%% %% This is file `sampleEq.tex', %% generated with the docstrip utility. %% %% The original source files were: %% %% glossary.dtx (with options: `sampleEq.tex,package') %% Copyright (C) 2005 Nicola Talbot, all rights reserved. %% If you modify this file, you must change its name first. %% You are NOT ALLOWED to distribute this file alone. You are NOT %% ALLOWED to take money for the distribution or use of either this %% file or a changed version, except for a nominal charge for copying %% etc. %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \documentclass[a4paper,12pt]{report} \usepackage{amsmath} \usepackage[header,border=none,cols=3]{glossary} \newcommand{\erf}{\operatorname{erf}} \newcommand{\erfc}{\operatorname{erfc}} \renewcommand{\theglossarynum}{\theequation} \renewcommand{\pagecompositor}{.} \renewcommand{\glossaryname}{Index of Special Functions and Notations} \renewcommand{\glossaryheader}{\bfseries Notation & \multicolumn{2}{c}{\bfseries \begin{tabular}{c}Name of the Function and\\the number of the formula\end{tabular}}\\} \makeglossary \begin{document} \title{A Sample Document Using glossary.sty} \author{Nicola Talbot} \maketitle \begin{abstract} This is a sample document illustrating the use of the \textsf{glossary} package. The functions here have been taken from ``Tables of Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. The glossary is a list of special functions, so the equation number has been used rather than the page number. This can be done by defining \verb|\theglossarynum| to be \verb|\theequation|. The equation numbers are a composite number made up of the chapter number and number of equation within the chapter. The two parts of the page number are separated by a fullstop. The default compositor is a dash \verb|-|, so it needs to be set to a dot by redefining the command \verb|\pagecompositor|. (This needs to be done \emph{before} the command \verb|\makeglossary|.) \end{abstract} \printglossary \chapter{Gamma Functions} \begin{equation} \Gamma(z) = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt \end{equation} \glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} \begin{equation} \Gamma(x+1) = x\Gamma(x) \end{equation} \glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} \begin{equation} \gamma(\alpha, x) = \int_0^x e^{-t}t^{\alpha-1}\,dt \end{equation} \glossary{name={$\gamma(\alpha,x)$},description=Incomplete gamma function,sort=gamma} \begin{equation} \Gamma(\alpha, x) = \int_x^\infty e^{-t}t^{\alpha-1}\,dt \end{equation} \glossary{name={$\Gamma(\alpha,x)$},description=Incomplete gamma function,sort=Gamma} \newpage \begin{equation} \Gamma(\alpha) = \Gamma(\alpha, x) + \gamma(\alpha, x) \end{equation} \glossary{name=$\Gamma(z)$,description=Gamma function,sort=Gamma} \begin{equation} \psi(x) = \frac{d}{dx}\ln\Gamma(x) \end{equation} \glossary{name=$\psi(x)$,description=Psi function,sort=psi} \chapter{Error Functions} \begin{equation} \erf(x) = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt \end{equation} \glossary{name=$\erf(x)$,description=Error function,sort=erf} \begin{equation} \erfc(x) = 1 - \erf(x) \end{equation} \glossary{name=$\erfc(x)$,description=Complementary error function,sort=erfc} \chapter{Beta Function} \begin{equation} B(x,y) = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt \end{equation} \glossary{name={$B(x,y)$},description=Beta function,sort=B} Alternatively: \begin{equation} B(x,y) = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi \end{equation} \glossary{name={$B(x,y)$},description=Beta function,sort=B} \begin{equation} B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) \end{equation} \glossary{name={$B(x,y)$},description=Beta function,sort=B} \begin{equation} B_x(p,q) = \int_0^x t^{p-1}(1-t)^{q-1}\,dt \end{equation} \glossary{name={$B_x(p,q)$},description=Incomplete beta function,sort=Bx} \chapter{Polynomials} \section{Chebyshev's polynomials} \begin{equation} T_n(x) = \cos(n\arccos x) \end{equation} \glossary{name=$T_n(x)$,description=Chebyshev's polynomials of the first kind,sort=Tn} \begin{equation} U_n(x) = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} \end{equation} \glossary{name=$U_n(x)$,description=Chebyshev's polynomials of the second kind,sort=Un} \section{Hermite polynomials} \begin{equation} H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) \end{equation} \glossary{name=$H_n(x)$,description=Hermite polynomials,sort=Hn} \section{Laguerre polynomials} \begin{equation} L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) \end{equation} \glossary{name=$L_n^\alpha(x)$,description=Laguerre polynomials,sort=Lna} \chapter{Bessel Functions} Bessel functions $Z_\nu(z)$ are solutions of \begin{equation} \frac{d^2Z_\nu}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} + \left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right) \end{equation} \glossary{name=$Z_\nu(z)$,description=Bessel functions,sort=Z} \chapter{Confluent hypergeometric function} \begin{equation} \Phi(\alpha,\gamma;z) = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} +\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\,\frac{z^3}{3!} + \cdots \end{equation} \glossary{name={$\Phi(\alpha,\gamma;z)$},description=confluent hypergeometric function,sort=Pagz} \begin{equation} k_\nu(x) = \frac{2}{\pi}\int_0^{\pi/2}\cos(x \tan\theta - \nu\theta)\,d\theta \end{equation} \glossary{name=$k_\nu(x)$,description=Bateman's function,sort=kv} \chapter{Parabolic cylinder functions} \begin{equation} D_p(z) = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} \left\{ \frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} \Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) -\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} \Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) \right\} \end{equation} \glossary{name=$D_p(z)$,description=Parabolic cylinder functions,sort=Dp} \chapter{Elliptical Integral of the First Kind} \begin{equation} F(\phi, k) = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} \end{equation} \glossary{name={$F(\phi,k)$},description=Elliptical integral of the first kind,sort=Fpk} \chapter{Constants} \begin{equation} C = 0.577\,215\,664\,901\ldots \end{equation} \glossary{name=$C$,description=Euler's constant,sort=C} \begin{equation} G = 0.915\,965\,594\ldots \end{equation} \glossary{name=$G$,description=Catalan's constant,sort=G} \end{document} \endinput %% %% End of file `sampleEq.tex'.