
mfirstuc.sty v1.09: uppercasing
first letter

Nicola L.C. Talbot

Dickimaw Books
http://www.dickimaw-books.com/

2014-07-30

The glossaries bundle includes the package mfirstuc which provides the com-
mand:

\makefirstuc{〈stuff 〉}\makefirstuc

This makes the first object of 〈stuff 〉 uppercase unless 〈stuff 〉 starts with a con-
trol sequence followed by a non-empty group, in which case the first object in
the group is converted to uppercase. No expansion is performed on the argu-
ment.

Examples:

• \makefirstuc{abc} produces Abc.

• \makefirstuc{\emph{abc}} produces Abc (\MakeUppercase has been
applied to the letter “a” rather than \emph). Note however that

\makefirstuc{{\em abc}}

produces ABC (first object is {\em abc} so equivalent to \MakeUppercase{\em abc}),
and

{\makefirstuc{\em abc}}

produces abc (\em doesn’t have an argument therefore first object is \em
and so is equivalent to {\MakeUppercase{\em}abc}).

• \makefirstuc{{\’a}bc} produces Ábc.

• \makefirstuc{\ae bc} produces Æbc.

• \makefirstuc{{\ae}bc} produces Æbc.

1

http://www.dickimaw-books.com/


• \makefirstuc{{ä}bc} produces Äbc.

Note that non-Latin or accented characters appearing at the start of the text
must be placed in a group (even if you are using the inputenc package) due to
expansion issues.

In version 1.02 of mfirstuc, a bug fix resulted in a change in output if the
first object is a control sequence followed by an empty group. Prior to
version 1.02, \makefirstuc{\ae{}bc} produced æBc. However as from
version 1.02, it now produces Æbc.

Note also that

\newcommand{\abc}{abc}
\makefirstuc{\abc}

produces: ABC. This is because the first object in the argument of \makefirstuc
is \abc, so it does \MakeUppercase{\abc}. Whereas:

\newcommand{\abc}{abc}
\expandafter\makefirstuc\expandafter{\abc}

produces: Abc. There is a short cut command which will do this:

\xmakefirstuc{〈stuff 〉}\xmakefirstuc

This is equivalent to \expandafter\makefirstuc\expandafter{〈stuff 〉}. So

\newcommand{\abc}{abc}
\xmakefirstuc{\abc}

produces: Abc.

\xmakefirstuc only performs one level expansion on the first object in its
argument. It does not fully expand the entire argument.

If you use mfirstuc without the glossaries package, the standard \MakeUppercase
command is used. If used with glossaries, \MakeTextUppercase (defined by
textcase the package) is used instead. If you are using mfirstuc without the glos-
saries package and want to use \MakeTextUppercase instead, you can redefine

\glsmakefirstuc{〈text〉}\glsmakefirstuc

For example:

\renewcommand{\glsmakefirstuc}[1]{\MakeTextUppercase #1}

2



Remember to also load textcase (glossaries loads this automatically).
New to mfirstuc v1.06:

\capitalisewords{〈text〉}\capitalisewords

This command apply \makefirstuc to each word in 〈text〉 where the space
character is used as the word separator. Note that it has to be a plain space
character, not another form of space, such as ~ or \space. Note that no expan-
sion is performed on 〈text〉.

\xcapitalisewords{〈text〉}\xcapitalisewords

This is a short cut for \expandafter\capitalisewords\expandafter{〈text〉}.

If you are using hyperref and want to use \capitalisewords or
\makefirstuc (or \xcapitalisewords/\xmakefirstuc) in a section
heading, the PDF bookmarks won’t be able to use the command as it’s not
expandable, so you will get a warning that looks like:

Package hyperref Warning: Token not allowed in a PDF string
(PDFDocEncoding):
(hyperref) removing ‘\capitalisewords’

If you want to provide an alternative for the PDF bookmark, you can use
hyperref’s \texorpdfstring command. See the hyperref manual for
further details.

Examples:

1. \capitalisewords{a book of rhyme.}

produces: A Book Of Rhyme.

2. \capitalisewords{a book\space of rhyme.}

produces: A Book of Rhyme.

3. \newcommand{\mytitle}{a book\space of rhyme.}
\capitalisewords{\mytitle}

produces: A BOOK OF RHYME. (No expansion is performed on \mytitle,
so 〈text〉 consists of just one “word”.) Compare with next example:

4. \newcommand{\mytitle}{a book\space of rhyme.}
\xcapitalisewords{\mytitle}

produces: A Book of Rhyme.

As from v1.09, you can specify words which shouldn’t be capitalised unless
they occur at the start of 〈text〉 using:

3



\MFUnocap{〈word〉}\fi

This only has a local effect. The global version is:

\gMFUnocap{〈word〉}\fi

For example:

\capitalisewords{the wind in the willows}

\MFUnocap{in}%
\MFUnocap{the}%

\capitalisewords{the wind in the willows}

produces:

The Wind In The Willows
The Wind in the Willows

The list of words that shouldn’t be capitalised can be cleared using

\MFUclear\MFUclear

The package mfirstuc-english loads mfirstuc and uses \MFUnocap to add com-
mon English articles and conjunctions, such as “a”, “an”, “and”, “but”. You may
want to add other words to this list, such as prepositions, but as there’s some
dispute over whether prepositions should be capitalised, I don’t intend to add
them to this package.

If you want to write a similar package for another language, all you need to
do is create a file with the extension .sty that starts with

\NeedsTeXFormat{LaTeX2e}

The next line should identify the package. For example, if you have called the
file mfirstuc-french.sty then you need:

\ProvidesPackage{mfirstuc-french}

It’s a good idea to also add a version in the final optional argument, for example:

\ProvidesPackage{mfirstuc-french}[2014/07/30 v1.0]

Next load mfirstuc:

\RequirePackage{mfirstuc}

Now add all your \MFUnocap commands. For example:

\MFUnocap{de}

4



At the end of the file add:

\endinput

Put the file somewhere on TEX’s path, and now you can use this package in
your document. You might also consider uploading it to CTAN in case other
users find it useful.

5


