa\@firstofthree\gmu@tempa}$
6967 {\@xa\@secondofthree\gmu@tempa}%
6968 {put_to.\acro{CTAN} on.\@xa\@secondofthree\gmu@tempa}}%

6969 \gmu@tempa}

To make writing changes easier, to allow copying the date & version string from the

\ProvidesPackage/Class optional argument.
6974 \outer\pdef\chgs{\gmd@changes@init\gmd@chgs}

6977 \DeclareCommand\gmd@chgs{%

6978 OL% the optional CS the change refers to
6979 >!m_% change’s date, version and text
6980 } {%

6982 \IfValueTF{#1}{%

6983 \edef\gmu@tempa{\@nx\changes@[\unexpanded{#1}]%
6984 \@xa\unexpanded\@xa{\gmd@chgs@parse#2\@nil}}}%
6985 {\edef\gmu@tempa{\@nx\changes@

6986 \@xa\unexpanded\@xa{\gmd@chgs@parse#2\@nil}}}%

6987 \gmu@tempa}$% of \gmd@chgs
6989 \long\def\gmd@chgs@parse#1, #2, #3\Cnil{{#2} {#1}{#3}}%

6992 \outer\pdef\CH {%
6993 \gmd@changes@init\gmd@chgsplus}

6995 \DeclareCommand\gmd@chgsplus{\SameAs\gmd@chgs}{%
6996 \DCUse\gmd@chgs{#1}{#21}%

6997 \gmd@threeway{#1}#2\@nil

6998 }

This is just formatting of the main

700 \long\def\gmd@threeway

7002 #1% opt. CS that \CH refers to

7003 #2,,% (delimd. with a blank) date
7004 #3.% (delimd. with a blank) version
7005 #4\@nil % text

7006 {%

7007 \pary (#2, .#3\IfValueT{#1}{, \texttt{\detokenize\@xa{%

\string#1}}}:)

7008 #4\scantokens{}% to provide proper line end which’ll take care of \par &c.

7010 }

The checksum

doc provides a checksum mechanism that counts the backslashes in the scanned code.

Let’s do almost the same.

At the beginning of the source file you may put the \CheckSum macro with a number
(in one of TEX’s formats) as its argument and TEX with gmdoc shall count the number of
the escape chars in the source file and tell you in the .log file (and on the terminal) whether
you have typed the right number. If you don't type \CheckSum, TgX anyway will tell

you how much it is.

\check@sum 7027y \newcount \check@sum

7029 \def\CheckSum#1 { \@bsphack\global\check@sum#i\relax\@esphack}

96

CheckSum -031 \newcounter{CheckSum}
\steplchecksum 7034 \newcommand*\step@checksum{\stepcounter{CheckSum}}

And we’ll use it in the line 4209 (\stepcounter is \global). See also the
\chschange declaration, 1. 7136.

However, the check sum mechanism in gmdoc behaves slightly different than in doc
which is nicely visible while gmdocing doc: doc states its check sum to be 2171 and our
count counts 2126. The mystery lies in the fact that doc’s CheckSum mechanism counts
the code’s backslashes no matter what they mean and the gmdoc’s the escape chars so,
among others, \ \ at the default settings increases doc’s CheckSum by 2 while the gmdoc’s
by 1. (There are 38 occurrences of \ \ in doc.dtx macrocodes, I counted myself.)*3

“But \Finale will be called at the very end of a file. This is exactly the point were
we want to know if the file is uncorrupted. Therefore we also call \check@checksum
at this point.”

In gmdoc we have the \AtEndInput hook.

7061 \AtEndInput { \check@checksum}
Based on the lines 723-741 of doc.dtx.

7064 \def\check@checksum{\relax
7065 \ifnum\check@sum=\z@
7066 \edef\gmu@tempa{% why \edef—see line 7098

70677 \@nx\typeout {kkkkkkkkrkkrkkkkkkkrkkrkkrkkrkkkkkr*T%

7068 *_The input, file \gmd@inputname\space, has, no, Checksum

7069 stated.”**J%

7070 *_The current, checksum is, \the\c@CheckSum."*J%

7071 \gmd@chschangeline% a check sum changes history entry, see below.

7072 *_ (package gmdoc_info.) *"J%

7073 *hkkkkkkkhkkkhrhkkkkhkkkrkkkkkxhkkkk,x**JT} }

7074 \else

7075 \ifnum\check@sum=\c@CheckSum

7076 \edef\gmu@tempa{$%

7077 \@nx\typeout { kkkkk+k+k+k+k+k+k+k+k+x+ T

7078 *.,The, input, file \gmd@inputname: Checksum,,
passed.*"J%

7079 \gmd@chschangeline

7080 *. (package, gmdoc,info.)**J%

7081 Kkokkk 4k +k+kFk+kHkxHk+x+2 AT} }

7082 \else

7083 \edef\gmultempa{$%

7084 \@nx\typeout { Kkkkktkk\gmd@wykrzykniki**J%

7085 %! The_ input, file, \gmd@inputname:**J%

7086 %!, The, CheckSum stated: \the\check@sum\space<> my

7087 count: \the\c@CheckSum."*J%

7088 \gmd@chschangeline

7089 *! ., (package,gmdoc,,info.) **J%

7090 *kkkkkkk\gmd@wykrzykniki~*J} } %

7095 \fi

7096 \ fi

7097 \gmu@tempa

13 My opinion is that nowadays a check sum is not necessary for checking the completeness of a file
but I like it as a marker of file development and this more than that is its réle in gmdoc.

97

\chschanget

7008 \@xa\AtEndDocument \@xa{\gmu@tempa}% we print the checksum notifica-
tion on the terminal immediately and at end of TgXing not to have to scroll
the output far nor search the log.

7100 \global\check@sum\z@}

7103 \def\gmd@wykrzykniki{ !|_|!|_|!|_|!|_|!|_|!|_|!|_|!|_|!|_|!|_|!|_|!}

to be able to change it when we don’t want X4IEX to finish with Code 1 what usually
breaks make.

As I mentioned above, I use the check sum mechanism to mark the file growth.
Therefore I provide a macro that produces a line on the terminal to be put somewhere
at the beginning of the source file’s commentary for instance.

7112 \def\gmd@chschangeline{%

7113 \xiipercent\space\string\chschange

n14 {\@ifundefined{fileversion}{v???}{\fileversion}}%
7115 {\the\year/\the\month/\the\day}%

7116 {\the\c@CheckSum}*"J%

7117 \xlipercent\space\string\chschange

7118 {\@ifundefined{fileversion}{v???}{\fileversion}}%
7119 {\@xa\Qgobbletwo\the\year/\the\month/\the\day}%
7120 {% with two digit year in case you use \ChangesStart.

7121 \the\c@CheckSum}""J}

And here the meaning of such a line is defined:

7124 \outer\pdef\chschange{%

#1 m file version,

#2 m date,

(#3) ¢ hecksum,

[#4] o the reason of check sum change, possibly short.
7131 \@ifQueerEQOL

7132 {\def\EOLwasQueer{i11}}{\def\EOLwasQueer{1o0}}%
7133 \gmd@changes@init

7134 \chschange@}

o° oP

o

o°

7136 \DeclareCommand\chschange@{mmmo} {%
7137 \changes@{#1}{#2}{CheckSum_#3

7138 \IfValueT{#4}{because of #41}%

7139 }% \csname... because \changes is \outer.
7141 \CheckSum{#31}%

7142 \IfValueF{#4} {%

7143 \if\EOLwasQueer

7144 \afterfi($%

7145 \Q@ifnextchar\par{%

7146 \@xa\gmd@textEOL\gobble}$%
7147 {1%

7148 }% of \afterfi,

7149 \fi}% of no value of #4,

7150 }% of \chschange@

It will make a ‘General’ entry in the change history unless used in some \Define’s scope
or inside a macro environment. It’s intended to be put somewhere at the beginning of
the documented file.

98

Macros from ltxdoc

I'm not sure whether this package still remains ‘minimal” but I liked the macros provided
by ltxdoc.cls so much...

The next page setup declaration is intended to be used with the article’s default Letter
paper size. But since

\ltxPagelayout 7172 \newcommandx\ltxPageLayout{$%

“Increase the text width slightly so that width the standard fonts 72 columns of code
may appear in a macrocode environment.”

7176 \setlength{\textwidth}{355pt}%

“Increase the marginpar width slightly, for long command names. And increase the
left margin by a similar amount.”

To make these settings independent from the defaults (changed e.g. in gmdocc.cls)
we replace the original \addtolengths with \setlengths.

7186 \setlength\marginparwidth{g9spt}%
7187 \setlength\oddsidemargin{82pt}%
7188 \setlength\evensidemargin{82pt}}

\DocInclude and the Itxdoc-like setup

Let’s provide a command for including multiple files into one document. In the ltxdoc
class such a command is defined to include files as parts. But we prefer to include them
as chapters in the classes that provide \chapter. We'll redefine \maketitle so that
it make a chapter or a part heading unlike in ltxdoc where the file parts have their title
pages with only the filename and article-like titles made by \maketitle.

But we will also provide a possibility of typesetting multiple files exactly like with
the ltxdoc class.

\DocInclude So, define the \DocInclude command, that acts
“more or less exactly the same as \include, but uses \DocInput on a dtx [or .fdd]
file, not \input on a tex file.”
Our version will accept also .sty, .cls, and .tex files.

\DocInclude -220 \DeclareCommand\DocInclude{O{}mO{}}{$%
[#1] o path (with closing slash), will not be printed
#2 m file name without extension, will be printed
[#3] o file extension (with dot) if not .sty, .cls, .tex, .dtx nor .fdd
originally it took just one argument. Here we make it take two, first of which is
intended to be the path (with the closing /). This is intended not to print the
path in the page footers only the filename.
\HIPrefix 7232 \gdef\HLPrefix{\filesep}$%

7233 \gdef\EntryPrefix{\filesep}% we define two rather kernel parameters to
expand to the file marker. The first will bring the information to one of the
default \IndexPrologue’s \ifs. Therefore the definition is global. The
latter is such for symmetry.

7238 \def\GeneralName {#2\actualchar\pk{#2}.}% forthechanges history main
level entry.

o° oP

o°

Now we check whether we try to include ourselves and if so—we’ll (create and) read
an .auxx file instead of (the main) .aux to avoid an infinite recursion of \inputs.

7245 \edef\gmd@jobname{\jobname}$%

99

7246

7248
7249
7250
7251
7252
7253
7254
7256
7258

7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274

7276

7278

7280

7282

7284

7285
7286
7287
7290
7291
7292
7293
7294

\edef\gmd@difilename{% we want the filename all ‘other’, just as in \ job |
name.
\@xa\@xa\@xa\@gobble\@xa\string\csname#2\endcsname}$%
\ifx\gmd@jobname\gmd@difilename
\def\gmd@auxext {auxx}$%

\else
\def\gmd@auxext{aux}$%
\fi
\relax
\clearpage

\gmd@docincludeaux, \def\currentfile{$%
gmdoc-IncludeFileNotFound.oo00}%
\let\fullcurrentfile\currentfile
\Qifnonempty{#3}%
(%
\unless\if.\@firstofmany#3\relax\@nil
\PackageError{gmdoc}{Optional, \xiihash3, of
\string\DocInclude\space
if, present has to_begin with a,dot.(.)}{}%
\fi
\edef\currentfile{#2#3}%
\IfFileExists{#1\currentfile}{}%
{\PackageError{gmdoc}{\string\DocInclude\space file
\currentfile\space not, found}{}}%
% of if extension given.
% if extension not given:
\IfFileExists{#1#2.fdd}{\edef\currentfile{#2.fdd}}{% it'snot.fdd,
\IfFileExists{#1#2.dtx}{\edef\currentfile{#2.dtx}}{% it'snot
.dtx either,
\IfFileExists{#1#2.sty}{\edef\currentfile{#2.sty}}{% it’s
not .sty,
\IfFileExists{#1#2.cls}{\edef\currentfile{#2.cls}}{% it’s
not .cls,
\IfFileExists{#1#2.tex}{\edef\currentfile{#2.tex}}{$%
% it's not .tex,
\IfFileExists{#1#2.fd}{\edef\currentfile{#2.£fd}}{%
% so it must be .fd or error.
\PackageError{gmdoc}{\string\DocInclude\space.,
file
#1#2.fdd/dtx/sty/cls/tex/fd not, found.}{}%
}PHEEYS
% of if no extension given
\edef\currentfile{\@xa\detokenize\@xa{\currentfile}}$%
\edef\fullcurrentfile{#1\currentfile}$%
\ifnum\Qauxout=\@partaux
\@latexerr{\string\DocInclude\space cannot,be nested}\Qeha
\else, \@docinclude{#1}#2#3.\fi}% Whyis #2 delimited with ,,notbraced
as we are used to, one may ask.

7300 \def\@docinclude#1#2,,{% To match the macro’s parameter string, is an answer.

But why is \@docinclude defined so? Originally, in ltxdoc it takes one ar-
gument and it’s delimited with a space probably in resemblance to the true
\input (\@@input in IATEX).

100

7305 \clearpage

7307 \if@filesw.\gmd@writemauxinpaux{#2.\gmd@auxext}\fi% this strange
macro with a long name is another spurious thing to allow _in the filenames
(see line 7372). which are allowed anyway unless active or 4.

711 \@tempswatrue

7312 \if@partsw.\@tempswafalse\edef\gmu@tempb{#2}%

7313 \@for, \gmu@tempa:=\Q@partlist\do{\ifx\gmu@tempa\gmultempb%

\Qtempswatrue\fi}%

7314 \fi

7315 \if@tempswa% the fileis on \@partlist

7316 \let\@auxout\@partaux

7317 \if@filesw

7318 \immediate\openout\@partaux, #2.\gmdRauxext\relax% Yes, only
#2. It’s to create and process the partial .aux(x) files always in the main
document’s (driver’s) directory.

7323 \immediate\write\@partaux{\relax}%

7324 \fi

“We need to save (and later restore) various index-related commands which might
be changed by the included file.”

7331 \StoringAndRelaxingDo\gmd@doIndexRelated
7332 \if@ltxDocInclude\part{\currentfile}% In the ltxdoc-like setup we

make a part title page with only the filename and the file’s \maketitle
will typeset an article-like title.

7335 \else\let\maketitle=\InclMaketitle

7336 \fi% Inthe default setup we redefine \maketitle to typeseta common chap-
ter or part heading.

7338 \if@ltxDocInclude\xdef@filekey\fi

7339 \GetFileInfo{\currentfile}$% it's my (GM) addition with the account of
using file info in the included files’ title/ heading etc.

7341 \incl@DocInput {\fullcurrentfile}$% originallyjust \currentfile

7342 \if@ltxDocInclude\else\xdef@filekey\fi% inthe defaultcase we add

new file to the file key after the input because in this case it’s the files own
\maketitle what launches the sectioning command that increases the
counter.

And here is the moment to restore the index-related commands.

7348 \RestoringDo\gmd@doIndexRelated

7350 \clearpage

7352 \gmd@writeckpt {#1#2}%

7353 \if@filesw, \immediate\closeout\@partaux, \fi
7354 \else% the fileisn't on \@partlist

7355 \@nameuse {cp@#1#2}%

7356 \g@emptify\gmdRABIOnce

7357 \fi

7358 \let\@auxout\@mainaux}% end of \@docinclude.
(Two is a sufficient number of iterations to define a macro for.)

7362 \def\xdef@filekey{{\@relaxen\narrativett% Thisassignmentis very trick-
ily crafted: it makes all \narrativetts present in the \filekey’s expansion
unexpandable not only the one added in this step.

7366 \xdef\filekey{\filekey, . \thefilediv={\narrativett$%

\currentfile}}}}

101

To allow __in the filenames we must assure _ will be ,, while reading the filename.
Therefore define

7372 \def\gmd@writemauxinpaux#1{% this name comes from ‘write out to main .aux
to input partial .aux’.

We wrap \@input {{partial .aux)} in a _,, hacked scope. This hack is especially
recommended here since the .aux file may contain a non-\global stuff that should not
be localised by a group that we would have to establish if we didn’t use the hack. (Hope
you understand it. If not, notify me and for now I'll only give a hint: “Look at it with the
TEX’s eyes”. More uses of this hack are to be seen in gmutils where they are a bit more
explained.)

7384 \immediate\write\@mainaux{%

7385 \unexpanded{$%

7386 \bgroup

7387 \@makeother_$% to allow underscore

7388 \@makeother\~% to allow paths beginning with ~/
7389 \firstofone} {\egroup

7390 \string\@input{#1}}}}

We also slightly modify a IATEX kernel macro \@writeckpt to allow _ in the file
name.

7397 \def\gmd@writeckpt#1{%
7398 \immediate\write\@partaux{%

7399 \unexpanded{$%

7400 \bgroup

7401 \@makeother_%

7402 \@makeother\~%

7403 \firstofone}\@charlb\egroup}$%

7204 \@writeckpt{#11}%
7205 \immediate\write\@partaux{\@charrb}}

7207 \def\gmd@doIndexRelated{%

7408 \do\tableofcontents, \do\makeindex, \do\EnableCrossrefs

7209 \do\PrintIndex, \do\printindex, \do\RecordChanges, \do%
\PrintChanges

z110 \do\theglossary. \do\endtheglossary}

7213 \@emptify\filesep

The ltxdoc class establishes a special number format for multiple file documentation
numbering needed to document the I4TEX sources. I like it too, so

7117 \def\aalph#1{\Qaalph{\csname c@#1\endcsname}}
7418 \def\@aalph#1{%
7119 \ifcase#i\or a\or b\or.c\or d\or e\or. .f\or g\or h\or i\or

7420 j\or_k\or 1\or m\or. n\or o\or p\or.g\or. r\or. s\or
7421 t\or u\or v\or w\or. x\or y\or. z\or A\or B\or C\or
7422 D\or_E\or F\or. G\or H\or_I\or.J\or_ K\or L\or M\or
7423 N\or O\or. P\or.Q\or R\or, S\or T\or U\or V\or W\or
7424 X\or_Y\or_Z\else\@ctrerr\fi}

A macro that initialises things for \DocInclude.
7427 \def\gmd@docincludeaux{%

We set the things for including the files only once.

102

7129 \global\@relaxen\gmd@docincludeaux

By default, we will include multiple files into one document as chapters in the classes
that provide \chapter and as parts elsewhere.

7133 \ifx\filediv\relax

7434 \ifx\filedivname\relax$% (nor \filediv neither \filedivname is de-
fined by the user)

7438 \@ifundefined{chapter}{%

7439 \SetFileDiv{part}}%

7442 {\SetFileDiv{chapter}}$%

7443 \else% (\filedivname is defined by the user, \filediv is not)

7444 \SetFileDiv{\filedivname}% why not? Inside is \edef so it'll work.

7445 \fi

7446 \else% (\filediv is defined by the user

7447 \ifx\filedivname\relax% and \filedivname is not)

7450 \PackageError{gmdoc}{You've redefined \string\filediv%

\space

7451 without redefining \string\filedivname.}{Please,,
redefine the

7452 two.macros accordingly. You, may use.\string%
\SetFileDiv{name

7453 without bslash}.}%

7454 \fi

7455 \fi

7464 \def\thefilediv{\aalph{\filedivname}}% The files will be numbered with
letters, lowercase first.

7466 \@xa\let\csname the\filedivname\endcsname=\thefilediv% Thisline
lets \the{chapter) etc. equal \thefilediv.

7468 \def\filesep{\thefilediv-}% File separator (identifier) for the index.

7469 \let\filekey=\Q@gobble

770 \g@addto@macro\index@prologue{$%

7471 \gdef\@oddfoot {\parbox{\textwidth} {\strut\footnotesize

7472 \raggedright{\bfseries File Key:}.\filekey}}% The footer for
the pages of index.
7474 \glet\@evenfoot\@oddfoot}% anyway, it’s intended to be oneside.

7476 \g@addto@macro\glossary@prologue{$%
7477 \gdef\@oddfoot {\strut, Change, History\hfill\thepage}% The footer
for the changes history.
7479 \glet\@evenfoot\Qoddfoot}$%
7482 \gdef\Qoddfoot {% The footer of the file pages will be its name and, if there is
a file info, also the date and version.

7484 \@xa\ifx\csname verQ\currentfile\endcsname\relax
7485 File \thefilediv: {\narrativett\currentfile} %
7486 \else

7487 \GetFileInfo{\currentfile}%

7488 File \thefilediv: {\narrativett\filename}. %

7489 Date: \filedate\.%

7490 Version, \fileversion

7491 \fi

7492 \hfill\thepagel}%

7193 \glet\Qevenfoot\@oddfoot$ see line 7474.

7295 \@xa\def\csname\filedivname, name\endcsname{File}% weredefinethe
name of the proper division to ‘File’.

103

\if@ltxDocInclude
\1txLookSetup

\olddocIncludes

\gmdocIncludes

\maketitle

7297 \ifx\filediv\section

7498 \let\division=\subsection
7499 \let\subdivision=\subsubsection
7500 \let\subsubdivision=\paragraph

If \filedivis higher than \section we don’t change the three divisions (they are
\section, \subsection and \subsubsection by default). \section seems to me
the lowest reasonable sectioning command for the file. If \filediv is lower you should
rather rethink the level of a file in your documentation not redefine the two divisions.

7508 \fi}% end of \gmd@docincludeaux.

The \filedivand \filedivname macros should always be set together. Therefore
provide a macro that takes care of both at once. Its #1 should be a sectioning name
without the backslash.

7513 \def\SetFileDiv#1{%
714 \edef\filedivname{#1}%
7515 \@xa\let\@xa\filediv\csname#1\endcsname}

7519 \def\SelfInclude{\DocInclude{\jobname}}

The ltxdoc class makes some preparations for inputting multiple files. We are not
sure if the user wishes to use ltxdoc-like way of documenting (maybe they will prefer
what I offer, gmdocc.cls e.g.), so we put those preparations into a declaration.

7532 \newif\if@ltxDocInclude

7534 \newcommandx\ltxLookSetup{%
7535 \SetFileDiv{part}%

7536 \1txPageLayout

7537 \@ltxDocIncludetrue

7538 }
7540 \@onlypreamble\ltxLookSetup

The defaultis that we \DocInclude the files due to the original gmdoc input settings.
7544 \1et\incl@DocInput=\DocInput

7546 \@emptify\currentfile$% for the pages outside the \DocInclude’s scope. In
force for all includes.

If you want to \Doc/SelfInclude doc-likes:

7566 \newcommandx\olddocIncludes{%
7567 \let\incl@DocInput=\0ldDocInput}

And, if you have set the previous and want to set it back:

7570 \newcommandx\gmdocIncludes{%

7571 \let\incl@DocInput=\DocInput

7572 \AtBegInput { \QueerEOL}}% to move back the \StraightEOL declaration
put at begin input by \olddocIncludes.

Redefinition of \maketitle

A not-so-slight alteration of the \maketitle command in order it allow multiple ti-
tles in one document seems to me very clever. So let’s copy again (ltxdoc.dtx the lines

643-656):

104

“The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed after
use with \relax. We must cancel anything that may have been put into \@thanks, etc.,
otherwise all titles will carry forward any earlier such setting!”

But here in gmdoc we’ll do it locally for (each) input not to change the main title
settings if there are any.

7500 \AtBegInput {%
7501 \providecommandx\maketitle{\par
7592 \begingroup, \def \thefootnote, {\fnsymbol {footnote}}%

7593 \setcounter, {footnote}\z@

7594 \def\@makefnmark{\rlap{\Qtextsuperscript{\normalfont%
\@thefnmark}}}$%

7595 \long\def\@makefntext##1{\parindent iem\noindent

7596 \hb@xt@1.8em{%

7597 \hss\@textsuperscript{\normalfont\@thefnmark}}##1}%

7598 \if@twocolumn, \twocolumn, [\@maketitle,]%

7599 \else, \newpage. \global \@topnum \z@_\@maketitle \fi

“For special formatting requirements (such as in TUGboat), we use page style
titlepage for this; this is later defined to be plain, unless already defined, as, for
example, by ltugboat.sty.”

7604 \thispagestyle{titlepage}\@thanks, \endgroup

“If the driver file documents many files, we don’t want parts of a title of one to prop-
agate to the next, so we have to cancel these:”

7608 \setcounter, {footnote}\z@

7609 \gdef\@date{\today}\glemptify\@thanks%
7610 \g@relaxen\@author\g@relaxen\@title%
7611 }%

“When a number of articles are concatenated into a journal, for example, it is not
usual for the title pages of such documents to be formatted differently. Therefore, a
class such as ltugboat can define this macro in advance. However, if no such definition
exists, we use page style plain for title pages.”

7618 \@ifundefined{ps@titlepage}{\let\ps@titlepage=\ps@plain}{}%

And let’s provide \@maketitle justin case: an error occurred without it at TgXing
with mwbk.cls because this class with the default options does not define \@maketitle.
The below definitions are taken from report.cls and mwrep.cls.

7623 \providecommandx\@maketitle{$%

7624 \newpage\null, \vskip 2em\relax%
7625 \begin{center}$%

7626 \titlesetup

627 \let, \footnote \thanks
7628 {\LARGE \Qtitle, \par}$%
7629 \vskip.1.5em%

7630 {\large, \lineskip.,.5em%
7631 \begin{tabular}[t]{c}$%
7632 \strut,\@author

7633 \end{tabular}\par}%
7634 \vskip.,1em%

7635 {\large \Qdate}%

105

\title
\author
\date
\thanks

\and

\titlesetup

7636 \end{center}%
7637 \par._\vskip, 1.5em\relax}$%

We’d better restore the primary meanings of the macros making a title. (I4TgX2¢
source, File F: Itsect.dtx Date: 1996/12/20 Version v1.0z, lines 3.5.7.9-12.14-17.)

7621 \providecommandx\title[1]{\gdef\@title{#1}}
7642 \providecommandx\author[i1] {\gdef\@author{#1}}
7643 \providecommandx\date[1]{\gdef\@date{#1}}

7644 \providecommandk\thanks[1] {\footnotemark

7645 \protected@xdef\@thanks{\@thanks

7646 \protect\footnotetext [\the\c@footnote] {#1}}%

7647 }%

7648 \providecommandx\and{% .%.\begin{tabular}

7649 \end{tabular}%

7650 \hskip, 1em \@plus.17fil%

7651 \begin{tabular}[t]{c}}% _.%.\end{tabular} And finally, let’sinitialise
\titlesetup if it is not yet.

7653 \providecommandx\titlesetup{}%

7654 } % end of \AtBegInput.

The ltxdoc class redefines the \maketitle command to allow multiple titles in one
document. We'll do the same and something more: our \Doc/SelfInclude will turn
the file’s \maketitle into a part or chapter heading. But, if the \1txLookSetup dec-
laration is in force, \Doc/SelfInclude will make for an included file a part’s title page
and an article-like title.

Let’s initialise the file division macros.

7668 \@relaxen\filediv
7669 \@relaxen\filedivname
7670 \@relaxen\thefilediv

If we don't include files the ltxdoc-like way, we wish to redefine \maketitle so that
it typesets a division’s heading.

Now, we redefine \maketitle and its relatives.

-680 \def\InclMaketitle{%
7686 {\def\and{, .}% we make \and justa comma.

7687 {\let\thanks=\@gobble% for the toc version of the heading we discard
\thanks.
7689 \protected@xdef\incl@titletotoc{%
7690 \@title\@ifauthor{%
7691 \protect\space (\@author) } {}}% we add the author iff the ‘files
have different authors” and author exists (@variousauthors)
7693 1%
7694 \def\thanks##1{\footnotemark
7695 \protected@xdef\@thanks{\@thanks% to keep the previous \thanks
if there were any.
7697 \protect\footnotetext [\the\c@footnote] {##1}}}% for somemys-

terious reasons so defined \thanks do typeset the footnote mark
and text but they don’t hyperlink it properly. A hyperref bug?

7701 \Qemptify\@thanks

702 \protected@xdef\incl@filedivtitle{%

7703 [{\incl@titletotoc}]% braces toallow [and] in the title to toc.

7705 {\protect\@title

106

\if@variousauthors

\PrintFilesAuthors

\SkipFilesAuthors

7706 {\protect\smallerr$% this macro is provided by the gmutils package
after the relsize package.

7708 \Q@ifauthor

7709 {\protect\\[o0.15em] \@nx\@author

7710 \ifx\relax\@date\else, ,\fi}% afteruse, \@dateisletto \re|
lax.

7712 {\ifx\relax\Q@date\else\protect\\[o.15em]\fi}

The default is that all the included files have the same author(s). In this case we won’t
print the author(s) in the headings. Otherwise we wish to print them. The information
which case are we in is brought by the \if@variousauthors switch defined in line
7743-

If we wish to print the author’s name (\if@variousauthors), then we’ll print the
date after the author, separated with a comma. If we don’t print the author, there still
may be a date to be printed. In such a case we break the line, too, and print the date
with no comma.

7724 \protect\@date}}% end of \incl@filedivtitle’s brace (2nd or
3rd argument).
7726 }% end of \incl@filedivtitle’s \protected@xdef.

We \protect all the title components to avoid expanding \ footnotemark hidden
in \thanks during \protected@xdef (and to let it be executed during the typesetting,
of course).

7730 }% end of the comma-\and’s group.

7731 \@xa\filediv\incl@filedivtitle

7732 \@thanks

7733 \g@relaxen\@author, \g@relaxen\@title \glrelaxen\@date
7734 \g@emptify\@thanks

7735 }% end of \InclMaketitle.

What I make the default, is an assumption that all the multi-documented files have
the same author(s). And with the account of the other possibility I provide the below
switch and declaration.

7743 \newif\if@variousauthors
(its name comes from files have different authors).

7747 \newcommandx\PrintFilesAuthors{\@variousauthorstrue}
And the counterpart, if you change your mind:

7749 \newcommandx\SkipFilesAuthors{\@variousauthorsfalse}

-1 \def\@ifauthor{$%
% #1 whatif true
% #2 whatif false
7756 \ifnum\numexpr\if@variousauthorsi\elseo\fix

7757 \ifx\@author\relaxo\else\ifx\@author\@emptyo\else1\fi%
\fi>o

7758 \@xa\@firstoftwo

7759 \else

7760 \@xa\@secondoftwo

7761 \f i

7762 }

107

\FileInfo

The file’s date and version information
Define \filedate and friends from info in the \ProvidesPackage etc. commands.

69 \def\GetFileInfo#1{%

oo \def\filename{#1}%

7771 \def\gmu@tempb##1 ##2 ##3\relax##4\relax{%

7772 \def\filedate{##l}%

7773 \def\fileversion{##21}%

7774 \def\fileinfo{##3}}%

7775 \edef\gmu@tempa{\csname, ver@#1i\endcsname}$%

7776 \@xa\gmu@tempb\gmu@tempa\relax? ? \relax\relax}

Since we may documentally input files that we don’t load, as doc e.g., let’s define
a declaration to be put (in the comment layer) before the line(s) containing \Pro|
vides.... The \FileInfo command takes the stuff till the closing] and subsequent
line end, extracts from it the info and writes it to the .aux and rescans the stuff. &TpX
provides a special primitive for that action but we remain strictly TeXnical and do it with
writing to a file and inputting that file.

87 \newcommandx\FileInfo{%

7788 \bgroup

7789 \gmd@ctallsetup

7790 \bgroup% yes, we open two groups because we want to rescan tokens in ‘usual’
catcodes. We cannot put \gmd@ctallsetup into the inner macro because
when that will be executed, the \inputlineno will be too large (the last
not the first line).

7794 \let\do\@makeother

7795 \do\._\do\{\do\}\do**M\do\\%

7796 \gmd@fileinfo}

7799 \foone {%

7800 \catcode'!\z@

»801 \catcode"' (\@ne

7802 \catcode') \tw@

»803 \let\do\@makeother

7804 \do\._% we make space ‘other’ to keep it for scanning the code where it may be

leading.

7806 \do\{\do\}\do**M\do\\}%

7807 (%

7808 !def!gmd@fileinfo#iProvides#2{#3}#4 [#5]1#6" "M%

7809 (!egroup% we close the group of changed catcodes, the catcodes of the arguments
are set. And we are still in the group for \gmd@ctallsetup.

7812 gmd@writeFI (#2) (#3) (#5)%

7813 'gmd@FIrescan (#1Provides#2{#3}#4 [#5]1#6) % thismacrowill close the group.

7818) %
7819)

7821 \def\gmd@writeFI#1#2#3(%
7823 {\newlinechar=\endlinechar%

7825 \immediate\write\Qauxout {%
7826 \global\@nx\@namedef{%
7827 ver@#2.\if P\Qfirstofmany#1\@nil sty\else cls\fi}{%

#3111}

7829 \foone\obeylines{$%

108

7830 \def\gmd@FIrescan#i{%
7835 {\newlinechar=\endlinechar\scantokens{#1}}\egroup”"M}}

And, for the case the input file doesn’t contain \Provides..., a macro for explicit
providing the file info. It's written in analogy to \ProvidesFile, source 2, file L vi.1g,
1.102.

7843 \def\ProvideFileInfo#1{%
7844 \begingroup

7845 \catcode '\, 10, \catcode\endlinechar. 10.%
7846 \@makeother\/\@makeother\&$

7847 \kernel@ifnextchar[{\gmd@providefii{#1}}{\gmdQprovidefii{#1}[]1}%
7848}

7852 \def\gmd@providefii#i[#2] {%

(we don’t write the file info to .log)
»854 \@xa\xdef\csname ver@#i\endcsname{#2}%
7855 \endgroup}

And a self-reference abbreviation (intended for providing file info for the driver):
7850 \def\ProvideSelfInfo{\ProvideFileInfo{\jobname.tex}}

For the files generated from master, in which all the info is porvided at the beginning
in macros \{name)Version, \{name)Date etc. (not to repeat that information in the
body of text):

7867 \def\gmdQupperDIV#1{%
»868 \1f_d#iD\fi

7869 \1f_ i#1I\fi

7870 \iqu# 1V\fi

7871 }

First we look for the info at the leaf-level, then at standalone level, then at the bundle
level. If we don't find it, it'll be empty.

7875 \def\edefInfo

7876 #1% name

7877 #2% datum

7878 {%

7879 \edef\gmdRedefInfolresa{\gmd@upperDIV #2}%
»880 \Q@nameedef{file#2}{$%

7881 \ifcsname #1Leaf\gmd@edefInfolresa\endcsname % e.g.gmbaseLeafVersion
7882 \xA\xA\xA\detokenize\xA\xA\xA{$%

7883 \csname, #1Leaf\gmd@edefInfolresa\endcsname

7884 }%

7885 \else

7886 \ifcsname #1\gmdCedefInfolresa\endcsname % e.g.gmbaseVersion

7887 \xA\xA\xA\detokenize\xA\xA\xA{%

7888 \csname, #1\gmd@edefInfolresa\endcsname

7889 1%

7890 \else

7891 \ifcsname, \gmBundleFile \gmd@edefInfol@resa\endcsname % e.g.gmutils
7892 \xA\xA\xA\detokenize\xA\xA\XA{%

7893 \csname, \gmBundleFile \gmdRedefInfo@resa\endcsname

7894 1%

7895 \fi

109

7896 \fi

7897 \fi

7898 }% of edefined macro
7899 }% of \edefInfo

To get file info (the file is a leaf of a bundle or a standalone)

7902 \def\FileInfoFromName#z1{%

m903 \edefInfo{#1}{date}$

w904 \edefInfo{#1}{version}$%

w905 \edefInfo{#1}{info}$%

7906 \def\GeneralName{#1\actualchar\pk{#1}.}% for the changes history.
7907 }

Get bundle info

7910 \def\BundleInfoFromName#1{$%

7911 \def\gmBundleFile{#1}%

7912 \Store@MacroSt, {#1LeafDate}%

7913 \Store@MacroSt, {#1LeafVersion}$
7914 \Store@MacroSt, {#i1LeafInfo}%

7915 \n@melet{#1LeafDate}{Qundefined}$%
7916 \n@melet {#1LeafVersion}{Qundefined}$
7917 \n@melet{#1LeafInfo}{Qundefined}%
7918 \FileInfoFromName{#1}%

7919 \Restore@MacroSt, {#1LeafDate}$%
720 \Restore@MacroSt, {#i1lLeafVersion}$%
7921 \Restore@MacroSt, {#i1LeafInfo}$%

7922 }

A neat conventional statement used in doc’s documentation e.g., to be put in
\thanks to the title or in a footnote:

7926 \pdef\filenote{This, file, has, version, number \fileversion{}.,
dated. \filedate{}.}

And exactly as \thanks:
7928 \pdef\thfileinfo{\thanks\filenote}
And to the footnote:

7931 \pdef\fnfileinfo{%
7932 \gmu@ifedetokens{\Qcurrext}{toc}%

7933 {1%

7934 {\footnote\filenote}%
7935 }

Miscellanea

The main inputting macro, \DocInput has been provided. But there’s another one in
doc and it looks very reasonably: \IndexInput. Let’'s make analogous one here:

7946 \foone {\obeylines}$%

7947 {%

7948 \pdef\IndexInput#1{%

7951 \Store@Macro\code@delim%
7952 \CodeDelim*\""Z%

7953 \def\gmd@iihook{$% this hook is \edefed!

110

gmlonely
\skipgmlonely

gmlonely

\catother

\catactive

\catletter

copyrnote

quotation

7954 \@nx*"M$%

7955 \codeldelim\relax\@nx\let\@nx\EOFMark\relax}$%
7956 \DocInput {#1}\Restore@Macro\code@delim}$%
7957 }

How does it work? We assume in the input file is no explicit {char1). This char is
chosen as the code delimiter and will be put at the end of input. So, entire file contents
will be scanned char by char as the code.

The below environment I designed to be able to skip some repeating texts while
documenting several packages of mine into one document. At the default settings it’s
justa \StraightEOL group and in the \skipgmlonely declaration’s scope it gobbles
its contents.

7973 \newenvironment {gmlonely}{\StraightEOL}{}

7975 \newcommand\skipgmlonely[1] []1{%
7976 \def\gmu@tempa{%
7977 \def\gmd@skipgmltext {%

7978 \gRemptify\gmd@skipgmltext
7980 # 1%
7981 }}% not to count the lines of the substituting text but only of the text omitted

7985 \gmu@tempa

7984 \@xa\AtBegInput\@xa{\gmu@tempa}$%

7985 \renewenvironment {gmlonely}{$%

7986 \StraightEOL

7987 \@fileswfalse% to forbid writing to .toc, .idx etc.

7988 \setboxo=\vbox\bgroup} {\egroup\gmd@skipgmltext}}

Sometimes in the commentary of this package, so maybe also others, I need to say
some char is of category 12 (‘other sign’). This I'll mark just as ,, got by \catother.

7995 \foone{\catcode _=8,,}% we ensure the standard \catcode of _.
7996 {%
7997 \newcommandx\catother{S{}_{12}S5}%

Similarly, if we need to say some char is of category 13 (‘active’), we’ll write .5, got by
\catactive

8ooo \newcommandx\catactive{S${}_{13}S5}%
and a letter, ,,

8oz \newcommandx\catletter{S${}_{11}8}% .
8003 }

For the copyright note first I used just verse but it requires marking the line ends
with \\ and indents its contents while I prefer the copyright note to be flushed left. So

8008 \newenvironmentx{copyrnote}{%

8oo9 \StraightEOL\everypar{\hangindent3em\relax\hangafteri, }%
8oio \par\addvspace\medskipamount\parindent\z@\obeylines}{%
8oi1 \@codeskipputgfalse\stanza}

I renew the quotation environment to make the fact of quoting visible.

8015 \StoreEnvironment {quotation}
so16 \def\gmd@quotationname{quotation}
8017 \renewenvironment {quotation}{%

111

\gmboxedspace

The first non-me user complained that abstract comes out in quotation marks.
That is because abstract uses quotation internally. So we first check whether the
current environment is quotat ion or something else.

8024 \ifx\@currenvir\gmd@quotationname

825 \afterfi{\par''\ignorespaces}$%

8026 \else\afterfi{\storedcsname{quotation}}%
8027 \fi}

8028 {\1fx\Q@currenvir\gmd@quotationname

8oz9 \afterfi{\ifhmode\unskip\fi''\par}$%

8o3o \else\afterfi{\storedcsname{endquotation}}%
8031 \fi}

For some mysterious reasons \noindent doesn’t work with the first (narrative) para-
graph after the code so let’s work it around:

8036 \def\gmdnoindent {$%

803y \ifvmode\leavevmode\hskip—-\parindent\ignorespaces

838 \fi}% \ignorespaces is added to eat a space inserted by \gmd@textEOL.
Without it it also worked but it was a bug: since \parindent is a dimen
not skip, TeX looks forward and expands macros to check whether there is
a stretch or shrink part and therefore it gobbled the \gmd@textEOL'’s space.

When a verbatim text occurs in an in-line comment, it’s advisable to precede it with %
if it begins a not first line of such a comment not to mistake it for a part of code. Moreover,
if such a short verb breaks in its middle, it should break with the percent at the beginning
of the new line. For this purpose provide \inverb. It breaks with a % at the beginning
of new line. Ist starred version puts % also at the end of the upper line.

8052 \pdef\inverb{%

8os4 \gmu@ifstar{%

8055 \def\gmu@tempa{\verbhyphen}% the pre-break.

8056 \@emptify\gmu@tempb% the no-break.

8057 \gmd@inverb}$%

g8os8 {\@emptify\gmu@tempa% the pre-break empty

8059 \def\gmultempb{ \gmboxedspace}% the no-break boxed space.
8060 \gmd@inverb}}

8062 \newcommandx\gmboxedspace{\hbox{\normalfont{. }}}

8064 \pdef\gmd@nlperc{$%

soy1 \ifhmode\unskip\fi

8oz \begingroup\hyphenpenalty\inverbpenalty\relax

soy3 \discretionary{\hbox{\gmu@tempa}}% (pre-break). I always puta \hbox
here to make this discretionary score the \hyphenpenalty not \exhy|
phenpenalty (The TEX book p. 96) since the latter may be 10,000 in Polish
typesetting.

soy7 {\hbox{\narrationmark}}% (post-break)

8078 {\gmu@tempb}% (no-break).

8079 \endgroup

8080 \penaltyioooo\hskiposp\relax}

8082 \def\inverbpenalty{-1000}

8084 \pdef\gmd@inverb{%
8085 \gmd@nlperc
8086 \ifmmode\hbox\else\leavevmode\null\fi

112

\cs

\ds

808y \bgroup

8088 \ttverbatim

8089 \narrativett

8ogo \def\breakablevisspace{%

8091 \discretionary{\visiblespace}{\narrationmark}{%
\visiblespace}}%

8oz \def\breakbslash{%

8093 \discretionary{}{\narrationmark\type@bslash}{%
\type@bslash}}%

sogs4 \def\breaklbrace{%

8095 \discretionary

8096 {\xiilbrace\verbhyphen}$%

8097 {\narrationmark}$%

8098 {\xiilbrace}}%

8og9 \gm@verbReol
812 \@sverb@chbsl% It’s always with visible spaces.
8103 }

8105 \pdef\nlperc{\newline\narrationmark\ignorespaces}

810y \pdef\nlpercent {%

g115 \@emptify\gmu@tempa

8116 \def\gmu@tempb{\gmboxedspace}$%
s11; \gmd@nlperc

8119 }

8122 \pdef\incs{% anin-line \cs

8131 \@emptify\gmu@tempa

8132 \def\gmu@tempb{\gmboxedspace}$%
8133 \gmd@nlperc\cs

8135 }

8137 \def\inenv{\incs[]}% anin-line \env

8139 \def\incmd{$% it has tobe \def to let it expand to let \cmd convert its argument to
a safe string.
8141 \nlpercent\cmd}

8143 \def\inhash{\nlpercent\hash}

As you see, \inverb and \nlpercent insert a discretionary that breaks to % at the
beginning of the lower line. Without the break it’s a space (alas at its natural width i.e.,
not flexible) or, with the starred version, nothing. The starred version puts % also at the
end of the upper line. Then \inverb starts sth. like \verb* but the breakables of it
break to % in the lower line.

TO-DO: make the space flexible (most probably it requires using sth. else than \dis |
cretionary).

An optional hyphen for CSes in the in-line comment:

8161 \@xa\ampulexdef\csname\Q@dc@InnerName\cs\endcsname

8162 [#1], [#1].{\begingroup}. . {\ifdefined}

8163 { \begingroup, \def\+{\discre{\gmv@hyphen}{\narrationmark}{}}%
8164 \ifdefined}

8168 \providecommandx\ds{DocStrip}

113

\CDAnd
\CDPerc

\division
\subdivision

\subsubdivision

gmdéme

Finally, a couple of macros for documenting files playing with %’s catcode(s). Instead
of % [used &. They may be at the end because they’re used in the commented thread i.e.
after package’s \usepackage.

8178 \newcommand*\CDAnd{\CodeDelim\&}
8180 \newcommandx\CDPerc{\CodeDelim\%}

And for documenting in general:
A general sectioning command because I foresee a possibility of typesetting the same
file once as independent document and another time as a part of bigger whole.

8188 \let\division=\section
8191 \let\subdivision=\subsection
8194 \let \subsubdivision=\subsubsection

To kill a tiny little bug in doc.dtx (in line 3299 \gmu@tempb and \gmu@tempc are
written plain not verbatim):

8200 \newcounter {gmd@mc}
Note it is after the macrocode group

8203 \def\gmd@mchook { \stepcounter{gmd@mc}%

8204 \gmd@mcdiag

8205 \1fcsname, gmd@mchook\the\c@gmd@mc\endcsname

8206 \afterfi{\csname gmd@mchook\the\c@gmd@mc\endcsname}%
8207 \fl}

8209 \long\def\AfterMacrocode#i#2{\@namedef {gmd@mchook#1} {#2}}

WhathaveIdone? I declare anew counter and employ it to count themacrocode[*]s
(and oldmc[*]s too, in fact) and attach a hook to (after) the end of every such environ-
ment. That lets us to put some stuff pretty far inside the compiled file (for the buggie in
doc.dtx, to redefine \gmu@tempb/c).

One more detail to explain and define: the \gmd@mcdiag macro may be defined
to type out a diagnostic message (the macrocode[*]’s number, code line number and
input line number).

8219 \@empt ify\gmd@mcdiag

8221 \def\mcdiagOn{\def\gmd@mcdiag{$%
8222 \typeout {**J\bslash end{\gmd@lastenvir} No.\the\c@gmd@mc
8223 \space\on@line, cln.\the\c@codelinenum. }}}

8225 \def\mcdiagOff{\Q@emptify\gmd@mcdiag}

An environment to display the meaning of macro parameters: its items are automat-
ically numbered as #1, #2 etc.

8229 \DeclareEnvironment {enumargs}{o}% the optional argument specifies num-
ber of #'s; it’s of the o type to inform if it was not given by the user to handle
a possible active char touched by argument’s catcher; can be 1 (the default), 2
or 4; any else produces one #.

8241 {%

8242 \StraightEOL

8243 \if@aftercode

8244 \edef\gmu@tempa{\the\leftskip}%

8245 \edef\gmu@tempb{\the\hangindent}$%

114

\gnd@ealwraps

\dc

8246
8247
8248
8249
8250
8251
8252
8253

8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270

8272
8273

8275
8276

8278

8280

8283
8285

8287
8288
8289
8290
8291
8292
8293

8294
8296

8299
8300
8301
8302
8303

\fi

\enumerate

\if@aftercode
\leftskip=\glueexpr\gmu@tempa+\gmultempb\relax

\fi

\edef\gmd@ealhashes{$%
\#\ifcase\IfValueTF{#1}{#1}{1}\relax
\or\or\#\or\or\#\#\#\fi}%

\@namedef {label\Qenumctr}{%
\env{\if@Raftercode\narrationmark\fi
\relax$% tostop \ignorespaces
\gmd@ea@bwrap
\gmdQReaRhashes
\csname the\@enumctr\endcsname
\gmdQReaRewrap}}% of \label{@enumctr).
\let\mand\item
\provide\gmdQRea@wraps{%
\emptify\gmdQ@eaRewrap
\emptify\gmd@ealbwrap}$%

\gmd@ea@wraps
\def\opt {%
\def\gmdCea@bwrap{[}\def\gmdRealewrap{]}%
\item
\gmd@ea@wraps}%

\settowidth{\@tempdima}{\narrativett, x\gmdRea@hashes7x}%
\edef\gmd@ea@xxxwd{\the\@tempdima}%

\DeclareCommand\dc,!{%
Q{*>}_% (1) we check whether there’s a sergeant right of the prefix or a star to
suppress parentheses,
Q{P!1L\long.iI}. % (2)an optional ‘bare’ prefix for a ‘long” argument or for
ignored
b.% (3) prefix(es) in curly braces (This way we allow the prefix(es) to be braced
or not at the author’s option),
>\@xa, T{\@dcRargtypes}. % (4) (optional) argument type specifier,
b.% (5) (optional) default value of the specified argument or (for K and G)
mandatory.
b, % (6) default of K and G.
HS
\gmuQifxany *{##1}%
{% a * suppresses bracket/brace/parentheses decoration.
\def\gmd@ealbwrap{\hbox, to, \gmdRea@xxxwd\bgroup\hss}$%
\def\gmdQReaRewrap{\hss\egroup}%

o\°

}
{% if there’sno *in #1, be wrap the item label in braces /brackets /parentheses.
\gmu@ifxany ##4{bB}{% Idecidenot to printmtype arguments in braces
because the braces are not mandatory for this type.
\def\gmd@eaRbwrap{\{}%
\def\gmdQeaRewrap{\}}%
H1%
\gmu@ifxany, ##4{cC}{%
\def\gmdQea@bwrap{ (}%

115

8304 \def\gmdQeaRewrap{) }%

8305 1%

8306 \gmu@ifxany. ##4{00}{%

8307 \def\gmd@ealbwrap{ [}%

8308 \def\gmd@eaRewrap{]}%

8309 1%

8310 \gmu@ifxany ##4{G}{%

8311 \def\gmd@ealbwrap{\detokenize\@xa{\@firstoftwo##5}}%
8312 \def\gmd@eaRewrap{\detokenize\@xa{\@secondoftwo##5}}%
8313 1%

8314 \gmu@ifxany ##4{A}{%

8315 \def\gmd@ea@bwrap{<}%

8316 \def\gmd@ealewrap{>}%

8317 H1%

8318 }% ofif no % in #1.

8319 \gmu@ifxany, ##4{mQsSTK\afterassignment}{%

8320 \def\gmd@ealbwrap{\hbox, to, \gmd@ea@xxxwd\bgroup\hss}%
8321 \def\gmd@ea@ewrap{\hss\egroup}$%

8322 1%

we add a normal space

8324 \addtomacro\gmd@eaRewrap{{\normalfont\,}}%
8325 \IfValueT{##2}{%

8326 \addtomacro\gmdReaRewrap{>\{\string##2\1}}%
8327 \IfValueT{##3}{%

8328 \addtomacro\gmd@ReaRewrap{>\{##3\}}1%

8329 \IfValueT{##4} {%

8330 \ifx s##4%

8331 \addtomacro\gmd@ealewrap{%

8332 \llap{\metachar[}\scanverb{*}\metachar] }%
8333 \else\addtomacro\gmd@eaRewrap{##4}%

8334 \fi}%

8335 \IfvValueT{##5}{%

8336 \addtomacro\gmd@ea@ewrap{\{%

$\ttverbatim breakable chars won't work because we are in the item’s label’s
% \hbox.

8339 \scanverbx{##5}%

8340 \}1}11%

8341 \IfValueT{##6}{%

8342 \addtomacro\gmd@Rea@ewrap{\{%

$\ttverbatim breakable chars won’'t work because we are in the item’s label’s
% \hbox.

8345 \scanverbx{##6}%

8346 \}1}1%

8347 \def\gmd@blubra{$%

8348 \addtomacro\gmd@eal@bwrap{%

8349 \begingroup

8350 \relaxen\gmd@ea@hashes

8351 \@namedef {the\@enumctr}{\<ign.>}%
8352 } %

8353 \prependtomacro\gmd@ealewrap{%
8354 \endgroup}$%

8355 \addtomacro\gmd@ea@ewrap{$%

116

enumargsk
\gnd@ealwraps

\CharacterTable

\Character@Table

8356 \global, \advance \csname c@\@enumctr\endcsname \m@ne
8357 1%

8358 \emptify\gmd@blubra

8359 1%

8360 \gmu@ifsbintersect, {##2}{Ii}{\gmd@blubra}{}%

8361 \gmu@ifsbintersect {##3}{Ii}{\gmd@blubra}l{}%

8362 \gmu@ifxany, ##4{\afterassignment}{\gmd@blubra}{}%

8363 \item\relax}$%

8365 \IfNovalueT{#1}{\@ifnextac\@gobble{}}% to gobble a possible active
line end or active *"A or B that might have occurred because of \fu |
turelet of the optional argument checker.

8369 }% of begin definition

8370 { \endenumerate}

The starred version is intended for lists of arguments some of which are optional: to
align them in line.

8374 \newenvironmentx{enumargsx} {%

8375 \def\gmd@ReaQwraps{$%

8376 \def\gmdRea@bwrap{.}\def\gmdRealewrap{.}}%
8377 \enumargs}{\endenumargs}

doc-compatibility

My TgX Guru recommended me to write hyperlinking for doc. The suggestion came out
when writing of gmdoc was at such a stage that I thought it to be much easier to write
a couple of \lets to make gmdoc able to typeset sources written for doc than to write
a new package that adds hyperlinking to doc. So...

The doc package makes % an ignored char. Here the % delimits the code and therefore
has to be ‘other’. But only the first one after the code. The others we may re\catcode
to be ignored and we do it indeed in line 2876.

At the very beginning of a doc-prepared file we meet a nice command \Character|
Table. My TgX Guru says it’s a bit old fashioned these days so let’s just make it notify
the user:

8400 \def\CharacterTable{\begingroup
8401 \@makeother\{\@makeother\}%
8402 \Character@Table}

8404 \foone{%
8405 \catcode'\[=1_\catcode \]=2_%
8406 \@makeother\{\@makeother\}}%

8407 [

8408 \def\Character@Table#1{#2}[\endgroup

8409 \message [**J**J. gmdoc.sty, package:""J

8410 ====The input, file contains,the, \bslash,,
CharacterTable.*"J

8411 ====1f you,really need to.check the correctness of_ the,
chars, **J

8412 ====_please notify, the author of,gmdoc.sty at the email,
address”*J

8413 ====_given,in the legal, notice in, gmdoc.sty.*"J**J]%

8415 1]

117

Similarly as doc, gmdoc provides macrocode, macro and environment environ-
ments. Unlike in doc, \end{macrocode} does not require to be preceded with any par-
ticular number of spaces. Unlike in doc, it is not a kind of verbatim, however, which
means the code and narration layers remains in force inside it which means that any text
after the first % in a line will be processed as narration (and its control sequences will be
executed). For a discussion of a possible workaround see line 8787.

Let us now look over other original doc’s control sequences and let’s ‘domesticate’
them if they are not yet.
\DescribeMacro The \DescribeMacro and \DescribeEnv commands seem to correspond with my
\Describeknv \TextUsage macro in its plain and starred version respectively except they don’t type-
set their arguments in the text i.e., they do two things of the three. So let’s \def them
to do these two things in this package, too:

\DescribeMacro 8435 \outer\def\DescribeMacro{%
8436 \@bsphack
8437 \begingroup\MakePrivateletters
8438 \gmd@ifonetoken\Describe@Macro\Describe@Env}

Note that if the argument to \DescribeMacro is not a (possibly starred) control
sequence, then as an environment’s name shall it be processed except the \MakePriv |
ateOthers re\cat codeing shall not be done to it.

\DescribeEnv 8443 \outer\def\DescribeEnv{%
8444 \@bsphack
8145 \begingroup\MakePrivateOthers\Describe@Env}

Actually, I've used the \Describe... commands myself a few times, so let’s \def
a common command with a starred version:

\Describe 8450 \outer\def\Describe{% It doesn't typeset its argument in the point of occur-
rence.
8452 \leavevmode
8453 \@bsphack
8454 \begingroup\MakePrivateLetters
8455 \gmu@ifstar{\MakePrivateOthers\Describe@Env}{$%
\Describe@Macro}}

The below two definitions are adjusted ~s of \Text @UsgMacro and \Text QUsgEnvir.

\Describe@acro 8460 \long\def\Describe@Macro#1{%
8461 \endgroup
8462 \strut\Text@Marginizex{#1}%
8463 \Qusgentryze#1% we declare kind of formatting the entry
8464 \text@indexmacro#1%
8465 \@esphack}

\Describe@Env 8468 \def\Describe@Env#1{$%
8469 \endgroup
8470 \strut\Text@Marginizex{#1}%
8471 \Qusgentryze{#1}% we declare the ‘usage” kind of formatting the entry and
index the sequence #1.
8473 \text@indexenvir{#11}%
8474 \@esphack}

Note that here the environments’ names are typeset in \narrativett font just like
the macros’, unlike in doc.

118

\MacroFont

\CodeIndent
\MacroIndent

\MacroIndent

\MacrocodeTopsep
\MacroTopsep

\SpecialEscapechar
\theCodelinelNo
\LineNunFont

\noeffectRinfo

\PrintDescribeMacro
\PrintMacroName
\PrintDescribeEnv
\PrintEnvName

My understanding of ‘minimality” includes avoiding too much freedom as causing
chaos not beauty. That’s the philosophical and e sthetic reason why I don’t provide
\MacroFont. In my opinion there’s a noble tradition of typesetting the TgX code in \tt
font and this tradition sustained should be. If one wants to change the tradition, let them
redefine \tt, in TgX it’s no problem. I suppose \MacroFont is not used explicitly, and
that it’s (re)defined at most, but just in case let’s \ let:

8489 \let \MacroFont\tt

We have provided \CodeIndent in line 2690. And it corresponds with doc’s \Mac |
roIndent so

8497 \1let \MacroIndent\CodeIndent

And similarly the other skips:
8499 \let \MacrocodeTopsep\CodeTopsep

Note that \MacroTopsep is defined in gmdoc and has the same r6le as in doc.
8503 \let \SpecialEscapechar\CodeEscapeChar

\theCodelineNo is not used in gmdoc. Instead of it there is \LineNumFont dec-
laration and a possibility to redefine \thecodelinenum as for all the counters. Here
the \LineNumFont is used two different ways, to set the benchmark width for a line
number among others, so it’s not appropriate to put two things into one macro. Thus
let’s give the user a notice if they defined this macro:

Because of possible localness of the definitions it seems to be better to add a check at
the end of each \DocInput or \IndexInput.

8517 \AtEndInput {\Qifundefined{theCodelineNo}{}{\PackageInfo{%
gmdoc} {The

8518 \string\theCodelineNo\space, macro _has no_effect here, .
please_use

8519 \string\LineNumFont\space, for setting, the font and/or

8520 \string\thecodelinenum\space to.set, the number,

format.}}}
I hope this lack will not cause big trouble.
For further notifications let’s define a shorthand:

8525 \def\noeffect@info#1{\Qifundefined{#1}{}{\PackageInfo{gmdoc}{%

SN

8526 The, \bslash#1, macro,is, not,supported by this, package**J

8527 and, therefore has no effect but, this notification.”**Jd

8528 If you,think, it,,should, have, please,contact. the,
maintainer”*Jd

8529 indicated,in, the package's.legal note.”"J}}}

The four macros formatting the macro and environment names, namely
\PrintDescribeMacro,
\PrintMacroName, \PrintDescribeEnv and \PrintEnvName are not supported by
gmdoc. They seem to me to be too internal to take care of them. Note that in the name of
(eesthetic) minimality and (my) convenience I deprive you of easy knobs to set strange
formats for verbatim bits: I think they are not advisable.

Let us just notify the user.

8542 \AtEndInput {%
8543 \noeffect@info{PrintDescribeMacro}$

119

\CodelineNumbered

\CodelineNumbered

\DisableCrossrefs

\EnableCrossrefs
\DisableCrossrefs

\AlsoImplementation
\StopEventually

\OnlyDescription
\StopEventually

8544 \noeffect@info{PrintMacroName}%
8545 \noeffect@info{PrintDescribeEnv}%
8546 \noeffect@info{PrintEnvName}}

The \CodelineNumbered declaration of doc seems to be equivalent to our noindex
option with the 1inesnotnum option set off so let’s define it such a way.

8551 \def\CodelineNumbered{\AtBeginDocument {\gaglindex}}
8552 \@onlypreamble\CodelineNumbered

Note that if the 1inesnotnum option is in force, this declaration shall not revert its
effect.

I assume that if one wishes to use doc’s interface then they’ll not use gmdoc’s options
but just the default.

The \CodelineIndex and \PageIndex declarations correspond with the gmdoc’s
default and the pageindex option respectively. Therefore let’'s \let

8564 \let\CodelineIndex\@pageindexfalse
8565 \@onlypreamble\CodelineIndex

8567 \let \PageIndex\@pageindextrue
8569 \@onlypreamble\PageIndex

The next two declarations I find useful and smart:
8573 \def\DisableCrossrefs{\Q@bsphack\gag@index\@esphack}

8575 \def\EnableCrossrefs{\Q@bsphack\ungaglindex
8576 \def\DisableCrossrefs{\@bsphack\@esphack}\@esphack}

The latter definition is made due to the footnote 6 on p.8 of the Frank Mittel-
bach’s doc’s documentation and both of them are copies of lines 302-304 of it modulo
\[un]gag@index.

The subsequent few lines I copy almost verbatim ;-) from the lines 611-620.

8584 \newcommand*\AlsoImplementation{\@bsphack
8585 \long\def\StopEventually##1{\gdef\Finale{##1}}% we define \Fin|
% ale just to expand to the argument of \StopEventually not to to add
anything to the end input hook because \Finale should only be executed
if entire document is typeset.
%$\init@checksumis obsolete in gmdoc at this point: the CheckSum counter is reset
just at the beginning of (each of probably numerous) input(s).

8596 \Q@esphack}
8508 \AlsoImplementation

“When the user places an \OnlyDescription declaration in the driver file the doc-
ument should only be typeset up to \StopEventually. We therefore have to redefine
this macro.”

8605 \def\OnlyDescription{\@bsphack\long\def\StopEventually##1{$%

“In this case the argument of \StopEventually should be set and afterwards TgX
should stop reading from this file. Therefore we finish this macro with”

8609 ##1 endinput } \@esphack}
“If no \StopEventually command is given we silently ignore a \Finale issued.”

8614 \@relaxen\Finale

120

\meta
\<.»>

\SpecialMainEnvIndex

\SpecialIndex
\SpecialUsageIndex
\SpecialEnvIndex
\SortIndex

\verbatimchar

\verbatimchar
\IndexPrologue

StandardModuleDepth

\DontCheckModules
\CheckModules

\Module
\AltMacroFont

The \meta macro is so beautifully crafted in doc that I couldn’t resist copying it
into gmutils. It’s also available in Knuthian (The TgX book format’s) disguise \ <{the argu-
menty>.

The checksum mechanism is provided and developed for a slightly different pur-
pose.

Most of doc’s indexing commands have already been ‘almost defined” in gmdoc:
8626 \let\SpecialMainIndex=\DefIndex

*

8629 \def\SpecialMainEnvIndex{\csname, CodeDefIndex\endcsnamex}% wedon't
type \DefIndex explicitly here because it's \outer, remember?

8634 \let \SpecialIndex=\CodeCommonIndex

8636 \let \SpecialUsageIndex=\TextUsgIndex

8638 \def\SpecialEnvIndex{\csname TextUsgIndex\endcsnamex}
8640 \def\SortIndex#i#2{\index{#1\actualchar#2}}

“All these macros are usually used by other macros; you will need them only in an
emergency.”

Therefore I made the assumption(s) that ‘Main” indexing macros are used in my
‘Code’ context and the ‘Usage’ ones in my “Text” context.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the
\verb[*]’s delimiter for the index entries. The gmdoc package uses the same macro
and its default definition is {&}. When you use doc you may have to redefine \ver |
batimchar if you use (and index) the \+ control sequence. gmdoc does a check for the
analogous situation (i.e., for processing \&) and if it occurs it takes $ as the \verb#*’s
delimiter. So strange delimiters are chosen deliberately to allow any ‘other’ chars in the
environments” names. If this would cause problems, please notify me and we’ll think
of adjustments.

8660 \def\verbatimchar{&}

\IndexPrologue is defined in line 6356. And other doc index commands too.
8676 \@ifundefined{main}{}{\let\DefEntry=\main}
8678 \@Qifundefined{usage}{}{\let\UsgEntry=\usage}

About how the DocStrip directives are supported by gmdoc, see section The Doc-
Strip.... This support is not that sophisticated as in doc, among others, it doesn’t count
the modules” nesting. Therefore if we don’t want an error while gmdocumenting doc-
prepared files, better let’s define doc’s counter for the modules” depths.

8686 \newcounter{StandardModuleDepth}

For now let’s just mark the macro for further development DocstyleParms
8691 \noeffect@info{DocstyleParms}

For possible further development or to notify the user once and forever:

8696 \@emptify\DontCheckModules, \noeffect@info{DontCheckModules}
8697 \@emptify\CheckModules, \noeffect@info{CheckModules}

The \Module macro is provided exactly as in doc.

8701 \Qemptify\AltMacroFont, \noeffect@info{AltMacroFont}

121

“And finally the most important bit: we change the \catcode of % so that it is ig-
nored (which is how we are able to produce this document!). We provide two commands
to do the actual switching.”

\MakePercentIgnore 8yo; \def\MakePercentIgnore{\catcode \%9\relax}
\MakePercentComment 8708 \def\MakePercentComment { \catcode \%14\relax}

gmdocing doc.dtx

The author(s) of doc suggest(s):

“For examples of the use of most—if not all—of the features described above consult
the doc.dtx source itself.”

Therefore I hope that after doc.dtx has been gmdoc-ed, one can say gmdoc is doc-
compatible “at most—if not at all”.

TEXing the original doc with my humble'# package was a challenge and a milestone
experience in my TgX life.

One of minor errors was caused by my understanding of a ‘shortverb” char: due to
gmverb, in the math mode an active ‘shortverb’ char expands to itself’s ‘other” version
thanks to \string (It's done with | in mind). doc’s concept is different, there a ‘short-
verb’ char should in the math mode work as shortverb. So let it be as they wish: gmverb
provides \OldMakeShortVerb and the old-style input commands change the inner
macros so that also \MakeShortVerb works as in doc (cf. line 8749).

We also redefine the macro environment to make it mark the first code line as the
point of defining of its argument, because doc.dtx uses this environment also for implicit
definitions.

\0ldDocInput 8746 \def\OldDocInput{%
8748 \AtBegInputOnce{\StraightEOL
8749 \let\@MakeShortVerb=\old@MakeShortVerb
8751 \OldMacrocodes}$%
8752 \bgroup\@makeother_% it’s to allow _ in the filenames. The next macro will
close the group.
8754 \Doc@Input}

We don’t switch the @codeskipput switch neither we check it because in “old” world
there’s nothing to switch this switch in the narration layer.

I had a hot and wild TgX all the night and what a bliss when the ‘Successfully for-
mated 67 page(s)’ message appeared.

My package needed fixing some bugs and adding some compatibility adjustments
(listed in the previous section) and the original doc.dtx source file needed a few adjust-
ments too because some crucial differences came out. I'd like to write a word about them
now.

The first but not least is that the author(s) of doc give the CS marking commands
non-macro arguments sometimes, e.g., \DescribeMacro{StandardModuleDepth}.
Therefore we should launch the starred versions of corresponding gmdoc commands.
This means the doc-like commands will not look for the CS’s occurrence in the code but
will mark the first codeline met.

Another crucial difference is that in gmdoc the narrative and the code layers are sep-
arated with only the code delimiter and therefore may be much more mixed than in doc.

14 What a false modesty! ;-)

122

\OCRInclude

\incl@DocInput

among others, the macro environment is not a typical verbatim like: the texts com-
mented out within macrocode are considered a normal commentary i.e., not verbatim.
Therefore some macros ‘commented out’ to be shown verbatim as an example source
must have been “additionally” verbatimized for gmdoc with the shortverb chars e.g. You
may also change the code delimiter for a while, e.g., the line

8787 $..\AVerySpecialMacro % delete the first, % .when.
was got with

\CodeDelim\.
% \AVerySpecialMacro % delete the first %
when.\unskip|..|\CDPerc

One more difference is that my shortverb chars expand to their ,, versions in the math
mode while in doc remain shortverb, so I added a declaration \OldMakeShortVerb etc.

Moreover, it’s TEXing doc what inspired adding the \StraightEOL and \QueerEOL
declarations.

\OCRInclude

I realised that I want to print all my TgX source files verbatim just in case my computers
and electronic memories break so that I can reconstruct them via OCR . For this purpose
I provide \OCRInclude. It takes the same arguments as \DocInclude only typesets
a file with no index nor line numbers.

8812 \DeclareCommand\OCRInclude{O{}mO{}}{%
8813 \Store@Macro\incl@DocInput

8814 \def\incl@DocInput##1{%

8815 \begingroup

8816 \CodeSpacesBlank

8817 \@beginputhook

8818 \title{\currentfile}\maketitle

8819 \noverbatimspecials

8820 \relaxen\@xverbatim

8821 \relaxen\check@percent

8822 \Restore@Macro\@verbatim

8823 \verbatimleftskip\z@skip

8824 \verbatim

8825 \@makeother\ |% because \ttverbatim doesn’t do that.

8826 \texcodelhook% we add some special stuff, e.g. in gmdocc.cls we
8827 \Qinput {##1}%

8828 \endgroup}%

8829 \csname\@dc@InnerName\DocInclude\endcsname{#1}{#2}{#3}%
8830 \Restore@Macro\incl@DocInput
8831 }

Polishing, development and bugs

e \MakePrivateLetters theoretically may interfere with \activeating some
chars to allow line breaks. But making a space or an opening brace a letter seems so
perverse that we may feel safe not to take account of such a possibility.

e When countalllines* option is enabled, the comment lines that don’t produce
any printed output result with a (blank) line too because there’s put a hypertarget at the

123

\ @NOEOF

\GEQF

\NOEQF
\EOF

beginning of them. But for now let’s assume this option is for draft versions so hasn’t be
perfect.

e Marcin Woliniski suggests to add the marginpar clauses for the AMS classes as we
did for the standard ones in the lines 2526—-2531. Most probably I can do it on request
when I only know the classes’ names and their ‘marginpar status’.

e When the countalllines* option is in force, some \1list environments shall
raise the ‘missing \item’ error if you don't put the first \item in the same line as
\begin {{environment)} because the (comment-) line number is printed.

e I'm prone to make the control sequences hyperlinks to the(ir) ‘definition” occur-
rences. It doesn’t seem to be a big work compared with what has been done so far.

e Is \RecordChanges really necessary these days? Shouldn’t be the \makeglos |
sary command rather executed by default?'

e Do youuse \1listoftables and/or \listoffigures in your documentations?
If so, I should ‘EOL-straighten’ them like \tableofcontents, I suppose (cf. line 2983).

e Some lines of non-printing stuff such as \Define... and \changes connecting the
narration with the code resulted with unexpected large vertical space. Adding a fully
blank line between the printed narration text and not printed stuff helped.

e Specifying codespacesgrey, ., codespacesblank results in typesetting all the
spaces grey including the leading ones.

e About the DocStrip verbatim mode directive see above.

[No] <eof >

Until version 0.99i a file thatis \DocInput had to be ended with a comment line with an
\EOF or \NoEOF CS that suppressed the end-of-file character to make input end properly.
Since version 0.99i however the proper ending of input is achieved with \everyeof and
therefore \EOF and \NoOEOF become a bit obsolete.

If the user doesn’t wish the documentation to be ended by ‘{eof)’, they should re-
define the \EOFMark CS or end the file with a comment ending with \NoEOF macro
defined below:

8909 \foone{\catcode **M\active }{%
8910 \def\@NOEOF#lAAM{%

8911 \@relaxen\EOFMark endinput}$%
8912 \def\QEOF#1”"M{ endinput}}

8914 \def\NOEOF { \QueerEOL\ @NoEQOF}
8915 \def\EOF { \QueerEOL\QREQF}

As you probably see, \[No|EOF have the ‘immediate’ \endinput effect: the file ends
even in the middle of a line, the stuff after \ (No) EOF will be gobbled unlike with a bare
\endinput.

9023 {/ doc)
9024 {xdocc)

15 It’s understandable that ten years earlier writing things out to the files remarkably decelerated TgX,
but nowadays it does not in most cases. That’s why \makeindex is launched by default in gmdoc.

16 Thanks to Bernd Raichle at BachoTEX 2006 Pearl Session where he presented \ inputing a file inside
\edef.

124

noindex

nochanges

outeroff

debug

nwrep
mwbk
mwart

sysfonts

Intro

This file is a part of gmdoc bundle and provides a document class for the driver files
documenting (I)TEX packages &a. with my gmdoc.sty package. It’s not necessary, of
course: most probably you may use another document class you like.

By default this class loads mwart class with agpaper (default) option and Imodern
package with T1 fontencoding. It loads also my gmdoc documenting package which
loads some auxiliary packages of mine and the standard ones.

If the mwart class is not found, the standard article class is loaded instead. Similarly,
if the lmodern is not found, the standard Computer Modern font family is used in the
default font encoding.

Usage

For the ideas and details of gmdocing of the (I2IgX files see the gmdoc.sty file’s docu-
mentation (chapter ??). The role of the gmdocc document class is rather auxiliary and
exemplary. Most probably, you may use your favourite document class with the settings
you wish. This class I wrote to meet my needs of fine formatting, such as not numbered
sections and sans serif demi bold headings.

However, with the users other than myself in mind, I added some conditional clauses
that make this class works also if an mwcls class or the Imodern package are unknown.

Of rather many options supported by gmdoc.sty, this class chooses my favourite, i.e.,
the default. An exception is made for the noindex option, which is provided by this
class and passed to gmdoc.sty. This is intended for the case you don’t want to make an
index.

Simili modo, the nochanges option is provided to turn creating the change history
off.

Both of the above options turn the writing out to the files off. They don’t turn off
\PrintIndex nor \PrintChanges. (Those two commands are no-ops by themselves
if there’s no .ind (n)or .gls file respectively.)

One more option is outeroff. It’s intended for compiling the documentation of
macros defined with the \outer prefix. It \relaxes this prefix so the “\outer’ macros’
names can appear in the arguments of other macros, which is necessary to pretty mark
and index them.

I decided not to make discarding \outer the default because it seems that IXTEX
writers don’t use it in general and gmdoc.sty does make some use of it.

This class provides also the debug option. It turns the \if@debug Boolean switch
True and loads the trace package that was a great help to me while debugging gmdoc.sty.

The default base document class loaded by gmdocc.cls is Marcin Wolifiski mwart. If
you have not installed it on your computer, the standard article will be used.

Moreover, if you like MW'’s classes (as I do) and need \chapter (for multiple files’
input e.g.), you may declare another mwcls with the option homonymic with the class’s
name: mwrep for mwrep and mwbk for mwbk. For the symmetry there’s alsomwart option
(equivalent to the default setting).

The existence test is done for any MW class option as it is in the default case.

Since version 0.99g (November 2007) the bundle goes XgIEX and that means you can
use the system fonts if you wish, just specify the sysfonts option and the three basic
XqIEX-related packages (fontspec, xunicode and xltxtra) will be loaded and then you can
specify fonts with the fontspec declarations. For use of them check the driver of this
documentation where the TpX Gyre Pagella font is specified as the default Roman.

125

minion
pagella
Cronos
trebuchet
cursor

\verbatimspecials

\EOFMark

\gm@DOX
\gmeEOX

\ifgmeckmwels

class

\gmcc@CLASS

mwart
mwrep

mwbk

article

There are also some options for mono and sans fonts, see the changes history for
details.

The minion option sets Adobe Minion Pro as the main font, the pagella sets TgX
Gyre Pagella as the main font.

The cronos option sets Adobe Cronos Pro as the sans serif font, the trebuchet
option sets MS Trebuchet as sans serif.

The cursor (working only with XgIEX & fontspec) option sets TeX Gyre Cursor as
the typewriter font. It emboldens it to the optical weight of Computer/Latin Modern
Mono in the code (embolden=2. 5) and leaves light (embolden=1) for verbatims in the
narrative. Moreover, this option also prepares a condensed version (extend=o0.87) for
verbatims in the marginpars.

Note that with no option for the monospaced font the default (with XgIEX) will be
Latin Modern Mono and then Latin Modern Mono Light Condensed is set for verbatims
in marginpars (if available).

This class sets \verbatimspecials~«»[¢] if the engine is X§IEX, see the gmverb
documentation to learn about this declaration. Remember that \verbatimspecials
whatever would they be, have no effect on the code layer.

The \EOFMark in this class typesets like this (of course, you can redefine it as you
wish):

<eof y

The Code

9175 \PassOptionsToPackage{rgb} {xcolor}
9177 \RequirePackage{xkeyval}

A shorthands for options processing (I know xkeyval to little to redefine the default prefix
and family).

9182 \newcommandx\gm@DOX{\DeclareOptionX[gmcc] <>}
9183 \newcommandx\gm@EOX { \ExecuteOptionsX[gmcc] <>}

We define the class option. I prefer the mwcls, but you can choose anything else,
then the standard article is loaded. Therefore we’d better provide a Boolean switch to
keep the score of what was chosen. It’s to avoid unused options if article is chosen.

9192 \newif\ifgmcc@mwcls
Note that the following option defines \gmcc@class#1.

9195 \gm@DOX {class} {% the default will be Marcin Woliriski class (mwcls) analogous to
article, see line 9353.
\def\gmcc@CLASS{#1}%

9197
9198 \@for\gmcc@resa:=mwart, mwrep, mwbk\do, {%

9199 \ifx\gmcc@CLASS\gmcc@resa\gmcc@mwclstrue\fi}$%
9200 }

9202 \gm@DOX {mwart } {\gmcc@class{mwart}}% The mwartclass may also be declared
explicitly.

9205 \gm@DOX {mwrep} {\gmcc@class{mwrep}}% If youneed chapters, this option chooses
an MW class that corresponds to report,

9209 \gm@DOX {mwbk } { \gmcc@class{mwbk}}% and this MW class corresponds to book.

9212 \gm@DOX{article} {\gmccl@class{article}}% youcanalso choose article. A meta-

126

remark: When I tried to do the most natural thing, to \ExecuteOptionsX
inside such declared option, an error occurred: ‘undefined control sequence
% \XKV@resa,—>\@nil".

outeroff g220 \gm@DOX{outeroff}{\let\outer\relax}% Thisoptionallows \outer-prefixed
macros to be gmdoc-processed with all the bells and whistles.

\if@debug 9224 \newif\if@debug

debug 9226 \gm@DOX {debug} { \@debugtrue}% This option causes trace to be loaded and the
Boolean switch of this option may be used to hide some things needed only
while debugging.

noindex 9231 \gm@DOX{noindex}{%
9232 \PassOptionsToPackage{noindex}{gmdoc}}% This option turns the writ-
ing out to .idx file off.

\if@gmccnochanges 9236 \newif\if@gmccnochanges

nochanges 9238 \gm@DOX {nochanges} {\@gmccnochangestrue}% This option turns the writing
out to .glo file off.

Since version 0.99g the gmdoc bundle goes XgIEX. That means that if XqIgX is de-
tected, we may load the fontspec package and the other two of basic three XgIEX-related,
and then we \fontspec the fonts. But the default remains the old way and the new
way is given as the option below.

\ifgmccloldfonts o262 \newif\ifgmcc@oldfonts
sysfonts g¢264 \gm@DOX{sysfonts}{\gmccRoldfontsfalse}

mptt 9273 \gm@DOX{mptt} [17] {\relax}% now ano-op, left only for backwards compatibil-
ity. It was an option for setting the marginpar typewriter font.

\gmccltout 9283 \def\gmcc@tout#1{\typeout {**JRQRRR, gmdocc, class: #1"°"J}}

\gmcc@setfont 9285 \def\gmcc@setfont#1{%
9286 \gmcc@oldfontsfalse$ note that if we are not in XgIgX, this switch will be
turned true in line 9420
9288 \AtEndOfClass{%

9289 \ifdefined\zfQRinit\afterfi{%
9290 \gmcc@tout {Main, .font, set, to #1}%
\gmcc@dff 9291 \def\gmcc@dff {Numbers={0ldStyle, Proportional}}
9292 \@xa\setmainfont\@xa[\gmcc@Rdff, Mapping=tex-text] {#1}%
9302 \@xa\defaultfontfeatures\@xa{\gmcc@dff, Scale=MatchLowercase}$%
when put before \setmainfont,

9304 \gmath

\LineNumFont 9305 \def\LineNumFont {%
9306 \normalfont\scriptsize\addfontfeature{%

Numbers=Monospaced}}%

9307 1%
9308 \else\afterfi{\gmcc@tout{I~can set, main, font, to #1, 0only. in
9309 XeTeX/fontspec}}%
9310 \fl

9311 }}

minion o313 \gm@DOX{minion}{\gmcc@setfont{Minion, Pro}}
pagella o314 \gm@DOX{pagella}{\gmcc@setfont{TeX Gyre Pagella}
9316 }

127

Cronos
trebuchet

myriad

1su

cursor

\marginpartt

\narrativett

fontspec

\if@gmecltikze
tikz

\@firstofone

9317 \gm@DOX{cronos}{%

9318 \AtEndOfClass{\setsansfont [Mapping=tex-text] {Cronos, Pro}}}

9319 \gm@DOX {trebuchet } {%

9321 \AtEndOfClass{\setsansfont [Mapping=tex-text] {Trebuchet, MS}}}

9322 \gm@DOX {myriad}{%

9324 \AtEndOfClass{\setsansfont [Mapping=text-text] {Myriad, Web.,
Pro}}}

9325 \gm@DOX {1sul}l{%

9327 \AtEndOfClass{\setsansfont [Mapping=tex-text] {Lucida..Sans.,
Unicode}}}

9329 \gm@DOX{cursor}{%
9335 \AtEndOfClass{%

9336 \setmonofont [FakeBold=2.5, .BoldFeatures={FakeBold=0},

9337 FakeStretch=0.87, ,Ligatures=NoCommon

9338 1 {TeX Gyre Cursor}%

9339 \def\marginpartt{\tt\addfontfeature{FakeBold=2,

9340 FakeStretch=0.609}%

9341 \color{black}}% to provide proper color when marginpar occurs be-

tween lines that break a coloured text.
9343 \def\narrativett{\ttfamily\addfontfeature{FakeBold=1}}%
9344 \let\UrlFont\narrativett
9345 % of \AtEndOfClass.
9346 } % of the cursor option.

9349 \gm@DOX { fontspec} { \PassOptionsToPackage{#1}{fontspec}}
9353 \gmM@EOX {class=mwart }% We set the default basic class to be mwart.

9350 \newif\if@gmcc@tikz@
9360 \gm@DOX {tikz}{\@gmcc@tikzRtrue}

9362 \PassOptionsToPackage{countalllines}{gmdoc}$%
9366 \DeclareOptionXx{\PassOptionsToPackage{\CurrentOption}{gmdoc}}
9369 \ProcessOptionsX[gmcc] <>

9372 \long\def\@gobble#l{ }
9373 \long\def\@firstofone#1{#1}

9375 \1f@gmccRtikz@\expandafter\@firstofone\else\expandafter%
\Qgobble\fi
9376 {\RequirePackage{tikz}}

9391 \ifgmcc@mwcls

9392 \IfFileExists{\gmccQCLASS.cls}{}{\gmcc@mwclsfalse}% Asannounced,
we do the ontological test to any mwcls.

9394 \f1

9395 \i fgmcc@mwcls

9399 \LoadClass[fleqn, oneside, noindentfirst, 11pt, .
withmarginpar,

gg00 sfheadings] {\gmcc@QCLASS}%

9403 \else

os04 \LoadClass[fleqn, . 11pt]{article}% Otherwise thestandard articleisloaded.

9406 \fi

128

\agrave
\cacute
\eacute
\idiaeres
\nacute
\ocircum
\oumlaut
\uumlaut

\agrave
\cacute

\eacute
\idiaeres
\nacute
\oumlaut
\uumlaut
\ocircum

\ae

\oe

9413 \RequirePackage [mw=on] {gmutils} [2008/10/08]% weload itearly to provide
% \@ifXeTeX, but after loading the base class since this package redefines
some environments.

os17 \ifgmcc@mwcls\afterfi\ParanoidPostsec\fi
9120 \@ifXeTeX{}{\gmccloldfontstrue}
9423 \AtBeginDocument { \mathindent=\CodeIndent}

The fleqgn option makes displayed formulee be flushed left and \mathindent is
their indentation. Therefore we ensure it is always equal \CodeIndent justlike \left |
skip in verbatim. Thanks to that and the \edverbs declaration below you may dis-
play single verbatim lines with \ [...\]:

\[|\verbatim\stuff|\].

o431 \ifgmccRoldfonts
o432 \IfFileExists{lmodern.sty}{% We also examine the ontological status of

this package
9434 \RequirePackage{lmodern}% and ifitshows tobe satisfactory (the package
shows to be), we load it and set the proper font encoding.
9437 \RequirePackage[T1] {fontenc}%

9438 }{1}%

A couple of diacritics I met while gmdocing these files and The Source etc. Some why
the accents didn’t want to work at my XgIEX settings so below I define them for XgIEX
as respective chars.

oas2 \deflagrave . {\ a}%

o443 \def\cacute. . {\'c}%

o444 \def\eacute, . {\'e}%

o445 \def\idiaeres{\"\i}%

9446 \def\nacute_.{\'n}$%

os47 \def\ocircum {\"0}%

o448 \def\oumlaut, {\"o}%

9449 \def\uumlaut_{\"u}$%

9450 \else% this case happens only with XgTgX.

o451 \let\do\relaxen

oa52 \do\Finv\do\Game\do\beth\do\gimel\do\daleth% these five caused the
‘already defined’ error.

9454 \let\@zf@euenctrue\zfReuencfalse

9455 \XeTeXthree%

os6 \deflagrave . {\char"ooEo.}%

o457 \def\cacute.. . {\char"o107.,}% Note the space to be sure the number ends
here.

o459 \def\eacute, . {\char"ooEg, }%

o460 \def\idiaeres{\char"ooEF.}%

o461 \def\nacute , . {\char"o144.}%

9462 \def\oumlaut,,{\char"ooF6,}%

o463 \def\uumlaut, {\char"ooFC.}%

9464 \def\ocircum {\char"ooFj4.}%

o465 \AtBeginDocument {%

9466 \def\ae{\char"ooE6,}%

9467 \def\1, ,{\char"o142,.}%

9468 \def\oe{\char"o153.}%

9469}

o\

129

9470 \f1
Now we set the page layout.

9473 \RequirePackage{geometry}
\gmdoccMargins@params o474 \def\gmdoccMargins@params{{top=77pt, ~.height=687pt, % =53 lines but
the lines option seems not to work 2007/11/15 with TgX Live 2007 and
XqIEX0.996-patch1
9477 left=4cm, ,right=2.2cm}}
\gmdoccMargins 9478 \def\gmdoccMargins{$%
o479 \@xa...\newgeometry\gmdoccMargins@params}

o481 \@xa\geometry\gmdoccMargins@params

9484 \1f@debug% For debugging we load also the trace package that was very helpful to
me.

9486 \RequirePackage{trace}%

9487 \errorcontextlines=100.% And we set an error info parameter.

9488 \ 1

\ifdtraceon 9490 \newcommandx\ifdtraceon{\if@debug\afterfil\traceon\fi}
\ifdtraceoff 9491 \newcommandx\ifdtraceoff{\if@debug\traceoff\fi}

We load the core package:
o494 \RequirePackage{gmdoc}

9496 \1fgmccRoldfonts
o497 \@ifpackageloaded{lmodern} {% The Latin Modern font family provides alight
condensed typewriter font that seems to be the most suitable for the margin-
par CS marking.
\marginpartt 9500 \def\marginpartt{\normalfont\fontseries{lc}\ttfamily}}{}%
9501 \else
\marginpartt o¢s02 \def\marginpartt{\fontspec{LMTypewriterio_LightCondensed}}%
9503 \f1

9509 \raggedbottom

9511 \setcounter {secnumdepth}{o}% We wish only the parts and chapters to be
numbered.

\thesection o¢514 \renewcommandx\thesection{\arabic{section}}$% isn't it redundant at the
above setting?

9517 \@ifnotmw{ } {%
9518 \Q@ifclassloaded{mwart}{% We set the indentation of Contents:
9519 \SetTOCIndents{{}{\quad}{\quad}{\quad}{%

\quad} {\quad}{\quad}}}{% for mwart

9520 \SetTOCIndents{{}{\bfg.\enspace}{\quad}{\quad}{%
\quad} {\quad} {\quad}}}% and for the two other
mwclss.
9521 \pagestyle{outer}}% We set the page numbers to be printed in the outer and
bottom corner of the page.

\titlesetup 9524 \def\titlesetup{\bfseries\sffamily}% We set the title(s) to be boldface
and sans serif.

9527 \1f@gmccnochanges\let\RecordChanges\relax\fi% If the nochanges op-
tion is on, we discard writing out to the .glo file.

130

\EOFMark

\ac

\+

\texcode@hook

\OK

oldcomments

9530 \RecordChanges$% We turn the writing the \changes out to the .glo file if not the
above.

Necessarily before recatcode’ing of L | Land \ [\].

9534 \RequirePackage{amsfonts}
9535 \RequirePackage[intlimits] {amsmath}
9536 \RequirePackage{amssymb}

9540 \dekclubs*x% We declare the club sign | to be a shorthand for \verb*.

9544 \edverbs$% to redefine \ [so that it puts a shortverb in a \hbox.

9545 \smartunder% and we declare the _ char to behave as usual in the math mode and
outside math to be just an underscore.

9548 \exhyphenpenalty\hyphenpenalty% ’‘cause mwcls set it =10000 due to Polish
customs.

9551 \def\EOFMark {\rightline{\ensuremath{\square}}}

9553 \DoNotIndex{ \@nx._.\@xa._.%
9554 }

9556 \provide\ac{\acro}

9550 \def\+{\-\penalty\@M\hskip\z@} % a discretionary hyphen that allows fur-
ther hyphenation

o562 \Xedekfracc
9565 \let \mch\metachar

9567 \ATfootnotes
9568 \AtBegInput { \ATfootnotes}

9571 \UrlFix
9573 \GMverbatimspecials
9575 \def\texcode@hook { \makestarlow}

9577 \let\1v\leavevmode
9578 \CommandLet\ac\acro

9580 \def\OK{\acro{OK}\spifletter}
9602 { / docc)

The gmoldcomm package

9605 {xoldcomm>

Scan CSs and put them in tt. If at beginning of line, precede them with %. Obey lines in
the commentary.

9610 \Newenvironment {oldcomments} {%

9611 \catcode'\\=\active

9612 \let\do\@makeother

9613 \do\$% Not only CSs but also special chars occur in the old comments.
9615 \do\|\do\#\do\{\do\}\do*\do_\do\&%

9616 \gmoc@defbslash

131

\finish@macroscan

\gmoc@maccname
\gmoc@ocname

\gmoc@checkenv

\qmoc@checkenvinn
\gmoc@resa

\@currenvir

\gmoc@defbslash

\task

9617 \obeylines
9618 \Store@Macro\finish@macroscan
9619 \def\finish@macroscan{%

9620 \@xa\gmd@ifinmeaning\macro@pname\of\gmoc@notprinted$
9621 {}{{\tt\ifvmode\%\fi\bslash\macro@pname}}%

9622 \gmoc@checkenv

9623 }%

9624 }{}

9626 { \escapechar\m@ne
9627 \xdef\gmoc@notprinted{\string\begin, \string\end}}

9629 \def\gmoc@maccname {macrocode}
9630 \def\gmocRocname {oldcomments}

9633 \foone {%

9634 \catcode'\[=1,\catcode\]=2

9635 \catcode \{=12, \catcode \}=12}
9636 [\def\gmoc@checkenv[$%

963y \@ifnextchar{$%

9638 [\gmoc@checkenvinn] []
9640 \def\gmoc@checkenvinn{#1}
9641 \def\gmoc@resa[#1]%

9642 \ifx\gmoc@resa\gmoc@maccname

1%
[

[
o

9643 \def\next [%

9644 \begingroup

9645 \def\@currenvir[macrocodel%
9646 \Restore@Macro\finish@macroscan
9647 \catcode ' \\=\z@

9648 \catcode '\ {=1.\catcode \}=2
9649 \macrocode] %

9650 \else

9651 \ifx\gmoc@resa\gmocRocname

9652 \def\next [\end[oldcomments]]$%
9653 \else

9654 \def\next[$%

9656 \{#1\1%

9658] %

9659 \fi

9660 \f i

9661 \next]$%

9662 |

9664 \foone{%

9665 \catcode'\/=\z@

9666 \catcode\\=\active}
9668 { /def/gmoc@defbslash{%
9669 /let\/scan@macro}}

9672 \def\task#1#2{}

9674 £/ oldcomm>
9675 {xdocstrip»

A driver file to typeset dostrip.dtx with the gmdoc package.
GM 2006/12/1

132

\BasePath

\BasePathdocstrip.dtx

9683 \PassOptionsToPackage{%
countalllines, codespacesgrey, indexallmacros} {gmdoc}

9685 \ifll
9686 \documentclass[debug, pagella, fontspec=quiet]{gmdocc}$%
9687 \mcdiagOn

9688 \else
9689 \documentclass|[pagella] {gmdocc}$%
9691 \ fi

9693 \1txLookSetup
9694 \gmdoccMargins
9695 \twocoltoc% For towocolumn table of contents.

9697 \DeleteShortVerb\ |
9698 \OldMakeShortVerbx\ |% To define shortverb | such that it remains shortverb in
math mode (by default I define it to be | in math mode.

9702 \relaxen\ds
9703 \empt ify\EOFMark

9705 \fooatletter{$%
g706 \@ifXeTeX{%

9707 \let\gm@TrueAcute\'

9708 \def\'#1{%

9709 \ifx\f@family\rmdefault

9710 \if. n#1i\nacute

9711 \else\typeout {*k*kx* \cs{'}_with argument.}\show#1
9712 \fi

9713 \else

9714 \gm@TrueAcute#1%

9715 \fi

9716 FH(}H)
9718 \HideAllDefining
9720 \begin{document}

9722 \def\BasePath{/home/natror/texmf/source/latex/base/}
9724 \addtomacro\endabstract{\aftergroup\tableofcontents}
9725 \AtBegInputOnce{\date{Printed \today_ with, \pk{gmdoc}.,

package by
9726 Natror}\let\date\gobble
9727 \let\renewenvironment\gobbletwo}% the only renewed env. in docstrip.

dtx is theglossary. I prefer it to be twocolumn.
9737 \OldDocInput {\BasePath, docstrip.dtx}
9739 \typeout({%

9740 **~JProduce, change, log with**J%

9741 makeindex, -r —s.gmglo.ist,,—o.\jobname.gls, .\ jobname.glo**J}
o743 \typeout({%

9744 A JProduce, index, with**J%

9745 makeindex, -r.\jobname.idx""J}

9747 \end{document }

9749 €/ docstrip)
9750 {xLaTeXsource)

133

Some Typesetting Remarks

This driver typesets The Source 2, included in the TgXLive 2005 distribution. Some tricks
here are done just for fixing typos in the Source Files. The Source Files themselves are
intact.

Most probably you should redefine the \BasePath macro so that it was the path of
the \dots/source/latex/base directory on your system. The path levels should be sepa-
rated with slashes (even on Windows) and should also end with a slash (to concatenate
well with the file name).

While TgXing The Source again after a fatally erroneous pass there happened the
“TgX capacity exceded error’ sometimes. TEXing once again was the right thing to do.

The hyperref package usually issues some warnings about non existence of some hy-
pertargets. I consider it rather a feature of hyperref (a bug?) than a bug in the typeset
file(s).

One more thing you shouldn’t bother of is the differences of the checksums, I mean
the usual gmdoc message that the checksum stated in the file differs from gmdoc’s own
count. That is O.K. since the checksum stated in a traditional .dtx is the number of
backslashes in the macrocodes while the checksum handled and expected by gmdoc is
the number of the escape chars. Don’t get the difference? Assume the declared code escape
char is \ (as usual) and consider \\ in the code. Due to the traditional counting this CS
increases the checksum by 2 while due to mine by 1: the second bslash is not escape char:
it’s the CS name.

Moreover, when you declare \CodeEscapeChar\! e.g., the code

!Alice. !\'has, !an,'aligator
increases the ‘new way’ checksum by 5 not by 1 as it would do the traditional one.

This driver uses an unofficial little package gmeometric to allow the \geometry com-
mand also inside document. This package is included in the drivers’ directory.

The Body

“This document will typeset the IATEX sources as a single document. This will produce
quite a large file (roughly 555 pages) and may take a long time.

Some notes on processing this document are contained at the end of this document’s
source file, after \end{document} (not typeset).”

First a special index style for makeindex.

9833 \begin{filecontents}{gmsourceze.ist}
9834 preamble

9835 "\n._\\begin{theindex} \n"

9836 postamble

9837 "\n\n,\\end{theindex}\n"

file. May they be cursed!

9847 heading_prefix, . .,"{\\bfseries\\hfill "
9848 heading_suffix, . .,"\\hfill}\\nopagebreak\n"
9849 headings_flaguuuul

and just for sourceze:
Remove R so I is treated in sequence I] K not I II 1T

134

9853 page_precedence,"rnaA"
9854 \end{filecontents}

9857 \PassOptionsToPackage{codespacesgrey, .indexallmacros} {gmdoc}

9859 \if11
9860 \documentclass[debug, .minion, cronos, cursor, .
fontspec=quiet] {gmdocc}%

9863 \mcdiagOn

9865 \else
9866 \documentclass[fontspec=quiet]{gmdocc}$%
9867 \f1

9869 \foone{\catcode ' _=12,,}

9870 {\if1.,1\includeonly{sourceze_by_gmdoc}\fi}
9873 \usepackage {gmoldcomm}% Definitions of oldcomments and \task.
9876 \1listfiles

9878 \1txLookSetup

9879 \gmdoccMargins

9880 \olddocIncludes% This is the crucial declaration to drive gmdoc into the tradi-
tional settings.

9882 \twocoltoc% For towocolumn table of contents.

9884 \DeleteShortVerb) |
9885 \OldMakeShortVerbx\ |% To define shortverb | such that it remains shortverb in
math mode (by default I define it to be | in math mode.

Do not index some TeX primitives, and some common plain TeX commands.

9891 \DoNotIndex{\def, \long, \edef, \xdef, \gdef, \let, \global}

9892 \DoNotIndex{\if, \ifnum, \ifdim, \ifcat, \ifmmode, \ifvmode, %
\ifhmode, %

9893 \iftrue, \iffalse, \ifvoid, \ifx, \ifeof, \ifcase, %

\else, \or, \fi}

9894 \DoNotIndex{\box, \copy, \setbox, \unvbox, \unhbox, \hbox, %

9895 \vbox, \vtop, \vcenter}

9896 \DoNotIndex {\@empty, \immediate, \write}

9897 \DoNot Index{\egroup, \bgroup, \expandafter, \begingroup, %
\endgroup}

9898 \DoNotIndex{\divide, \advance, \multiply, \count, \dimen}

9899 \DoNotIndex{\relax, \space, \string}

9900 \DoNotIndex{\csname, \endcsname, \@spaces, \openin, \openout, %

9901 \closein, \closeout}

9902 \DoNotIndex{\catcode, endinput}

9903 \DoNotIndex{\jobname, \message, \read, \the, \m@ne, \noexpand}

9904 \DoNotIndex{\hsize, \vsize, \hskip, \vskip, \kern, \hfil, \hfill, %
\hss}

9905 \DoNotIndex {\m@ne, \z@, \z@skip, \@ne, \tw@, \p@}

9906 \DoNotIndex{\dp, \wd, \ht, \vss, \unskip}

Set up the Index and Change History to use \part.

9909 \makeatletter
\indexdiv 9910 \def\indexdiv{\partx}

135

9911 \AtDIPrologue{\@ifnotmw{%
9912 \markboth{Index}{Index}%

9913 \addcontentsline{toc}{part}{Index}}{}%

9914 }

9916 \GlossaryPrologue{\partx{Change, History}$%

Allow control names to be hyphenated here...

9918 {\GlossaryParms\ttfamily\hyphenchar\font="\-}%

9919 \@ifnotmw{ %

9920 \markboth{Change, History}{Change History}%
9921 \addcontentsline{toc}{part}{Change History}}{}%
9922 }

“The standard \changes command modified slightly to better cope with this mul-

tiple file document.”— Not quite:
9926 \makeatletter
\def\changes@#1#2#3{%

o\° o

o

\space#i\levelchar

o° o° o o° A° O° A° O° A° OA° A° O° oA o°

\@tempa\endgroup\@esphack}

9946 \Imakeatother

Produce a Change Log and (2 column) Index.

9949 \RecordChanges

9950 \CodelineIndex

9951 \EnableCrossrefs

9952 \setcounter{IndexColumns} {2}

Needed for documentation in ltoutenc.dtx.

9955 \usepackage {textcomp}

9957 \olddocIncludes
9958 \HideAllDefining

9960 \fooatletter{%
9961 \@ierTeX{%
9962 \def\"#1{%
9963 \if o#1\oumlaut\fi

\let\protect\Gunexpandable@protect
\edef\@tempa{\noexpand\glossary{#2\space\currentfile%

\ifx\saved@macroname\@empty
\space
\actualchar
\generalname

\else
\expandafter\@gobble
\saved@macroname
\actualchar
\string\verb\quotecharx%

\verbatimchar\saved@macroname

\verbatimchar

\fi

:\levelchar #3}}%

136

\gmd@wykrzykniki

\BasePath

\includeltpatch
\currentfile

\ProvidesFile

\Xdef

\Xdef

\Xpatch

9964 \if u#1\uumlaut\fi

9966 PH{}}

9968 \foone {\makeatletter\catcode \#=12,}{%
9969 \def\gmd@wykrzykniki { #u#u#u#u#u#u#u#u# }}

9971 \begin{document}

9974 \title{The,\LaTeXe\. Sources\thanks{Typeset with, \pk{gmdoc}.,
by_Natror

9975 on.\today.}}

9976 \author{%

9977 Johannes, Braams\\

9978 David, Carlisle\\

9979 Alan, Jeffrey\\

9980 Leslie, Lamport\\

9981 Frank Mittelbach\\

9982 Chris, Rowley\\

9983 Rainer, ,Sch\"opf}

9986 \def\BasePath{/home/natror/texmf/source/latex/base/}
This command will be used to input the patch file if that file exists.

9991 \newcommand{\includeltpatch}{%

9992 \def\currentfile{ltpatch.ltx}

9993 \part{ltpatch}

9994 {\let\ttfamily\relax

9995 \xdef\filekey{\filekey, \thepart={\ttfamily%
\currentfile}}}$%

9996 Things, we, did, wrong\ldots

9997 \IndexInput{ltpatch.ltx}}

Get the date from ltvers.dtx

10002 \Nakeatletter

10003 \let \patchdate=\@empty

10004 \begingroup

10005 \def\ProvidesFile#i\fmtversion#2{\date{#2} endinput}
10006 \input {\BasePath, ltvers.dtx}

10007 \global\let\XQdate=\Qdate

Add the patch version if available.

10010 \long\def\Xdef#1#2#3\def#1#5{%

10011 \xdef\X@date{#z}%

10012 \xdef\patchdate{#5 }%

10013 endinput 1%

10014 \InputIfFileExists{ltpatch.ltx}

10015 {\let\def\Xdef}{\global\let\includeltpatch\relax}
10016 \endgroup

10018 \ifx\@date\X@date

10019 \def\Xpat ch { 0 }

10020 \ifx\patchdate\Xpatch\else

10021 \edef\Q@date{\@date\space Patch level, \patchdate}
10022 \fl

10023 \else

137

10024 \@warning{ltpatch.ltx does_ not match_ltvers.dtx!}
10025 \let\includeltpatch\relax

10026 \ fi

10027 \makeatother

10029 \pagenumbering{roman}
10030 \thispagestyle{empty}

10033 \maketitle
10034 \relax
10036 \emptify\maketitle

10038 \tableofcontents
10040 \Clearpage
10042 \pagenumbering{arabic}

“Each of the following \DocInclude lines includes a file with extension .dtx. Each
of these files may be typeset separately. For instance

latex, ltboxes.dtx

will typeset the source of the I4TEX box commands.”

(Well, I (Natror) prepared only this common driver.)

If this file is processed, each of these separate .dtx files will be contained as a part of
a single document. Using ltxdoc.cfg you can then optionally produce a combined index
and/or change history for the entire source of the format file. Note that such a document
will be quite large (about 555 pages).

10061 \DocInclude [\BasePath] {1tdirchk} % System dependent initialisation

10063 \AfterMacrocode{53}{\def\do{\cs{do}}}% A bare \do in narration on line
161.
10065 \DocInclude[\BasePath] {ltplain}..% LaTeX version of Knuth’s plain.tex.

1006y \DocInclude[\BasePath]{ltvers}...% Current version date.
10069 \DocInclude[\BasePath] {ltdefns}.. % Initial definitions.
10071 \DocInclude[\BasePath] {ltalloc}...% Allocation of counters and others.

10073 \DocInclude[\BasePath]{ltcntrl} % Program control macros.

[
[
[
[
[
1075 \DocInclude[\BasePath] {lterror}..% Error handling
1077 \DocInclude[\BasePath] {ltpar}.% Paragraphs.

1079 \DocInclude[\BasePath] {ltspace}..% Spacing, line and page breaking.
10081 \DocInclude[\BasePath] {ltlogos}...% Logos.

10083 \DocInclude[\BasePath] {ltfiles}...% \input filesand related commands.

10085 \AtBegInputOnce{\let\task\gobble}% In general \task gobbles two, but in
this file it’s used with one argument and next to it is \changes (which in gmdoc
is \outer so gobbling it raises an error).

10089 \DocInclude[\BasePath] {ltoutenc}.% Output encoding interface.

10091 \DocInclude[\BasePath] {ltcounts}.% Counters.

10093 \DocInclude[\BasePath] {ltlength} % Lengths.

10095 \DocInclude[\BasePath] {1tfssbas}..% NFSS Base macros

138

\cs

10098
10100
10102
10104
10106
10108
10110
10112
10114

10116

10117

\DocInclude[\BasePath] {1tfsstrc}.% NFSS Tracing (and tracefnt.sty).
\DocInclude[\BasePath] {1tfsscmp}.% NFSS1 Compatibility.
\DocInclude[\BasePath] {1tfssdcl}.% NFSS Declarative interface.
\DocInclude[\BasePath] {1tfssini}. % NFSS Initialisation.

[
[
[
[
\DocInclude[\BasePath] {fontdef}...$% fonttext.ltx/fontmath.ltx
\DocInclude[\BasePath] {preload}...% preload.ltx
\DocInclude[\BasePath] {1tfntcmd} % \textrm etc.
\DocInclude[\BasePath] {1ltpageno} % Page numbering.
\DocInclude[\BasePath] {1txref} .. .% Cross referencing.

\AfterMacrocode{1137}{\let\GMDebugCS\cs
\def\cs##1{\expandafter\GMDebugCS\expandafter{\string##1}}}

\cs{\@defaultsubs} on line 257, \cs{\Q@refundefined} on line 263. It’s the

first step. The next is done before \PrintChanges.

10120
10121

10123

10124

10125
10126

10127

10129

10131

10133

10135

10137

10139

10141

10143

10145

10147

10149

10151

10153

10155

10157

10159

\AfterMacrocode{1139}{\1let\cs\GMDebugCS}
\AfterMacrocode{1183}{% Thelast \changes havesecond argument {1994/05/26/16}.
\csname, ,changes\endcsname{vo.9i}{1993/12/16}{\cs{literal}.,
added}%
\csname, ,changes\endcsname{vi.or}{1994/05/26}{\cs{literal}.,
removed}%
\gdef\GMdebugChanges{\expandafter\def\csname
changes\endcsname####1####2##4#3{}1%
\aftergroup\GMdebugChanges}% A trick with \aftergroup ’‘cause that
macrocode is inside macro
\DocInclude[\BasePath] {ltmiscen} % Miscellaneous environment defini-
tions.

\DocInclude[\BasePath] {1tmath}....% Mathematics set up.
\DocInclude[\BasePath] {1tlists}..% Listand related environments.
\DocInclude[\BasePath] {1ltboxes}...% Parbox and friends.
\DocInclude[\BasePath] {lttab}% tabbing, tabularandarray.
\DocInclude[\BasePath] {ltpictur}. % Picture mode.
\DocInclude[\BasePath] {1tthm}.......% Theorem environments.
\DocInclude[\BasePath] {1ltsect}....% Sectioning
\DocInclude[\BasePath] {1tfloat}..$% Floats.
\DocInclude[\BasePath] {1tidxglo}. % Index and Glossary.
\DocInclude[\BasePath] {1tbibl} . % Bibliography.
\DocInclude[\BasePath] {ltpage}.% \pagestyle, \raggedbottom, \sloppy.
\DocInclude[\BasePath] {1ltoutput}.% Output routine.
\DocInclude[\BasePath] {1ltclass}...% Package & Class interface.
\DocInclude[\BasePath] {1lthyphen} % Hyphenation (hyphen.ltx).

[

\DocInclude[\BasePath] {1tfinal},, % Lastminuteinitialisationsand dump.

139

\hbadness

\cs

10161 \includeltpatch, % Corrections distributed after the full release.
Stop here if ltxdoc.cfg says \AtEndOfClass{\OnlyDescription}
10164 \StopEventually{\end{document}}

10166 \clearpage
10167 \pagestyle{headings}

Make TEX shut up.

10170 \hbadness=10000
10171 \newcount \hbadness
10172 \hfuzz=\maxdimen

10174 \typeout {%
10175 “~JProduce change log with*""*J%
10176 ~makeindex, -r, ,-s.gmglo.ist, -0, \jobname.gls,\jobname.glo*"J}

10178 {% The next step of debug of Itmiscen.dtx’s \changes...{...\cs{\@default|
subs...}} etc
How does it work? Remember \cs is robust. The typo lies in giving it a CS
argument instead of expected CS name without backslash. So, in the step
1 we only \string the argument CS to let it be written outto the .glo file.
Then, in step 2, we redefine \cs to first \ st ringits argumentinside an \if.
Remember that \if expands two tokens next to it until it finds sth. unex-
pandable, so it'll execute \ st ring. Then, if the first char of the \stringed
argument is \,,, the condition is satisfied and \if...\fi expands to what
follows that backslash and precedes \else. So if the argument was a CS, its
backslash will be gobbled by \if. Otherwise \if...\fi expands to what
is between \else and \f1i, to the unchanged argument that is. Then to that
list of tokens the original \cs is applied.

10194 \let\GMDebugCS\cs

10195 \def\cs#1{\GMDebugCS{\if\bslash\string#i\else#1\fi}}%

10196 \PrintChanges}

10198 \typeout {%
10199 ~“"“JProduce, index with"*J%
10200 Makeindex, -r.,—-s.gmsourceze.ist,\jobname.idx"*"*J}

“Makeindex needs a symbol between the parts of composite page numbers but we
dont want one, so:”—I skip that.

o\

\begingroup

\def\endash{--}

\catcode \-\active
\def-{\futurelet\temp\indexdash}
\def\indexdash{\ifx\temp-\endash\fi}

o® o° o

o\°

10212 \geometry{bottom=3. 6cm}
10213 \clearpage

10218 \PrintIndex

Make sure that the index is not printed twice (ltxdoc.cfg might have a second

140

Index

Numbers written in italic refer to the code lines where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in roman
refer to the code lines where the entry is used. The numbers preceded with ‘p.” are page
numbers. All the numbers are hyperlinks.

\+, p. 24, 6529, 8163, 9559
\-, 6529, 9559, 9918
\<..>, p.121
\@@codeline@wrindex, 5672
\@@par, 2933, 3600, 3618,
3725, 6179
\@@settexcodehangi,
2680, 3233, 3295
\QEOF, 8912, 8915
\ @M, 6780, 9559
\@MakeShortVerb, 8749
\@NOEOF, 8910, 8914
\@X3, 3518
\Qaalph, 7417, 7418
\@aftercodegfalse,
3266, 3607, 3790
\@aftercodegtrue, 2790,
3273, 3302, 3509,
3576, 6541, 6575
\@afternarrgfalse,
2790, 3273, 3509,
3576, 6541, 6575
\@afternarrgtrue, 2909
\@allbutfirstof, 5331
\@begindocumenthook,
10433
\@beginputhook, 2855,
2972, 2973, 8817
\@charlb, 7403
\@charrb, 7405
\@clubpenalty, 2837
@codeskipput, p.47
\@codeskipputgfalse,
2909, 3244, 3510,
3577, 6541, 6576, 8011
\@codeskipputgtrue,
2773, 2780, 2789,
3246, 3726, 5851,
5862, 6000, 6007
\@codetonarrskip, 2857,
3126, 3147, 3553,
3573, 3617, 3636,
3771, 3817
\@countalllinestrue,
2482, 2486
\@ctrerr, 7424
\@currenvir, 5913, 5920,
5943, 8024, 8028, 9645
\@currext, 7932 o
\@dc@InnerName, 8161, 8829

\@dcRargtypes, 8283
\@debugtrue, 9226
\@defentryze, 4355,

4865, 5309, 5316,

5321, 5696
\@docinclude, 7294, 7300
\@dsdirgfalse, 3255,

3276, 3344, 3410,

3527, 3559
\@dsdirgtrue, 2918, 3239
\@emptify, 3051, 3204,

5211, 5354, 5482,

5569, 5576, 5577,

6388, 6755, 7413,

7546, 7701, 8056,

8058, 8115, 8131,

8219, 8225, 8696,

8697, 8701
\@endinputhook, 2883,

2968, 2969
\@enumctr, 8255, 8260,

8351, 8356
\Q@fileswfalse, 7987
\@firstofmany, 5326,

5429, 5466, 5557,

6718, 7262, 7827
\@firstofone, 3529,

9373, 9375
\@firstofthree, 6966
\@glossaryfile, 5638
\@gmcc@tikz@true, 9360
\@gmccnochangestrue, 9238
\QifEOLactive, 3000,

3014, 3892, 3926, 4068
\@ifQueerEOL, 2984,

3008, 3021, 3035,

3864, 6451, 6947, 7131
\@ifXeTeX, 9420, 9706, 9961
\@ifauthor, 7690, 7708, 7751
\@ifinmeaning, 4280, 4488
\@ifnextac, 8365
\@ifnextcat, 4229, 4257
\@ifnextcharRS, 2954,

3254, 3539, 3557, 3578
\@ifnonempty, 7260
\@ifnotmw, 9517, 9911, 9919
\@ilgroupfalse, 3304, 3993
\@ilgrouptrue, 3597,

3646, 3661

\@indexallmacrostrue,
2509
\@latexerr, 7293
\@linesnotnumtrue, 2465
\@ltxDocIncludetrue, 7537
\@makefntext, 7595
\@marginparsused]
false,
2536
\@marginparsusedtrue,
2526, 2529, 2531, 2534
\@nameedef, 5097, 7880
\@newlinegfalse, 3145,
3277, 3441, 3459, 3469
\@newlinegtrue, 2916, 3238
\@noindextrue, 2495
\@nostanzagfalse, 3726
\@nostanzagtrue, 2789,
3790
\@oldmacrocode, 5914, 5939
\Qold|
macrocode@launch,
5891, 5893, 5896
\@onlypreamble, 7540,
8552, 8565, 8569
\@pageinclindexfalse,
5162
\@pageinclindextrue, 5828
\@pageindexfalse, 8564
\@pageindextrue, 2500,
5231, 8567
\@printalllinenos|
false,
2483
\@printalllinenos|
true,
2487
\@relaxen, 2758, 3678,
3705, 6328, 6754,
6859, 7362, 7429,
7668, 7669, 7670,
8614, 8911
\@secondofthree, 6967,
6968
\@stripstring, 206, 209, 236
\@sverb@chbsl, 8102
\@tempc, 10462
\@tempdima, 8272, 8273
\@textsuperscript,
7594, 7597

141

\@trimandstore, 2919,
3125, 3804, 3804,
3812, 3815
\@trimandstore@hash,
3805, 3806
\@trimandstore@ne,
3812, 3815
\@uresetlinecount !
true,
2472
\@usgentryze, 5350,
5368, 5375, 5456,
5460, 5706, 5756,
8463, 8471
\@variousauthors|
false,
7749
\@variousauthorstrue,
7747
\@warning, 10024
\@xanxcs, 2867, 4502,
4531, 4554, 4569,
4636, 5099, 5106
\@xiispaces, 4838
\@zfQeuenctrue, 9454
AAA/P'9r§QEZ
AAB’p'9,§§é9
**M, p. 9, 4010
ANM, 2850, 3237
", 3847

\aalph, 7417, 7464

\abovedisplayskip, 2729

\ac, 9556, 9578

\acro, 6968, 9556, 9578, 9580

\actualchar, p. 23, 4140,
4339, 5170, 6680,
6737, 6742, 7238,
7906, 8640

\addcontentsline, 9913,

9921
\addfontfeature, 9306,

9339, 9343
\addtoRestoindex, 5315,
5374, 5391, 5695,
5705, 5716
\addtoRestomarginpar,
5531, 5693, 5694,
5703, 5704, 5709
\addtocontents, 10443
\addtomacro, 3860, 5802,
5806, 5891, 5892,
6094, 8324, 8326,
8328, 8331, 8333,
8336, 8342, 8348,
8355, 9724, 10472

\AddtoPrivateOthers,
p. 22, 4050
\ae, 9466
\afterassignment,8319
8362
\afterfi, 2386, 3345,
3348, 3443, 3445,
3812, 4047, 4197,
4229, 4243, 4268,
4271, 4775, 4779,
4783, 5427, 5983,
5985, 5986, 5989,
6059, 6062, 7144,
8025, 8026, 8029,
8030, 8206, 9289,
9308, 9417, 9490
\afterfifi, 3375, 3377,
5333, 5335, 5424,
5442, 6149, 6160
\afteriffifi, 3371
\AfterMacrocode, p. 26,
8209, 10063, 10116,
10120, 10121, 10460
\agrave, 9442, 9456
\all@stars, 5801
\all@unders, 5802
\AlsoImplementation,
p. 23, 8584, 8598
\AltMacroFont, 8701
\ampulexdef, 6394, 8161
\AmSTeX, p. 25
\and, 7648, 7686, 10426
\arg, p. 9
\arraybackslash, 10472
article, 9212
\askforoverwrite|
false,
134
\AtBeginDocument, 2548,
2556, 2607, 2751,
4338, 5232, 5650,
6933, 8551, 9423,
9465, 10350, 10352,
10357
\AtBegInput, p. 11, 2972,
2982, 3052, 3892,
3926, 4044, 4065,
6763, 7572, 7590,
7984, 9568
\AtBegInputOnce, p. 11,
3056, 8748, 9725,
10085, 10464, 10477,
10501
\AtDIPrologue, p. 23,
6389, 6393, 9911
\AtEndDocument, 7098,

10351, 10353

\AtEndInput, p. 11, 2968,
7061, 8517, 8542
\AtEndOfClass, 9288,
9318, 9321, 9324,
9327, 9335
\AtEndOfPackage, 2547,
2554, 3052
\ATfootnotes, 9567, 9568
\author, 2341, 7642, 9976,
10426, 10494, 10508
\AVerySpecialMacro, 8787

\BasePath, 9722, 9986,
10006, 10061, 10065,
10067, 10069, 10071,
10073, 10075, 10077,
10079, 10081, 10083,
10089, 10091, 10093,
10095, 10098, 10100,
10102, 10104, 10106,
10108, 10110, 10112,
10114, 10129, 10131,
10133, 10135, 10137,
10139, 10141, 10143,
10145, 10147, 10149,
10151, 10153, 10155,
10157, 10159, 10406,
10475, 10497

\BasePath,,
docstrip.dtx,
9737

\batchfile, 125

\batchmode, 10346, 10360

\beforeDot, 187, 212

\belowdisplayshort|
skip, 2735, 2737,
2738

\belowdisplayskip, 2734

\beth, 9452

\BibTeX, p. 25

\box, 9894

\breakablevisspace,
3089, 3339, 8090

\breakbslash, 8092

\breaklbrace, 8094

\bslash, 3219, 4339, 4403,
4738, 4952, 4955,
4956, 4959, 4961,
4972, 4994, 4995,
4996, 4997, 5004,
5171, 5218, 5436,
5466, 5481, 5557,
5568, 6672, 6707,
6708, 6718, 6737,
6739, 8222, 8410,
8526, 9621, 10195

\BundleInfoFromName, 7910

142

\c@ChangesStartDate,
6771, 6776, 6792,
6794, 6795, 6797
\c@CheckSum, 7031, 7070,
7075, 7087, 7116, 7121
\c@codelinenum, 3681,
3685, 5626, 5640, 8223
\c@DocInputsCount, 3684
\c@footnote, 7646, 7697
\c@GlossaryColumns,
6873, 6873, 6881
\c@gmd@mc, 8200, 8205,
8206, 8222
\c@IndexColumns, 6413,
6413, 6415, 6445
\c@StandardModuleDepth,
8686
\cacute, 9443, 9457
\catactive, p. 24, 8000
\catletter, p. 24, 8002
\catother, p. 24, 7997
\CDAnd, p. 26, 8178
\CDPerc, p. 26, 8180
\CH, 6992
\changes, 6660, 6671, 6676
\changesg@, 6662, 6687,
6965, 6983, 6985, 7137
\ChangesGeneral, 6757,
6763
\ChangesStart, p. 20, 6789
ChangesStartDate, p.20
\Character@Table, 8402,
8408
\CharacterTable, 8400
\check@checksum, 7061,
7064
\check@percent, 4044, 8821
\check@sum, 7027, 7029,
7065, 7075, 7086, 7101
\CheckModules, 8697
CheckSum, 7031
\CheckSum, p. 20, 7029,
7141, 10466, 10479
\chgs, 6974
ChneOelze, 4985
\chschange, 7113, 7117,
7124, 10465, 10478
\chschange@, 7134, 7136
\chunkskip, p. 21, p. 25, 2768
class, 9195 o
\clubpenalty, 2837, 2964
\cmd, 8141
\Code@CommonIndex,
5384, 5387
\Code@CommonIndexStar,
5383, 5390
\Code@DefEnvir, 5593, 5688

\Code@DefIndex, 5301,

5306, 5604, 6069
\Code@DefIndexStar,

5300, 5313, 6073
\Code@DefMacro, 5593, 5603
\Code@Delim, 2642, 2650
\code@delim, 2646, 2845,

2867, 2872, 2943,

2954, 3373, 3397,

3863, 3876, 3878,

4047, 5900, 7951,

7955, 7956
\Code@Delim@St, 2642,

2644, 2650
\code@escape@char,

3409, 4158
\Code@MarginizeEnvir,

5528, 5531
\Code@MarginizeMacro,

4354, 5515, 5518,

5606, 5607, 5616, 5617
\Code@UsgEnvir, 5600, 5699
\CodeQUsgIndex, 5362,

5365, 5613, 5745
\CodeQUsgIndexStar,

5361, 5371
\Code@UsgMacro, 5600, 5612
\CodeCommonIndex, p. 18,

5380, 8634
\CodeDelim, p. 21, p. 22,

2642, 2659, 2867,

5901, 7952, 8178, 8180
\CodeEscapeChar, p. 22,

4155, 4165, 5853,

5864, 8503
\CodeIndent, p. 21, p. 119,

2690, 2693, 3259,

3630, 4040, 8497, 9423
\codeline@glossary,

5630, 5657
\codeline@wrindex,

5623, 5656, 5665, 5670
\CodelineIndex, 8564,

8565, 9950, 10352
codelinenum, p.22, 3681,

3685 o
\CodelineNumbered,

p. 120, 8551, 8552
\CodeMarginize, p. 17, 5504
\CodeSpacesBlank, p. 13,

2548, 3096, 8816
codespacesblank, p.13, 2546
\CodeSpacesGrey, p.13,

2556, 3108
codespacesgrey, p. 13, 2551
\CodeSpacesSmall, 3101

\CodeSpacesVisible,
3087, 3111, 3118
\CodeTopsep, p. 21, 2708,
2727, 2771, 2779,
2788, 3669, 3725,
5851, 5853, 5862,
5864, 5999, 8499
\codett, 2662, 2935, 3868,
4080
\CodeUsage, p. 16, 5595
\CodeUsgIndex, p. 17, 5357
\color, 9341
\columnsep, 6427
\CommandlLet, 9578
\CommonEntryCmd, p. 22,
5153, 5280
\continue@macroscan,
4251, 4271
\copy, 9894
\copyRightLeaf, 277
copyrnote, p. 25, 8008
\count, 9898
countalllines, p.12,2480
countalllines%, p.12, 2485
cronoes, p.126, 931y -
\CS, p. 26 S
\cs, p. 24, 8133, 8161, 8161,
9711, 10063, 10116,
10117, 10120, 10123,
10124, 10194, 10195,
10462 -
\csnameIf, 195, 221
\currentBundle, 121
\currentfile, 7258,
7259, 7267, 7268,
7270,7273,7274,
7276, 7278, 7280,
7282, 7290, 7291,
7332, 7339, 7366,
7484, 7485, 7487,
7546, 8818, 9992, 9995
cursor, p.126, 9329

\daleth, 9452

\date, 2342, 7643, 9725,
9726, 10005, 10429,
10493, 10509

\day, 7115, 7119

\dc, 8275

\DCUse, 6996

debug, p. 125, 9226

\debug@special, 3424

\Declare@Dfng, 4460,
4461, 4466

\Declare@Dfng@inner,

4468, 4471, 4478

143

\DeclareBoolOption,

4995, 5006
\DeclareCommand, 3025,
4930, 5603, 5612,
5688, 5699, 5737,
5749, 5803, 6977,
6995, 7136, 7220,
8275, 8812
\DeclareComplemen |
taryOption, 4996,
5007 o
\DeclareDefining, p. 14,
4457, 4884, 4885,
4886, 4887, 4920,
4921, 4922, 4923,
4924, 4925, 4926,
4927, 4928, 4929,
4930, 4934, 4935,
4936, 4937, 4938,
4939, 4941, 4942,
4943, 4952, 4955,
4956, 4959, 4961,

4994, 4995, 4996, 4997
\DeclareDocumentCom|

mand,

4929
\DeclareDOXHead, p. 15, 4970
\DeclareEnvironment,

4093, 8229
\DeclareKVOFam, p. 15, 5001
\DeclareOption, 2465,

2472, 2480, 2485,

2495, 2500, 2509,

2534, 2536, 2546,

2551, 4943
\DeclareOption¥, 4961,

4973, 4980, 4985,

9182, 9366
\declarepreamble, 274
\DeclareRobustCom|

mand,

4937
\DeclareStringOption,

4994, 5005
\DeclareTextCommand, 4938
\DeclareTextCommand!

Default,

4939
\DeclareVoidOption,

4997, 5008
\defaultfontfeatures,

9302
\DefaultIndexExclu|

sions, p. 18, 6178,

6314, 6342
\DefEntry, p. 22, 5277, 8676
\DefIndex, p. 17, 5296, 8626

\Define, p. 16, 5584
\define@boolkey, 4520,
4956
\define@choicekey,
4577, 4959
\define@key, 4529, 4544,
4565, 4955
\definecolor, 2572
\dekclubs, p. 13, 9540
\DeleteShortVerb, p. 13,
9697, 9884, 10415
\Describe, p. 17, 8450
\Describe@Env, 8438,
8445, 8455, 8468
\Describe@Macro, 8438,
8455, 8460
\DescribeEnv, p. 118, 8443
\DescribeMacro, p. 118, 8435
\destdir, 201 -
\detokenize, 216, 226,
244, 249, 254, 3504,
4400, 4414, 4836,
5146, 5149, 5151,
5194, 5195, 5207,
5208, 5322, 5344,
5351, 5431, 6579,
6583, 7007, 7290,
7882, 7887, 7892,
8311, 8312
\dimen, 9898
\DisableCrossrefs,
8573, 8576
\discre, 8163
\divide, 9898
\division, p. 24,7498, 8188
\Do@Index, 6321, 6328
\do@properindex, 5407,
5484, 5826
\Doc@Input, 8754
\DocInclude, p. 10, p. 12,
p. 27, 2364, 2371,
2372, 2373, 2375,
7220, 7264, 7269,
7284, 7293, 7519,
8829, 10061, 10065,
10067, 10069, 10071,
10073, 10075, 10077,
10079, 10081, 10083,
10089, 10091, 10093,
10095, 10098, 10100,
10102, 10104, 10106,
10108, 10110, 10112,
10114, 10129, 10131,
10133, 10135, 10137,
10139, 10141, 10143,
10145, 10147, 10149,
10151, 10153, 10155,

10157, 10159, 10475,
10497
\DocInput, p. 10, 2822,
7544, 7571, 7956
DocInputsCount, 3684
\docstrips@percent, 5906
\documentclass, 2331,
9686, 9689, 9860,
9866, 10398
\DoIndex, p. 18, 2359, 6321,
6340
\DoNot@Index, 6126, 6134
\DoNot Index, p. 18, 2336,
6126, 6338, 6340,
6344, 9553, 9891,
9892, 9894, 9896,
9897, 9898, 9899,
9900, 9902, 9903,
9904, 9905, 9906
\dont@index, 6138, 6141,
6149, 6160, 6328
\DontCheckModules, 8696
\doprivateothers, 4051,
4052, 4177, 4181
\dp, 9906
\ds, p. 25, 6611, 8168, 9702
\dst, 10488
\dsVerbClose, 6597

\eacute, 9444, 9459
\edefInfo, 232, 233, 234,
241, 7875, 7903,
7904, 7905
\edverbs, 9544
\egCode@MarginizeEnvir,
5507, 5527
\egCode@MarginizeMacro,
5508, 5514
\egText@MarginizeCs,
5769, 5777
\egText@MarginizeEnv,
5769, 5772
\empt ify, 2962, 2977,
3189, 3208, 3508,
4642, 5051, 5897,
8264, 8265, 8358,
9703, 10036
\EnableCrossrefs, 7408,
8575, 9951, 10352
\encapchar, p. 23, 4142,
4339, 5175, 5639, 6681
\endabstract, 9724
\endenumargs, 8377
\endenumerate, 8370
\endenvironment, 6111
\endinput, 10543

144

\endlinechar, 140, 3517,
4101, 7823, 7835, 7845
\endmacro, 6022
\endmacrocode, 5884
\endoldmc, 5884
\endpreamble, 286
\endskiplines, p. 28,133
\endtheglossary, 7410
\endverbatim, 4097
\enspace, 2662, 9520
\ensuremath, 9551
\EntryPrefix, p. 22, 5166,
5168, 5211, 5633,
5635, 6441, 7233
\enumargs, 8377
enumargs, p. 26
enumargsx, p.26, 8374
\enumerate, 8247
\env, p. 24, 8256
\environment, 6110
environment, p.18, 6110
\envirs@toindex, 5354,
5544, 5548, 5549,
5577, 5720
\envirs@tomarginpar,
5538, 5541, 5542,
5576, 5714
\EOF, 8915
\EOFMark, p. 21, p. 126,
2865, 3074, 7955,
9551, 9703
\EOFMark endinput, 8911
\EOLwasQueer, 7132, 7143
\errorcontextlines,
292, 2328, 9487, 10431
\eTeX, p.25
\evensidemargin, 7188
\everyeof, p. 21, 2879
\everypar, 2857, 2857,
2919, 3125, 3126,
3146, 3233, 3553,
3573, 3616, 3635,
3812, 3820, 6095, 8009
\ExecuteOptionsX, 9183
\exhyphenpenalty, 9548

\f@family, 9709

\file, p. 24,173, 306, 337,
340, 343

\filedate, p. 25, 7489,
7772, 7926, 10469,
10480, 10491, 10493

\filediv, 7433, 7450,
7497, 7515, 7668, 7731

\filedivname, 7434,
7444, 7447, 7451,

7464, 7466, 7495,
7514, 7669
\FileInfo, p. 26, 7787
\fileinfo, p. 25, 7774
\FileInfoFromName,
7902, 7918
\filekey, 7366, 7469,
7472, 9995
\filename, 7488, 7770
\filenote, p. 26,7926,
7928, 7934
\filesep, 7232, 7233,
7413, 7468
\fileversion, p.25, 7114,
7118, 7490, 7773,
7926, 10469, 10480,
10491
\Finale, p. 23, 8585, 8614
\finish@macroscan,
4229, 4243, 4257,
4268, 4347, 9618,
9619, 9646
\Finv, 9452
\firstoftwo, 189
\fmtversion, 10005
\fnfileinfo, 7931
\fontseries, 9500
\fontspec, 9502
fontspec, 9349
\fooatletter, 3864,
9705, 9960, 10432
\foone, 3007, 3224, 3497,
3839, 3916, 3954,
4009, 4195, 4660,
4750, 4793, 5916,
5930, 6524, 6568,
7799, 7829, 7946,
7995, 8404, 8909,
9633, 9664, 9869, 9968
\from, 306, 337, 340, 343
\FromDir, 129, 202, 203
\fullcurrentfile, 7259,

7291, 7341

\gRemptify, 3069, 4282,
5542, 5549, 6950,
7356, 7609, 7734, 7978

\g@relaxen, 4413, 5195,
5198, 5208, 6088,
7610, 7733

\gaddtomacro, p. 23,
3069, 4040, 4492,
5714, 5720

\gag@index, 2607, 5663,
8551, 8573

\Game, 9452

\GeneralName, 6725,

6726, 6755, 6804,

7238, 7906
\generalname, 6687,

6693, 6742, 6846, 6965
\generate, 320
\geometry, 9481, 10212
\GetFilelInfo, p. 25,7339,

7487, 7769, 10471, 10482
\gimel, 9452
\glet, 2886, 3295, 4281,

5322, 5522, 5900,

6525, 6569, 7474,

7479, 7493
\glossary@prologue,

6802, 6882, 6920,

6927, 7476
\glossaryentry, 5639
\GlossaryMin, p. 19, 6871,

6871, 6882
\GlossaryParms, p. 19,

6883, 6934, 9918
\GlossaryPrologue,

p- 19, 6919, 9916
\glueexpr, 2770, 2778, 8249
\gm@DO0¥, 9182, 9195, 9202,

9205, 9209, 9212,

9220, 9226, 9231,

9238, 9264, 9273,

9313, 9314, 9317,

9319, 9322, 9325,

9329, 9349, 9360
\gm@EOX, 9183, 9353
\gm@1lbracehook, 4772
\gm@TrueAcute, 9707, 9714
\gm@verbReol, 4065, 8099
\gmath, 9304
\gmboxedspace, 8059,

8062, 8116, 8132
\gmBundleFile, 129, 253,

255, 270, 306, 318,

7891, 7893, 7911
\gmBundleName, 117, 125
\gmcc@\BasePath,,

docstrip.dtx,

9737
\gmcc@article, 9212
\gmcc@CLASS, 9197, 9199,

9392, 9400
\gmcc@class, 9195, 9202,

9205, 9209, 9212
\gmcc@cronos, 9317
\gmccRcursor, 9329
\gmcc@debug, 9226
\gmcc@dff, 9291, 9292, 9302
\gmcc@fontspec, 9349
\gmcc@lsu, 9325

145

\gmcc@minion, 9313
\gmcc@mptt, 9273
\gmcclmwart, 9202
\gmcc@mwbk, 9209
\gmcc@mwclsfalse, 9392
\gmcc@mwelstrue, 9199
\gmcc@mwrep, 9205
\gmcc@myriad, 9322
\gmcc@nochanges, 9238
\gmcc@noindex, 9231
\gmcc@oldfontsfalse,
9264, 9286
\gmcc@oldfontstrue, 9420
\gmcc@outeroff, 9220
\gmcclpagella, 9314
\gmcclresa, 9198, 9199
\gmcc@setfont, 9285,
9313, 9314
\gmcc@sysfonts, 9264
\gmcc@tikz, 9360
\gmcc@tout, 9283, 9290, 9308
\gmcc@trebuchet, 9319
\gmd@@toc, 2982, 2985, 2986
\gmd@ABIOnce, 3051,
3052, 3069, 7356
\gmd@adef@altindex,
4841, 4851, 4852,
4854, 4855, 4858, 4860
\gmd@adef@checkDOXopts,
4689, 4705
\gmd@adef@checklbracket,
4674, 4695
\gmd@adef@cs, 4650
\gmd@adef@cshookfalse,
4357
\gmdQadef@cshooktrue,
4650
\gmdQRadefQcurrdef,
4483, 4489, 4493,
4497, 4498, 4500,
4502, 4505, 4508,
4531, 4548, 4554,
4567, 4569, 4636,
4717, 4722, 4821,
4827, 4842, 4845,
4853, 4856
\gmd@adef@defaulttype,
4460, 4461, 4480
\gmdQRadef@deftext,
4814, 4834
\gmd@adef@dfKVpref,
4671, 4684, 4712, 4716
\gmd@adef@dk, 4666
\gmd@adef@dofam, 4687,
4746, 4754, 4804, 4820
\gmd@adef@dox, 4677

\gmd@Radef@fam, 4686,
4744, 4747, 4752,
4755, 4802, 4805,
4828, 4829
\gmd@adef@indextext,
4840, 4861, 4864
\gmd@adef@KV£fam, 4565
\gmd@Radef@KVpref, 4544
\gmd@adef@prefix, 4529
\gmdRadef@scanDKfam,
4781, 4801
\gmd@adef@scanDOXfam,

4679, 4707, 4730
\gmd@adef@scanfamact,

4735, 4751
\gmd@adef@scanfamoth,

4732, 4743
\gmd@adef@scanKVpref,

4667, 4678, 4697,

4706, 4711
\gmdRadef@scanname,

4777, 4785, 4809
\gmd@adef@selfrestore,

4899, 4903, 5088, 5091

\gmd@adef@setkeysdefault,

4486, 4513
\gmd@adef@setKV, 4549,

4573, 4631, 4634
\gmdQRadef@settype,

4601, 4603, 4605,

4607, 4609, 4611,

4613, 4615, 4617,

4619, 4627
\gmd@adef@text, 4658
\gmdRadef@TYPE, 4504, 4628
\gmd@adef@type, 4577
\gmd@adef@typenr, 4578,

4600
\gmd@adef@typevals, 4578
\gmdQauxext, 7250, 7252,

7307, 7318
\gmd@blubra, 8347, 8358,

8360, 8361, 8362
\gmd@bslashEOL, 3962,

4011, 4014
\gmd@changes@init,

6661, 6664, 6959,

6974, 6993, 7133
\gmd@charbychar, 3255,

3311, 3392, 3447,

4385, 4650, 4658,

4697, 4707, 4713,

4748, 4756, 4806,

4816, 5107
\gmd@checkifEOL, 3127, 3551
\gmd@checkifEOLmixd,

3403, 3571

\gmd@chgs, 6974, 6977,
6995, 6996
\gmd@chgsparse, 6963,
6984, 6986, 6989
\gmd@chgsplus, 6993, 6995
\gmd@chschangeline,
7071, 7079, 7088, 7112
\gmd@closingspacewd,
3240, 3990, 4000, 4002
\gmd@codecheckifds, 5978
\gmd@codeskip, 3266,
3607, 3724, 3751, 3779
\gmd@continuenarration,
2956, 3122, 3375
\gmd@countnarrlineg@,
3144, 3184
\gmd@counttheline,
3415, 3447, 3454
\gmd@cpnarrline, 3124,
3182, 3189, 3204,
3552, 3572, 4045
\gmd@ctallsetup, 3192,
3208, 5899, 7789

\gmd@currentlabeltbefore,

2830, 2886
\gmd@currenvxistar,
5913, 5919
\gmd@DefineChanges,
6659, 6858
\gmd@detectors, 4386,
4491, 4492, 4642,
5048, 5051, 5059, 5197
\gmd@difilename, 7246,
7249
\gmd@dip@hook, 6381,
6388, 6389
\gmd@docincludeaus,
7258, 7427, 7429
\gmd@docstripdirective,
3540, 5985, 6527
\gmd@docstripinner,
6535, 6537
\gmd@docstripverb,
6534, 6572
\gmd@doindexingtext,

4868, 5547, 5552
\gmd@doIndexRelated,
7331, 7348, 7407
\gmdQdolspaces, 2957,
3255, 3342
\gmd@DoTeXCodeSpace,
2940, 3088, 3097,
3102, 5902
\gmd@dsChecker, 3526,
3538, 5984
\gmd@dsNarrChecker,

3484, 3537, 3565

146

\gmd@dsVerbChecker,

3499, 3533
\gmd@dsVerbDelim, 3504,
3507, 3508, 6579, 6583
\gmd@dsVerbfalse, 3505
\gmd@dsVerbtrue, 6598
\gmd@ea@bwrap, 8258,
8265, 8268, 8291,
8299, 8303, 8307,
8311, 8315, 8320,
8348, 8376
\gmd@eaRewrap, 8261,
8264, 8268, 8292,
8300, 8304, 8308,
8312, 8316, 8321,
8324, 8326, 8328,
8331, 8333, 8336,
8342, 8353, 8355, 8376
\gmd@ealhashes, 8251,
8259, 8272, 8350
\gmd@ealwraps, 8263,
8266, 8270, 8375
\gmd@ealxxxwd, 8273,
8291, 8320
\gmd@eatlspace, 3347,
3366, 3371
\gmd@edefInfolresa,
7879, 7881, 7883,
7886, 7888, 7891, 7893
\gmd@endpe, 3580, 3585,
3613, 3620, 3627
\gmd@EOLorcharbychar,
3419, 3434
\gmd@evpaddonce, 6078,
6084
\gmd@fileinfo, 7796, 7808
\gmd@finishifstar,
4229, 4257, 4267
\gmd@FIrescan, 7813, 7830
\gmd@glossary, 5653,
5657, 6724
\gmd@glossCStest, 6720,
6723, 6739, 6748
\gmd@gobbleuntilM,
3920, 3921
\gmd@grefstep, 3145,
3154, 3200, 3205,
3277, 3459, 3469
\gmd@guardedinput,
2859, 2880
\gmd@iedir, 6135, 6155, 6328
\gmd@ifinmeaning, 9620
\gmd@ifonetoken, 6005,
6020, 6055, 8438
\gmd@ifsingle, 6040, 6058
\gmd@iihook, 2864, 2977,
7953

\gmd@inputname, 2825,
4686, 7068, 7078, 7085
\gmd@inverb, 8057, 8060,
8084
\gmd@ jobname, 7245, 7249
\gmd@ justadot, 5319,
5322, 5351, 5522, 6135
\gmd@KVprefdefault,
4536, 4544, 4546,
4671, 4684, 4970
\gmd@lastenvir, 8222
\gmd@lbracecase, 4658,
4670, 4683, 4773,
4776, 4780, 4784, 4788
\gmd@ldspaceswd, 3275,
3285, 3286, 3299,
3331, 3346, 3368, 3374
\gmd@maybequote, 4220,
4241, 4253, 4281,
4282, 5441
gmd@me, 8200
\gmd@mcdiag, 8204, 8219,
8221, 8225
\gmd@mchook, 8203
\gmd@modulehashone,

3506, 3515, 6539,
6543, 6574, 6580
\gmd@narrcheckifds,
3561, 3564
\gmd@nlperc, 8064, 8085,
8117, 8133
\gmd@nocodeskip, 3261,
3268, 3609, 3611,
3745, 3753, 3773, 3781
\gmd@oldmcfinis, 5944
\gmd@oncenum, 6085,
6087, 6089, 6094,
6096, 6099
\gmd@parfixclosingspace,
3226, 3989
\gmd@percenthack, 3400,
3477
\gmd@preverypar, 2673,
3147, 3556, 3573,
3617, 3636, 3810,
3818, 3820
\gmd@providefii, 7847,
7852
\gmd@QueerV, 3848, 3862,
3883 o
\gmd@guotationname,
8016, 8024, 8028
\gmd@resa, 4479, 4481,
4530, 4533, 4545,
4546, 4552, 4553,
4555, 4558, 4566,
4568, 4570, 4572,

4635, 4638, 5560,

5563, 5565
\gmd@resetlinecount,

2847, 3678, 3691
\gmd@ResumeD£fng, 5127, 5129
\gmd@revprefix, 5244, 5246
\gmd@setChDate, 6775,

6778, 6792
\gmd@setclosingspacewd,

4001
\gmd@setclubpenalty,

2835, 2928, 2932, 2964
\gmd@setilrr, 3355,

3598, 3656, 3991
\gmd@skipgmltext, 7977,

7978, 7988
\gmd@skiplines, 3216, 3219
\gmd@spacewd, 3328,

3345, 3368
\gmd@texcodeEQL, 3258,

3436
\gmd@texcodespace,

3098, 3104, 3254,

3339, 3343, 3367, 4378
\gmd@textEOL, 2905, 3015,

3515, 3557, 3578,

3957, 5897, 6543,

6580, 7146
\gmd@threeway, 6997, 7001
\gmd@toCTANE, 6960, 6962
\gmd@typesettexcode,

3225, 3361, 3377
\gmdQupperDIV, 7867, 7879
\gmd@V@percent, 3850,

3857, 3860, 3877
\gmd@writeckpt, 7352, 7397
\gmd@writeFI, 7812, 7821
\gmd@writemauxinpaux,

7307, 7372
\gmdQ@wykrzykniki, 7084,

7090, 7103, 9969,

10421, 10422, 10423,

10424
\GMdebugChanges, 10125,

10127
\GMDebugCs, 10116, 10117,

10120, 10194, 10195
\gmdindexpagecs, 5237,

5243
\gmdindexrefcs, 5234,

5237, 5241
\gmdLeaf, 274, 322
\gmdmarginpar, p. 17,

p- 25, 5792, 5798, 5805
\gmdnoindent, p. 26, 8036
\gmdoccMargins, 9478,

9694, 9879, 10226, 10411

147

\gmdoccMar !
gins@params,
9474, 9479, 9481
\gmdocIncludes, p. 11,
7570, 10230, 10499
\gmdStandalone, 335
\gmfile, 301, 309, 331
\gmFileDate, 266
\gmFileInfo, 268
\gmFileKind, 271, 324, 330
\gmFileVersion, 267
gmglo.ist, 94
\gmhypertarget, 3712
\gmiflink, 5241
gmlonely, p.25, 7973, 7985
\gmobeyspaces, 3097
\gmoc@checkenv, 9622, 9636
\gmoc@checkenvinn,
9638, 9640
\gmoc@defbslash, 9616, 9668
\gmoc@maccname, 9629, 9642
\gmoc@notprinted, 9620,
9627
\gmoc@ocname, 9630, 9651
\gmoc@resa, 9641, 9642, 9651
\gmOutName, 211, 217, 221,
225, 227, 243, 245,
248, 250, 263
\gmOut Thanks, 224, 269
\gmOutTitle, 215, 264
\gmOutYears, 220, 265, 277
\gmu@if, 5098
\gmu@ifedetokens, 7932
\gmu@ifsbintersect,
8360, 8361
\gmul@ifstar, 2642, 4459,
4909, 5078, 5298,
5359, 5382, 5452,
5489, 5506, 5592,
5597, 5732, 5768,
8054, 8455
\gmu@ifundefined, 4352,
4400, 5146, 5149, 5151
\gmu@ifxany, 8289, 8296,
8302, 8306, 8310,
8314, 8319, 8362
\gmu@resa, 4720, 4726,
4825, 4831
\gmu@tempa, 2336, 3028,
3030, 3218, 3220,
4401, 4404, 4499,
4507, 5166, 5168,
5170, 5175, 5176,
5247, 5248, 5331,
5332, 5469, 5472,
5476, 5633, 5635,
5637, 5639, 5641,

5801, 5802, 5804,
6041, 6042, 6061,
6062, 6142, 6145,
6147, 6152, 6155,
6724, 6747, 6801,
6807, 6963, 6964,
6966, 6967, 6968,
6969, 6983, 6985,
6987, 7066, 7076,
7083, 7097, 7098,
7313, 7775, 7776,
7976, 7983, 7984,
8055, 8058, 8073,
8115, 8131, 8244, 8249
\gmu@tempb, 2336, 6056,
6059, 6061, 6699,
6708, 6717, 6736,
6738, 6739, 6740,
7312,7313, 7771,
7776, 8056, 8059,
8078, 8116, 8132,
8245, 8249
\gmu@tempc, 2336
\gmu@tempd, 2336
\gmu@tempe, 2336
\gmu@tempf, 2336
\gmu@xistar, 5917, 5920
\gmv@hyphen, 8163
\GMverbatimspecials, 9573
\gn@melet, 5082, 5083
\gobble, 7146, 9726,
10085, 10466, 10479
\gobbletwo, 9727
\grefstepcounter, 3169
\grelaxen, 6748, 6757

\hash, 8143
\hb@xt@, 7596
\hbadness, 10170, 10171
\heshe, p. 9 S
\hfuzz, 10172
\hgrefstepcounter,
3200, 3205
\Hide@Dfng, 5078, 5080
\Hide@DfngOnce, 5078, 5087
\HideAllDefining, p. 15,
5046, 9718, 9958, 10417
\HideDef, p. 16, 4907
\HideDefining, p. 15,
4909, 5074
\HLPrefix, p. 22, 3713,
5166, 5168, 5250,
5626, 5633, 5635,
5640, 6372, 7232
\hsize, 9904
\Hybrid@DefEnvir, 6005,
6072

\Hybrid@DefMacro, 6005,
6068
hyperindex, p. 69
\hyperlabel@line, 3185,
3281, 3460, 3470, 3707
\hypersetup, 2585, 6420
\hyphenpenalty, 8072, 9548

\idiaeres, 9445, 9460
\if@aftercode, 3260,
3354, 3358, 3596,
3602, 3645, 3660,
3761, 3774, 3991,
8243, 8248, 8256
\if@afternarr, 3263,
3354, 3358, 3596,
3601, 3766, 3773
\if@codeskipput, 2771,
2779, 2788, 3245,
3265, 3607, 3737,
3772, 5851, 5862, 5999
\if@countalllines,
2477, 3134
\if@debug, 9224, 9484,
9490, 9491
\if@dsdir, 2805, 5982
\if@filesw, 5623, 7307,
7317, 7353
\if@gmcc@tikz@, 9359, 9375
\if@gmccnochanges,
9236, 9527
\if@ilgroup, 3304, 3597,
3603, 3646, 3654,
3661, 3993
\ifQ@indexallmacros,
2507, 6313
\if@linesnotnum, 2463,
3705, 5231
\if@ltxDocInclude,
7332, 7338, 7342, 7532
\if@marginparsused,
2519, 5784
\if@newline, 2797, 3183,
3277, 3437, 3456, 3467
\if@noindex, 2493, 2606
\if@nostanza, 2788, 3740
\if@pageinclindex,
5165, 5216, 5632
\if@pageindex, 2498,
3708, 5162, 5233,
5651, 6365, 6368,
6369, 6371
\if@printalllinenos,
2478, 3180, 5827
\if@RecentChange, 6690,
6774

148

\if@uresetlinecount,
2470, 3677
\if@variousauthors,
7743, 7756
\ifcsname, 196, 225, 243,
248, 253, 5194, 5207,
7881, 7886, 7891, 8205
\ifdefined, 3848, 5426,
8162, 8164, 9289
\ifdtraceoff, 9491
\ifdtraceon, 9490
\ifgmcc@mwcls, 9192,
9391, 9395, 9417
\ifgmcc@oldfonts, 9262,

9431, 9496
\ifgmdQRadef@cshook,
4350, 4648
\ifgmdQRadef@star, 4469,
4520
\ifgmd@dsVerb, 3493,
3528, 5982
\ifgmd@glosscs, 4343
\ifilrr, 3355, 3359, 3598,
3642, 3991
\IfNoValueT, 8365
\ifprevhmode, 3384,
3478, 3628
\IfValueF, 7142
\IfVvalueT, 3029, 7007,
7138, 8325, 8327,
8329, 8335, 8341
\IfValueTF, 5605, 5615,
5692, 5702, 5742,
5753, 5807, 6982, 8252
\ifvoid, 9893
\ilju, p. 24, 3658
\ilrr,p. 24,3644
ilrr,p.24
\ilrrfalse, 3662
\ilrrtrue, 3651
\im@firstpar, 4371,
4373, 4375, 5404,
5405, 5408
\incl@DocInput, 7341,
7544, 7567, 7571,
8813, 8814, 8830
\incl@filedivtitle,
7702, 7731
\incl@titletotoc, 7689,
7703
\InclMaketitle, 7335, 7680
\includeltpatch, 9991,
10015, 10025, 10161
\incmd, p. 24, 8139
\incs, p. 24, 8122, 8137
\index@macro, 4375,
5145, 5408, 5485, 5571

\index@prologue, 6356,
6363, 6415, 7470
indexallmacros, p.12, 2509
IndexColumns, p.23
\indexcontrols, 4280, 4338

\indexdiv, 6359, 6363,

6927, 9910
\indexentry, 5625
\IndexInput, p. 12, 7948,

9997
\IndexLinksBlack, p.23,

6376, 6416, 6420, 6883
\IndexMin, p. 23, 6410,

6410, 6415
\IndexParms, p. 23, 6417,

6424, 6934, 10472
\IndexPrefix, p. 22, 5170,

5222
\IndexPrologue, p.23,

p. 121, 6356
\inenv, p. 24, 8137
\inhash, 8143
\InputIfFileExists, 10014
\inputlineno, 3161, 3162,

3199, 3503
\inverb, p. 23, 8052
\inverbpenalty, 8072, 8082

\keepsilent, 288

\kernel@ifnextchar, 7847

\kind@fentry, 5153, 5155,
5159, 5166, 5168

KVfam, p.15, 4565

KVpref, p.15, 4544

\last@defmark, 5198,
5339, 5344, 5345,
6695, 6707, 6708,
6709, 6754, 6757
\LaTeXe, 9974, 10490
\LaTeXpar, p.25
\1dots, 9996
\levelchar, p. 23, 4143,
4339, 6681, 6730, 6744
\licenseNoteLeaf, 281
\LineNumFont, p. 22,
p. 119, 3186, 3700,
3703, 8519, 9305
\lineskip, 7630
linesnotnum, p.12, 2465
\listfiles, 9876
\LoadClass, 9399, 9404
1su, 9325
\1ltxLookSetup, p. 11,

7534, 7540, 9693,
9878, 10410

\1ltxPageLayout, p. 11,
7172, 7536
\1v, 9577

\macro, 5997, 6020
macro, p.18, 5997
macrox, 6020
\macro@iname, 4220,
4238, 4241, 4253,
4375, 5408, 5414,
5441, 5485, 5571
\macro@pnamne, 4222,
4242, 4254, 4352,
4354, 4355, 4364,
4375, 4377, 4378,
4381, 4503, 4835,
4836, 4838, 4839,
4860, 4865, 4870,
5100, 5397, 5399,
5403, 5408, 5465,
5466, 5469, 5472,
5485, 9620, 9621
\macrocode, 5883, 9649
macrocode, p. 10, p. 27, 5861
macrocodex, 5850 S
\MacrocodeTopsep, 8499
\MacroFont, p. 119, 8489
\MacroIndent, p.119, 8497
\MacroTopsep, p. 119,
2709, 2728, 2770,
5998, 6007
\main, 8676
\MakeGlossaryCon|
trols, p. 20, 6669,
6679
\MakePercentComment, 8708
\MakePercentIgnore,
6666, 8707
\MakePrivateletters,
p-16, p. 22, 2942,
4169, 4458, 5077,
5126, 5297, 5358,
5381, 5451, 5488,
5505, 5587, 5596,
5731, 5767, 5904,
6001, 6126, 6321,
6668, 8437, 8454
\MakePrivateOthers,
4177, 5299, 5360,
5383, 5452, 5489,
5507, 5599, 5732,
5769, 6001, 8445, 8455
\MakeShortVerb, p. 13
\makestarlow, 9575
\mand, p. 26, 8262
\marginparpush, 5786

149

\marginpartt, p. 17, 5806,
5816, 9339, 9500, 9502

\marginparwidth, 5787,
7186

\mark@envir, 3283, 3465,
5537

\mathindent, 9423

\maxdimen, 10172

\maybe@marginpar, 4377,
4399

\mcdiagOff, 8225

\mcdiagOn, 8221, 9687, 9863

\mch, 9565

\meta, p. 121

\metachar, 8332, 9565

\MetaPrefix, 136

\MetaPrefix$S, 136

minion, p.126, 9%

\mod@math@codes, 6603,
6606, 6610, 6613

\Module, 6540, 6602

\ModuleVerb, 6575, 6605

\ModuleVerbClose, 3507,
6608

\month, 2342, 7115, 7119

mptt, 9273

\Msg;, 348, 349, 350, 351,
352, 353, 354, 355, 356

\multiply, 9898

mwart, p.125, 9202

mwbk, p. 125, 9209

mwrep, p. 125, 2331, 9205

myriad, 9322 o

\n€melet, 4504, 4505,
5886, 5887, 6709,
7915, 7916, 7917
\nacute, 9446, 9461, 9710
\Name, 193, 242
\NamedInput@finish, 2891
\NamedInput@prepare, 2827
\narrationmark, p. 21,
2662, 3375, 3478,
3860, 3868, 8077,
8091, 8093, 8097,
8105, 8163, 8256
\narrativett, 4079,
4082, 5816, 7362,
7366, 7485, 7488,
8089, 8272, 9343, 9344
NeuroOncer, 6087
\newbox, 4925
\newcount, 4920, 6099,
6413, 6771, 6873,
7027, 10171

\newcounter, 3681, 3684,

3685, 4952, 7031,

8200, 8686
\newdimen, 4921, 6410, 6871
\newgeometry, 9479
\newgif, 2797, 2805, 3384,

3737, 3740, 3761, 3766
\newlength, 2686, 2690,

2696, 3328, 3331, 4928
\newline, 8105 -
\newlinechar, 140, 141,

4101, 7823, 7835
\newread, 4926
\newskip, 2708, 2709,

4000, 4922
\newtoks, 2673, 4924
\newwrite, 4927
\nlperc, p. 24, 8105
\nlpercent, p. 24, 8107,

8141, 8143
nochanges, p.125, 9238
\noeffect@info, 8525,

8543, 8544, 8545,

8546, 8691, 8696,

8697, 8701
\NOEOF, 8914
noindex, p.12, p.125,

2495, 9231
nomarginpar, p.13, 2536
\NonUniformSkips, p. 21,

2758
\NOO, 129, 306, 337, 340,

343,353
\nostanza, p. 21, 2785
\noverbatimspecials,

4380, 8819
\numexpr, 3162, 6780, 7756
\nX, 105

\obeyspaces, 3089, 3103,
5936
\ocircum, 9447, 9464
\OCRInclude, 8812
\oddsidemargin, 7187
\oe, 9468
\OK, 9580
\old@MakeShortVerb, 8749
oldcomments, 9610
\olddocIncludes, p.11,
p. 27,7566, 9880,
9957, 10412
\OldDocInput, p. 10, p. 27,
7567, 8746, 9737
\OldMacrocodes, p. 27, 8751
\OldMakeShortVerb,
9698, 9885, 10416
\oldmc, 5883, 5891

oldme, p. 27, 5883

oldmcx, 5886

\oldmc@def, 5941, 5947

\oldmc@end, 5942, 5948

\OnlyDescription, p. 23,
8605, 10357

\opt, p. 26, 8267

\oumlaut, 9448, 9462, 9963

outeroff, p.125, 2331, 9220

\outFileName, 209, 212

\pack, 309, 327
\PackageError, 4737,

5435, 7263, 7269,

7284, 7450
\PackageInfo, 8517, 8525
\PackageWarningNo|

Line,

6671
\PageIndex, 8567, 8569
pageindex, p.12, 2500
pagells, p.126, 9314
\pagenumbering, 10029,

10042
\pagestyle, 9521, 10167,

10228
\par, 2769, 2777, 2787,

2881, 2933, 3244,

3357, 3560, 3580,

3593, 3618, 3669,

3867, 3992, 5851,

5853, 5862, 5864,

6000, 6007, 6221,

6437, 6440, 7007,

7145, 7591, 7628,

7633, 7637, 8010,

8025, 8029
\paragraph, 7500
\ParanoidPostsec, 9417
\partopsep, 2743
\PassOptionsToClass,

10298, 10327, 10345,

10359
\PassOptionsToPack|

age, 9175, 9232,

9349, 9362, 9366,

9683, 9857, 10393
\patchdate, 10003, 10012,

10020, 10021
\pdef, 2662, 2776, 2905,

3020, 3034, 3039,

3840, 3847, 3862,

4082, 4885, 4903,

5764, 6597, 6952,

6974, 6992, 7124,

7926, 7928, 7931,

150

7948, 8052, 8064,
8084, 8105, 8107, 8122
\pdfeTeX, p.25
\pd£TeX, p. 25
\perCent, 137
\perCents, 137
\Pk, p. 24, 2339, 2340, 2370,
7238, 7906, 9725,
9974, 10427, 10428,
10429, 10502, 10503
\PlainTeX, p.25
\pprovide, 4887
\preamBeginninglLeaf, 275
\preamEndingLeaf, 284
prefix, 4529
\prependtomacro, 8353
\prevhmodegfalse, 3251,
3300, 3394, 3584, 3613
\prevhmodegtrue, 3393
\PrintChanges, p. 19,
2380, 6946, 6950,
7409, 10196, 10223,
10351, 10517
\PrintDescribeEnv, p. 119
\PrintDescribeMacro,
p-119
\PrintEnvName, p. 119
\PrintFilesAuthors,
p-10,7747
\PrintIndex, 2384, 6449,
7409, 10218, 10224,
10353, 10521
\printindex, 6451, 6452,
7409
\printlinenumber, 3279,
3463, 3699, 3705
\PrintMacroName, p. 119
\ProcessOptionsX, 9369
\protected, 3841, 4011, 4014
\provide, 4886, 8263, 9556
\ProvideFileInfo,p. 25,
7843, 7859
\ProvideSelfInfo, 7859
\ProvidesFile, 10005
\providesStatement, 285
\Provides gmFileKind, 180
\ps@plain, 7618
\ps@titlepage, 7618

\gemph, p.9, 3034

\gemphQ, 3036, 3039

\agfootnote, p. 9, 3020

\gfootnote@, 3022, 3025

\quad, 9519, 9520

\QueerCharOne, 3917,
3924, 3926

\QueerCharTwo, 3840,
3888, 3892
\QueerEQL, p. 9, 2850,
2985, 3955, 5852,
5863, 6451, 6948,
7572, 8914, 8915
\QueerV, 3847, 3889
quotation, p.25, 8o1y
\quote@char, 4219, 4240,
4252, 4276, 5440
\quote@charbychar,
5415, 5417, 5431, 5442
\quote@mname, 5399, 5413,
5476, 5565
\quotechar, p. 23, 4141,
4281, 4339, 5171,
5218, 5481, 5568,
6680, 6739
\quoted@eschar, 5171,
5218, 5481, 5482,
5568, 5569

\raggedbottom, 9509
\read, 9903
\RecordChanges, p. 19,
6673, 6858, 6859,
7409, 9527, 9530,
9949, 10350
\relaxen, 4909, 5084,
8350, 8820, 8821,
9451, 9702
\renewcommand, 3751,
3753, 4935, 6676, 9514
\RequirePackage, 2455,
2457, 2567, 2570,
2587, 2599, 2602,
2610, 6401, 9177,
9376, 9413, 9434,
9437, 9473, 9486,

9494, 9534, 9535, 9536
\resetlinecountwith, 3680

\Restore@Macro, 4380,

4913, 5059, 5060,

5105, 6344, 7956,

8822, 8830, 9646, 10448
\Restore@Macros, 5672
\Restore@MacroSt, 5131,

5132, 7919, 7920, 7921
\RestoringDo, 7348
\ResultsIn, 4091, 4099
\ResumeAllDefining,

p- 16, 5057
\ResumeDef, p. 16, 4911
\ResumeDefining, p. 15,

4912, 5125
\reversemarginpar, 5785
\rightline, 9551

\SameAs, 6995
\scan@macro, 3415, 4196,

9669 o
\scan@macro@, 4197, 4202
\scantokens, 3519, 3863,

4103, 7008, 7835
\scanverb, 4381, 5743,

5744, 5754, 5755,

5807, 8332, 8339, 8345
\scshape, 10488
\secondoftwo, 190
\SelfInclude, p. 11, 2362,

7519, 10231, 10511
\SetFileDiv, p. 25, 7439,

7442, 7444, 7452,

7513,7535
\setkeys, 4480, 4487, 4514
\setmainfont, 9292
\setmonofont, 9336
\setsansfont, 9318, 9321,

9324, 9327
\settexcodehangi, 2675,

2680, 3287, 3295, 3629
\SetTOCIndents, 9519, 9520
\sgtleftxii, 6525, 6569
\SkipFilesAuthors,

p-10, 7749
\skipgmlonely, p. 25,

2368, 7975
\skiplines, p. 28, 132, 3211
\SliTeX, p.25 -
\smallerr, 7706
\smallskipamount, 2737,

2738
\smartunder, 9545, 10436
\SMglobal, 4508, 5048,

5059, 5060, 5094,

5105, 5131, 5132
\SortIndex, 8640
\special, 3425, 3426
\special@index, 5176,

5652, 5656, 5829
\SpecialEnvIndex, 8638
\SpecialEscapechar, 8503
\SpecialIndex, 8634
\SpecialMainEnvIndex,

8629
\SpecialMainIndex, 8626
\SpecialUsageIndex, 8636
\spifletter, 9580
\square, 9551
StandardModuleDepth, 8686
\stanza, p. 21, p. 25, 2368,

2370, 2776, 8011
\stanzaskip, p. 21, 2696,

2701, 2727, 2728,

151

2729, 2734, 2735,

2742, 2778, 3246
star, p.15, 4520
\step@checksum, 4209, 7034
\StopEventually, p. 23,

8585, 8605, 10164
\Store@Macro, 4905,

5048, 5094, 6338,

7951, 8813, 9618, 10447
\Store@Macros, 2604, 5670
\Store@MacroSt, 4508,

7912, 7913, 7914
\stored@code@delim, 5900
\storedcsname, 8026, 8030
\StoreEnvironment, 8015
\StoringAndRelax|

ingDo,

7331
\StraightEOL, p. 9, 2985,

3022, 3036, 3942,

4102, 6451, 6668,

6948, 7973, 7986,

8009, 8242, 8748
\strcmp, 108, 3504
\StreamPut, 236
\strip@bslash, 5093,

5095, 5097, 5099
\subdivision, p. 24,

7499, 8191
\subitem, 6438
\subsubdivision, p. 24,

7500, 8194
\subsubitem, 6439
\supposedJobname, 100, 108
sysfonts, p.125, 9264

\tableofcontents, 2358,
2982, 2983, 7408,
9724, 10038, 10454
\task, 9672, 10085
\TB, p. 25
\TeXbook, p. 25
\texcodelhook, 2952,
2962, 8826, 9575
\Text@CommonIndex,
5489, 5492
\Text@CommonIndexStar,
5489, 5496
\text@indexenvir, 5461,
5463, 5497, 5758, 8473
\text@indexmacro, 5396,
5457, 5493, 5746, 8464
\Text@Marginize, 4402,
4839, 5540, 5743,
5744, 5754, 5755,

5773, 5779, 5803,
6078, 8462, 8470

\Text@MarginizeNext,
6070, 6075, 6077
\TextQUsgEnvir, 5734, 5749
\TextQUsgIndex, 5452, 5455
\TextQUsgIndexStar,
5452, 5460
\Text@UsgMacro, 5734, 5737
\TextCommonIndex, p. 18,
5487
\TextIndent, p. 21, 2686,
3633, 3785
\TextMarginize, p. 17, 5764
\texttt, 4082, 7007,
10489, 10492
\TextUsage, p. 16, 5727
\TextUsgIndex, p.18,
5450, 8636
\textwidth, 3656, 4100,
7176, 7471
\thanks, 7627, 7644, 7687,
7694, 7928, 9974,
10490, 10502
\theCodelineNo, p. 119, 8518
\thecodelinenum, 3186,
3700, 8520
\thefilediv, 7366, 7464,
7466, 7468, 7485,
7488, 7670
\theglossary, 7410
theglossary, 6879
theindex, 6414
\thepart, 9995
\thesection, 9514
\thfileinfo, p. 26,7928
tikz, 9360
\title, 2339, 7641, 8818,
9974, 10427, 10489,
10502
\titlesetup, 7626, 7653,
9524
\toCTAN, p. 20, 6952
\tolerance, 2842
\traceoff, 9491
\traceon, 9490
trebuchet, p. 126, 9319
\trimmed@everypar,
3816, 3818
\ttverbatim, 2936, 5902,
6394, 6395, 8088
\twocoltoc, 2338, 9695,
9882, 10413
type, p.15, 4577
\type@bslash, 8093

\un@defentryze, 5160, 5193
\un@usgentryze, 5156, 5206

\UnDef, p. 16, 4895, 4905,
4909, 4913, 5060, 5084
\UndoDefaultIndexEx |
clusions, p.18,
6337
\unexpanded, 4402, 4403,
5981, 6965, 6983,
6984, 6986, 7385, 7399
\ungag@index, 5672, 8575
\unhbox, 9894
\UniformSkips, p. 21,
2725, 2746, 2751, 2758
\unless, 108, 2788, 3597,
3646, 3661, 3848, 7262
\UnPdef, p. 16, 4903
\unvbox, 9894
uresetlinecount, p.12,
2472
\UrlFix, 9571
\UrlFont, 9344
\usage, 8678
\usepackage, 9873, 9955,
10401
\usepreamble, 322, 335
\UsgEntry, p. 22, 5278, 8678
\uumlaut, 9449, 9463, 9964

\value, 3161
\vcenter, 9895
\verb, p. 23, 2604, 3873,
4067, 4380, 6394
\verb@balance@group, 3850
\verb@egroup, 3872, 4066
\verb@egrouplV, 3856, 3872
\verb@lasthook, 5806
\verbatim, 4095, 8824
\verbatim@specials,
5464, 5546, 6394, 6395
\verba|
tim@specials@list,
5426, 5429
\verbatimchar, p. 23,
p. 121, 4364, 5145,
5403, 6738, 6740, 8660
\VerbatimContents, 4103
\verbatimfont, 2935, 4079
\verbatimhangindent, 2676
\verbatimleftskip, 8823
\VerbatimPitch, 4089
\verbatimspecials,
p.13,p. 126
\verbcodecorr, 3665
\verbeolOK,p.13
\VerbHyphen, 2650
\verbhyphen, 2662, 3868,
8055, 8096
\verbLongDashes, 2334

152

\visiblespace, 3345, 8091

\VisSpacesGrey, p. 13,
3112, 10404

\vsize, 9904

\wd, 9906
\Web, p. 25
\We |

\writeto, 201, 326, 334,
339, 342

\X@date, 10007, 10011, 10018
\xA, 104, 197, 206, 212, 216,
226, 244, 249, 254,
7882, 7887, 7892
\Xdef, 10010, 10015

bern@Lieder@ChneOelzaxdef@filekey, 7338,

4985
\widowpenalty, 2837
withmarginpar, p.13, 2534
\writefrom, 203,333
\WritePreamble, 205

7342, 7362
\Xedekfracc, 9562

\XeTeX, p. 25
\XeTeXthree, 9455
\xiiclub, 4142, 6681

\xiihash, 7263, 10421
\xiilbrace, 8096, 8098
\xiipercent, 5986, 5989,
6609, 7113, 7117
\xiispace, 4378
\xiistring, 4242, 5339,

5397, 5465, 5522
\Xpatch, 10019, 10020

\year, 2344, 7115, 7119

\z@skip, 8823, 9905
\zfQeuencfalse, 9454
\zfQinit, 9289

command)

10223 \1let \PrintChanges\relax
10224 \let\PrintIndex\relax

10226 \gmdoccMargins

10227 \clearpage

10228 \csname, ,@ifnotmw\endcsname{\pagestyle{headings}}{\pagestyle{%
outer}}

10230 \gmdocIncludes

10231 \SelfInclude { %

10233 \csname_gag@index\endcsname% we turn writing outto the .idx out for the
driver since it’s not a part of The Source.

10236 }

10238 \end{document }

10242 Touse this file to produce a,fully, indexed source, code
10243 you_need, to, execute the following, (or_equivalent) commands:

10245 latex, source2e_by_gmdoc.tex

10247 makeindex,,-s.gmsource2e.ist,,source2e_by_gmdoc.idx
10248 makeindex, -s,gmglo.ist, —o.source2e_by_gmdoc.gls.,
source2e_by_gmdoc.glo

10250 latex, source2e_by_gmdoc.tex
10251 latex,;sourceze_by_gmdoc.tex

10254 The,_makeindex, ,style gmsource2e.ist,is used, in, place of. the,
usual

10255 doc,gind.ist to_ensure that, I, is used, in, the sequence I J_ K

10256 not ,I,,II,,II, which would be the, default makeindex, behaviour.

10258 The,third run with.latex,is.only.required to.get_ the table_of

10259 contents entries,for the.change.log.and index. . You may.speed.
things,up

10260 by, ,using the, \includeonly, mechanism so.as, not, to. typeset, the,
source

10261 £iles,on the second, run. This involves, .changing.the file

10262 1t xdoc. cfg

10263 between, the, latex, runs.

10265 The following unix,script, automates, this.

153

10266 (It_could_easily be_ported, to.scripts,for DOS_or VMS,

10267 rm,_is_ReMove a, file, sand_echo."..." . >.file . writes,... to.
"file".)

10270 After, this,script. (after.the,second,,)uisoan
similar,script

10271 that, will, produce, the documentation, for all the files, in, the,
base

10272 distribution,that, are *not*_included, in.sourceze.dvi. This,,
second,script

10273 was requested, _but _before using, it, beware it will, take a.
long. time!

10274 It may_however, be modified, as.required, .eg to.not typeset.the,
fdd,.files

10275 or Wwhatever...

Sty R R R

10279 Natror,, (GM) : ,I~didn't touch, the following so,it's probably,

not,quite suitable
10280 for,,gmdoc-ing.

e R

10284
10285 #! /bin/sh

10287 rmy —f,source2e_by_gmdoc.gls sourceze_by_gmdoc.ind,,
sourcez2e_by_gmdoc.toc

10289 # First, run:

10290 #, ,Create new_ standard ltxdoc.cfg, file

10291 #, Pass, the, (possibly empty) list, of arguments supplied on the
10292 #,,command, ,[1ine to.article class.

10293 #

10204 #,1f you_use_ A4, paper, ,running this,script.with_ argument

10295 ¥ @4pPaper

10296 #.May.,save_about, .30 pages.

10297 #

10298 €cho,,"\PassOptionsToClass{$x}{article}" > ltxdoc.cfg

10301 #_Now,_LaTeX the file with, this, cfg file.
10302 #
10303 latex, sourceze.tex

10306 #._Make the, Change log and Glossary.

10307 #

10308 makeindex, —s,sourceze.ist, sourceze.idx

10309 Makeindex, -s,,gglo.ist —o.sourceze.gls, source2e.glo

10312 #,Second, ;run: append, \includeonly{} to.ltxdoc.cfg. to.speed up..

things

10313 #., (this, run needed only to..get,.changes, and index, listed in,,
.toc file)

10314 #

10315 #_Note,that the index, will not, be made incorrect by, the.,
insertion

10316 #.,0f, the_ table, of contents as_ the_ front matter uses, a.,
diferent, page

154

10317 #_numbering, scheme.
10318 #
10319 €cho.,"\includeonly{}".>> ltxdoc.cfg

10321 latex, ,sourceze.tex

10324 #.Third and, final,.run, to_put.everything together.
10325 # First, restore the cfg file:

10326 ¥

10327 €cho,,"\PassOptionsToClass{$x}{article}" > ltxdoc.cfg
10328 latex, ,source2e.tex

10331
mgz#!/bin/sh

10334 #_Running, this,script,will, process, all the dtx, fdd and,
*guide.tex

10335 #and, ltnewsk.tex, files, in, the, LaTeX distribution, except.the,
dtx

10336 #,files included, in, sourceze.tex.

10337 #, (Theshell first,script.in, the comments, of sourceze.tex, will

10338 #,process, those.)

10340 #_ ANy, ,command, , line arguments, (eg.a4paper) .are taken, as.,
options to.the
10341 #Larticle, class.

10343 #.,This, script. is.likely to.take ages!

10345 echo,,"\PassOptionsToClass{Sx}{article}" Lo uuuuummmummmas>0
ltxdoc.cfg

mmﬁeChOu"\batChmOde"uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu>>u

ltxdoc.cfg

10348 #.,The_next, four lines, produce, full, indexes.and..change logs

10349 #_you_may.not_want_those.

10350 echo,,"\AtBeginDocument { \RecordChanges } "o >> 0
ltxdoc.cfqg

10351 €cho,,"\AtEndDocument { \PrintChanges}" . uoumummmmmmosss>> 0
ltxdoc.cfqg

10352 €cho,,"\AtBeginDocument { \CodelineIndex\EnableCrossrefs}" >>,
ltxdoc.cfqg

10353 €cho,"\AtEndDocument {\PrintIndex}" . oo > >0
ltxdoc.cfqg

10355 #., 1 £ you,_do,not, want, .any,.code, listings, . just documentation,
then instead

10356 #.,0f the above four, lines, uncomment, the following:

10357 #.echo,,"\AtBeginDocument { \OnlyDescription}" . . mmmmmnnn>>0
ltxdoc.cfqg

10359 €cho,,"\PassOptionsToClass{S*}{article}" L uoummmmmmmoons>0
ltxguide.cfg

w%OeChOu"\batChmOde"uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu>>u

ltxguide.cfg
10362 Cpultxguide.cfg, ltnews.cfg

10365 for, i, in xdtx *fdd *guide.tex,ltnewsx.tex

155

\BasePath

10366 do
10367 B="basename Si .dtx"

10369 1f., (grep."Include{SB}" . sourceze.tex, >/dev/null.;.)
10370 then

10371 echo, In, sourceze: Si

10372 €lse

10373 echo, latex, Si

10374 1f (latex.$i >./dev/null)

10375 then

10376 echo,latex, Si

10377 latex,$i,> /dev/null

10378 echo makeindex, -s,gind.ist, $B.idx

10379 makeindex, -s.gind.ist, $B.idx, > ./dev/null 2> /dev/null

10380 echo_makeindex -s.,gglo.ist, -0.$B.gls. $B.glo

10381 makeindex, -s.gglo.ist, —0.$B.gls, $B.glo. > /dev/null, 2>,
/dev/null

10382 echo,latex, Si

10383 latex, $i, > /dev/null

10384 else

10385 echo,"!!! LaTeX ERROR: 3i. (See SB.log.)"

10386 fi

10387 fi

10389 done

10391 {/ LaTeXsource)

10392 {*docbygmdoc>

10393 \PassOptionsToPackage{hyperindex=false}{hyperref}% Because FM writes
some almost explicit indexing commands where he uses ‘encapsulating’ i.e.,
a command to encapsulate the page number, which would interfere with hy-
perref’s default | hyperpage.

10398 \documentclass[countalllines,

10399 codespacesblank, ,outeroff, pagella, . cronos, ,cursor,
10400 font spec=quiet] {gmdocc}

10401 \USepackage{array}

10404 \VisSpacesGrey

10406 \def\BasePath{/home/natror/texmf/source/latex/base/}% Ofcourse, you
should change it to the respective path on your computer.

10410 \lthookSetup

10411 \gmdoccMargins

10412 \0lddocIncludes$% This is the crucial declaration.
10413 \twocoltoc

10415 \DeleteShortVerb\ |
10416 \OldMakeShortVerbx\ |
10417 \HideAl1lDefining

10419 \makeatletter

10421 \edef\gmd@wykrzykniki{\xiihash\space\xiihash\space}

10422 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}
10423 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}
10424 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}

156

\Qtempc

\filedate
\fileversion

\filedate
\fileversion

\dst

10426 \author{Frank _Mittelbach, \and David Carlisle}

10427 \title{The, \pk{doc}. and. \pk{shortvrb} Packages\\Land\\

10428 the.\pk{ltxdoc}. Class}

10429 \date{Typeset with the, \pk{gmdoc} package by Natror\\\today}

10431 \errorcontextlines=1000

10432 \fooatletter{%

10433 \typeout {QRQRQQ,_\meaning\@begindocumenthook}}
10434 \begin{document}

10436 \smartunder
10438 \typeout {@@E@E._ in, document}

10440 \maketitle
10441 \typeout {@RQRC_after title}

10443 \addtocontents{toc}{% to discard \begin{multicols}{2} of one included
document. (Table of contents is declared twocolumn with \twocoltoc

above.)
10446 \let\protect\begin\protect\@gobbletwo
10447 \protect\Store@Macro\protect\end
10448 \def\protect\end{\protect\Restore@Macro\protect\end%
\protect\@gobble}$%

10449 } % Because one document has a multicols twocolumn table of contents and the
other has usual one column, this will put entire toc in(to) multicols.

10454 \tableofcontents

10450 \makeatletter

10460 \AfterMacrocode{161}{% it’s for a tiny little typo in line 3299: They forgot to
wrap \@tempb and \@tempc in shortverbs

10462 \def\Q@tempb{\cs{@tempb} }\def\@tempc{\cs{@tempc}.}}

10464 \AtBegInputOnce{%
10465 \chschange{v2.1b}{2006/10/20}{2126}%
10466 \let\CheckSum\gobble

Of course, none of the documents is not loaded, so we give the fileinfo explicitly.

10469 \def\filedate{2004/02/09}\def\fileversion{v2.1b}%

10471 \let\GetFileInfo\relax

10472 \addtomacro\IndexParms{\arraybackslash}}% because \IndexParms use
\raggedright and FM executes \ IndexParms inside a tabular.

10475 \DocInclude [\BasePath] {doc}

10477 \AtBegInputOnce{%

10478 \chschange{v2.ou}{2006/10/20}{410}%

10479 \let\CheckSum\gobble

10480 \def\filedate{1999/08/08} . \def\fileversion{v2.ou}% seeline10469.
10482 \let\GetFileInfo\relax

The rest of this \AtBegInputOnce’s contents is necessary since DC wrote it not
commented out, which with doc results with printing it both to the package (class) and
the documentation, but with gmdoc it puts this stuff in the code layer thatll be only
printed verbatim.

10488 \providecommand\dst {\expandafter{\normalfont\scshape,
docstrip}}

157

10489 \title{The_file \texttt{ltxdoc.dtx} for use_ with

10490 \LaTeXe.\thanks{This, file has, version
10491 number, \fileversion, dated, \filedate.}\\[2pt]
10492 It contains, the code for \texttt{ltxdoc.cls}}

10493 \date{\filedate}
10494 \author{David Carlisle}
10495 \maketitle}

10497 \DocInclude [\BasePath] {1txdoc}%
10499 \gmdocIncludes

10501 \AtBegInputOnce{%
10502 \title{\pk{doc_by_gmdoc.tex} The Driver\thanks{As mentioned,

in_the

10503 title, .I~typeset,these package, and class, with, the \pk{$%
gmdoc}

10504 package, ,for which, are they.a~great, inspiration, and, the,
base.

10505 The_typesetting.needed only .a~few tricks, so here,
i~give the

10507 code of the,, 'driver': a~snake eats its. tail ;-)..}}

10508 \author {Grzegorz, ‘Natror' Murzynowski}$%

10509 \date{\today}%

10510 \maketitle}

10511 \SelfInclude

10513 \typeout {%

10514 Produce, change, log with**J%

10515 Mmakeindex -r, -s,gmglo.ist, -o.\jobname.gls, \jobname.glo**J

10516 (gmglo.ist,should be put,_into, some texmf/makeindex,,
directory.)”"*J}

10517 \PrintChanges

10518 \typeout {%

10519 Produce_index, with**J%

10520 makeindex, -r.\jobname”"J}

10521 \Print Index

10523 \end{document }
Makelndex shell commands:

10527 makeindex, ,—r doc_gmdoc
10528 makeindex, -r -s.gmglo.ist, —o.doc_gmdoc.gls, doc_gmdoc.glo

_ bf: _ bfseries _
10533 {/ docbygmdoc)

(For my GNU Emacs:) Local Variables: mode: doctex coding: utf-8 End:
10543 \endinput

End of file ‘gmdoc.gmd".
eof)

158

Change History

gmdoc changed
\c@ChangesStartDate:
from TgX's arithmetic to \numexpr, 6780
gmdoc vo0.74
\edverbs:

used to simplify displaying shortverbs,

9540
gmdoc vo.75
General:
CheckSum 130, 9024
gmdoc vo.76
General:
CheckSum 257, 9024
\OK:

The gmeometric option made
obsolete and the gmeometric package
is loaded always, for
XqIEX-compatibility. And the class
options go xkeyval., 9580

gmdoc vo.77
General:
CheckSum 262 , 9024
\OK:

Bug fix of sectioning commands in
mwcls and the default font encoding
for TeXing old way changed from QX
to T1 because of the ‘corrupted NTFS
tables’ error, 9580

gmdoc vo0.78
General:
CheckSum 267 , 9024
\OK:

Added the pagella option not to use
Adobe Minion Pro that is not freely
licensed, 9580

gmdoc v0.79
General:

CheckSum 271, 9024

gmdoc vo.80
General:

CheckSum 275, 9024

CheckSum 276 , 9024

gmcc@fontspec:

added, 9349

gmdoc vo0.81
General:
put to CTAN on 2008/11/22, 9024
gmdoc vo0.82
General:

CheckSum 303, 9024

CheckSum 316 because of
\verbatimspecials, hyphenation
in verbatims etc., 9024

CheckSum 320, 9024

\ac:

added, 9556

countalllines:

gmdoc option here executed by default,
9362

gmcc@cronos:

added, for Iwona sans font, 9317

gmcc@cursor:

added, for TgX Gyre Cursor mono font,
which [embolden a little and shrink
horizontally a little, 9329

subtly distinguished weights of the
TEX Gyre Cyursor typewriter font in
the code and in verbatims in the
commentary, 9329

\gmcc@dff:

I commented out setting of Latin
Modern fonts for sans serif and
monospaced: XgIEX/fontspec does
that by default., 9292

gmcc@lsu:

added, for Lucida Sans Unicode sans
font, 9325

gmcc@myriad:

added, for Myriad Web Pro sans font, 9322

gmcc@trebuchet:

added, for Trebuchet MS sans font, 9319

\LineNumFont:

added, 9305

gmdoc vo0.83
General:

CheckSum 332 because of abandoning
gmeometric since geometry v.5.2
provides \newgeometry, 9024

gmdoc v0.96
\gmFileKind:

CheckSum 2395, 408

gmdoc vo.98d
\c@ChangesStartDate:

An entry to show the change history
works: watch and admire. Some sixty
\changes entries irrelevant for the
users-other-than-myself are hidden
due to the trick described on p.93. 6808

gmdoc v0.991
\gmFileKind:

CheckSum 6134 because of
compatibilising the enumargs
environment with
\DeclareCommand of gmutils v.0.991;
abandoning gmeometric, 408

put to CTAN on 2010/03/04, 408

gmdoc v0.992
\ds:

159

\CS etc. definitions moved to gmmeta

(part of gmutils), 8168
gmdoc v0.993
General:
CheckSum 7785, 9024
\verb@egroup:

due to troubles with bad fontification
in the narration layer I implement the
counterpart to \narrativett:
\codett, which is \tt by default so
it even may be transparent to the
users., 4069

gmdoc vo.99a
\gmFileKind:

CheckSum 4479, 408

gmdoc vo.99b
General:

Thanks to the \edverbs declaration in
the class, displayed shortverbs
simplified; Emacs mode changed to
doctex. Author’s true name more
exposed, 8915

gmdoc v0.99¢
General:

A bug fixed in \DocInput and all
\expandafters changed to \@xa
and \noexpands to \@nx, 8915

The TgX-related logos now are
declared with \DeclareLogo
provided in gmutils, 8915

\DocInput:

added ensuring the code delimiter to
be the same at the end as at the
beginning, 2867

\gmd@bslashEOL:

a bug fix: redefinition of it left solely to
\QueerEOL, 4017

gmdoc vo.g99d
General:

\@namelet renamed to \n@melet to
solve a conflict with the beamer class
(in gmutils at first), 8915

\afterfi & pals made two-argument,
8915

\FileInfo:

added, 7796

gmdoc vo.99e
General:

a bug fixed in \DocInput and

\IndexInput, 8915
\gmFileKind:

CheckSum 4574 , 408

gmdoc v0.99g
General:

The bundle goes XgIEX. The
TeX-related logos now are moved to
gmutils. **A becomes more

comment-like thanks to
re\catcode’ing. Automatic
detection of definitions implemented,
8915
\gmFileKind:
CheckSum 5229 , 408
hyperref:

added bypass of encoding for loading

url, 2572
\OldDocInput:

obsolete redefinition of the macro
environment removed, 8746

quotation:

added, 8052

gmdoc vo.g9h
General:

Fixed behaviour of sectioning
commands (optional two heading
skip check) of mwcls/gmutils and
respective macro added in gmdocc.

I made a tds archive, 8915
gmdoc v0.99i
General:

A “feature not bug” fix: thanks to
\everyeof the \[No]EOF is now not
necessary at the end of \DocInput
file., 8915

\gmFileKind:

CheckSum 5247 , 408

gmdoc v0.99j
\gmFileKind:

CheckSum 5266 , 408

quotation:

Improved behaviour of redefined
quotation to be the original if used
by another environment., 801y

gmdoc vo.99k
\gmFileKind:

CheckSum 5261, 408

hyperref:

removed some lines testing if XqTEX
colliding with tikz and most probably
obsolete, 2590

gmdoc vo.99l
\CodeSpacesGrey:

added due to Will Robertson’s
suggestion, 3108

codespacesgrey:

added due to Will Robertson’s
suggestion, 2551

\FileInfo:

\scantokens used instead of \write
and \@@input which simplified the
macro, 7830

\gmd@writeckpt:

Made a shorthand for

\Docinclude\jobname instead of

160

repeating 99% of \DocInclude’s
code, 7519
\gmFileKind:
CheckSum 5225, 408
macrocode:
removed \CodeSpacesBlank, 5863
gmdoc vo.g9gm
\@oldmacrocode@launch:
renamed from \VerbMacrocodes, 5957
A /\M.

there was \let**Mbut \QueerEOQOL is

better: it also redefines \ "M, 2850
General:

Counting of all lines developed (the
countalllines package option),
now it uses \inputlineno, 8915

\changes:

changed to write the line number
instead of page number by default
and with codelineindex option
which seems to be more reasonable
especially with the countalllines
option, 5642

\DocInclude:

resetting of codeline number with
every \filedivname commented
out because with the
countalllines option it caused
that reset at \maketitle after some
lines of file, 7455

\FileInfo:

\egroup of the inner macro moved to
the end to allow \gmd@ctallsetup.
From the material passed to
\gmd@FIrescan ending "M
stripped not to cause double labels., 7813

\gmd@bslashEOL:

also \StraightFOL with
countalllines package option lets
**M to it, 4017

\gmFileKind:
CheckSum 5354 , 408
CheckSum 5356 , 408

\thefilediw:

let to \relax by default, 7670

theglossary:

added \IndexLinksBlack, 6879

gmdoc vo.99n

General:

In-line comments’ alignment
developed, 8915

c@gmd@mc:

developed for the case of in-line
comment, 8229

\DeclareVoidOption:

Added the starred version that hides
the defining command only once, 5074

\finish@macroscan:
the case of \., taken care of, 4382
\gmboxedspace:
added \hboxes in \discretionary
to score \hyphenpenalty not
\exhyphenpenalty, 8064
\gmd@eatlspace:
\afterfifi added—a bug fix, 3375
\gmd@percenthack:
\space replaced with a tilde to forbid
a line break before an in-line
comment, 3478
\gmFileKind:
CheckSum 5409, 408
CheckSum 5547 , 408
\ilrr:
added, 3644
\nostanza:
added adding negative skip if in
vmode and \par, 2785
\pprovide:
added the starred version that calls
\UnDef, 4907
a bug fixed: \gmd@charbychar
appended to \next—without it
a subsequent in-line comment was
typeset verbatim, 4895
\verbcodecorr:
added, 3665
gmdoc v0.990
\@codetonarrskip:
abug fix: added \@nostanzagtrue, 3790
c@gmd@mc:
added the optional argument which is
the number of hashes (1 by default or
2 or 4), 8229
gmdoc v0.99p
c@gmd@mc:
added optional arguments’ handling, 8229
\DeclareCommand:
added, 4930
\gmFileKind:
CheckSum 5607 , 408
gmdoc v0.99q
\gmFileKind:
CheckSum 5603 , 408
gmdoc vo0.99r
\gmFileKind:
CheckSum 5607 , 408
put to CTAN on 2008/11/22, 408
\PrintChanges:
added, 6952
gmdoc v0.99s
General:
\@bsphack—\Qesphack added to
\TextMarginize, \Describe,

161

\DescribeMacro and
\DescribeEnv, 8915

\gmd@ifinmeaning moved to gmutils
and renamed to \@ifinmeaning, 8915

c@gmd@mc:

added \StraightEOL to let the in-line
comment continue after this
environment, 8229

\Code@UsgEnvir:

added \@sanitize in the starred

version, 5727
\DeclareOption:

declared as defining if without star
because \DeclareOptionx doesn't
define a named option and so it
doesn’t have a text argument, 4943

\egText@Marginize:
a bug fixed: braces added around #1, 5773
\FileInfo:

added assignment of \newlinechar,

7823
\gmboxedspace:

\newcommandx replaced with \pdef
and optional argument’s declaration
removed since nothing is done to #1
in the body of now-macro. Wrapped
in a group for setting
\hyphenpenalty, 8064

\gmd@ABIOnce:

deferred till the end of package to
allow adding titles
\AtBegInputOnce, 3052

\gmFileKind:

CheckSum 5974 because of enumargs
handling the argument types of
\DeclareCommand; handling
\verbatimspecials, including

writing them to index; introduction of
\narrativett including
\ampulexdef of gmverb internals, 408
\narrationmark:
added and
introduced—\code@delim forked to
what delimits the code
(\code@delim) and what is typeset
at the boundary of code:
\narrationmark, 2662
\narrativett:
introduced in gmutils and employed in
the narrative verbatims, including
\ampulexdef of the gmverb macros,
5738
\PrintChanges:
added, 6974
made a shorthand for \chgs not
\changes, 6952
\step@checksum:
I%!%!..sequence changed to ! ! !..
for better distinction, 7090
added, 7103
\TextQUsgEnvir:
added \@sanitize in the starred
version, 5764
\titlesetup:
abug fixed: \if\relax\@date
changed to \i£fx, 7680
gmdoc vo.99t
General:
Since geometry v.5.2 gmeometric is
obsolete so was removed, 8915
gmdoc v1.0
\gmd@chgs:
made \1long (consider it a bug fix),
6980, 6989

	Readme
	Installation
	Contents of the gmdoc.zip archive
	Compiling of the documentation
	Bonus: base drivers

	Introduction
	The user interface
	Used terms
	Preparing of the source file
	The main input commands
	Package options
	The packages required
	Automatic marking of definitions
	Manual marking of the macros and environments
	Index ex/inclusions
	The DocStrip directives
	The changes history
	The parameters
	The narration macros
	A queerness of label
	doc-compatibility

	The driver part
	The code
	The package options
	The dependencies and preliminaries
	The core
	Numbering (or not) of the lines
	Spacing with everypar
	Life among queer EOLs
	Adjustments of verbatim and verb
	Macros for marking of the macros
	Automatic detection of definitions
	DeclareDefining and the detectors
	Default defining commands
	Suspending (`hiding') and resuming detection

	Indexing of
	Index exclude list
	Index parameters
	The DocStrip directives
	The changes history
	The checksum
	Macros from ltxdoc
	DocInclude and the ltxdoc-like setup
	Redefinition of maketitle
	The file's date and version information
	Miscellanea
	doc-compatibility
	gmdocing doc.dtx

	OCRInclude
	Polishing, development and bugs
	[No] eof
	Intro
	Usage
	The Code
	The gmoldcomm package
	Some Typesetting Remarks
	The Body
	Index
	Change History

