
mfirstuc.sty v1.10: uppercasing
first letter

Nicola L.C. Talbot

Dickimaw Books
http://www.dickimaw-books.com/

2015-02-03

Contents

1 Introduction 1

2 Capitalise Each Word in a Phrase or Sentence (Title Case) 3

3 UTF-8 6

1 Introduction

The glossaries bundle includes the package mfirstuc which provides the com-
mand:

\makefirstuc{〈stuff 〉}\makefirstuc

This makes the first object of 〈stuff 〉 uppercase unless 〈stuff 〉 starts with a con-
trol sequence followed by a non-empty group, in which case the first object in
the group is converted to uppercase. No expansion is performed on the argu-
ment.

If 〈stuff 〉 starts with a control sequence that takes more than one argument,
the case-changing will always be applied to the first argument. If the text
that requires the case change is in one of the other arguments, you must
hide the earlier arguments in a wrapper command. For example, instead of
\color{red}{text} you need to define, say, \red as \color{red} and
use \red{text}.

Examples:

1

http://www.dickimaw-books.com/


• \makefirstuc{abc} produces Abc.

• \makefirstuc{\emph{abc}} produces Abc (\MakeUppercase has been
applied to the letter “a” rather than \emph). Note however that

\makefirstuc{{\em abc}}

produces ABC (first object is {\em abc} so this is equivalent to \MakeUppercase{\em abc}),
and

{\makefirstuc{\em abc}}

produces abc (\em doesn’t have an argument therefore first object is \em
and so is equivalent to {\MakeUppercase{\em}abc}).

• \makefirstuc{{\’a}bc} produces Ábc.

• \makefirstuc{\ae bc} produces Æbc.

• \makefirstuc{{\ae}bc} produces Æbc.

• \makefirstuc{{ä}bc} produces Äbc.

Note that non-Latin or accented characters appearing at the start of the text
must be placed in a group (even if you are using the inputenc package). The
reason for this restriction is detailed in Section 3.

In version 1.02 of mfirstuc, a bug fix resulted in a change in output if the
first object is a control sequence followed by an empty group. Prior to
version 1.02, \makefirstuc{\ae{}bc} produced æBc. However as from
version 1.02, it now produces Æbc.

Note also that

\newcommand{\abc}{abc}
\makefirstuc{\abc}

produces: ABC. This is because the first object in the argument of \makefirstuc
is \abc, so it does \MakeUppercase{\abc}. Whereas:

\newcommand{\abc}{abc}
\expandafter\makefirstuc\expandafter{\abc}

produces: Abc. There is a short cut command which will do this:

\xmakefirstuc{〈stuff 〉}\xmakefirstuc

This is equivalent to \expandafter\makefirstuc\expandafter{〈stuff 〉}. So

\newcommand{\abc}{abc}
\xmakefirstuc{\abc}

2



produces: Abc.

\xmakefirstuc only performs one level expansion on the first object in its
argument. It does not fully expand the entire argument.

As from version 1.10, there is now a command that fully expands the entire
argument before applying \makefirstuc:

\emakefirstuc{〈text〉}\emakefirstuc

Examples:

\newcommand{\abc}{\xyz a}
\newcommand{\xyz}{xyz}
No expansion: \makefirstuc{\abc}.
First object one-level expansion: \xmakefirstuc{\abc}.
Fully expanded: \emakefirstuc{\abc}.

produces: No expansion: XYZA. First object one-level expansion: XYZa. Fully
expanded: Xyza.

If you use mfirstuc without the glossaries package, the standard \MakeUppercase
command is used. If used with glossaries, \MakeTextUppercase (defined by
the textcase package) is used instead. If you are using mfirstuc without the glos-
saries package and want to use \MakeTextUppercase instead, you can redefine

\glsmakefirstuc{〈text〉}\glsmakefirstuc

For example:

\renewcommand{\glsmakefirstuc}[1]{\MakeTextUppercase #1}

Remember to also load textcase (glossaries loads this automatically).

2 Capitalise Each Word in a Phrase or Sentence
(Title Case)

New to mfirstuc v1.06:

\capitalisewords{〈text〉}\capitalisewords

This command apply \makefirstuc to each word in 〈text〉 where the space
character is used as the word separator. Note that it has to be a plain space
character, not another form of space, such as ~ or \space. Note that no expan-
sion is performed on 〈text〉.

\xcapitalisewords{〈text〉}\xcapitalisewords

3



This is a short cut for \expandafter\capitalisewords\expandafter{〈text〉}.
As from version 1.10, there is now a command that fully expands the entire

argument before applying \capitalisewords:

\ecapitalisewords{〈text〉}\ecapitalisewords

Examples:

\newcommand{\abc}{\xyz\space four five}
\newcommand{\xyz}{one two three}
No expansion: \capitalisewords{\abc}.
First object one-level expansion: \xcapitalisewords{\abc}.
Fully expanded: \ecapitalisewords{\abc}.

produces: No expansion: ONE TWO THREE FOUR FIVE. First object one-level
expansion: ONE TWO THREE four Five. Fully expanded: One Two Three Four
Five.

(Remember that the spaces need to be explicit. In the second case above,
using \xcapitalisewords, the space before “four” has been hidden within
\space so it’s not recognised as a word boundary, but in the third case, \space
has been expanded to an actual space character.)

If you are using hyperref and want to use \capitalisewords or
\makefirstuc (or the expanded variants) in a section heading, the PDF
bookmarks won’t be able to use the command as it’s not expandable, so you
will get a warning that looks like:

Package hyperref Warning: Token not allowed in a PDF string
(PDFDocEncoding):
(hyperref) removing ‘\capitalisewords’

If you want to provide an alternative for the PDF bookmark, you can use
hyperref’s \texorpdfstring command. See the hyperref manual for
further details.

Examples:

1. \capitalisewords{a book of rhyme.}

produces: A Book Of Rhyme.

2. \capitalisewords{a book\space of rhyme.}

produces: A Book of Rhyme.

3. \newcommand{\mytitle}{a book\space of rhyme.}
\capitalisewords{\mytitle}

produces: A BOOK OF RHYME. (No expansion is performed on \mytitle.)
Compare with next example:

4



4. \newcommand{\mytitle}{a book\space of rhyme.}
\xcapitalisewords{\mytitle}

produces: A Book of Rhyme.

However

\ecapitalisewords{\mytitle}

produces: A Book Of Rhyme.

As from v1.09, you can specify words which shouldn’t be capitalised unless
they occur at the start of 〈text〉 using:

\MFUnocap{〈word〉}\MFUnocap

This only has a local effect. The global version is:

\gMFUnocap{〈word〉}\gMFUnocap

For example:

\capitalisewords{the wind in the willows}

\MFUnocap{in}%
\MFUnocap{the}%

\capitalisewords{the wind in the willows}

produces:

The Wind In The Willows
The Wind in the Willows

The list of words that shouldn’t be capitalised can be cleared using

\MFUclear\MFUclear

The package mfirstuc-english loads mfirstuc and uses \MFUnocap to add com-
mon English articles and conjunctions, such as “a”, “an”, “and”, “but”. You may
want to add other words to this list, such as prepositions, but as there’s some
dispute over whether prepositions should be capitalised, I don’t intend to add
them to this package.

If you want to write a similar package for another language, all you need to
do is create a file with the extension .sty that starts with

\NeedsTeXFormat{LaTeX2e}

5



The next line should identify the package. For example, if you have called the
file mfirstuc-french.sty then you need:

\ProvidesPackage{mfirstuc-french}

It’s a good idea to also add a version in the final optional argument, for example:

\ProvidesPackage{mfirstuc-french}[2014/07/30 v1.0]

Next load mfirstuc:

\RequirePackage{mfirstuc}

Now add all your \MFUnocap commands. For example:

\MFUnocap{de}

At the end of the file add:

\endinput

Put the file somewhere on TEX’s path, and now you can use this package in
your document. You might also consider uploading it to CTAN in case other
users find it useful.

3 UTF-8

The \makefirstuc command works by utilizing the fact that, in most cases,
TEX doesn’t require a regular argument to be enclosed in braces if it only con-
sists of a single token. (This is why you can do, say, \frac12 instead of
\frac{1}{2} or x^2 instead of x^{2}, although some users frown on this prac-
tice.)

A simplistic version of the \makefirstuc command is:

\newcommand*{\FirstUC}[1]{\MakeUppercase #1}

Here

\FirstUC{abc}

is equivalent to

\MakeUppercase abc

and since \MakeUppercase requires an argument, it grabs the first token (the
character “a” in this case) and uses that as the argument so that the result is:
Abc.

The glossaries package needs to take into account the fact that the text may
be contained in the argument of a formatting command, such as \acronymfont,
so \makefirstuc has to be more complicated than the trivial \FirstUC shown
above, but at its basic level, \makefirstuc uses this same method and is the
reason why, in most cases, you don’t need to enclose the first character in
braces. So if

6



\MakeUppercase 〈stuff 〉
works, then

\makefirstuc{〈stuff 〉}
should also work and so should

\makefirstuc{\foo{〈stuff 〉}}
but if

\MakeUppercase 〈stuff 〉
doesn’t work, then neither will

\makefirstuc{〈stuff 〉}
nor

\makefirstuc{\foo{〈stuff 〉}}
Try the following document:

\documentclass{article}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document}

\MakeUppercase ãbc

\end{document}

This will result in the error:

! Argument of \UTFviii@two@octets has an extra }.

This is why \makefirstuc{ãbc} won’t work. It will only work if the character
ã is placed inside a group.

The reason for this error message is due to TEX having been written before
Unicode was invented. Although ã may look like a single character in your text
editor, from TEX’s point of view it’s two tokens. So

\MakeUppercase ãbc

tries to apply \MakeUppercase to just the first octet of ã. This means that the
second octet has been separated from the first octet, which is the cause of the
error. In this case the argument isn’t a single token, so the two tokens (the first
and second octet of ã) must be grouped:

7



\MakeUppercase{ã}bc

Note that X ETEX (and therefore X ELATEX) is a modern implementation of TEX
designed to work with Unicode and therefore doesn’t suffer from this drawback.
Now let’s look at the X ELATEX equivalent of the above example:

\documentclass{article}

\usepackage{fontspec}

\begin{document}

\MakeUppercase ãbc

\end{document}

This works correctly when compiled with X ELATEX. This means that \makefirstuc{ãbc}
will work provided you use X ELATEX and the fontspec package.

8


	Introduction
	Capitalise Each Word in a Phrase or Sentence (Title Case)
	UTF-8

