\documentclass[a4paper,12pt]{report} \usepackage{amsmath} \usepackage[colorlinks]{hyperref} \usepackage[style=long3colheader,counter=equation]{glossaries} \makeglossaries \newcommand{\erf}{\operatorname{erf}} \newcommand{\erfc}{\operatorname{erfc}} % redefine the way hyperref creates the target for equations % so that the glossary links to equation numbers work \renewcommand*\theHequation{\thechapter.\arabic{equation}} % Change the glossary headings \renewcommand{\entryname}{Notation} \renewcommand{\descriptionname}{Function Name} \renewcommand{\pagelistname}{Number of Formula} % define glossary entries \newglossaryentry{Gamma}{name=\ensuremath{\Gamma(z)}, description=Gamma function, sort=Gamma} \newglossaryentry{gamma}{name={\ensuremath{\gamma(\alpha,x)}}, description=Incomplete gamma function, sort=gamma} \newglossaryentry{iGamma}{name={\ensuremath{\Gamma(\alpha,x)}}, description=Incomplete gamma function, sort=Gamma} \newglossaryentry{psi}{name=\ensuremath{\psi(x)}, description=Psi function,sort=psi} \newglossaryentry{erf}{name=\ensuremath{\erf(x)}, description=Error function,sort=erf} \newglossaryentry{erfc}{name=\ensuremath{\erfc}, description=Complementary error function,sort=erfc} \newglossaryentry{B}{name={\ensuremath{B(x,y)}}, description=Beta function,sort=B} \newglossaryentry{Bx}{name={\ensuremath{B_x(p,q)}}, description=Incomplete beta function,sort=Bx} \newglossaryentry{Tn}{name=\ensuremath{T_n(x)}, description=Chebyshev's polynomials of the first kind,sort=Tn} \newglossaryentry{Un}{name=\ensuremath{U_n(x)}, description=Chebyshev's polynomials of the second kind,sort=Un} \newglossaryentry{Hn}{name=\ensuremath{H_n(x)}, description=Hermite polynomials,sort=Hn} \newglossaryentry{Ln}{name=\ensuremath{L_n^\alpha(x)}, description=Laguerre polynomials,sort=Lna} \newglossaryentry{Znu}{name=\ensuremath{Z_\nu(z)}, description=Bessel functions,sort=Z} \newglossaryentry{Phi}{name={\ensuremath{\Phi(\alpha,\gamma;z)}}, description=confluent hypergeometric function,sort=Pagz} \newglossaryentry{knu}{name=\ensuremath{k_\nu(x)}, description=Bateman's function,sort=kv} \newglossaryentry{Dp}{name=\ensuremath{D_p(z)}, description=Parabolic cylinder functions,sort=Dp} \newglossaryentry{F}{name={\ensuremath{F(\phi,k)}}, description=Elliptical integral of the first kind,sort=Fpk} \newglossaryentry{C}{name=\ensuremath{C}, description=Euler's constant,sort=C} \newglossaryentry{G}{name=\ensuremath{G}, description=Catalan's constant,sort=G} \begin{document} \title{A Sample Document Using glossaries.sty} \author{Nicola Talbot} \maketitle \begin{abstract} This is a sample document illustrating the use of the \textsf{glossaries} package. The functions here have been taken from ``Tables of Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. The glossary is a list of special functions, so the equation number has been used rather than the page number. This can be done using the \texttt{counter=equation} package option. \end{abstract} \printglossary[title={Index of Special Functions and Notations}] \chapter{Gamma Functions} \begin{equation} \gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt \end{equation} \verb|\ensuremath| is only required here if using hyperlinks. \begin{equation} \glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x) \end{equation} \begin{equation} \gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt \end{equation} \begin{equation} \gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt \end{equation} \newpage \begin{equation} \gls{Gamma} = \Gamma(\alpha, x) + \gamma(\alpha, x) \end{equation} \begin{equation} \gls{psi} = \frac{d}{dx}\ln\Gamma(x) \end{equation} \chapter{Error Functions} \begin{equation} \gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt \end{equation} \begin{equation} \gls{erfc} = 1 - \erf(x) \end{equation} \chapter{Beta Function} \begin{equation} \gls{B} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt \end{equation} Alternatively: \begin{equation} \gls{B} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi \end{equation} \begin{equation} \gls{B} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) \end{equation} \begin{equation} \gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt \end{equation} \chapter{Polynomials} \section{Chebyshev's polynomials} \begin{equation} \gls{Tn} = \cos(n\arccos x) \end{equation} \begin{equation} \gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} \end{equation} \section{Hermite polynomials} \begin{equation} \gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) \end{equation} \section{Laguerre polynomials} \begin{equation} L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) \end{equation} \chapter{Bessel Functions} Bessel functions $Z_\nu$ are solutions of \begin{equation} \frac{d^2\glslink{Znu}{Z_\nu}}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} + \left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right) \end{equation} \chapter{Confluent hypergeometric function} \begin{equation} \gls{Phi} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} +\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\, \frac{z^3}{3!} + \cdots \end{equation} \begin{equation} \gls{knu} = \frac{2}{\pi}\int_0^{\pi/2} \cos(x \tan\theta - \nu\theta)\,d\theta \end{equation} \chapter{Parabolic cylinder functions} \begin{equation} \gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} \left\{ \frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} \Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) -\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} \Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) \right\} \end{equation} \chapter{Elliptical Integral of the First Kind} \begin{equation} \gls{F} = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} \end{equation} \chapter{Constants} \begin{equation} \gls{C} = 0.577\,215\,664\,901\ldots \end{equation} \begin{equation} \gls{G} = 0.915\,965\,594\ldots \end{equation} \end{document}