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Abstract

The glossaries package is very flexible, but this means that it has a lot options,
and since a user guide is supposed to provide a complete list of all the high-level
user commands, the main user manual is quite big. This can be rather daunting for
beginners, so this document is a brief introduction just to help get you started. If
you find yourself saying, “Yeah, but how can I do. . . ?” then it’s time to move on to
the main user manual (glossaries-user.pdf).

I’ve made some statements in this document that don’t actually tell you the full
truth, but it would clutter the document and cause confusion if I keep writing “ex-
cept when . . . ” or “but you can also do this, that or the other” or “you can do it this
way but you can also do it that way, but that way may cause complications under
certain circumstances”.
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1 Getting Started

As with all packages, you need to load glossaries with \usepackage, but there are
certain packages that must be loaded before glossaries, if they are required: hyperref,
babel, polyglossia, inputenc and fontenc. (You don’t have to load these packages, but if you
want them, you must load them before glossaries.)

If you require multilingual support you must also install the relevant language
module. Each language module is called glossaries-〈language〉, where
〈language〉 is the root language name. For example, glossaries-french or
glossaries-german. If a language module is required, the glossaries package
will automatically try to load it and will give a warning if the module isn’t found.

Once you have loaded glossaries, you need to define your terms in the preamble and
then you can use them throughout the document. Here’s a simple example:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{ex}{name={sample},description={an example}}

\begin{document}
Here's my \gls{ex} term.
\end{document}

This produces:

Here’s my sample term.

Here’s another example:

\documentclass{article}

\usepackage{glossaries}

\setacronymstyle{long-short}

\newacronym{svm}{SVM}{support vector machine}

\begin{document}
First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

This produces:

First use: support vector machine (SVM). Second use: SVM.
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In this case, the text produced by \gls{svm} changed after the first use. The first
use produced the long form followed by the short form in parentheses because I set
the acronym style to long-short. I suggest you try the above two examples to make
sure you have the package correctly installed. If you get an undefined control
sequence error, check that the version number at the top of this document matches
the version you have installed. (Open the .log file and search for the line that starts
with Package: glossaries followed by a date and version.)

If you like, you can put all your definitions in another file (for example, defns.tex)
and load that file in the preamble using \loadglsentries with the filename as the
argument. For example:

\loadglsentries{defns}

Don’t try inserting formatting commands into the definitions as they can interfere
with the underlying mechanism. Instead, the formatting should be done by the style.
For example, suppose I want to replace SVM in the above to \textsc{svm}, then I need
to select a style that uses \textsc, like this:

\documentclass{article}

\usepackage{glossaries}

\setacronymstyle{long-sc-short}

\newacronym{svm}{svm}{support vector machine}

\begin{document}
First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

As you can hopefully see from the above examples, there are two main ways of defin-
ing a term. In both cases, the term is given a label. In the first case the label was ex
and in the second case the label was svm. The label is just a way of identifying the
term (like the standard \label/\ref mechanism). It’s best to just use the following
alphanumerics in the labels: a, . . . , z, A, . . . , Z, 0, . . . , 9. Sometimes you can also use
punctuation characters but not if another package (such as babel) meddles with them.
Don’t try using any characters outside of the basic Latin set (for example, é or ß) or
things will go horribly wrong. This warning only applies to the label. It doesn’t apply
to the text that appears in the document.

Don’t use \gls in chapter or section headings as it can have some unpleasant
side-effects. Instead use \glsentrytext for regular entries and one of
\glsentryshort, \glsentrylong or \glsentryfull for acronyms.

The above examples are reasonably straightforward. The difficulty comes if you want
to display a sorted list of all the entries you have used in the document. The glossaries
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package provides three options: use TEX to perform the sorting; use makeindex to
perform the sorting; use xindy to perform the sorting.

The first option (using TEX) is the simplest and easiest method, but it’s inefficient
and the sorting is done according to the English alphabet. To use this method, add
\makenoidxglossaries to the preamble and put \printnoidxglossaries at the
place where you want your glossary. For example:

\documentclass{article}

\usepackage{glossaries}

\makenoidxglossaries

\newglossaryentry{potato}{name={potato},plural={potatoes},
description={starchy tuber}}

\newglossaryentry{cabbage}{name={cabbage},
description={vegetable with thick green or purple leaves}}

\newglossaryentry{carrot}{name={carrot},
description={orange root}}

\begin{document}
Chop the \gls{cabbage}, \glspl{potato} and \glspl{carrot}.

\printnoidxglossaries
\end{document}

Try this out and run LATEX (or pdfLATEX) twice. The first run won’t show the glossary. It
will only appear on the second run. The glossary has a vertical gap between the “carrot”
term and the “potato” term. This is because the entries in the glossaries are grouped
according to their first letter. If you don’t want this gap, just add nogroupskip to the
package options:

\usepackage[nogroupskip]{glossaries}

If you try out this example you may also notice that the description is followed by a
full stop (period) and a number. The number is the location in the document where
the entry was used, so you can lookup the term in the glossary and be directed to the
relevant pages. It may be that you don’t want this back-reference, in which case you
can suppress it using the nonumberlist package option:

\usepackage[nonumberlist]{glossaries}

If you don’t like the terminating full stop, you can suppress that with the nopostdot
package option:

\usepackage[nopostdot]{glossaries}

4



You may have noticed that I’ve used another command in the above example:
\glspl. This displays the plural form. By default, this is just the singular form with
the letter “s” appended, but in the case of “potato” I had to specify the correct plural
using the plural key.

As I mentioned earlier, using TEX to sort the entries is the simplest but least efficient
method. If you have a large glossary or if your terms contain non-Latin or extended
Latin characters, then you will have a much faster build time if you use makeindex
or xindy. If you are using extended Latin or non-Latin characters, then xindy is the
recommended method. These two methods are described in more detail in Section 4.

The rest of this document briefly describes the main commands provided by the glos-
saries package.

2 Defining Terms

When you use the glossaries package, you need to define glossary entries in the docu-
ment preamble. These entries could be a word, phrase, acronym or symbol. They’re
usually accompanied by a description, which could be a short sentence or an in-depth
explanation that spans multiple paragraphs. The simplest method of defining an entry
is to use:

\newglossaryentry{〈label〉}
{

name={〈name〉},
description={〈description〉},
〈other options〉

}

where 〈label〉 is a unique label that identifies this entry. (Don’t include the angle brack-
ets 〈 〉. They just indicate the parts of the code you need to change when you use this
command in your document.) The 〈name〉 is the word, phrase or symbol you are defin-
ing, and 〈description〉 is the description to be displayed in the glossary.

This command is a “short” command, which means that 〈description〉 can’t contain
a paragraph break. If you have a long description, you can instead use:

\longnewglossaryentry{〈label〉}
{

name={〈name〉},
〈other options〉

}
{〈description〉}

Examples:
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1. Define the term “set” with the label set:

\newglossaryentry{set}
{

name={set},
description={a collection of objects}

}

2. Define the symbol ∅ with the label emptyset:

\newglossaryentry{emptyset}
{

name={\ensuremath{\emptyset}},
description={the empty set}

}

3. Define the phrase “Fish Age” with the label fishage:

\longnewglossaryentry{fishage}
{name={Fish Age}}
{%

A common name for the Devonian geologic period
spanning from the end of the Silurian Period to
the beginning of the Carboniferous Period.

This age was known for its remarkable variety of
fish species.

}

(The percent character discards the end of line character that would otherwise
cause an unwanted space to appear at the start of the description.)

4. Take care if the first letter is an extended Latin or non-Latin character (either spec-
ified via a command such as \’e or explicitly via the inputenc package such as é).
This first letter must be placed in a group:

\newglossaryentry{elite}
{

name={{\'e}lite},
description={select group or class}

}

or

\newglossaryentry{elite}
{

name={{é}lite},
description={select group or class}

}
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(For further details, see the section “UTF-8” (mfirstuc-manual.pdf) in the mfirstuc user
manual.)

Acronyms (or other abbreviations) can be defined using

\newacronym{〈label〉}{〈short〉}{〈long〉}

where 〈label〉 is the label (as with the \newglossaryentry and the \longnewglossaryentry
commands), 〈short〉 is the short form and 〈long〉 is the long form. For example, the fol-
lowing defines an abbreviation:

\newacronym{svm}{svm}{support vector machine}

This defines a glossary entry with the label svm. By default, the 〈name〉 is set to 〈short〉
(“svm” in the above example) and the 〈description〉 is set to 〈long〉 (“support vector
machine” in the above example). If, instead, you want to be able to specify your own
description you can do this using the optional argument:

\newacronym
[description={statistical pattern recognition technique}]
{svm}{svm}{support vector machine}

Before you define your acronyms (or other types of abbreviations), you need to spec-
ify which style to use with

\setacronymstyle{〈style name〉}

where 〈style name〉 is the name of the style. There are a number of predefined styles,
such as: long-short (on first use display the long form with the short form in paren-
theses); short-long (on first use display the short form with the long form in paren-
theses); long-short-desc (like long-short but you need to specify the descrip-
tion); or short-long-desc (like short-long but you need to specify the descrip-
tion). There are some other styles as well that use \textsc to typeset the acronym or
that use a footnote on first use. See the main user guide for further details.

There are other keys you can use when you define an entry. For example, the name
key used above indicates how the term should appear in the list of entries (glossary). If
the term should appear differently when you reference it in the document, you need to
use the text key as well.

For example:

\newglossaryentry{latinalph}
{

name={Latin Alphabet},
text={Latin alphabet},
description={alphabet consisting of the letters
a, \ldots, z, A, \ldots, Z}

}
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This will appear in the text as “Latin alphabet” but will be listed in the glossary as
“Latin Alphabet”.

Another commonly used key is plural for specifying the plural of the term. This
defaults to the value of the text key with an “s” appended, but if this is incorrect, just
use the plural key to override it:

\newglossaryentry{oesophagus}
{

name={{\oe}sophagus},
plural={{\oe}sophagi},
description={canal from mouth to stomach}

}

(Remember from earlier that the initial ligature \oe needs to be grouped.)
The plural forms for acronyms can be specified using the longplural and shortplural

keys. For example:

\newacronym
[longplural={diagonal matrices}]
{dm}{DM}{diagonal matrix}

If omitted, the defaults are again obtained by appending an “s” to the singular versions.
It’s also possible to have both a name and a corresponding symbol. Just use the name

key for the name and the symbol key for the symbol. For example:

\newglossaryentry{emptyset}
{

name={empty set},
symbol={\ensuremath{\emptyset}},
description={the set containing no elements}

}

3 Using Entries

Once you have defined your entries, as described above, you can reference them in
your document. There are a number of commands to do this, but the most common
one is:

\gls{〈label〉}

where 〈label〉 is the label you assigned to the entry when you defined it. For exam-
ple, \gls{fishage} will display “Fish Age” in the text (given the definition from the
previous section).

If you are using the hyperref package (remember to load it before glossaries) \gls
will create a hyperlink to the corresponding entry in the glossary. If you want to sup-
press the hyperlink for a particular instance, use the starred form \gls* for example,
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\gls*{fishage}. The other commands described in this section all have a similar
starred form.

If the entry was defined as an acronym (using \newacronym described above), then
\gls will display the full form the first time it’s used and just the short form on subse-
quent use. For example, if the acronym style is set to long-short, then \gls{svm}
will display “support vector machine (svm)” the first time it’s used, but the next occur-
rence of \gls{svm} will just display “svm”.

If you want the plural form, you can use:

\glspl{〈label〉}

instead of \gls{〈label〉}. For example, \glspl{set} displays “sets”.
If the term appears at the start of a sentence, you can convert the first letter to upper

case using:

\Gls{〈label〉}

for the singular form or

\Glspl{〈label〉}

for the plural form. For example:

\Glspl{set} are collections.

produces “Sets are collections”.
If you’ve specified a symbol using the symbol key, you can display it using:

\glssymbol{〈label〉}

4 Displaying a List of Entries

In Section 1 I mentioned that there are three options you can choose from to create your
glossary. Here they are again in a little more detail:

Option 1:

This is the simplest option but it’s slow and if you want a sorted list, it doesn’t
work for non-Latin alphabets.

1. Add \makenoidxglossaries to your preamble (before you start defining
your entries, as described in Section 2).

2. Put
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\printnoidxglossary[sort=〈order〉,〈other options〉]

where you want your list of entries to appear. The sort 〈order〉 may be one of:
word (word ordering), letter (letter ordering), case (case-sensitive letter
ordering), def (in order of definition) or use (in order of use). Alternatively,
use

\printnoidxglossaries

to display all your glossaries (if you have more than one). This command
doesn’t have any arguments.

3. Run LATEX twice on your document. (As you would do to make a table of
contents appear.) For example, click twice on the “typeset” or “build” or
“PDFLATEX” button in your editor.

Option 2:

This option uses an application called makeindex to sort the entries. This ap-
plication comes with all modern TEX distributions, but it’s hard-coded for the
non-extended Latin alphabet. This process involves making LATEX write the glos-
sary information to a temporary file which makeindex reads. Then makeindex
writes a new file containing the code to typeset the glossary. LATEX then reads this
file on the next run.

1. If you are using ngerman or some other package that makes the double-quote
character " a shorthand, then use \GlsSetQuote to change this to some
other character. For example:
\GlsSetQuote{+}

Use this as soon as possible after you’ve loaded the glossaries package.

2. Add \makeglossaries to your preamble (before you start defining your
entries).

3. Put

\printglossary[〈options〉]

where you want your list of entries (glossary) to appear. (The sort key isn’t
available in 〈options〉.) Alternatively, use

\printglossaries

which will display all glossaries (if you have more than one). This command
doesn’t have any arguments.
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4. Run LATEX on your document. This creates files with the extensions .glo
and .ist (for example, if your LATEX document is called myDoc.tex, then
you’ll have two extra files called myDoc.glo and myDoc.ist). If you look
at your document at this point, you won’t see the glossary as it hasn’t been
created yet.

5. Run makeindex with the .glo file as the input file and the .ist file as
the style so that it creates an output file with the extension .gls. If you
have access to a terminal or a command prompt (for example, the MSDOS
command prompt for Windows users or the bash console for Unix-like users)
then you need to run the command:
makeindex -s myDoc.ist -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your LATEX document file. Avoid
spaces in the file name.) If you don’t know how to use the command prompt,
then you can probably access makeindex via your text editor, but each edi-
tor has a different method of doing this, so I can’t give a general description.
You will have to check your editor’s manual.

The default sort is word order (“sea lion” comes before “seal”). If you want
letter ordering you need to add the -l switch:
makeindex -l -s myDoc.ist -o myDoc.gls myDoc.glo

6. Once you have successfully completed the previous step, you can now run
LATEX on your document again.

Option 3:

This option uses an application called xindy to sort the entries. This application
is more flexible than makeindex and is able to sort extended Latin or non-Latin
alphabets. It comes with TEX Live but not with MiKTEX. Since xindy is a Perl
script, if you are using MiKTEX you will not only need to install xindy, you will
also need to install Perl. In a similar way to Option 2, this option involves making
LATEX write the glossary information to a temporary file which xindy reads. Then
xindy writes a new file containing the code to typeset the glossary. LATEX then
reads this file on the next run.

1. Add the xindy option to the glossaries package option list:
\usepackage[xindy]{glossaries}

2. Add \makeglossaries to your preamble (before you start defining your
entries).

3. Put

\printglossary[〈options〉]

where you want your list of entries (glossary) to appear. (The sort key isn’t
available in 〈options〉.) Alternatively, use
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\printglossaries

4. Run LATEX on your document. This creates files with the extensions .glo
and .xdy (for example, if your LATEX document is called myDoc.tex, then
you’ll have two extra files called myDoc.glo and myDoc.xdy). If you look
at your document at this point, you won’t see the glossary as it hasn’t been
created yet.

5. Run xindy with the .glo file as the input file and the .xdy file as a module
so that it creates an output file with the extension .gls. You also need to
set the language name and input encoding. If you have access to a terminal
or a command prompt (for example, the MSDOS command prompt for Win-
dows users or the bash console for Unix-like users) then you need to run the
command (all on one line):
xindy -L english -C utf8 -I xindy -M myDoc
-t myDoc.glg -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your LATEX document file. Avoid
spaces in the file name. If necessary, also replace english with the name of
your language and utf8 with your input encoding.) If you don’t know how
to use the command prompt, then you can probably access xindy via your
text editor, but each editor has a different method of doing this, so I can’t
give a general description. You will have to check your editor’s manual.

The default sort is word order (“sea lion” comes before “seal”). If you want
letter ordering you need to add the order=letter package option:
\usepackage[xindy,order=letter]{glossaries}

6. Once you have successfully completed the previous step, you can now run
LATEX on your document again.

For Options 2 and 3, it can be difficult to remember all the parameters required for
makeindex or xindy, so the glossaries package provides a script called makeglossaries
that reads the .aux file to determine what settings you have used and will then run
makeindex or xindy. Again, this is a command line application and can be run in
a terminal or command prompt. For example, if your LATEX document is in the file
myDoc.tex, then run:

makeglossaries myDoc

(Replace myDoc with the base name of your LATEX document file. Avoid spaces in the
file name.) If you don’t know how to use the command prompt, you can probably
access makeglossaries via your text editor. Check your editor’s manual for advice.
If you are using arara then you can just use the directives:

arara: pdflatex
arara: makeglossaries
arara: pdflatex
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The makeglossaries script is written in Perl, so you need a Perl interpreter in-
stalled. If you are using a Unix-like operating system then you most likely have one
installed. If you are using Windows with the TEX Live distribution, then you can use
the Perl interpreter that comes with TEX Live. If you are using Windows and MiKTEX
then you need to install a Perl distribution for Windows. If you are using Option 3, then
you need to do this anyway as xindy is also written in Perl. If you are using Option 2
and can’t work out how to install Perl (or for some reason don’t want to install it) then
just use makeindex directly, as described above, or you can use a Lua alternative to
makeglossaries called makeglossaries-lite.lua:

makeglossaries-lite.lua myDoc

As a last resort you can try the package option automake:

\usepackage[automake]{glossaries}

This will attempt to use TEX’s \write18 mechanism to run makeindex or xindy.
It probably won’t work for xindy and won’t work at all if the shell escape has been
disabled in your TEX distribution. Most TEX distributions will allow a restricted shell
escape, which will only allow trusted applications to be run. If the automake option is
successful, you will still need to run LATEX twice for the glossaries to be displayed.

When sorting the entries, the string comparisons are made according to each entry’s
sort key. If this is omitted, the name key is used. For example, recall the earlier
definition:

\newglossaryentry{elite}
{

name={{\'e}lite},
description={select group or class}

}

No sort key was used, so it’s set to the same as the name key: {\’e}lite. How this
is interpreted depends on which option you have used:

Option 1: By default, the accent command will be stripped so the sort value will be
elite. This will put the entry in the “E” letter group. However if you use the
sanitizesort=true package option, the sort value will be interpreted as the sequence
of characters: \ ’ e l i t and e. This will place this entry before the “A” letter
group since it starts with a symbol.

Option 2: The sort key will be interpreted the sequence of characters: { \ ’ e } l i t
and e. The first character is an opening curly brace { so makeindex will put this
entry in the “symbols” group.

Option 3: xindy disregards LATEX commands so it sorts on elite, which puts this entry
in the “E” group.

If the inputenc package is used and the entry is defined as:
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\newglossaryentry{elite}
{

name={{é}lite},
description={select group or class}

}

then:

Option 1: By default the sort value will be interpreted as elite so the entry will be
put in the “E” letter group. If you use the sanitizesort=true package option, the sort
value will be interpreted as élite where é has been sanitized (so it’s no longer
an active character) which will put this entry before the “A” letter group.

Option 2: makeindex doesn’t recognise é as a letter so it will be put in the symbols
group.

Option 3: xindy will correctly recognise the sort value élite and will place it in what-
ever letter group is appropriate for the given language setting. (In English, this
would just be the “E” letter group.)

Therefore if you have extended Latin or non-Latin characters, your best option is to
use xindy (Option 3) with the inputenc package. If you use makeindex (Option 2) you
need to specify the sort key like this:

\newglossaryentry{elite}
{

name={{\'e}lite},
sort={elite},
description={select group or class}

}

If you use Option 1, you may or may not need to use the sort key, but you will need
to be careful about fragile commands in the name key if you don’t set the sort key.

If you use Option 3 and the name only contains a command (such as \P) you must
add the sort key. This is also advisable for the other options, but is essential for Op-
tion 3. For example:

\newglossaryentry{P}{name={\P},sort={P},
description={paragraph symbol}}

Table 1 summarises the main pros and cons of three options described above.

5 Customising the Glossary

The default glossary style uses the description environment to display the entry list. Each
entry name is set in the optional argument of \item which means that it will typically
be displayed in bold. You can switch to medium weight by redefining \glsnamefont:

\renewcommand*{\glsnamefont}[1]{\textmd{#1}}
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Table 1: Glossary Options: Pros and Cons

Option 1 Option 2 Option 3
Requires an external
application?

8 4 4

Requires Perl? 8 8 4

Can sort extended Latin
or non-Latin alphabets?

8† 8 4

Efficient sort algorithm? 8 4 4

Can form ranges in the
location lists?

8 4 4

Can have non-standard
locations?

4 8 4

† Strips standard LATEX accents so, for example, \AA is treated the same as A.

By default, a full stop is appended to the description. To prevent this from happening
use the nopostdot package option:

\usepackage[nopostdot]{glossaries}

By default, a location list is displayed for each entry. This refers to the document
locations (for example, the page number) where the entry has been referenced. If you
use Options 2 or 3 described in Section 4 location ranges will be compressed. For exam-
ple, if an entry was used on pages 1, 2 and 3, with Options 2 or 3 the location list will
appear as 1–3, but with Option 1 it will appear as 1, 2, 3. If you don’t want the locations
displayed you can hide them using the nonumberlist package option:

\usepackage[nonumberlist]{glossaries}

Entries are grouped according to the first letter of each entry’s sort key. By de-
fault a vertical gap is placed between letter groups. You can suppress this with the
nogroupskip package option:

\usepackage[nogroupskip]{glossaries}

If the default style doesn’t suit your document, you can change the style using:

\setglossarystyle{〈style name〉}

There are a number of predefined styles. Glossaries can vary from a list of symbols with
a terse description to a list of words or phrases with descriptions that span multiple
paragraphs, so there’s no “one style fits all” solution. You need to choose a style that
suits your document.

Examples:
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1. You have entries where the name is a symbol and the description is a brief phrase
or short sentence. Try one of the “mcol” styles defined in the glossary-mcols pack-
age. For example:

\usepackage[nogroupskip,nopostdot]{glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcolindex}

2. You have entries where the name is a word or phrase and the description spans
multiple paragraphs. Try one of the “altlist” styles. For example:

\usepackage[nopostdot]{glossaries}
\setglossarystyle{altlist}

3. You have entries where the name is a single word, the description is brief, and an
associated symbol has been set. Use one of the styles that display the symbol (not
all of them do). For example, one of the tabular styles:

\usepackage[nopostdot,nonumberlist]{glossaries}
\setglossarystyle{long4col}

or one of the “tree” styles:

\usepackage[nopostdot,nonumberlist]{glossaries}
\setglossarystyle{tree}

If your glossary consists of a list of acronyms and you also want to specify a descrip-
tion as well as the long form, then you need to use an acronym style that will suit the
glossary style. For example, use the long-short-desc acronym style:

\setacronymstyle{long-short-desc}

Define the acronyms with a description:

\newacronym
[description={statistical pattern recognition technique}]
{svm}{svm}{support vector machine}

Choose a glossary style that suits wide entry names:

\setglossarystyle{altlist}
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6 Multiple Glossaries

The glossaries package predefines a default main glossary. When you define an entry
(using one of the commands described in Section 2), that entry is automatically assigned
to the default glossary, unless you indicate otherwise using the type key. However you
first need to make sure the desired glossary has been defined. This is done using:

\newglossary[〈glg〉]{〈label〉}{〈gls〉}{〈glo〉}{〈title〉}

The 〈label〉 is a label that uniquely identifies this new glossary. As with other types
of identifying labels, be careful not to use active characters in 〈label〉. The final
argument 〈title〉 is the section or chapter heading used by \printglossary or
\printnoidxglossary. The other arguments indicate the file extensions used by
makeindex/xindy (described in Section 4). If you use Option 1 described above, the
〈glg〉, 〈gls〉 and 〈glo〉 arguments are ignored, in which case you may prefer to use the
starred version where you don’t specify the extensions:

\newglossary*{〈label〉}{〈title〉}

In the case of Options 2 or 3, all glossary definitions must come before \makeglossaries.
Since it’s quite common for documents to have both a list of terms and a list of

acronyms, the glossaries package provides the package option acronym (or acronyms),
which is a convenient shortcut for

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

The option also changes the behaviour of \newacronym so that acronyms are automat-
ically put in the list of acronyms instead of the main glossary.

For example, suppose you want a main glossary for terms, a list of acronyms and
a list of notation:

\usepackage[acronyms]{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

After \makeglossaries (or \makenoidxglossaries) you can define the entries in
the preamble. For example:

\newglossaryentry{gls:set}
{% This entry goes in the `main' glossary

name=set,
description={A collection of distinct objects}

}

This entry goes in the `acronym' glossary:
\newacronym{svm}{svm}{support vector machine}

\newglossaryentry{not:set}
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{% This entry goes in the `notation' glossary:
type=notation,
name={\ensuremath{\mathcal{S}}},
description={A set},
sort={S}}

or if you don’t like using \ensuremath:

\newglossaryentry{not:set}
{% This entry goes in the `notation' glossary:

type=notation,
name={$\mathcal{S}$},
text={\mathcal{S}},
description={A set},
sort={S}}

Each glossary is displayed using:

\printnoidxglossary[type=〈type〉]

(Option 1) or

\printglossary[type=〈type〉]

(Options 2 and 3). Where 〈type〉 is the glossary label. If the type is omitted the default
main glossary is assumed.

There’s a convenient shortcut that will display all the defined glossaries:

\printnoidxglossaries

(Option 1) or

\printglossaries

(Options 2 and 3).
If you use Option 1, you don’t need to do anything else. If you use Options 2 or 3

with the makeglossaries Perl script, you similarly don’t need to do anything else.
If you use Options 2 or 3 without the makeglossaries Perl script then you need to
make sure you run makeindex/xindy for each defined glossary. The 〈gls〉 and 〈glo〉
arguments of \newglossary specify the file extensions to use instead of .gls and
.glo. The optional argument 〈glg〉 is the file extension for the transcript file. This
should be different for each glossary in case you need to check for makeindex/xindy
errors or warnings if things go wrong.

For example, suppose you have three glossaries in your document (main, acronym
and notation), specified using:

\usepackage[acronyms]{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}
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Then (assuming your LATEX document is in a file called myDoc.tex):

Option 2:

You need to run makeindex three times:

makeindex -t myDoc.glg -s myDoc.ist -o myDoc.gls myDoc.glo
makeindex -t myDoc.alg -s myDoc.ist -o myDoc.acr myDoc.acn
makeindex -t myDoc.nlg -s myDoc.ist -o myDoc.not myDoc.ntn

Option 3:

You need to run xindy three times (be careful not to insert line breaks where the
line has wrapped.)

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg
-o myDoc.gls myDoc.glo
xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.alg
-o myDoc.acr myDoc.acn
xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.nlg
-o myDoc.not myDoc.ntn

7 glossaries and hyperref

Take care if you use the glossaries package with hyperref. Contrary to the usual advice
that hyperref should be loaded last, glossaries must be loaded after hyperref:

\usepackage[colorlinks]{hyperref}
\usepackage{glossaries}

If you use hyperref make sure you use PDFLATEX rather than the LATEX to DVI engine. The
DVI format can’t break hyperlinks across a line so long glossary entries (such as the full
form of acronyms) won’t line wrap with the DVI engine. Also, hyperlinks in sub- or
superscripts aren’t correctly sized with the DVI format.

By default, if the hyperref package has been loaded, commands like \gls will form
a hyperlink to the relevant entry in the glossary. If you to disable this for all your
glossaries, then use

\glsdisablehyper

If you want hyperlinks suppressed for entries in specific glossaries, then use the
nohypertypes package option. For example, if you don’t want hyperlinks for en-
tries in the acronym and notation glossaries but you do want them for entries in the
main glossary, then do:

\usepackage[colorlinks]{hyperref}
\usepackage[acronym,nohypertypes={acronym,notation}]{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}
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If you want the hyperlinks suppressed the first time an entry is used, but you want
hyperlinks for subsequence references then use the hyperfirst=false package op-
tion:

\usepackage[colorlinks]{hyperref}
\usepackage[hyperfirst=false]{glossaries}

Take care not to use non-expandable commands in PDF bookmarks. This isn’t spe-
cific to the glossaries package but is a limitation of PDF bookmarks. Non-expandable
commands include commands like \gls, \glspl, \Gls and \Glspl. The hyper-
ref package provides a way of specifying alternative text for the PDF bookmarks via
\texorpdfstring. For example:

\section{The \texorpdfstring{\gls{fishage}}{Fish Age}}

However, it’s not a good idea to use commands like \gls in a section heading as you’ll
end up with the table of contents in your location list. Instead you can use

\glsentrytext{〈label〉}

This is expandable provided that the text key doesn’t contain non-expandable code.
For example, the following works:

\section{The \glsentrytext{fishage}}

and it doesn’t put the table of contents in the location list.

8 Cross-References

You can add a reference to another entry in a location list using the see={〈label〉} key
when you define an entry. The referenced entry must also be defined.

For example:

\longnewglossaryentry{devonian}{name={Devonian}}%
{%

The geologic period spanning from the end of the
Silurian Period to the beginning of the Carboniferous Period.

This age was known for its remarkable variety of
fish species.

}

\newglossaryentry{fishage}
{

name={Fish Age},
description={Common name for the Devonian period},
see={devonian}

}
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The cross-reference will appear as “see Devonian”. You can change the “see” tag using
the format see=[〈tag〉]〈label〉. For example:

\newglossaryentry{latinalph}
{

name={Latin alphabet},
description={alphabet consisting of the letters
a, \ldots, z, A, \ldots, Z},
see=[see also]{exlatinalph}

}
\newglossaryentry{exlatinalph}
{

name={extended Latin alphabet},
description={The Latin alphabet extended to include
other letters such as ligatures or diacritics.}

}

If you use the see key in the optional argument of \newacronym, make sure you
enclose the value in braces. For example:

\newacronym{ksvm}{ksvm}{kernel support vector machine}
\newacronym
[see={[see also]{ksvm}}]
{svm}{svm}{support vector machine}

Since the cross-reference appears in the location list, if you suppress the location list
using the nonumberlist package option, then the cross-reference will also be sup-
pressed.

9 Further Information

Further information can be found in the main glossaries user manual (glossaries-
user.pdf) or in the glossaries FAQ. There is also an article on the glossaries and
glossaries-extra packages on the LATEX Community’s1 Know How section and a chapter
on the glossaries package in Using LATEX to Write a PhD Thesis.

1http://www.latex-community.org/
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