
User Manual for glossaries.sty v4.43

Nicola L.C. Talbot
http://www.dickimaw-books.com/

2019-09-28

Abstract

The glossaries package provides a means to define terms or abbrevia-
tions or symbols that can be referenced within your document. Sorted
lists with collated locations can be generated either using TEX or using
a supplementary indexing application.

Additional features not provided here may be available through the
extension package glossaries-extra which, if required, needs to be in-
stalled separately. New features will be added to glossaries-extra. Ver-
sions of the glossaries package after v4.21 will mostly be just bug fixes.
Note that glossaries-extra provides an extra indexing option (bib2gls)
which isn’t available with just the base glossaries package.

If you require multilingual support you must also separately install the
relevant language module. Each language module is distributed under
the name glossaries-〈language〉, where 〈language〉 is the root language
name. For example, glossaries-french or glossaries-german. If a
language module is required, the glossaries package will automatically try to
load it and will give a warning if the module isn’t found. See Section 1.4 for
further details. If there isn’t any support available for your language, use
the nolangwarn package option to suppress the warning and provide your
own translations. (For example, use the title key in \printglossary.)

The glossaries package requires a number of other packages including,
but not limited to, tracklang, mfirstuc, etoolbox, xkeyval (at least version dated
2006/11/18), textcase, xfor, datatool-base (part of the datatool bundle) and ams-
gen. These packages are all available in the latest TEX Live and MikTEX dis-
tributions. If any of them are missing, please update your TEX distribution
using your update manager. For help on this see, for example, How do I
update my TEX distribution? or (for Linux users) Updating TEX on Linux.

Note that occasionally you may find that certain packages need to be
loaded after packages that are required by glossaries. For example, a package
〈X〉 might need to be loaded after amsgen. In which case, load the required
package first (for example, amsgen), then 〈X〉, and finally load glossaries.

1

http://www.dickimaw-books.com/
http://tex.stackexchange.com/questions/55437/how-do-i-update-my-tex-distribution
http://tex.stackexchange.com/questions/55437/how-do-i-update-my-tex-distribution
http://tex.stackexchange.com/questions/14925/updating-tex-on-linux


Documents have wide-ranging styles when it comes to presenting
glossaries or lists of terms or notation. People have their own
preferences and to a large extent this is determined by the kind of
information that needs to go in the glossary. They may just have
symbols with terse descriptions or they may have long technical words
with complicated descriptions. The glossaries package is flexible enough
to accommodate such varied requirements, but this flexibility comes at a
price: a big manual.

M If you’re freaking out at the size of this manual, start with
glossariesbegin.pdf (“The glossaries package: a guide for
beginnners”). You should find it in the same directory as this document
or try texdoc glossariesbegin.pdf. Once you’ve got to grips
with the basics, then come back to this manual to find out how to adjust
the settings.

The glossaries bundle comes with the following documentation:

glossariesbegin.pdf If you are a complete beginner, start with “The
glossaries package: a guide for beginners”.

glossary2glossaries.pdf If you are moving over from the obsolete
glossary package, read “Upgrading from the glossary package to the
glossaries package”.

glossaries-user.pdf This document is the main user guide for the glossaries
package.

glossaries-code.pdf Advanced users wishing to know more about
the inner workings of all the packages provided in the glossaries bun-
dle should read “Documented Code for glossaries v4.43”.

INSTALL Installation instructions.

CHANGES Change log.

README Package summary.

Related resources:

• glossaries-extra and bib2gls: An Introductory Guide. (bib2gls-begin.pdf).

• glossaries FAQ

• glossaries gallery

• a summary of all glossary styles provided by glossaries

2

glossariesbegin.pdf
glossary2glossaries.pdf
glossaries-code.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://www.dickimaw-books.com/faqs/glossariesfaq.html
http://www.dickimaw-books.com/gallery/#glossaries
http://www.dickimaw-books.com/gallery/glossaries-styles/


• glossaries performance (comparing document build times for the dif-
ferent options provided by glossaries and glossaries-extra).

• Using LaTeX to Write a PhD Thesis (chapter 6).

• Incorporating makeglossaries or makeglossaries-lite or bib2gls into
the document build

• The glossaries-extra package

• bib2gls

If you use hyperref and glossaries, you must load hyperref first. Similarly
the doc package must also be loaded before glossaries. (If doc is loaded,
the file extensions for the default main glossary are changed to gls2,
glo2 and .glg2 to avoid conflict with doc’s changes glossary.)

If you are using hyperref, it’s best to use pdflatex rather than latex
(DVI format) as pdflatex deals with hyperlinks much better. If you
use the DVI format, you will encounter problems where you have long
hyperlinks or hyperlinks in subscripts or superscripts. This is an issue
with the DVI format not with glossaries. If you really need to use the
DVI format and have a problem with hyperlinks in maths mode, I
recommend you use glossaries-extra with the hyperoutside and
textformat attributes set to appropriate values for problematic
entries.

3

http://www.dickimaw-books.com/gallery/glossaries-performance.shtml
http://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://ctan.org/pkg/glossaries-extra
http://ctan.org/pkg/bib2gls


Contents

Glossary 9

1 Introduction 13
1.1 Indexing Options . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Sample Documents . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Dummy Entries for Testing . . . . . . . . . . . . . . . . . . . . 38
1.4 Multi-Lingual Support . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.1 Changing the Fixed Names . . . . . . . . . . . . . . . . 42
1.5 Generating the Associated Glossary Files . . . . . . . . . . . . 50

1.5.1 Using the makeglossaries Perl Script . . . . . . . . . . . 53
1.5.2 Using the makeglossaries-lite Lua Script . . . . . . . . 55
1.5.3 Using xindy explicitly (Option 3) . . . . . . . . . . . . . 56
1.5.4 Using makeindex explicitly (Option 2) . . . . . . . . . . 57
1.5.5 Note to Front-End and Script Developers . . . . . . . . 58

2 Package Options 60
2.1 General Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Sectioning, Headings and TOC Options . . . . . . . . . . . . . 68
2.3 Glossary Appearance Options . . . . . . . . . . . . . . . . . . . 71
2.4 Sorting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5 Acronym Options . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5.1 Deprecated Acronym Style Options . . . . . . . . . . . 82
2.6 Other Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.7 Setting Options After the Package is Loaded . . . . . . . . . . 88

3 Setting Up 89
3.1 Option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 Options 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Defining Glossary Entries 92
4.1 Plurals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Other Grammatical Constructs . . . . . . . . . . . . . . . . . . 100
4.3 Additional Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Document Keys . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.2 Storage Keys . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4



Contents

4.5 Sub-Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.1 Hierarchical Categories . . . . . . . . . . . . . . . . . . 109
4.5.2 Homographs . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Loading Entries From a File . . . . . . . . . . . . . . . . . . . . 111
4.7 Moving Entries to Another Glossary . . . . . . . . . . . . . . . 113
4.8 Drawbacks With Defining Entries in the Document Environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8.1 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . 114
4.8.2 Good Practice Issues . . . . . . . . . . . . . . . . . . . . 115

5 Number lists 116
5.1 Encap Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Range Formations . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Style Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Links to Glossary Entries 125
6.1 The \gls-Like Commands (First Use Flag Queried) . . . . . . 129
6.2 The \glstext-Like Commands (First Use Flag Not Queried) 135
6.3 Changing the format of the link text . . . . . . . . . . . . . . . 140
6.4 Enabling and disabling hyperlinks to glossary entries . . . . . 146

7 Adding an Entry to the Glossary Without Generating Text 150

8 Cross-Referencing Entries 152
8.1 Customising Cross-reference Text . . . . . . . . . . . . . . . . . 154

9 Using Glossary Terms Without Links 156

10 Displaying a glossary 164

11 Xindy (Option 3) 169
11.1 Language and Encodings . . . . . . . . . . . . . . . . . . . . . 170
11.2 Locations and Number lists . . . . . . . . . . . . . . . . . . . . 171
11.3 Glossary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12 Defining New Glossaries 180

13 Acronyms and Other Abbreviations 183
13.1 Changing the Abbreviation Style . . . . . . . . . . . . . . . . . 191

13.1.1 Predefined Acronym Styles . . . . . . . . . . . . . . . . 192
13.1.2 Defining A Custom Acronym Style . . . . . . . . . . . . 196

13.2 Displaying the List of Acronyms . . . . . . . . . . . . . . . . . 208
13.3 Upgrading From the glossary Package . . . . . . . . . . . . . . 209

5



Contents

14 Unsetting and Resetting Entry Flags 211
14.1 Counting the Number of Times an Entry has been Used (First

Use Flag Unset) . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

15 Glossary Styles 219
15.1 Predefined Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 219

15.1.1 List Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.1.2 Longtable Styles . . . . . . . . . . . . . . . . . . . . . . 224
15.1.3 Longtable Styles (Ragged Right) . . . . . . . . . . . . . 226
15.1.4 Longtable Styles (booktabs) . . . . . . . . . . . . . . . . 227
15.1.5 Supertabular Styles . . . . . . . . . . . . . . . . . . . . . 228
15.1.6 Supertabular Styles (Ragged Right) . . . . . . . . . . . 230
15.1.7 Tree-Like Styles . . . . . . . . . . . . . . . . . . . . . . . 232
15.1.8 Multicols Style . . . . . . . . . . . . . . . . . . . . . . . 236
15.1.9 In-Line Style . . . . . . . . . . . . . . . . . . . . . . . . . 237

15.2 Defining your own glossary style . . . . . . . . . . . . . . . . . 239

16 Utilities 247
16.1 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
16.2 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
16.3 Fetching and Updating the Value of a Field . . . . . . . . . . . 254

17 Prefixes or Determiners 256

18 Accessibility Support 261

19 Troubleshooting 263

Index 264

6



List of Examples

1 Mixing Alphabetical and Order of Definition Sorting . . . . . 76
2 Customizing Standard Sort (Options 2 or 3) . . . . . . . . . . . 77
3 Defining Custom Keys . . . . . . . . . . . . . . . . . . . . . . . 102
4 Defining Custom Storage Key (Acronyms and Initialisms) . . 103
5 Defining Custom Storage Key (Acronyms and Non-Acronyms

with Descriptions) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6 Hierarchical Categories—Greek and Roman Mathematical

Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7 Loading Entries from Another File . . . . . . . . . . . . . . . . 112
8 Custom Entry Display in Text . . . . . . . . . . . . . . . . . . . 144
9 Custom Format for Particular Glossary . . . . . . . . . . . . . 145
10 First Use With Hyperlinked Footnote Description . . . . . . . 146
11 Suppressing Hyperlinks on First Use Just For Acronyms . . . 147
12 Only Hyperlink in Text Mode Not Math Mode . . . . . . . . . 147
13 One Hyper Link Per Entry Per Chapter . . . . . . . . . . . . . 148
14 Dual Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
15 Switch to Two Column Mode for Glossary . . . . . . . . . . . . 167
16 Changing the Font Used to Display Entry Names in the Glos-

sary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
17 Custom Font for Displaying a Location . . . . . . . . . . . . . 172
18 Custom Numbering System for Locations . . . . . . . . . . . . 173
19 Locations as Dice . . . . . . . . . . . . . . . . . . . . . . . . . . 173
20 Locations as Words not Digits . . . . . . . . . . . . . . . . . . . 175
21 Defining an Abbreviation . . . . . . . . . . . . . . . . . . . . . 185
22 Adapting a Predefined Acronym Style . . . . . . . . . . . . . . 195
23 Defining a Custom Acronym Style . . . . . . . . . . . . . . . . 198
24 Italic and Upright Abbreviations . . . . . . . . . . . . . . . . . 204
25 Abbreviations with Full Stops (Periods) . . . . . . . . . . . . . 206
26 Don’t index entries that are only used once . . . . . . . . . . . 217
27 Creating a completely new style . . . . . . . . . . . . . . . . . . 243
28 Creating a new glossary style based on an existing style . . . . 244
29 Example: creating a glossary style that uses the user1, . . . ,

user6 keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
30 Defining Determiners . . . . . . . . . . . . . . . . . . . . . . . . 256
31 Using Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
32 Adding Determiner to Glossary Style . . . . . . . . . . . . . . 260

7



List of Tables

1.1 Glossary Options: Pros and Cons . . . . . . . . . . . . . . . . . 16
1.2 Customised Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.3 Commands and package options that have no effect when

using xindy or makeindex explicitly . . . . . . . . . . . . . . . 53

4.1 Key to Field Mappings . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Predefined Hyperlinked Location Formats . . . . . . . . . . . 129

13.1 Synonyms provided by the package option shortcuts . . . . . . 189
13.2 The effect of using xspace . . . . . . . . . . . . . . . . . . . . . 210

15.1 Glossary Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
15.2 Multicolumn Styles . . . . . . . . . . . . . . . . . . . . . . . . . 237

8



Glossary

This glossary style was setup using:

\usepackage[xindy,
nonumberlist,
toc,
nopostdot,
style=altlist,
nogroupskip]{glossaries}

bib2gls

An indexing application that combines two functions in one: (1)
fetches entry definition from a .bib file based on information pro-
vided in the .aux file (similar to bibtex); (2) hierarchically sorts and
collates location lists (similar to makeindex and xindy). This appli-
cation is designed for use with glossaries-extra and can’t be used with
just the base glossaries package.

Command Line Interface (CLI)

An application that doesn’t have a graphical user interface. That is,
an application that doesn’t have any windows, buttons or menus and
can be run in a command prompt or terminal.

Entry location

The location of the entry in the document. This defaults to the page
number on which the entry appears. An entry may have multiple
locations.

Extended Latin Alphabet

An alphabet consisting of Latin characters and extended Latin charac-
ters.

Extended Latin Character

A character that’s created by combining Latin characters to form liga-
tures (e.g. æ) or by applying diacritical marks to a Latin character or
characters (e.g. á or ø). See also non-Latin character.

9

http://www.dickimaw-books.com/latex/novices/html/terminal.html


Glossary

First use

The first time a glossary entry is used (from the start of the document
or after a reset) with one of the following commands: \gls, \Gls,
\GLS, \glspl, \Glspl, \GLSpl or \glsdisp. (See first use flag &
first use text.)

First use flag

A conditional that determines whether or not the entry has been used
according to the rules of first use. Commands to unset or reset this
conditional are described in Section 14.

First use text

The text that is displayed on first use, which is governed by the first
and firstplural keys of \newglossaryentry. (May be overridden by
\glsdisp or by \defglsentry.)

glossaries-extra

A separate package that extends the glossaries package, providing new
features or improving existing features. If you want to use glossaries-
extra, you must have both the glossaries package and the glossaries-extra
package installed.

Indexing application

An application (piece of software) separate from TEX/LATEX that col-
lates and sorts information that has an associated page reference. Gen-
erally the information is an index entry but in this case the information
is a glossary entry. There are two main indexing applications that are
used with TEX: makeindex and xindy. These are both command line
interface (CLI) applications.

Latin Alphabet

The alphabet consisting of Latin characters. See also extended Latin
alphabet.

Latin Character

One of the letters a, . . . , z, A, . . . , Z. See also extended Latin character.

Link text

The text produced by commands such as \gls. It may or may not be
a hyperlink to the glossary.

10



Glossary

makeglossaries

A custom designed Perl script interface to xindy and makeindex
provided with the glossaries package. TEX distributions on Win-
dows convert the original makeglossaries script into an executable
makeglossaries.exe for convenience (but Perl is still required).

makeglossariesgui

A Java GUI alternative to makeglossaries that also provides diag-
nostic tools. Available separately on CTAN.

makeglossaries-lite

A custom designed Lua script interface to xindy and makeindex
provided with the glossaries package. This is a cut-down alternative
to the Perl makeglossaries script. If you have Perl installed, use
the Perl script instead. This script is actually distributed with the file
name makeglossaries-lite.lua, but TEX Live (on Unix-like sys-
tems) creates a symbolic link called makeglossaries-lite (with-
out the .lua extension) to the actual makeglossaries-lite.lua
script.

makeindex

An indexing application.

Non-Latin Alphabet

An alphabet consisting of non-Latin characters.

Non-Latin Character

An extended Latin character or a character that isn’t a Latin character.

Number list

A list of entry locations (also called a location list). The number list
can be suppressed using the nonumberlist package option.

Sanitize

Converts command names into character sequences. That is, a com-
mand called, say, \foo, is converted into the sequence of characters:
\, f, o, o. Depending on the font, the backslash character may appear
as a dash when used in the main document text, so \foo will appear
as: —foo.

Earlier versions of glossaries used this technique to write information
to the files used by the indexing applications to prevent problems
caused by fragile commands. Now, this is only used for the sort key.

11

http://ctan.org/pkg/makeglossariesgui


Glossary

Standard LATEX Extended Latin Character

An extended Latin character that can be created by a core LATEX com-
mand, such as \o (ø) or \’e (é). That is, the character can be produced
without the need to load a particular package.

xindy

A flexible indexing application with multilingual support written in
Perl.

12



1 Introduction

The glossaries package is provided to assist generating lists of terms, sym-
bols or abbreviations. (For convenience, these lists are all referred to as
glossaries in this manual.) The package has a certain amount of flexibility,
allowing the user to customize the format of the glossary and define mul-
tiple glossaries. It also supports glossary styles that include symbols (in
addition to a name and description) for glossary entries. There is provision
for loading a database of glossary terms. Only those terms indexed1 in the
document will be added to the glossary.

The glossaries-extra package, which is distributed as a separated bundle,
extends the capabilities of the glossaries package. The simplest document
can be created with glossaries-extra (which internally loads the glossaries
package):

\documentclass{article}

\usepackage[
sort=none,% no sorting or indexing required
abbreviations,% create list of abbreviations
symbols,% create list of symbols
postdot % append a full stop after the descriptions

]{glossaries-extra}

\newglossaryentry % provided by glossaries.sty
{cafe}% label
{% definition:

name={caf\'e},
description={small restaurant selling refreshments}

}

\newabbreviation % provided by glossaries-extra.sty
{html}% label
{HTML}% short form
{hypertext markup language}% long form

\glsxtrnewsymbol % provided by glossaries-extra.sty 'symbols' option
[description={Archimedes' constant}]% options
{pi}% label
{\ensuremath{\pi}}% symbol

1That is, if the term has been referenced using any of the commands described in Section 6
and Section 7 or via \glssee (or the see key) or commands such as \acrshort.

13



1 Introduction

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\printunsrtglossaries % list all defined entries
\end{document}

The glossaries package replaces the glossary package which is now ob-
solete. Please see the document “Upgrading from the glossary package to
the glossaries package” (glossary2glossaries.pdf) for assistance in upgrad-
ing.

One of the strengths of this package is its flexibility, however the draw-
back of this is the necessity of having a large manual that covers all the
various settings. If you are daunted by the size of the manual, try starting
off with the much shorter guide for beginners (glossariesbegin.pdf).

There’s a common misconception that you have to have Perl installed in
order to use the glossaries package. Perl is not a requirement but it does
increase the available options, particularly if you use an extended Latin
alphabet or a non-Latin alphabet.

This document uses the glossaries package. For example, when viewing
the PDF version of this document in a hyperlinked-enabled PDF viewer
(such as Adobe Reader or Okular) if you click on the word “xindy” you’ll
be taken to the entry in the glossary where there’s a brief description of the
term “xindy”. This is the way the glossaries mechanism works. An index-
ing application is used to generated the sorted list of terms. The indexing
applications are command line interface (CLI) tools, which means they can
be run directly from a command prompt or terminal, or can be integrated
into some text editors, or you can use a build tool such as arara to run
them.

The remainder of this introductory section covers the following:

• Section 1.1 lists the available indexing options.

• Section 1.2 lists the sample documents provided with this package.

• Section 1.3 lists the dummy glossary files that may be used for testing.

• Section 1.4 provides information for users who wish to write in a lan-
guage other than English.

• Section 1.5 describes how to use an indexing application to create the
sorted glossaries for your document (Options 2 or 3).

14



1 Introduction

1.1 Indexing Options

The basic idea behind the glossaries package is that you first define your en-
tries (terms, symbols or abbreviations). Then you can reference these within
your document (like \cite or \ref). You can also, optionally, display a list
of the entries you have referenced in your document (the glossary). This last
part, displaying the glossary, is the part that most new users find difficult.
There are three options available with the base glossaries package and two
further options with the extension package glossaries-extra. An overview of
these options is given in table 1.1.

If you are developing a class or package that loads glossaries, I recom-
mend that you don’t force the user into a particular indexing method by
adding an unconditional \makeglossaries into your class or package
code. Aside from forcing the user into a particular indexing method, it
means that they’re unable to use any commands that must come before
\makeglossaries (such as \newglossary) and they can’t switch off the
indexing whilst working on a draft document.

For a comparison of the various methods when used with large entry sets
or when used with symbols such as \alpha, see the glossaries performance
page.

Option 1 (TEX)

This option doesn’t require an external indexing application but, with the
default alphabetic sorting, it’s very slow with severe limitations. If you
want a sorted list, it doesn’t work well for extended Latin alphabets or non-
Latin alphabets. However, if you use the sanitizesort=false package option
(the default for Option 1) then the standard LATEX accent commands will be
ignored, so if an entry’s name is set to {\’e}lite then the sort value will
default to elite if sanitizesort=false is used and will default to \’elite if
sanitizesort=true is used. If you have any other kinds of commands that don’t
expand to ASCII characters, such as \alpha or \si, then you must use san-
itizesort=true or change the sort method (sort=use or sort=def) in the package
options or explicitly set the sort key when you define the relevant entries.
For example:

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={...}}

This option works best with the sort=def or sort=use setting. For any other
setting, be prepared for a long document build time, especially if you have a
lot of entries defined. This option is intended as a last resort for alphabet-
ical sorting. This option allows a mixture of sort methods. (For example,
sorting by word order for one glossary and order of use for another.) This
option is not suitable for hierarchical glossaries and does not form ranges

15

http://www.dickimaw-books.com/gallery/glossaries-performance.shtml
http://www.dickimaw-books.com/gallery/glossaries-performance.shtml


1 Introduction

Table 1.1: Glossary Options: Pros and Cons

Option 1 Option 2 Option 3 Option 4 Option 5
Requires glossaries-extra? 8 8 8 4 4

Requires an external
application?

8 4 4 4 8

Requires Perl? 8 8 4 8 8

Requires Java? 8 8 8 4 8

Can sort extended Latin
alphabets or non-Latin
alphabets?

8* 8 4 4 N/A

Efficient sort algorithm? 8 4 4 4 N/A
Can use a different sort
method for each glossary?

4 8† 8† 4 N/A

Any problematic sort
values?

4 4 4 8 8‡

Are entries with identical
sort values treated as
separate unique entries?

4 4 8§ 4 4

Can automatically form
ranges in the location lists?

8 4 4 4 8

Can have non-standard
locations in the location
lists?

4 8 4♦ 4 4¶

Maximum hierarchical
depth (style-dependent)

∞# 3 ∞ ∞ ∞

\glsdisplaynumberlist
reliable?

4 8 8 4 8

\newglossaryentry
allowed in document
environment? (Not
recommended.)

8 4 4 8※ 4
**

Requires additional write
registers?

8 4 4 8 8?

Default value of sanitizesort
package option

false true true true^ true^

* Strips standard LATEX accents (that is, accents generated by core LATEX commands) so, for
example, \AA is treated the same as A.
† Only with the hybrid method provided with glossaries-extra.
‡ Provided sort=none is used.
§ Entries with the same sort value are merged.
♦ Requires some setting up.
¶ The locations must be set explicitly through the custom location field provided by glossaries-
extra.
# Unlimited but unreliable.
※ Entries are defined in .bib format. \newglossaryentry should not be used explicitly.
** Provided docdefs=true or docdefs=restricted but not recommended.
? Provided docdefs=false or docdefs=restricted.
^ Irrelevant with sort=none. (The record=only option automatically switches this on.)

16



1 Introduction

in the number lists. If you really can’t use an indexing application consider
using Option 5 instead.

1. Add

\makenoidxglossaries

to your preamble (before you start defining your entries, as described
in Section 4).

2. Put

\printnoidxglossary

where you want your list of entries to appear (described in Section 10).
Alternatively, to display all glossaries use the iterative command:

\printnoidxglossaries

3. Run LATEX twice on your document. (As you would do to make a ta-
ble of contents appear.) For example, click twice on the “typeset” or
“build” or “PDFLATEX” button in your editor.

Complete example:

\documentclass{article}
\usepackage{glossaries}
\makenoidxglossaries % use TeX to sort
\newglossaryentry{sample}{name={sample},

description={an example}}
\begin{document}
\gls{sample}.
\printnoidxglossary
\end{document}

Option 2 (makeindex)

This option uses a CLI application called makeindex to sort the entries.
This application comes with all modern TEX distributions, but it’s hard-
coded for the non-extended Latin alphabet. It can’t correctly sort accent
commands (such as \’ or \c) and fails with UTF-8 characters, especially for
any sort values that start with a UTF-8 character (as it separates the octets
resulting in an invalid file encoding). This process involves making LATEX
write the glossary information to a temporary file which makeindex reads.
Then makeindex writes a new file containing the code to typeset the glos-
sary. Then \printglossary reads this file in on the next run.

17



1 Introduction

This option works best if you want to sort entries according to the English
alphabet and you don’t want to install Perl (or Java or you don’t want to use
glossaries-extra). This method can also work with the restricted shell escape
since makeindex is considered a trusted application. (So you should be
able to use the automake package option provided the shell escape hasn’t
been completely disabled.)

This method can form ranges in the number list but only accepts limited
number formats: \arabic, \roman, \Roman, \alph and \Alph.

This option does not allow a mixture of sort methods. All glossaries must
be sorted according to the same method: word/letter ordering or order of
use or order of definition. If you need word ordering for one glossary and
letter ordering for another you’ll have to explicitly call makeindex for each
glossary type. (The glossaries-extra package allows a hybrid mix of Options 1
and 2 to provide word/letter ordering with Option 2 and order of use/
definition with Option 1. See the glossaries-extra documentation for further
details.)

1. If you want to use makeindex’s -g option you must change the quote
character using \GlsSetQuote. For example:

\GlsSetQuote{+}

This must be used before \makeglossaries. Note that if you are
using babel, the shorthands aren’t enabled until the start of the docu-
ment, so you won’t be able to use the shorthands in definitions made
in the preamble.

2. Add

\makeglossaries

to your preamble (before you start defining your entries, as described
in Section 4).

3. Put

\printglossary

where you want your list of entries to appear (described in Section 10).
Alternatively, to display all glossaries use the iterative command:

\printglossaries

4. Run LATEX on your document. This creates files with the exten-
sions .glo and .ist (for example, if your LATEX document is called

18



1 Introduction

myDoc.tex, then you’ll have two extra files called myDoc.glo and
myDoc.ist). If you look at your document at this point, you won’t
see the glossary as it hasn’t been created yet. (If you use glossaries-extra
you’ll see the section heading and some boilerplate text.)

5. Run makeindex with the .glo file as the input file and the .ist file
as the style so that it creates an output file with the extension .gls. If
you have access to a terminal or a command prompt (for example, the
MSDOS command prompt for Windows users or the bash console for
Unix-like users) then you need to run the command:

makeindex -s myDoc.ist -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your LATEX document file.
Avoid spaces in the file name if possible.) If you don’t know how to
use the command prompt, then you can probably access makeindex
via your text editor, but each editor has a different method of doing
this, so I can’t give a general description. You will have to check your
editor’s manual. The simplest approach is to use arara and add the
following comment lines to the start of your document:

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

(Replace makeglossaries with makeglossaries-lite if you
don’t have Perl installed.)

The default sort is word order (“sea lion” comes before “seal”). If you
want letter ordering you need to add the -l switch:

makeindex -l -s myDoc.ist -o myDoc.gls myDoc.glo

(See Section 1.5.4 for further details on using makeindex explicitly.)
If you use makeglossaries or makeglossaries-lite then use
the order=letter package option and the -l option will be added auto-
matically.

6. Once you have successfully completed the previous step, you can now
run LATEX on your document again. You’ll need to repeat the process
if you have used the toc option (unless you’re using glossaries-extra) to
ensure the section heading is added to the table of contents. You’ll
also need to repeat the process if you have any cross-references which
can’t be indexed until the glossary file has been created.

19



1 Introduction

Complete example:

\documentclass{article}
\usepackage{glossaries}
\makeglossaries % open glossary files
\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document}
\gls{sample}.
\printglossary
\end{document}

Option 3 (xindy)

This option uses a CLI application called xindy to sort the entries. This
application is more flexible than makeindex and is able to sort extended
Latin alphabets or non-Latin alphabets, however it does still have some lim-
itations.

The xindy application comes with both TEX Live and MiKTEX, but since
xindy is a Perl script, you will also need to install Perl, if you don’t already
have it. In a similar way to Option 2, this option involves making LATEX
write the glossary information to a temporary file which xindy reads. Then
xindy writes a new file containing the code to typeset the glossary. Then
\printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to
sort according to a language other than English or if you want non-standard
location lists, but it can require some setting up (see Section 11). There are
some problems with certain sort values:

• entries with the same sort value are merged by xindy into a single
glossary line so you must make sure that each entry has a unique sort
value;

• xindy forbids empty sort values;

• xindy automatically strips control sequences, the math-shift charac-
ter $ and braces {} from the sort value, which is usually desired but
this can cause the sort value to collapse to an empty string which
xindy forbids.

In these problematic cases, you must set the sort field explicitly. For exam-
ple:

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={...}}

All glossaries must be sorted according to the same method (word/letter
ordering, order of use, or order of definition). (The glossaries-extra package

20



1 Introduction

allows a hybrid mix of Options 1 and 3 to provide word/letter ordering
with Option 3 and order of use/definition with Option 1. See the glossaries-
extra documentation for further details.)

1. Add the xindy option to the glossaries package option list:

\usepackage[xindy]{glossaries}

If you are using a non-Latin script you’ll also need to either switch off
the creation of the number group:

\usepackage[xindy={glsnumbers=false}]{glossaries}

or use either \GlsSetXdyFirstLetterAfterDigits{〈letter〉} or
\GlsSetXdyNumberGroupOrder{〈spec〉} to indicate where the num-
ber group should be placed (see Section 11).

2. Add \makeglossaries to your preamble (before you start defining
your entries, as described in Section 4).

3. Run LATEX on your document. This creates files with the exten-
sions .glo and .xdy (for example, if your LATEX document is called
myDoc.tex, then you’ll have two extra files called myDoc.glo and
myDoc.xdy). If you look at your document at this point, you won’t
see the glossary as it hasn’t been created yet. (If you’re using the ex-
tension package glossaries-extra, you’ll see the section header and some
boilerplate text.)

4. Run xindy with the .glo file as the input file and the .xdy file as
a module so that it creates an output file with the extension .gls. You
also need to set the language name and input encoding. If you have
access to a terminal or a command prompt (for example, the MSDOS
command prompt for Windows users or the bash console for Unix-like
users) then you need to run the command (all on one line):

xindy -L english -C utf8 -I xindy -M myDoc
-t myDoc.glg -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your LATEX document file.
Avoid spaces in the file name. If necessary, also replace english with
the name of your language and utf8 with your input encoding, for
example, -L german -C din5007-utf8.) Note that it’s much sim-
pler to use makeglossaries instead:

makeglossaries myDoc

21



1 Introduction

(Remember that xindy is a Perl script so if you can use xindy then
you can also use makeglossaries, and if you don’t want to use
makeglossaries because you don’t want to install Perl, then you
can’t use xindy either.)

If you don’t know how to use the command prompt, then you can
probably access xindy or makeglossaries via your text editor, but
each editor has a different method of doing this, so I can’t give a gen-
eral description. You will have to check your editor’s manual. Again,
a convenient method is to use arara and add the follow comment
lines to the start of your document:

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

The default sort is word order (“sea lion” comes before “seal”). If you
want letter ordering you need to add the order=letter package option:

\usepackage[xindy,order=letter]{glossaries}

(and return to the previous step). This option is picked up by
makeglossaries. If you are explicitly using xindy then you’ll need
to add -M ord/letorder to the options list. See Section 1.5.3 for fur-
ther details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now
run LATEX on your document again. As with the previous option, you
may need to repeat the process to ensure the table of contents and
cross-references are resolved.

Complete example:

\documentclass{article}
\usepackage[xindy]{glossaries}
\makeglossaries % open glossary files
\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document}
\gls{sample}.
\printglossary
\end{document}

Option 4 (bib2gls)

This option is only available with the extension package glossaries-extra. This
method uses bib2gls to both fetch entry definitions from .bib files and
to hierarchically sort and collate.

22



1 Introduction

All entries must be provided in one or more .bib files. (See the bib2gls
user manual for the required format.) The glossaries-extra package needs to
be loaded with the record package option

\usepackage[record]{glossaries-extra}

or (equivalently)

\usepackage[record=only]{glossaries-extra}

(It’s possible to use a hybrid of this method and Options 2 or 3 with
record=alsoindex but in general there is little need for this and it complicates
the build process.)

Each resource set is loaded with \GlsXtrLoadResources[〈options〉].
For example:

\GlsXtrLoadResources
[% definitions in entries1.bib and entries2.bib:
src={entries1,entries2},
sort={de-CH-1996}% sort according to this locale

]

You can have multiple resource commands.
The glossary is displayed using

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

\printunsrtglossaries

The document is build using:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If letter groups are required, you need the --group switch:

bib2gls --group myDoc

Unlike Options 2 and 3, this method doesn’t create a file containing the
typeset glossary but simply determines which entries are needed for the
document, their associated locations and (if required) their associated letter
group. This option allows a mixture of sort methods. (For example, sorting
by word order for one glossary and order of use for another or even sorting
one block of the glossary differently to another block in the same glossary.)

This method supports Unicode and (with at least Java 8) uses the Com-
mon Locale Data Repository, which provides more extensive language sup-
port than xindy.2 The locations in the number list may be in any format.

2Except for Klingon, which is supported by xindy, but not by the CLDR.

23



1 Introduction

If bib2gls can deduce a numerical value it will attempt to form ranges
otherwise it will simply list the locations.

Complete example:

\documentclass{article}
\usepackage[record]{glossaries-extra}
\GlsXtrLoadResources[src={entries}]
\begin{document}
\gls{sample}.
\printunsrtglossary
\end{document}

where entries.bib contains

@entry{sample,
name={sample},
description={an example}

}

See the bib2gls user manual for further details.

Option 5 (no sorting)

This option is only available with the extension package glossaries-extra. No
indexing application is required. This method is best used with the package
option sort=none.

\usepackage[sort=none]{glossaries-extra}

There’s no “activation” command (such as \makeglossaries for Op-
tions 2 and 3).

All entries must be defined before the glossary is displayed (preferably
in the preamble) in the required order, and child entries must be defined
immediately after their parent entry if they must be kept together in the
glossary

The glossary is displayed using

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

\printunsrtglossaries

This will display all defined entries, regardless of whether or not they have
been used in the document. The number lists have to be set explicitly other-
wise they won’t appear. Note that this uses the same command for display-
ing the glossary as Option 4. This is because bib2gls takes advantage of
this method by defining the wanted entries in the required order and setting
the locations (and letter group information, if required).

This just requires a single LATEX call

pdflatex myDoc

24



1 Introduction

unless the glossary needs to appear in the table of contents, in which case a
second run is required.

pdflatex myDoc
pdflatex myDoc

(Naturally if the document also contains citations, and so on, then addi-
tional steps are required. Similarly for all the other options above.)

Complete example:

\documentclass{article}
\usepackage[sort=none]{glossaries-extra}
\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document}
\gls{sample}.
\printunsrtglossary
\end{document}

See the glossaries-extra documentation for further details.

1.2 Sample Documents

The glossaries package is provided with some sample documents that illus-
trate the various functions. These should be located in the samples sub-
directory (folder) of the glossaries documentation directory. This location
varies according to your operating system and TEX distribution. You can
use texdoc to locate the main glossaries documentation. For example, in a
terminal or command prompt, type:

texdoc -l glossaries

This should display a list of all the files in the glossaries documentation
directory with their full pathnames. (The GUI version of texdoc may also
provide you with the information.)

If you can’t find the sample files on your computer, they are also available
from your nearest CTAN mirror at http://mirror.ctan.org/macros/
latex/contrib/glossaries/samples/.

The sample documents are listed below3 If you prefer to use UTF-8 aware
engines (xelatex or lualatex) remember that you’ll need to switch from
fontenc & inputenc to fontspec where appropriate. The glossaries-extra package
provides some additional sample files.

3Note that although I’ve written latex in this section, it’s better to use pdflatex, where
possible, for the reasons given earlier.

25

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/


1 Introduction

minimalgls.tex This document is a minimal working example. You can
test your installation using this file. To create the complete document
you will need to do the following steps:

1. Run minimalgls.tex through LATEX either by typing

latex minimalgls

in a terminal or by using the relevant button or menu item in
your text editor or front-end. This will create the required asso-
ciated files but you will not see the glossary. If you use PDFLATEX
you will also get warnings about non-existent references that
look something like:
pdfTeX warning (dest): name{glo:aca} has been
referenced but does not exist,
replaced by a fixed one

These warnings may be ignored on the first run.

If you get a Missing \begin{document} error, then it’s most
likely that your version of xkeyval is out of date. Check the log file
for a warning of that nature. If this is the case, you will need to
update the xkeyval package.

2. If you have Perl installed, run makeglossaries on the docu-
ment (Section 1.5). This can be done on a terminal by typing

makeglossaries minimalgls

otherwise do

makeglossaries-lite minimalgls

If for some reason you want to call makeindex explicitly, you
can do this in a terminal by typing (all on one line):

makeindex -s minimalgls.ist -t minimalgls.glg -o
minimalgls.gls minimalgls.glo

(See Section 1.5.4 for further details on using makeindex explic-
itly.)

Note that if the file name contains spaces, you will need to use
the double-quote character to delimit the name.

26



1 Introduction

3. Run minimalgls.tex through LATEX again (as step 1)

You should now have a complete document. The number following
each entry in the glossary is the location number. By default, this is
the page number where the entry was referenced.

There are three other files that can be used as a minimal working ex-
ample: mwe-gls.tex, mwe-acr.tex and mwe-acr-desc.tex.

sample-noidxapp.tex This document illustrates how to use the glos-
saries package without an external indexing application (Option 1).
To create the complete document, you need to do:

latex sample-noidxapp

latex sample-noidxapp

sample-noidxapp-utf8.tex As the previous example, except that it
uses the inputenc package. To create the complete document, you need
to do:

latex sample-noidxapp-utf8

latex sample-noidxapp-utf8

sample4col.tex This document illustrates a four column glossary where
the entries have a symbol in addition to the name and description. To
create the complete document, you need to do:

latex sample4col

makeglossaries sample4col

latex sample4col

or

latex sample4col

makeglossaries-lite sample4col

latex sample4col

The vertical gap between entries is the gap created at the start of each
group. This can be suppressed using the nogroupskip package option.

27

http://www.dickimaw-books.com/latex/minexample/
http://www.dickimaw-books.com/latex/minexample/


1 Introduction

sampleAcr.tex This document has some sample abbreviations. It also
adds the glossary to the table of contents, so an extra run through
LATEX is required to ensure the document is up to date:

latex sampleAcr

makeglossaries sampleAcr

latex sampleAcr

latex sampleAcr

(or use makeglossaries-lite).

sampleAcrDesc.tex This is similar to the previous example, except that
the abbreviations have an associated description. As with the previ-
ous example, the glossary is added to the table of contents, so an extra
run through LATEX is required:

latex sampleAcrDesc

makeglossaries sampleAcrDesc

latex sampleAcrDesc

latex sampleAcrDesc

sampleDesc.tex This is similar to the previous example, except that
it defines the abbreviations using \newglossaryentry instead of
\newacronym. As with the previous example, the glossary is added
to the table of contents, so an extra run through LATEX is required:

latex sampleDesc

makeglossaries sampleDesc

latex sampleDesc

latex sampleDesc

sampleCustomAcr.tex This document has some sample abbreviations
with a custom acronym style. It also adds the glossary to the table of
contents, so an extra run through LATEX is required:

latex sampleCustomAcr

28



1 Introduction

makeglossaries sampleCustomAcr

latex sampleCustomAcr

latex sampleCustomAcr

sampleFnAcrDesc.tex This is similar to sampleAcrDesc.tex, except
that it uses the footnote-sc-desc style. As with the previous example,
the glossary is added to the table of contents, so an extra run through
LATEX is required:

latex sampleFnAcrDesc

makeglossaries sampleFnAcrDesc

latex sampleFnAcrDesc

latex sampleFnAcrDesc

sample-FnDesc.tex This example defines a custom display format that
puts the description in a footnote on first use.

latex sample-FnDesc

makeglossaries sample-FnDesc

latex sample-FnDesc

sample-custom-acronym.tex This document illustrates how to define
your own acronym style if the predefined styles don’t suit your re-
quirements.

latex sample-custom-acronym

makeglossaries sample-custom-acronym

latex sample-custom-acronym

sample-crossref.tex This document illustrates how to cross-reference
entries in the glossary.

latex sample-crossref

makeglossaries sample-crossref

latex sample-crossref

29



1 Introduction

sample-dot-abbr.tex This document illustrates how to use the post
link hook to adjust the space factor after abbreviations.

latex sample-dot-abbr

makeglossaries sampledot-abbrf

latex sample-dot-abbr

sampleDB.tex This document illustrates how to load external files con-
taining the glossary definitions. It also illustrates how to define a new
glossary type. This document has the number list suppressed and
uses \glsaddall to add all the entries to the glossaries without ref-
erencing each one explicitly. To create the document do:

latex sampleDB

makeglossaries sampleDB

latex sampleDB

or

latex sampleDB

makeglossaries-lite sampleDB

latex sampleDB

The glossary definitions are stored in the accompanying files database1.tex
and database2.tex. If for some reason you want to call makeindex
explicitly you must have a separate call for each glossary:

1. Create the main glossary (all on one line):

makeindex -s sampleDB.ist -t sampleDB.glg -o
sampleDB.gls sampleDB.glo

2. Create the secondary glossary (all on one line):

makeindex -s sampleDB.ist -t sampleDB.nlg -o
sampleDB.not sampleDB.ntn

30



1 Introduction

Note that both makeglossaries and makeglossaries-lite
do this all in one call, so they not only make it easier because
you don’t need to supply all the switches and remember all the
extensions but they also call makeindex the appropriate number
of times.

sampleEq.tex This document illustrates how to change the location to
something other than the page number. In this case, the equation
counter is used since all glossary entries appear inside an equation en-
vironment. To create the document do:

latex sampleEq

makeglossaries sampleEq

latex sampleEq

sampleEqPg.tex This is similar to the previous example, but the number
lists are a mixture of page numbers and equation numbers. This ex-
ample adds the glossary to the table of contents, so an extra LATEX run
is required:

latex sampleEqPg

makeglossaries sampleEqPg

latex sampleEqPg

latex sampleEqPg

sampleSec.tex This document also illustrates how to change the loca-
tion to something other than the page number. In this case, the
section counter is used. This example adds the glossary to the table
of contents, so an extra LATEX run is required:

latex sampleSec

makeglossaries sampleSec

latex sampleSec

latex sampleSec

sampleNtn.tex This document illustrates how to create an additional
glossary type. This example adds the glossary to the table of contents,
so an extra LATEX run is required:

31



1 Introduction

latex sampleNtn

makeglossaries sampleNtn

latex sampleNtn

latex sampleNtn

Note that if you want to call makeindex explicitly instead of using
makeglossaries or makeglossaries-lite then you need to call
makeindex twice:

1. Create the main glossary (all on one line):

makeindex -s sampleNtn.ist -t sampleNtn.glg -o
sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary (all on one line):

makeindex -s sampleNtn.ist -t sampleNtn.nlg -o
sampleNtn.not sampleNtn.ntn

sample.tex This document illustrates some of the basics, including how
to create child entries that use the same name as the parent entry. This
example adds the glossary to the table of contents and it also uses
\glsrefentry, so an extra LATEX run is required:

latex sample

makeglossaries sample

latex sample

latex sample

You can see the difference between word and letter ordering if you
substitute order=word with order=letter. (Note that this will only have
an effect if you use makeglossaries or makeglossaries-lite.
If you use makeindex explicitly, you will need to use the -l switch
to indicate letter ordering.)

sample-inline.tex This document is like sample.tex, above, but
uses the inline glossary style to put the glossary in a footnote.

32



1 Introduction

sampletree.tex This document illustrates a hierarchical glossary struc-
ture where child entries have different names to their corresponding
parent entry. To create the document do:

latex sampletree

makeglossaries sampletree

latex sampletree

sample-dual.tex This document illustrates how to define an entry that
both appears in the list of acronyms and in the main glossary. To create
the document do:

latex sample-dual

makeglossaries sample-dual

latex sample-dual

sample-langdict.tex This document illustrates how to use the glos-
saries package to create English to French and French to English dic-
tionaries. To create the document do:

latex sample-langdict

makeglossaries sample-langdict

latex sample-langdict

samplexdy.tex This document illustrates how to use the glossaries pack-
age with xindy instead of makeindex. The document uses UTF8
encoding (with the inputenc package). The encoding is picked up by
makeglossaries. By default, this document will create a xindy
style file called samplexdy.xdy, but if you uncomment the lines

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

it will set the style file to samplexdy-mc.xdy instead. This pro-
vides an additional letter group for entries starting with “Mc” or
“Mac”. If you use makeglossaries or makeglossaries-lite,
you don’t need to supply any additional information. If you don’t use

33



1 Introduction

makeglossaries, you will need to specify the required information.
Note that if you set the style file to samplexdy-mc.xdy you must
also specify \noist, otherwise the glossaries package will overwrite
samplexdy-mc.xdy and you will lose the “Mc” letter group.

To create the document do:

latex samplexdy

makeglossaries samplexdy

latex samplexdy

If you don’t have Perl installed then you can’t use makeglossaries,
but you also can’t use xindy! However, if for some reason you
want to call xindy explicitly instead of using makeglossaries (or
makeglossaries-lite):

• if you are using the default style file samplexdy.xdy, then do
(no line breaks):

xindy -L english -C utf8 -I xindy -M samplexdy
-t samplexdy.glg -o samplexdy.gls samplexdy.glo

• if you are using samplexdy-mc.xdy, then do (no line breaks):

xindy -I xindy -M samplexdy-mc -t samplexdy.glg
-o samplexdy.gls samplexdy.glo

samplexdy2.tex This document illustrates how to use the glossaries
package where the location numbers don’t follow a standard format.
This example will only work with xindy. To create the document do:

pdflatex samplexdy2

makeglossaries samplexdy2

pdflatex samplexdy2

The explicit xindy call is:

xindy -L english -C utf8 -I xindy -M samplexdy2 -t
samplexdy2.glg -o samplexdy2.gls samplexdy2.glo

34



1 Introduction

See Section 11.2 for further details.

samplexdy3.tex This document is like samplexdy.tex but uses the
command \Numberstring from the fmtcount package to format the
page numbers.

sampleutf8.tex This is another example that uses xindy. Unlike
makeindex, xindy can cope with non-Latin characters. This doc-
ument uses UTF8 encoding. To create the document do:

latex sampleutf8

makeglossaries sampleutf8

latex sampleutf8

The explicit xindy call is (no line breaks):

xindy -L english -C utf8 -I xindy -M sampleutf8 -t
sampleutf8.glg -o sampleutf8.gls sampleutf8.glo

If you remove the xindy option from sampleutf8.tex and do:

latex sampleutf8

makeglossaries sampleutf8

latex sampleutf8

or

latex sampleutf8

makeglossaries-lite sampleutf8

latex sampleutf8

you will see that the entries that start with an extended Latin charac-
ter now appear in the symbols group, and the word “manœuvre” is
now after “manor” instead of before it. If you want to explicitly call
makeindex (no line breaks):

makeindex -s sampleutf8.ist -t sampleutf8.glg -o
sampleutf8.gls sampleutf8.glo

35



1 Introduction

sample-index.tex This document uses the glossaries package to create
both a glossary and an index. This requires two makeglossaries
(or makeglossaries-lite) calls to ensure the document is up to
date:

latex sample-index

makeglossaries sample-index

latex sample-index

makeglossaries sample-index

latex sample-index

sample-newkeys.tex This document illustrates how add custom keys
(using \glsaddkey).

sample-storage-abbr.tex This document illustrates how add custom
storage keys (using \glsaddstoragekey).

sample-storage-abbr-desc.tex An extension of the previous exam-
ple where the user needs to provide a description.

sample-chap-hyperfirst.tex This document illustrates how to add
a custom key using \glsaddstoragekey and hook into the \gls-
like and \glstext-like mechanism used to determine whether or not
to hyperlink an entry.

sample-font-abbr.tex This document illustrates how to different fonts
for abbreviations within the style.

sample-numberlist.tex This document illustrates how to reference
the number list in the document text. This requires an additional LATEX
run:

latex sample-numberlist

makeglossaries sample-numberlist

latex sample-numberlist

latex sample-numberlist

samplePeople.tex This document illustrates how you can hook into the
standard sort mechanism to adjust the way the sort key is set. This
requires an additional run to ensure the table of contents is up-to-date:

36



1 Introduction

latex samplePeople

makeglossaries samplePeople

latex samplePeople

latex samplePeople

sampleSort.tex This is another document that illustrates how to hook
into the standard sort mechanism. An additional run is required to
ensure the table of contents is up-to-date:

latex sampleSort

makeglossaries sampleSort

latex sampleSort

latex sampleSort

sample-nomathhyper.tex This document illustrates how to selectively
enable and disable entry hyperlinks in \glsentryfmt.

sample-entryfmt.tex This document illustrates how to change the
way an entry is displayed in the text.

sample-prefix.tex This document illustrates the use of the glossaries-
prefix package. An additional run is required to ensure the table of
contents is up-to-date:

latex sample-prefix

makeglossaries sample-prefix

latex sample-prefix

latex sample-prefix

sampleaccsupp.tex This document uses the experimental glossaries-
accsupp package. The symbol is set to the replacement text. Note that
some PDF viewers don’t use the accessibility support. Information
about the glossaries-accsupp package can be found in Section 18.

sample-ignored.tex This document defines an ignored glossary for
common terms that don’t need a definition.

sample-entrycount.tex This document uses \glsenableentrycount
and \cgls (described in Section 14.1) so that acronyms only used
once don’t appear in the list of acronyms.

37



1 Introduction

1.3 Dummy Entries for Testing

In addition to the sample files described above, glossaries also provides
some files containing lorum ipsum dummy entries. These are provided
for testing purposes and are on TEX’s path (in tex/latex/glossaries/
test-entries) so they can be included via \input or \loadglsentries.
The files are as follows:

example-glossaries-brief.tex These entries all have brief descriptions. For ex-
ample:

\newglossaryentry{lorem}{name={lorem},description={ipsum}}

example-glossaries-long.tex These entries all have long descriptions. For ex-
ample:

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris.}}

example-glossaries-multipar.tex These entries all have multi-paragraph de-
scriptions.

example-glossaries-symbols.tex These entries all use the symbol key. For ex-
ample:

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

example-glossaries-symbolnames.tex Similar to the previous file but the sym-
bol key isn’t used. Instead the symbol is stored in the name key. For
example:

\newglossaryentry{sym.alpha}{sort={alpha},
name={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

example-glossaries-images.tex These entries use the user1 key to store the
name of an image file. (The images are provided by the mwe package
and should be on TEX’s path.) One entry doesn’t have an associated
image to help test for a missing key.

38



1 Introduction

example-glossaries-acronym.tex These entries are all abbreviations. For ex-
ample:

\newacronym[type=\glsdefaulttype]{lid}{LID}{lorem ipsum
dolor}

example-glossaries-acronym-desc.tex These entries are all abbreviations that
use the description key. For example:

\newacronym[type=\glsdefaulttype,
description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{ndl}{NDL}{nam dui ligula}

example-glossaries-acronyms-lang.tex These entries are all abbreviations,
where some of them have a translation supplied in the user1 key. For
example:

\newacronym[type=\glsdefaulttype,user1={love itself}]
{li}{LI}{lorem ipsum}

example-glossaries-parent.tex These are hierarchical entries where the child
entries use the name key. For example:

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}

\newglossaryentry{gravida}{parent={sedmattis},
name={gravida},description={malesuada}}

example-glossaries-childnoname.tex These are hierarchical entries where the
child entries don’t use the name key. For example:

\newglossaryentry{scelerisque}{name={scelerisque},
description={at}}

example-glossaries-cite.tex These entries use the user1 key to store a citation
key (or comma-separated list of citation keys). The citations are de-
fined in xampl.bib, which should be available on all modern TEX
distributions. One entry doesn’t have an associated citation to help
test for a missing key. For example:

\newglossaryentry{fusce}{name={fusce},
description={suscipit cursus sem},user1={article-minimal}}

39



1 Introduction

example-glossaries-url.tex These entries use the user1 key to store an URL
associated with the entry. For example:

\newglossaryentry{aenean-url}{name={aenean},
description={adipiscing auctor est},
user1={http://uk.tug.org/}}

The sample file glossary-lipsum-examples.tex in the doc/latex/
glossaries/samples directory uses all these files. See also http:
//www.dickimaw-books.com/gallery/#glossaries. The glossaries-
extra package provides additional test files.

1.4 Multi-Lingual Support

As from version 1.17, the glossaries package can be used with xindy as well
as makeindex. If you are writing in a language that uses an extended Latin
alphabet or non-Latin alphabet it’s best to use Option 3 (xindy) or Option 4
(bib2gls) as makeindex (Option 2) is hard-coded for the non-extended
Latin alphabet and Option 1 can performed limited ASCII comparisons.

This means that with Options 3 or 4 you are not restricted to the A, . . . , Z
letter groups. If you want to use xindy, remember to use the xindy package
option. For example:

\documentclass[frenchb]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{babel}
\usepackage[xindy]{glossaries}

If you want to use bib2gls, you need to use the record option with
glossaries-extra and supply the definitions in .bib files. (See the bib2gls
user manual for further details.)

Note that although a non-Latin character, such as é, looks like a plain
character in your .tex file, with standard LATEX it’s actually a macro
and can therefore cause expansion problems. You may need to switch
off the field expansions with \glsnoexpandfields. This issue
doesn’t occur with X ELATEX or LuaLATEX.

With inputenc, if you use a non-Latin character (or other expandable) char-
acter at the start of an entry name, you must place it in a group, or it will
cause a problem for commands that convert the first letter to upper case
(e.g. \Gls). For example:

\newglossaryentry}{elite}{name={{é}lite},
description={select group or class}}

40

http://www.dickimaw-books.com/gallery/#glossaries
http://www.dickimaw-books.com/gallery/#glossaries


1 Introduction

(With newer versions of mfirstuc and datatool-base you may be able to omit
this grouping.) For further details, see the “UTF-8” section in the mfirstuc
user manual.

If you are using xindy or bib2gls, the application needs to know the
encoding of the .tex file. This information is added to the .aux file and
can be picked up by makeglossaries and bib2gls. If you use xindy
explicitly instead of via makeglossaries, you may need to specify the
encoding using the -C option. Read the xindy manual for further details
of this option.

As from v4.24, if you are writing in German (for example, using the nger-
man package4 or babel with the ngerman package option), and you want
to use makeindex’s -g option, you’ll need to change makeindex’s quote
character using:

\GlsSetQuote

\GlsSetQuote{〈character〉}

Note that 〈character〉 may not be one of ? (question mark), | (pipe) or !
(exclamation mark). For example:

\GlsSetQuote{+}

This must be done before \makeglossaries and any entry definitions.
It’s only applicable for makeindex. This option in conjunction with nger-
man will also cause makeglossaries to use the -g switch when invoking
makeindex.

Be careful of babel’s shorthands. These aren’t switched on until the start
of the document, so any entries defined in the preamble won’t be able to
use those shorthands. However, if you define the entries in the
document and any of those shorthands happen to be special characters
for makeindex or xindy (such as the double-quote) then this will
interfere with code that tries to escape any of those characters that occur
in the sort key.

In general, it’s best not to use babel’s shorthands in entry definitions. For
example:

\documentclass{article}

\usepackage[ngerman]{babel}
\usepackage{glossaries}

\GlsSetQuote{+}

4deprecated, use babel instead

41



1 Introduction

\makeglossaries

\newglossaryentry{rna}{name={ribonukleins\"aure},
sort={ribonukleins"aure},
description={eine Nukleins\"aure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

The ngerman package has the shorthands on in the preamble, so they can
be used if \GlsSetQuote has changed the makeindex quote character.
Example:

\documentclass{article}

\usepackage[ngerman]{babel}
\usepackage{glossaries}

\GlsSetQuote{+}

\makeglossaries

\newglossaryentry{rna}{name={ribonukleins"aure},
description={eine Nukleins"aure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

1.4.1 Changing the Fixed Names

The fixed names are produced using the commands listed in table 1.2. If you
aren’t using a language package such as babel or polyglossia that uses caption
hooks, you can just redefine these commands as appropriate. If you are us-
ing babel or polyglossia, you need to use their caption hooks to change the de-
faults. See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=
latexwords or read the babel or polyglossia documentation. If you have
loaded babel, then glossaries will attempt to load translator, unless you have
used the notranslate, translate=false or translate=babel package options. If the
translator package is loaded, the translations are provided by dictionary files
(for example, glossaries-dictionary-English.dict). See the trans-
lator package for advice on changing translations provided by translator dic-

42

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords


1 Introduction

tionaries. If you can’t work out how to modify these dictionary definitions,
try switching to babel’s interface using translate=babel:

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage[translate=babel]{glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the
language options directly to babel rather that using the document class op-
tions or otherwise passing the same options to translator, then translator won’t
pick up the language and no dictionaries will be loaded and babel’s caption
hooks will be used instead.

Table 1.2: Customised Text

Command Name Translator Key Word Purpose
\glossaryname Glossary Title of the main glossary.
\acronymname Acronyms Title of the list of acronyms

(when used with package
option acronym).

\entryname Notation
(glossaries)

Header for first column in the
glossary (for 2, 3 or 4 column
glossaries that support
headers).

\descriptionname Description
(glossaries)

Header for second column in
the glossary (for 2, 3 or 4
column glossaries that
support headers).

\symbolname Symbol
(glossaries)

Header for symbol column in
the glossary for glossary
styles that support this
option.

\pagelistname Page List
(glossaries)

Header for page list column
in the glossary for glossaries
that support this option.

\glssymbolsgroupname Symbols
(glossaries)

Header for symbols section of
the glossary for glossary
styles that support this
option.

\glsnumbersgroupname Numbers
(glossaries)

Header for numbers section
of the glossary for glossary
styles that support this
option.

As from version 4.12, multilingual support is provided by separate lan-
guage modules that need to be installed in addition to installing the glos-

43



1 Introduction

saries package. You only need to install the modules for the languages
that you require. If the language module has an unmaintained status, you
can volunteer to take over the maintenance by contacting me at http:
//www.dickimaw-books.com/contact.html. The translator dictionary
files for glossaries are now provided by the appropriate language module.
For further details about information specific to a given language, please
see the documentation for that language module.

Examples of use:

• Using babel and translator:

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).

• Using babel:

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage[translate=babel]{glossaries}

(translator isn’t loaded).

• Using polyglossia:

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined trans-
lations may not be appropriate. If you are using the babel package and
the glossaries package option translate=babel, you need to be familiar with
the advice given in http://www.tex.ac.uk/cgi-bin/texfaq2html?
label=latexwords. If you are using the translator package, then you
can provide your own dictionary with the necessary modifications (using
\deftranslation) and load it using \usedictionary. If you sim-
ply want to change the title of a glossary, you can use the title key in
commands like \printglossary (but not the iterative commands like
\printglossaries).

Note that the translator dictionaries are loaded at the beginning of the
document, so it won’t have any effect if you put \deftranslation in
the preamble. It should be put in your personal dictionary instead (as in
the example below). See the translator documentation for further details.
(Now with beamer documentation.)

44

http://www.dickimaw-books.com/contact.html
http://www.dickimaw-books.com/contact.html
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords


1 Introduction

Your custom dictionary doesn’t have to be just a translation from English
to another language. You may prefer to have a dictionary for a particular
type of document. For example, suppose your institution’s in-house re-
ports have to have the glossary labelled as “Nomenclature” and the page
list should be labelled “Location”, then you can create a file called, say,

myinstitute-glossaries-dictionary-English.dict

that contains the following:

\ProvidesDictionary{myinstitute-glossaries-dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries)}{Location}

You can now load it using:

\usedictionary{myinstitute-glossaries-dictionary}

(Make sure that myinstitute-glossaries-dictionary-English.dict
can be found by TEX.) If you want to share your custom dictionary, you can
upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you
can use the package option translate=babel. For example:

\documentclass[british]{article}

\usepackage{babel}
\usepackage[translate=babel]{glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname}{List of Terms}%
\renewcommand*{\acronymname}{List of Acronyms}%

}

Note that xindy and bib2gls provide much better multi-lingual sup-
port than makeindex, so I recommend that you use Options 3 or 4 if you
have glossary entries that contain non-Latin characters. See Section 11 for
further details on xindy, and see the bib2gls user manual for further de-
tails of that application.

Creating a New Language Module

The glossaries package now uses the tracklang package to determine which
language modules need to be loaded. If you want to create a new language
module, you should first read the tracklang documentation.

To create a new language module, you need to at least create two files:
glossaries-〈lang〉.ldf and glossaries-dictionary-〈Lang〉.dict
where 〈lang〉 is the root language name (for example, english) and 〈Lang〉
is the language name used by translator (for example, English).

45

http://www.ctan.org/


1 Introduction

Here’s an example of glossaries-dictionary-English.dict:

\ProvidesDictionary{glossaries-dictionary}{English}

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries)}{Notation}
\providetranslation{Description (glossaries)}{Description}
\providetranslation{Symbol (glossaries)}{Symbol}
\providetranslation{Page List (glossaries)}{Page List}
\providetranslation{Symbols (glossaries)}{Symbols}
\providetranslation{Numbers (glossaries)}{Numbers}

You can use this as a template for your dictionary file. Change English
to the translator name for your language (so that it matches the file name
glossaries-dictionary-〈Lang〉.dict) and, for each \providetranslation,
change the second argument to the appropriate translation.

Here’s an example of glossaries-english.ldf:

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}
{%

\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%

\@ifpackageloaded{polyglossia}%
{%

\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{\textenglish{Glossary}}%
\renewcommand*{\acronymname}{\textenglish{Acronyms}}%
\renewcommand*{\entryname}{\textenglish{Notation}}%
\renewcommand*{\descriptionname}{\textenglish{Description}}%
\renewcommand*{\symbolname}{\textenglish{Symbol}}%
\renewcommand*{\pagelistname}{\textenglish{Page List}}%
\renewcommand*{\glssymbolsgroupname}{\textenglish{Symbols}}%
\renewcommand*{\glsnumbersgroupname}{\textenglish{Numbers}}%

}%
}%
{%

\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{Glossary}%
\renewcommand*{\acronymname}{Acronyms}%
\renewcommand*{\entryname}{Notation}%
\renewcommand*{\descriptionname}{Description}%
\renewcommand*{\symbolname}{Symbol}%
\renewcommand*{\pagelistname}{Page List}%
\renewcommand*{\glssymbolsgroupname}{Symbols}%

46



1 Introduction

\renewcommand*{\glsnumbersgroupname}{Numbers}%
}%

}%
\ifcsdef{captions\CurrentTrackedDialect}
{%

\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsenglish
}%

}%
{%

\ifcsdef{captions\CurrentTrackedLanguage}
{

\csappto{captions\CurrentTrackedLanguage}%
{%

\glossariescaptionsenglish
}%

}%
{%
}%

}%
\glossariescaptionsenglish

}
\renewcommand*{\glspluralsuffix}{s}
\renewcommand*{\glsacrpluralsuffix}{\glspluralsuffix}
\renewcommand*{\glsupacrpluralsuffix}{\glstextup{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Re-
place English with the translator language label 〈Lang〉 used for the dictio-
nary file and replace english with the root language name 〈lang〉. Within
the definition of \glossariescaptions〈lang〉, replace the English text
(such as “Glossaries”) with the appropriate translation.

Note: the suffixes used to generate the plural forms when the plural
hasn’t been specified are given by \glspluralsuffix (for general en-
tries) and \glsupacrpluralsuffix for acronyms where the suffix needs
to be set using \glstextup to counteract the effects of \textsc and
\glsacrpluralsuffix for other acronym styles. There’s no guarantee
when these commands will be expanded. They may be expanded on defi-
nition or they may be expanded on use, depending on the glossaries config-
uration.

Therefore these plural suffix command definitions aren’t included in the
caption mechanism as that’s typically not switched on until the start of
the document. This means that the suffix in effect will be for the last
loaded language that redefined these commands. It’s best to initialise
these commands to the most common suffix required in your document
and use the plural, longplural, shortplural etc keys to override exceptions.

47



1 Introduction

If you want to add a regional variation, create a file called glossaries-〈iso
lang〉-〈iso country〉.ldf, where 〈iso lang〉 is the ISO language code and 〈iso
country〉 is the ISO country code. For example, glossaries-en-GB.ldf.
This file can load the root language file and make the appropriate changes,
for example:

\ProvidesGlossariesLang{en-GB}
\RequireGlossariesLang{english}
\glsifusedtranslatordict{British}
{%

\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%

\@ifpackageloaded{polyglossia}%
{%

% Modify \glossariescaptionsenglish as appropriate for
% polyglossia

}%
{%

% Modify \glossariescaptionsenglish as appropriate for
% non-polyglossia

}%
}

If the translations includes non-Latin characters, it’s necessary to provide
code that’s independent of the input encoding. Remember that while some
users may use UTF-8, others may use Latin-1 or any other supported en-
coding, but while users won’t appreciate you enforcing your preference on
them, it’s useful to provide a UTF-8 version for X ELATEX users.

The glossaries-irish.ldf file provides this as follows:

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}
{%

\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%

\ifdefstring{\inputencodingname}{utf8}
{\input{glossaries-irish-utf8.ldf}}%
{%

\ifdef{\XeTeXinputencoding}% XeTeX defaults to UTF-8
{\input{glossaries-irish-utf8.ldf}}%
{\input{glossaries-irish-noenc.ldf}}

}
\ifcsdef{captions\CurrentTrackedDialect}
{%

48



1 Introduction

\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsirish
}%

}%
{%

\ifcsdef{captions\CurrentTrackedLanguage}
{

\csappto{captions\CurrentTrackedLanguage}%
{%

\glossariescaptionsirish
}%

}%
{%
}%

}%
\glossariescaptionsirish

}

(Again you can use this as a template. Replace irish with your root lan-
guage label and Irish with the translator dictionary label.)

There are now two extra files: glossaries-irish-noenc.ldf and
glossaries-irish-utf8.ldf.

These both define \glossariescaptionsirish but the *-noenc.ldf
uses LATEX accent commands:

\@ifpackageloaded{polyglossia}%
{%

\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{\textirish{Gluais}}%
\renewcommand*{\acronymname}{\textirish{Acrainmneacha}}%
\renewcommand*{\entryname}{\textirish{Ciall}}%
\renewcommand*{\descriptionname}{\textirish{Tuairisc}}%
\renewcommand*{\symbolname}{\textirish{Comhartha}}%
\renewcommand*{\glssymbolsgroupname}{\textirish{Comhartha\'{\i}}}%
\renewcommand*{\pagelistname}{\textirish{Leathanaigh}}%
\renewcommand*{\glsnumbersgroupname}{\textirish{Uimhreacha}}%

}%
}%
{%

\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{Gluais}%
\renewcommand*{\acronymname}{Acrainmneacha}%
\renewcommand*{\entryname}{Ciall}%
\renewcommand*{\descriptionname}{Tuairisc}%
\renewcommand*{\symbolname}{Comhartha}%
\renewcommand*{\glssymbolsgroupname}{Comhartha\'{\i}}%
\renewcommand*{\pagelistname}{Leathanaigh}%
\renewcommand*{\glsnumbersgroupname}{Uimhreacha}%

49



1 Introduction

}%
}

whereas the *-utf8.ldf replaces the accent commands with the appro-
priate UTF-8 characters.

1.5 Generating the Associated Glossary Files

This section is only applicable if you have chosen Options 2 or 3. You
can ignore this section if you have chosen any of the other options. If
you want to alphabetically sort your entries always remember to use the
sort key if the name contains any LATEX commands.

If this section seriously confuses you, and you can’t work out how to run
external tools like makeglossaries or makeindex, you can try using the
automake package option, described in Section 2.4, but you will need TEX’s
shell escape enabled.

In order to generate a sorted glossary with compact number lists, it is
necessary to use an external indexing application as an intermediate step
(unless you have chosen Option 1, which uses TEX to do the sorting or Op-
tion 5, which doesn’t perform any sorting). It is this application that creates
the file containing the code required to typeset the glossary. If this step is
omitted, the glossaries will not appear in your document. The two index-
ing applications that are most commonly used with LATEX are makeindex
and xindy. As from version 1.17, the glossaries package can be used with
either of these applications. Previous versions were designed to be used
with makeindex only. With the glossaries-extra package, you can also use
bib2gls as the indexing application. (See the glossaries-extra and bib2gls
user manuals for further details.) Note that xindy and bib2gls have
much better multi-lingual support than makeindex, so xindy or bib2gls
are recommended if you’re not writing in English. Commands that only
have an effect when xindy is used are described in Section 11.

This is a multi-stage process, but there are methods of automating
document compilation using applications such as latexmk and arara.
With arara you can just add special comments to your document
source:

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

With latexmk you need to set up the required dependencies.

50



1 Introduction

The glossaries package comes with the Perl script makeglossaries
which will run makeindex or xindy on all the glossary files using a
customized style file (which is created by \makeglossaries). See Sec-
tion 1.5.1 for further details. Perl is stable, cross-platform, open source soft-
ware that is used by a number of TEX-related applications (including xindy
and latexmk). Most Unix-like operating systems come with a Perl inter-
preter. TEX Live also comes with a Perl interpreter. MiKTEX doesn’t come
with a Perl interpreter so if you are a Windows MiKTEX user you will need
to install Perl if you want to use makeglossaries or xindy. Further infor-
mation is available at http://www.perl.org/about.html and MiKTeX
and Perl scripts (and one Python script).

The advantages of using makeglossaries:

• It automatically detects whether to use makeindex or xindy and sets
the relevant application switches.

• One call of makeglossaries will run makeindex/xindy for each
glossary type.

• If things go wrong, makeglossaries will scan the messages from
makeindex or xindy and attempt to diagnose the problem in relation
to the glossaries package. This will hopefully provide more helpful
messages in some cases. If it can’t diagnose the problem, you will
have to read the relevant transcript file and see if you can work it out
from the makeindex or xindy messages.

• If makeindexwarns about multiple encap values, makeglossaries
will detect this and attempt to correct the problem.5 This correction is
only provided by makeglossaries when makeindex is used since
xindy uses the order of the attributes list to determine which for-
mat should take precedence. (See \GlsAddXdyAttribute in Sec-
tion 11.2.)

As from version 4.16, the glossaries package also comes with a Lua script
called makeglossaries-lite. This is a trimmed-down alternative to the
makeglossaries Perl script. It doesn’t have some of the options that
the Perl version has and it doesn’t attempt to diagnose any problems,
but since modern TEX distributions come with LuaTEX (and therefore have
a Lua interpreter) you don’t need to install anything else in order to use
makeglossaries-lite so it’s an alternative to makeglossaries if you
want to use Option 2 (makeindex).

If things go wrong and you can’t work out why your glossaries aren’t
being generated correctly, you can use makeglossariesgui as a diagnos-
tic tool. Once you’ve fixed the problem, you can then go back to using
makeglossaries or makeglossaries-lite.

5Added to version makeglossaries 2.18.

51

http://www.perl.org/about.html
http://tex.stackexchange.com/questions/158796/miktex-and-perl-scripts-and-one-python-script
http://tex.stackexchange.com/questions/158796/miktex-and-perl-scripts-and-one-python-script


1 Introduction

Whilst I strongly recommended that you use the makeglossaries Perl
script or the makeglossaries-lite Lua script, it is possible to use the
glossaries package without using those applications. However, note that
some commands and package options have no effect if you explicitly run
makeindex/xindy. These are listed in table 1.3.

If you are choosing not to use makeglossaries because you don’t
want to install Perl, you will only be able to use makeindex as xindy
also requires Perl. (Other useful Perl scripts include epstopdf and
latexmk, so it’s well-worth the effort to install Perl.)

Note that if any of your entries use an entry that is not referenced out-
side the glossary, you will need to do an additional makeglossaries,
makeindex or xindy run, as appropriate. For example, suppose you have
defined the following entries:6

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange})}}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

and suppose you have \gls{citrusfruit} in your document but don’t
reference the orange entry, then the orange entry won’t appear in your
glossary until you first create the glossary and then do another run of
makeglossaries, makeindex or xindy. For example, if the document
is called myDoc.tex, then you must do:

latex myDoc
makeglossaries myDoc
latex myDoc
makeglossaries myDoc
latex myDoc

(Note that if you use glossaries-extra, this will be done automatically for you
if the indexcrossrefs feature is enabled. See the glossaries-extra user guide for
further details.)

Likewise, an additional makeglossaries and LATEX run may be re-
quired if the document pages shift with re-runs. For example, if the page
numbering is not reset after the table of contents, the insertion of the table
of contents on the second LATEX run may push glossary entries across page
boundaries, which means that the number lists in the glossary may need
updating.

6As from v3.01 \gls is no longer fragile and doesn’t need protecting.

52



1 Introduction

The examples in this document assume that you are accessing makeglossaries,
xindy or makeindex via a terminal. Windows users can use the MS-
DOS Prompt which is usually accessed via the Start→ All Programs menu
or Start→ All Programs→ Accessories menu.

Alternatively, your text editor may have the facility to create a function
that will call the required application. See Incorporating makeglossaries or
makeglossaries-lite or bib2gls into the document build.

If any problems occur, remember to check the transcript files (e.g. .glg
or .alg) for messages.

Table 1.3: Commands and package options that have no effect when using
xindy or makeindex explicitly

Command or Package Option makeindex xindy
order=letter use -l use -M ord/letorder
order=word default default
xindy={language=〈lang〉,codename=〈code〉} N/A use -L 〈lang〉 -C 〈code〉
\GlsSetXdyLanguage{〈lang〉} N/A use -L 〈lang〉
\GlsSetXdyCodePage{〈code〉} N/A use -C 〈code〉

1.5.1 Using the makeglossaries Perl Script

The makeglossaries script picks up the relevant information from the
auxiliary (.aux) file and will either call xindy or makeindex, depending
on the supplied information. Therefore, you only need to pass the docu-
ment’s name without the extension to makeglossaries. For example, if
your document is called myDoc.tex, type the following in your terminal:

latex myDoc
makeglossaries myDoc
latex myDoc

You may need to explicitly load makeglossaries into Perl:

perl makeglossaries myDoc

Windows users: TEX Live on Windows has its own internal Perl in-
terpreter and provides makeglossaries.exe as a convenient wrapper
for the makeglossaries Perl script. MiKTeX also provides a wrapper
makeglossaries.exe but doesn’t provide a Perl interpreter, which is
still required even if you run MiKTeX’s makeglossaries.exe, so with

53

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/


1 Introduction

MiKTeX you’ll need to install Perl.7 There’s more information about this
at http://tex.stackexchange.com/q/158796/19862 on the TeX.SX
site.

The makeglossaries script attempts to fork the makeindex/xindy
process using open() on the piped redirection 2>&1 | and parses the pro-
cessor output to help diagnose problems. If this method fails makeglossaries
will print an “Unable to fork” warning and will retry without redirection.
If you run makeglossaries on an operating system that doesn’t support
this form of redirection, then you can use the -Q switch to suppress this
warning or you can use the -k switch to make makeglossaries automat-
ically use the fallback method without attempting the redirection. Without
this redirection, the -q (quiet) switch doesn’t work as well.

You can specify in which directory the .aux, .glo etc files are located
using the -d switch. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries -d myTmpDir myDoc

Note that makeglossaries assumes by default that makeindex/xindy
is on your operating system’s path. If this isn’t the case, you can spec-
ify the full pathname using -m 〈path/to/makeindex〉 for makeindex or -x
〈path/to/xindy〉 for xindy.

As from makeglossaries v2.18, if you are using makeindex, there’s
a check for makeindex’s multiple encap warning. This is where different
encap values (location formats) are used on the same location for the same
entry. For example:

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}
\gls{sample}, \gls[format=textbf]{sample}.
\printglossaries
\end{document}

If you explicitly use makeindex, this will cause a warning and the location
list will be “1, 1”. That is, the page number will be repeated with each for-
mat. As from v2.18, makeglossaries will check for this warning and, if
found, will attempt to correct the problem by removing duplicate locations

7The batch file makeglossaries.bat has been removed since the TEX distributions for
Windows provide makeglossaries.exe.

54

http://tex.stackexchange.com/q/158796/19862


1 Introduction

and retrying. There’s no similar check for xindy as xindy won’t produce
any warning and will simply discard duplicates.

The makeglossaries script contains POD (Plain Old Documentation).
If you want, you can create a man page for makeglossaries using
pod2man and move the resulting file onto the man path. Alternatively do
makeglossaries --help for a list of all options or makeglossaries
--version for the version number.

When upgrading the glossaries package, make sure you also upgrade
your version of makeglossaries. The current version is 4.41.

1.5.2 Using the makeglossaries-lite Lua Script

The Lua alternative to the makeglossaries Perl script requires a Lua
interpreter, which should already be available if you have a modern TEX
distribution that includes LuaTEX. Lua is a light-weight, cross-platform
scripting language, but because it’s light-weight it doesn’t have the full-
functionality of heavy-weight scripting languages, such as Perl. The
makeglossaries-lite script is therefore limited by this and some of the
options available to the makeglossaries Perl script aren’t available here.
(In particular the -d option.)

Note that TEX Live on Unix-like systems creates a symbolic link called
makeglossaries-lite (without the .lua extension) to the actual
makeglossaries-lite.lua script, so you may not need to supply
the extension.

The makeglossaries-lite script can be invoked in the same way as
makeglossaries. For example, if your document is called myDoc.tex,
then do

makeglossaries-lite.lua myDoc

or

makeglossaries-lite myDoc

Some of the options available with makeglossaries are also available
with makeglossaries-lite. For a complete list of available options, do

makeglossaries-lite.lua --help

55



1 Introduction

1.5.3 Using xindy explicitly (Option 3)

Xindy comes with TEX Live. It has also been added to MikTEX, but if you
don’t have it installed, see How to use Xindy with MikTeX on TEX on Stack-
Exchange8.

If you want to use xindy to process the glossary files, you must make
sure you have used the xindy package option:

\usepackage[xindy]{glossaries}

This is required regardless of whether you use xindy explicitly or whether
it’s called implicitly via applications such as makeglossaries. This
causes the glossary entries to be written in raw xindy format, so you need
to use -I xindy not -I tex.

To run xindy type the following in your terminal (all on one line):

xindy -L 〈language〉 -C 〈encoding〉 -I xindy -M 〈style〉 -t
〈base〉.glg -o 〈base〉.gls 〈base〉.glo

where 〈language〉 is the required language name, 〈encoding〉 is the encod-
ing, 〈base〉 is the name of the document without the .tex extension and
〈style〉 is the name of the xindy style file without the .xdy extension.
The default name for this style file is 〈base〉.xdy but can be changed via
\setStyleFile{〈style〉}. You may need to specify the full path name de-
pending on the current working directory. If any of the file names contain
spaces, you must delimit them using double-quotes.

For example, if your document is called myDoc.tex and you are using
UTF8 encoding in English, then type the following in your terminal:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg
-o myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the same
for each of the other glossaries (including the list of acronyms if you have
used the acronym package option), substituting .glg, .gls and .glo with
the relevant extensions. For example, if you have used the acronym package
option, then you would need to do:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.alg
-o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you cre-
ated the glossary with \newglossary.

8http://www.stackexchange.com/

56

http://tex.stackexchange.com/questions/71167/how-to-use-xindy-with-miktex
http://www.stackexchange.com/


1 Introduction

Note that if you use makeglossaries instead, you can replace all those
calls to xindy with just one call to makeglossaries:

makeglossaries myDoc

Note also that some commands and package options have no effect if you
use xindy explicitly instead of using makeglossaries. These are listed
in table 1.3.

1.5.4 Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you
haven’t used the xindy package option or the glossary entries will be writ-
ten in the wrong format. To run makeindex, type the following in your
terminal:

makeindex -s 〈style〉.ist -t 〈base〉.glg -o 〈base〉.gls 〈base〉.glo

where 〈base〉 is the name of your document without the .tex extension
and 〈style〉.ist is the name of the makeindex style file. By default, this is
〈base〉.ist, but may be changed via \setStyleFile{〈style〉}. Note that
there are other options, such as -l (letter ordering). See the makeindex
manual for further details.

For example, if your document is called myDoc.tex, then type the fol-
lowing at the terminal:

makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls myDoc.glo

Note that this only creates the main glossary. If you have additional glos-
saries (for example, if you have used the acronym package option) then you
must call makeindex for each glossary, substituting .glg, .gls and .glo
with the relevant extensions. For example, if you have used the acronym
package option, then you need to type the following in your terminal:

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you cre-
ated the glossary with \newglossary.

Note that if you use makeglossaries instead, you can replace all those
calls to makeindex with just one call to makeglossaries:

makeglossaries myDoc

57



1 Introduction

Note also that some commands and package options have no effect if you
use makeindex explicitly instead of using makeglossaries. These are
listed in table 1.3.

1.5.5 Note to Front-End and Script Developers

The information needed to determine whether to use xindy or makeindex
and the information needed to call those applications is stored in the aux-
iliary file. This information can be gathered by a front-end, editor or script
to make the glossaries where appropriate. This section describes how the
information is stored in the auxiliary file.

The file extensions used by each defined glossary are given by

\@newglossary

\@newglossary{〈label〉}{〈log〉}{〈out-ext〉}{〈in-ext〉}

where 〈in-ext〉 is the extension of the indexing application’s input file (the out-
put file from the glossaries package’s point of view), 〈out-ext〉 is the extension
of the indexing application’s output file (the input file from the glossaries pack-
age’s point of view) and 〈log〉 is the extension of the indexing application’s
transcript file. The label for the glossary is also given for information pur-
poses only, but is not required by the indexing applications. For example,
the information for the default main glossary is written as:

\@newglossary{main}{glg}{gls}{glo}

The indexing application’s style file is specified by

\@istfilename

\@istfilename{〈filename〉}

The file extension indicates whether to use makeindex (.ist) or xindy
(.xdy). Note that the glossary information is formatted differently depend-
ing on which indexing application is supposed to be used, so it’s important
to call the correct one.

Word or letter ordering is specified by:

\@glsorder

\@glsorder{〈order〉}

where 〈order〉 can be either word or letter.
If xindy should be used, the language and code page for each glossary is

specified by

\@xdylanguage

\@gls@codepage

58



1 Introduction

\@xdylanguage{〈label〉}{〈language〉}
\@gls@codepage{〈label〉}{〈code〉}

where 〈label〉 identifies the glossary, 〈language〉 is the root language (e.g.
english) and 〈code〉 is the encoding (e.g. utf8). These commands are
omitted if makeindex should be used.

If Option 1 has been used, the .aux file will contain

\@gls@reference{〈type〉}{〈label〉}{〈location〉}

for every time an entry has been referenced. If Option 4 has been used, the
.aux file will contain one or more instances of

\glsxtr@resource{〈options〉}{〈basename〉}

59



2 Package Options

This section describes the available glossaries package options. You may
omit the =true for boolean options. (For example, acronym is equivalent to
acronym=true). The glossaries-extra package has additional options described
in the glossaries-extra manual.

Note that 〈key〉=〈value〉 package options can’t be passed via the
document class options. (This includes options where the 〈value〉 part
may be omitted, such as acronym.) This is a general limitation not
restricted to the glossaries package. Options that aren’t 〈key〉=〈value〉
(such as makeindex) may be passed via the document class options.

2.1 General Options

nowarn This suppresses all warnings generated by the glossaries package.
Don’t use this option if you’re new to using glossaries as the warn-
ings are designed to help detect common mistakes (such as forget-
ting to use \makeglossaries). Note that the debug=true and de-
bug=showtargets will override this option.

nolangwarn This suppresses the warning generated by a missing language
module.

noredefwarn If you load glossaries with a class or another package that al-
ready defines glossary related commands, by default glossaries will
warn you that it’s redefining those commands. If you are aware of
the consequences of using glossaries with that class or package and
you don’t want to be warned about it, use this option to suppress
those warnings. Other warnings will still be issued unless you use the
nowarn option described above.

debug Introduced in version 4.24. The default setting is debug=false. This
was a boolean option but as from v4.32 it now accepts the values: false,
true and showtargets. If no value is given, debug=true is assumed. Both
debug=true and debug=showtargets switch on the debug mode (and will
automatically cancel the nowarn option). The debug=showtargets option
will additionally use

60



2 Package Options

\glsshowtarget

\glsshowtarget{〈target name〉}

to show the hypertarget or hyperlink name in the margin when
\glsdohypertarget is used by commands like \glstarget and
when \glsdohyperlink is used by commands like \gls. This puts
the information in the margin using \marginpar unless math mode
or inner mode are detected, in which case it puts the information in
line enclosed by square brackets. The glossaries-extra package provides
an additional setting that may be used to show where the indexing is
occurring. See the glossaries-extra manual for further details.

The purpose of the debug mode can be demonstrated with the follow-
ing example document:

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{sample1}{name={sample1},

description={example}}
\newglossaryentry{sample2}{name={sample2},

description={example}}
\glsadd{sample2}
\makeglossaries
\begin{document}
\gls{sample1}.
\printglossaries
\end{document}

In this case, only the sample1 entry has been indexed, even though
\glsadd{sample2} appears in the source code. This is because
\glsadd{sample2} has been used before the associated file is
opened by \makeglossaries. Since the file isn’t open yet, the infor-
mation can’t be written to it, which is why the sample2 entry doesn’t
appear in the glossary.

This situation doesn’t cause any errors or warnings as it’s perfectly
legitimate for a user to want to use glossaries to format the entries
(e.g. abbreviation expansion) but not display any lists of terms, ab-
breviations, symbols etc. Without \makeglossaries the index-
ing is suppressed but, other than that, commands like \gls behave
as usual. It’s also possible that the user may want to temporarily
comment out \makeglossaries in order to suppress the indexing
while working on a draft version to speed compilation. Therefore
\makeglossaries can’t be used to enable \newglossaryentry
and \glsadd. They must be enabled by default. (It does, however,
enable the see key as that’s a more common problem. See below.)

61



2 Package Options

The debug mode, enabled with the debug option,

\usepackage[debug]{glossaries}

will write information to the log file when the indexing can’t occur
because the associated file isn’t open. The message is written in the
form

Package glossaries Info: wrglossary(〈type〉)(〈text〉) on input
line 〈line number〉.

where 〈type〉 is the glossary label and 〈text〉 is the line of text that
would’ve been written to the associated file if it had been open. So
if any entries haven’t appeared in the glossary but you’re sure you
used commands like \glsadd or \glsaddall, try switching on the
debug option and see if any information has been written to the log
file.

seenoindex Introduced in version 4.24, this option may take one of three
values: error, warn or ignore. The see key automatically indexes the
cross-referenced entry using \glsadd. This means that it suffers from
the same problem as the above. If used before the relevant glossary file
has been opened, the indexing can’t be performed. Since this is easy to
miss, the glossaries package by default issues an error message if the
see key is used before \makeglossaries. This option allows you
to change the error into just a warning (seenoindex=warn) or ignore it
(seenoindex=ignore) if, for example, you want to temporarily comment
out \makeglossaries to speed up the compilation of a draft docu-
ment by omitting the indexing.

nomain This suppresses the creation of the main glossary and associated
.glo file, if unrequired. Note that if you use this option, you must
create another glossary in which to put all your entries (either via the
acronym (or acronyms) package option described in Section 2.5 or via
the symbols, numbers or index options described in Section 2.6 or via
\newglossary described in Section 12).

If you don’t use the main glossary and you don’t use this option,
makeglossaries will produce a warning.

Warning: File 'filename.glo' is empty.
Have you used any entries defined in glossary
'main'?
Remember to use package option 'nomain' if
you don't want to use the main glossary.

62



2 Package Options

If you did actually want to use the main glossary and you see this
warning, check that you have referenced the entries in that glossary
via commands such as \gls.

sanitizesort This is a boolean option that determines whether or not to san-
itize the sort value when writing to the external glossary file. For ex-
ample, suppose you define an entry as follows:

\newglossaryentry{hash}{name={\#},sort={#},
description={hash symbol}}

The sort value (#) must be sanitized before writing it to the glossary
file, otherwise LATEX will try to interpret it as a parameter reference.
If, on the other hand, you want the sort value expanded, you need to
switch off the sanitization. For example, suppose you do:

\newcommand{\mysortvalue}{AAA}
\newglossaryentry{sample}{%

name={sample},
sort={\mysortvalue},
description={an example}}

and you actually want \mysortvalue expanded, so that the entry is
sorted according to AAA, then use the package option sanitizesort=false.

The default for Options 2 and 3 is sanitizesort=true, and the default for
Option 1 is sanitizesort=false.

esclocations This is a boolean option. (The default is esclocations=true,
but \makenoidxglossaries changes it to esclocations=false.) Both
makeindex and xindy are fussy about the location formats (makeindex
more so than xindy) so the glossaries package tries to ensure that spe-
cial characters are escaped and allows for the location to be substituted
for a format that’s more acceptable to the indexing application. This
requires a bit of trickery to circumvent the problem posed by TEX’s
asynchronous output routine, which can go wrong and also adds to
the complexity of the document build.

If you’re sure that your locations will always expand to an accept-
able format (or you’re prepared to post-process the glossary file be-
fore passing it to the relevant indexing application) then use escloca-
tions=false to avoid the complex escaping of location values. (See sec-
tion 1.14“Writing information to associated files” in the documented
code for further details.)

savewrites This is a boolean option to minimise the number of write regis-
ters used by the glossaries package. (Default is savewrites=false.) There

63



2 Package Options

are only a limited number of write registers, and if you have a large
number of glossaries or if you are using a class or other packages that
create a lot of external files, you may exceed the maximum number of
available registers. If savewrites is set, the glossary information will be
stored in token registers until the end of the document when they will
be written to the external files.

This option can significantly slow document compilation and may
cause the indexing to fail. Page numbers in the number list will be
incorrect on page boundaries due to TEX’s asynchronous output
routine. As an alternative, you can use the scrwfile package (part of
the KOMA-Script bundle) and not use this option.

You can also reduce the number of write registers by using Options 1
or 4 or by ensuring you define all your glossary entries in the pream-
ble.

If you want to use TEX’s \write18 mechanism to call makeindex
or xindy from your document and use savewrites, you must create
the external files with \glswritefiles before you call
makeindex/xindy. Also set \glswritefiles to nothing or
\relax before the end of the document to avoid rewriting the
files. For example:

\glswritefiles
\write18{makeindex -s \istfilename\space
-t \jobname.glg -o \jobname.gls \jobname}
\let\glswritefiles\relax

In general, this package option is best avoided.

translate This can take the following values:

translate=true If babel has been loaded and the translator package is in-
stalled, translator will be loaded and the translations will be pro-
vided by the translator package interface. You can modify the
translations by providing your own dictionary. If the translator
package isn’t installed and babel is loaded, the glossaries-babel
package will be loaded and the translations will be provided us-
ing babel’s \addto\caption〈language〉 mechanism. If polyglos-
sia has been loaded, glossaries-polyglossia will be loaded.

translate=false Don’t provide translations, even if babel or polyglos-
sia has been loaded. (Note that babel provides the command

64



2 Package Options

\glossaryname so that will still be translated if you have
loaded babel.)

translate=babel Don’t load the translator package. Instead load glossaries-
babel.

I recommend you use translate=babel if you have any
problems with the translations or with PDF bookmarks, but
to maintain backward compatibility, if babel has been loaded
the default is translate=true.

If translate is specified without a value, translate=true is assumed. If
translate isn’t specified, translate=true is assumed if babel, polyglossia or
translator have been loaded. Otherwise translate=false is assumed.

See Section 1.4.1 for further details.

notranslate This is equivalent to translate=false and may be passed via the
document class options.

nohypertypes Use this option if you have multiple glossaries and you want
to suppress the entry hyperlinks for a particular glossary or glossaries.
The value of this option should be a comma-separated list of glossary
types where \gls etc shouldn’t have hyperlinks by default. Make
sure you enclose the value in braces if it contains any commas. Exam-
ple:

\usepackage[acronym,nohypertypes={acronym,notation}]
{glossaries}

\newglossary[nlg]{notation}{not}{ntn}{Notation}

The values must be fully expanded, so don’t try nohypertypes
=\acronymtype. You may also use

\GlsDeclareNoHyperList{〈list〉}

instead or additionally. See Section 6 for further details.

hyperfirst This is a boolean option that specifies whether each term has a
hyperlink on first use. The default is hyperfirst=true (terms on first
use have a hyperlink, unless explicitly suppressed using starred ver-
sions of commands such as \gls* or by identifying the glossary
with nohypertypes, described above). Note that nohypertypes over-
rides hyperfirst=true. This option only affects commands that check the

65



2 Package Options

first use flag, such as the \gls-like commands (for example, \gls
or \glsdisp), but not the \glstext-like commands (for example,
\glslink or \glstext).

The hyperfirst setting applies to all glossary types (unless identified
by nohypertypes or defined with \newignoredglossary). It can be
overridden on an individual basis by explicitly setting the hyper key
when referencing an entry (or by using the plus or starred version of
the referencing command).

It may be that you only want to apply this to just the acronyms (where
the first use explains the meaning of the acronym) but not for ordinary
glossary entries (where the first use is identical to subsequent uses). In
this case, you can use hyperfirst=false and apply \glsunsetall to all
the regular (non-acronym) glossaries. For example:

\usepackage[acronym,hyperfirst=false]{glossaries}
% acronym and glossary entry definitions

% at the end of the preamble
\glsunsetall[main]

Alternatively you can redefine the hook

\glslinkcheckfirsthyperhook

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such
as \gls. Within the definition of this command, you can use
\glslabel to reference the entry label and \glstype to reference
the glossary type. You can also use \ifglsused to determine if the
entry has been used. You can test if an entry is an acronym by check-
ing if it has the long key set using \ifglshaslong. For example, to
switch off the hyperlink on first use just for acronyms:

\renewcommand*{\glslinkcheckfirsthyperhook}{%
\ifglsused{\glslabel}{}%
{%

\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=false}}{}%
}%

}

Note that this hook isn’t used by the commands that don’t check
the first use flag, such as \glstext. (You can, instead, redefine
\glslinkpostsetkeys, which is used by both the \gls-like and
\glstext-like commands.)

66



2 Package Options

indexonlyfirst This is a boolean option that specifies whether to only add
information to the external glossary file on first use. The default is
indexonlyfirst=false, which will add a line to the file every time one of the
\gls-like or \glstext-like commands are used. Note that \glsadd
will always add information to the external glossary file1 (since that’s
the purpose of that command).

You can customise this by redefining

\glswriteentry

\glswriteentry{〈label〉}{〈wr-code〉}

where 〈label〉 is the entry’s label and 〈wr-code〉 is the code that writes
the entry’s information to the external file. The default definition of
\glswriteentry is:

\newcommand*{\glswriteentry}[2]{%
\ifglsindexonlyfirst

\ifglsused{#1}{}{#2}%
\else

#2%
\fi

}

This checks the indexonlyfirst package option (using \ifglsindexonlyfirst)
and does 〈wr-code〉 if this is false otherwise it only does 〈wr-code〉 of the
entry hasn’t been used.

For example, suppose you only want to index the first use for entries
in the acronym glossary and not in the main (or any other) glossary:

\renewcommand*{\glswriteentry}[2]{%
\ifthenelse{\equal{\glsentrytype{#1}}{acronym}}
{\ifglsused{#1}{}{#2}}%
{#2}%

}

Here I’ve used \ifthenelse to ensure the arguments of \equal are
fully expanded before the comparison is made.

savenumberlist This is a boolean option that specifies whether or not to
gather and store the number list for each entry. The default is savenum-
berlist=false. (See \glsentrynumberlist and \glsdisplaynumberlist
in Section 9.) This is always true if you use Option 1.

1bug fix in v4.16 has corrected the code to ensure this.

67



2 Package Options

2.2 Sectioning, Headings and TOC Options

toc Add the glossaries to the table of contents. Note that an extra LATEX
run is required with this option. Alternatively, you can switch this
function on and off using

\glstoctrue

\glstoctrue

and

\glstocfalse

\glstocfalse

numberline When used with toc, this will add \numberline{} in the final
argument of \addcontentsline. This will align the table of con-
tents entry with the numbered section titles. Note that this option has
no effect if the toc option is omitted. If toc is used without number-
line, the title will be aligned with the section numbers rather than the
section titles.

section This is a 〈key〉=〈value〉 option. Its value should be the name of a sec-
tional unit (e.g. chapter). This will make the glossaries appear in the
named sectional unit, otherwise each glossary will appear in a chap-
ter, if chapters exist, otherwise in a section. Unnumbered sectional
units will be used by default. Example:

\usepackage[section=subsection]{glossaries}

You can omit the value if you want to use sections, i.e.

\usepackage[section]{glossaries}

is equivalent to

\usepackage[section=section]{glossaries}

You can change this value later in the document using

\setglossarysection

\setglossarysection{〈name〉}

68



2 Package Options

where 〈name〉 is the sectional unit.

The start of each glossary adds information to the page header via

\glsglossarymark

\glsglossarymark{〈glossary title〉}

By default this uses \@mkboth2 but you may need to redefine it. For
example, to only change the right header:

\renewcommand{\glsglossarymark}[1]{\markright{#1}}

or to prevent it from changing the headers:

\renewcommand{\glsglossarymark}[1]{}

If you want \glsglossarymark to use \MakeUppercase in the
header, use the ucmark option described below.

Occasionally you may find that another package defines \cleardoublepage
when it is not required. This may cause an unwanted blank page
to appear before each glossary. This can be fixed by redefining
\glsclearpage:\glsclearpage

\renewcommand*{\glsclearpage}{\clearpage}

ucmark This is a boolean option (default: ucmark=false, unless memoir
has been loaded, in which case it defaults to ucmark=true). If set,
\glsglossarymark uses \MakeTextUppercase3. You can test
whether this option has been set or not using

\ifglsucmark

\ifglsucmark 〈true part〉\else 〈false part〉\fi

For example:

\renewcommand{\glsglossarymark}[1]{%
\ifglsucmark

\markright{\MakeTextUppercase{#1}}%
\else

\markright{#1}%
\fi}

2unless memoir is loaded, which case it uses \markboth
3Actually it uses \mfirstucMakeUppercase which is set to textcase’s
\MakeTextUppercase by the glossaries package. This makes it consistent with
\makefirstuc. (The textcase package is automatically loaded by glossaries.)

69



2 Package Options

If memoir has been loaded and ucfirst is set, then memoir’s \memUChead
is used.

numberedsection The glossaries are placed in unnumbered sectional units
by default, but this can be changed using numberedsection. This option
can take one of the following values:

• false: no number, i.e. use starred form of sectioning command
(e.g. \chapter* or \section*);

• nolabel: use a numbered section, i.e. the unstarred form of sec-
tioning command (e.g. \chapter or \section), but the section
not labelled;

• autolabel: numbered with automatic labelling. Each glossary uses
the unstarred form of a sectioning command (e.g. \chapter or
\section) and is assigned a label (via \label). The label is
formed from

\glsautoprefix

\glsautoprefix 〈type〉

where 〈type〉 is the label identifying that glossary. The default
value of \glsautoprefix is empty. For example, if you load
glossaries using:
\usepackage[section,numberedsection=autolabel]

{glossaries}

then each glossary will appear in a numbered section, and can be
referenced using something like:
The main glossary is in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main
glossary or a separate list of acronyms, you can use \acronymtype
which is set to main if the acronym option is not used and is set to
acronym if the acronym option is used. For example:
The list of acronyms is in section~\ref{\acronymtype}.

You can redefine the prefix if the default label clashes with an-
other label in your document. For example:
\renewcommand*{\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can
then, for example, refer to the list of acronyms as follows:
The list of acronyms is in
section~\ref{glo:\acronymtype}.

70



2 Package Options

Or, if you are undecided on a prefix:
The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

• nameref: this is like autolabel but uses an unnumbered sectioning
command (e.g. \chapter* or \section*). It’s designed for
use with the nameref package. For example:
\usepackage{nameref}
\usepackage[numberedsection=nameref]{glossaries}

Now \nameref{main} will display the (TOC) section title as-
sociated with the main glossary. As above, you can redefine
\glsautoprefix to provide a prefix for the label.

2.3 Glossary Appearance Options

entrycounter This is a boolean option. (Default is entrycounter=false.) If set,
each main (level 0) glossary entry will be numbered when using the
standard glossary styles. This option creates the counter glossaryentry.glossaryentry

If you use this option, you can reference the entry number within the
document using

\glsrefentry

\glsrefentry{〈label〉}

where 〈label〉 is the label associated with that glossary entry. The la-
belling systems uses 〈prefix〉〈label〉, where 〈label〉 is the entry’s label
and 〈prefix〉 is given by

\GlsEntryCounterLabelPrefix

\GlsEntryCounterLabelPrefix

(which defaults to glsentry-).

If you use \glsrefentry, you must run LATEX twice after
creating the glossary files using makeglossaries, makeindex
or xindy to ensure the cross-references are up-to-date.

counterwithin This is a 〈key〉=〈value〉 option where 〈value〉 is the name of
a counter. If used, this option will automatically set entrycounter=true

71



2 Package Options

and the glossaryentry counter will be reset every time 〈value〉 is incre-
mented.

The glossaryentry counter isn’t automatically reset at the start of
each glossary, except when glossary section numbering is on and
the counter used by counterwithin is the same as the counter used in
the glossary’s sectioning command.

If you want the counter reset at the start of each glossary, you can
redefine \glossarypreamble to use

\glsresetentrycounter

\glsresetentrycounter

which sets glossaryentry to zero:

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

or if you are using \setglossarypreamble, add it to each glossary
preamble, as required. For example:

\setglossarypreamble[acronym]{%
\glsresetentrycounter
The preamble text here for the list of acronyms.

}
\setglossarypreamble{%

\glsresetentrycounter
The preamble text here for the main glossary.

}

subentrycounter This is a boolean option. (Default is subentrycounter=false.)
If set, each level 1 glossary entry will be numbered when using the
standard glossary styles. This option creates the counter glossarysuben-glossarysubentry

try. The counter is reset with each main (level 0) entry. Note that this
package option is independent of entrycounter. You can reference the
number within the document using \glsrefentry{〈label〉} where
〈label〉 is the label associated with the sub-entry.

style This is a 〈key〉=〈value〉 option. (Default is style=list, unless classicthesis
has been loaded, in which case the default is style=index.) Its value
should be the name of the glossary style to use. This key may only

72



2 Package Options

be used for styles defined in glossary-list, glossary-long, glossary-super or
glossary-tree. Alternatively, you can set the style using

\setglossarystyle{〈style name〉}

(See Section 15 for further details.)

nolong This prevents the glossaries package from automatically loading
glossary-long (which means that the longtable package also won’t be
loaded). This reduces overhead by not defining unwanted styles and
commands. Note that if you use this option, you won’t be able to use
any of the glossary styles defined in the glossary-long package (unless
you explicitly load glossary-long).

nosuper This prevents the glossaries package from automatically loading
glossary-super (which means that the supertabular package also won’t
be loaded). This reduces overhead by not defining unwanted styles
and commands. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary-super package
(unless you explicitly load glossary-super).

nolist This prevents the glossaries package from automatically loading
glossary-list. This reduces overhead by not defining unwanted styles.
Note that if you use this option, you won’t be able to use any of the
glossary styles defined in the glossary-list package (unless you explic-
itly load glossary-list). Note that since the default style is list (unless
classicthesis has been loaded), you will also need to use the style option
to set the style to something else.

notree This prevents the glossaries package from automatically loading
glossary-tree. This reduces overhead by not defining unwanted styles.
Note that if you use this option, you won’t be able to use any of the
glossary styles defined in the glossary-tree package (unless you explic-
itly load glossary-tree). Note that if classicthesis has been loaded, the
default style is index, which is provided by glossary-tree.

nostyles This prevents all the predefined styles from being loaded. If you
use this option, you need to load a glossary style package (such as
glossary-mcols). Also if you use this option, you can’t use the style
package option. Instead you must either use \setglossarystyle
{〈style〉} or the style key in the optional argument to \printglossary.
Example:

73



2 Package Options

\usepackage[nostyles]{glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

nonumberlist This option will suppress the associated number lists in the
glossaries (see also Section 5). Note that if you use Options 2 or 3
(makeindex or xindy) then the locations must still be valid. This
package option merely prevents the number list from being displayed,
but both makeindex and xindy still require a location or cross-
reference for each term that’s indexed. Remember that number list
includes any cross-references, so suppressing the number list will also
hide the cross-references (see below).

seeautonumberlist If you suppress the number lists with nonumberlist, de-
scribed above, this will also suppress any cross-referencing informa-
tion supplied by the see key in \newglossaryentry or \glssee.
If you use seeautonumberlist, the see key will automatically implement
nonumberlist=false for that entry. (Note this doesn’t affect \glssee.)
For further details see Section 8.

counter This is a 〈key〉=〈value〉 option. (Default is counter=page.) The value
should be the name of the default counter to use in the number lists
(see Section 5).

nopostdot This is a boolean option. If no value is specified, true is as-
sumed. When set to true, this option suppresses the default post
description dot used by some of the predefined styles. The default
setting is nopostdot=false.

nogroupskip This is a boolean option. If no value is specified, true is as-
sumed. When set to true, this option suppresses the default vertical
gap between groups used by some of the predefined styles. The de-
fault setting is nogroupskip=false.

2.4 Sorting Options

sort If you use Options 2 or 3, this package option is the only way of specify-
ing how to sort the glossaries. Only Option 1 allows you to specify sort
methods for individual glossaries via the sort key in the optional ar-
gument of \printnoidxglossary. If you have multiple glossaries
in your document and you are using Option 1, only use the package
options sort=def or sort=use if you want to set this sort method for all
your glossaries.

This is a 〈key〉=〈value〉 option where 〈value〉 may be one of the follow-
ing:

74



2 Package Options

• standard : entries are sorted according to the value of the sort key
used in \newglossaryentry (if present) or the name key (if sort
key is missing);

• def : entries are sorted in the order in which they were defined
(the sort key in \newglossaryentry is ignored);

• use : entries are sorted according to the order in which they are
used in the document (the sort key in \newglossaryentry is
ignored).

Both sort=def and sort=use set the sort key to a six digit number
via

\glssortnumberfmt

\glssortnumberfmt{〈number〉}

(padded with leading zeros, where necessary). This can be re-
defined, if required, before the entries are defined (in the case of
sort=def) or before the entries are used (in the case of sort=use).

• none : this setting is new to version 4.30 and is only for doc-
uments that don’t use \makeglossaries (Options 2 or 3) or
\makenoidxglossaries (Option 1). It omits the code used to
sanitize or escape the sort value, since it’s not required. This can
help to improve the document build speed, especially if there
are a large number of entries. This option can’t be used with
\printglossary or \printnoidxglossary (or the iterative
versions \printglossaries or \printnoidxglossaries).
It may be used with glossaries-extra’s \printunsrtglossary
(Option 5).

Note that the group styles (such as listgroup) are incompatible with the
sort=use and sort=def options.

The default is sort=standard. When the standard sort option is in use,
you can hook into the sort mechanism by redefining:

\glsprestandardsort

\glsprestandardsort{〈sort cs〉}{〈type〉}{〈label〉}

where 〈sort cs〉 is a temporary control sequence that stores the sort
value (which was either explicitly set via the sort key or implicitly set
via the name key) before any escaping of the makeindex/xindy spe-
cial characters is performed. By default \glsprestandardsort just
does:

75



2 Package Options

\glsdosanitizesort

\glsdosanitizesort

which sanitizes 〈sort cs〉 if the sanitizesort package option is set (or does
nothing if the package option sanitizesort=false is used).

The other arguments, 〈type〉 and 〈label〉, are the glossary type and the
entry label for the current entry. Note that 〈type〉 will always be a con-
trol sequence, but 〈label〉 will be in the form used in the first argument
of \newglossaryentry.

Redefining \glsprestandardsort won’t affect any entries that
have already been defined and will have no effect at all if you are
using sort=def or sort=use.

Example 1 (Mixing Alphabetical and Order of Definition Sort-
ing)

Suppose I have three glossaries: main, acronym and notation, and
let’s suppose I want the main and acronym glossaries to be sorted
alphabetically, but the notation type should be sorted in order of
definition.

For Option 1, I just need to set the sort key in the optional argument of
\printnoidxglossary:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym,sort=word]
\printnoidxglossary[type=notation,sort=def]

For Options 2 or 3, I can set the sort to standard (which is the de-
fault, but can be explicitly set via the package option sort=standard),
and I can either define all my main and acronym entries, then re-
define \glsprestandardsort to set 〈sort cs〉 to an incremented in-
teger, and then define all my notation entries. Alternatively, I can
redefine \glsprestandardsort to check for the glossary type and
only modify 〈sort cs〉 if 〈type〉 is notation.

The first option can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]{%
\stepcounter{sortcount}%

76



2 Package Options

\edef#1{\glssortnumberfmt{\arabic{sortcount}}}%
}

The second option can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]{%
\ifdefstring{#2}{notation}%
{%

\stepcounter{sortcount}%
\edef#1{\glssortnumberfmt{\arabic{sortcount}}}%

}%
{%

\glsdosanitizesort
}%

}

(\ifdefstring is defined by the etoolbox package.) For a complete
document, see the sample file sampleSort.tex.

Example 2 (Customizing Standard Sort (Options 2 or 3))

Suppose you want a glossary of people and you want the names
listed as 〈first-name〉 〈surname〉 in the glossary, but you want the names
sorted by 〈surname〉, 〈first-name〉. You can do this by defining a com-
mand called, say, \name{〈first-name〉}{〈surname〉} that you can use
in the name key when you define the entry, but hook into the standard
sort mechanism to temporarily redefine \name while the sort value is
being set.

First, define two commands to set the person’s name:

\newcommand{\sortname}[2]{#2, #1}
\newcommand{\textname}[2]{#1 #2}

and \name needs to be initialised to \textname:

\let\name\textname

Now redefine \glsprestandardsort so that it temporarily sets
\name to \sortname and expands the sort value, then sets \name
to \textname so that the person’s name appears as 〈first-name〉
〈surname〉 in the text:

77



2 Package Options

\renewcommand{\glsprestandardsort}[3]{%
\let\name\sortname
\edef#1{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

}

(The somewhat complicate use of \expandafter etc helps to protect
fragile commands, but care is still needed.)

Now the entries can be defined:

\newglossaryentry{joebloggs}{name={\name{Joe}{Bloggs}},
description={some information about Joe Bloggs}}

\newglossaryentry{johnsmith}{name={\name{John}{Smith}},
description={some information about John Smith}}

For a complete document, see the sample file samplePeople.tex.

order This may take two values: word or letter. The default is word ordering.

Note that the order option has no effect if you don’t use
makeglossaries.

If you use Option 1, this setting will be used if you use sort=standard
in the optional argument of \printnoidxglossary:

\printnoidxglossary[sort=standard]

Alternatively, you can specify the order for individual glossaries:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym,sort=letter]

makeindex (Option 2) The glossary information and indexing style file will
be written in makeindex format. If you use makeglossaries, it
will automatically detect that it needs to call makeindex. If you don’t
use makeglossaries, you need to remember to use makeindex not
xindy. The indexing style file will been given a .ist extension.

You may omit this package option if you are using Option 2 as this is
the default. It’s available in case you need to override the effect of an
earlier occurrence of xindy in the package option list.

78



2 Package Options

xindy (Option 3) The glossary information and indexing style file will be
written in xindy format. If you use makeglossaries, it will au-
tomatically detect that it needs to call xindy. If you don’t use
makeglossaries, you need to remember to use xindy not makeindex.
The indexing style file will been given a .xdy extension.

This package option may additionally have a value that is a 〈key〉=〈value〉
comma-separated list to override the language and codepage. For ex-
ample:

\usepackage[xindy={language=english,codepage=utf8}]
{glossaries}

You can also specify whether you want a number group in the glos-
sary. This defaults to true, but can be suppressed. For example:

\usepackage[xindy={glsnumbers=false}]{glossaries}

If no value is supplied to this package option (either simply writing
xindy or writing xindy={}) then the language, codepage and num-
ber group settings are unchanged. See Section 11 for further details on
using xindy with the glossaries package.

xindygloss (Option 3) This is equivalent to xindy={} (that is, the xindy
option without any value supplied) and may be used as a docu-
ment class option. The language and code page can be set via
\GlsSetXdyLanguage and \GlsSetXdyCodePage (see Section 11.1.)

xindynoglsnumbers (Option 3) This is equivalent to xindy={glsnumbers=false}
and may be used as a document class option.

automake This is option was introduced to version 4.08 as a boolean op-
tion. As from version 4.42 it may now take three values: false (de-
fault), true or immediate. If no option is supplied, immediate is
assumed. The option automake=true will attempt to run makeindex
or xindy using TEX’s \write18 mechanism at the end of the docu-
ment. The option automake=immediate will attempt to run makeindex
or xindy at the start of \makeglossaries using \immediate (be-
fore the glossary files have been opened).

In the case of automake=true, the associated files are created at the end
of the document ready for the next LATEX run. Since there is a pos-
sibility of commands such as \gls occurring on the last page of the
document, it’s not possible to use \immediate to close the associ-
ated file or with \write18 since the writing of the final indexing
lines may have been delayed. In certain situations this can mean

79



2 Package Options

that the \write18 fails. In such cases, you will need to use au-
tomake=immediate instead.

With automake=immediate, you will get a warning on the first LATEX run
as the associated glossary files don’t exist yet.

Since this mechanism can be a security risk, some TEX distributions
disable it completely, in which case this option won’t have an effect. (If
this option doesn’t appear to work, search the log file for “runsystem”
and see if it is followed by “enabled” or “disabled”.)

Some distributions allow \write18 in a restricted mode. This mode
has a limited number of trusted applications, which usually includes
makeindex but may not include xindy. So if you have the restricted
mode on, automake should work with makeindex but may not work
with xindy.

However even in unrestricted mode this option may not work with
xindy as xindy uses language names that don’t always correspond
with \babel’s language names. (The makeglossaries script ap-
plies mappings to assist you.) Note that you still need at least two
LATEX runs to ensure the document is up-to-date with this setting.

Since this package option attempts to run the indexing application
on every LATEX run, its use should be considered a last resort for
those who can’t work out how to incorporate the indexing applica-
tion into their document build. The default value for this option is
automake=false.

2.5 Acronym Options

acronym This creates a new glossary with the label acronym. This is equiv-
alent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

It will also define

\printacronyms

\printacronyms[〈options〉]

that’s equivalent to

\printglossary[type=acronym,〈options〉]

80



2 Package Options

(unless that command is already defined before the beginning of the
document or the package option compatible-3.07 is used).

If you are using Option 1, you need to use

\printnoidxglossary[type=acronym,〈options〉]

to display the list of acronyms.

If the acronym package option is used, \acronymtype is set to
acronym otherwise it is set to main.4 Entries that are defined us-
ing \newacronym are placed in the glossary whose label is given by
\acronymtype, unless another glossary is explicitly specified.

Remember to use the nomain package option if you’re only
interested in using this acronym glossary. (That is, you don’t
intend to use the main glossary.)

acronyms This is equivalent to acronym=true and may be used in the docu-
ment class option list.

acronymlists By default, only the \acronymtype glossary is considered to
be a list of acronyms. If you have other lists of acronyms, you can
specify them as a comma-separated list in the value of acronymlists.
For example, if you use the acronym package option but you also want
the main glossary to also contain a list of acronyms, you can do:

\usepackage[acronym,acronymlists={main}]{glossaries}

No check is performed to determine if the listed glossaries exist, so
you can add glossaries you haven’t defined yet. For example:

\usepackage[acronym,acronymlists={main,acronym2}]
{glossaries}

\newglossary[alg2]{acronym2}{acr2}{acn2}%
{Statistical Acronyms}

You can use

\DeclareAcronymList

\DeclareAcronymList{〈list〉}

4Actually it sets \acronymtype to \glsdefaulttype if the acronym package option is
not used, but \glsdefaulttype usually has the value main unless the nomain option
has been used.

81



2 Package Options

instead of or in addition to the acronymlists option. This will add the
glossaries given in 〈list〉 to the list of glossaries that are identified as
lists of acronyms. To replace the list of acronym lists with a new list
use:

\SetAcronymLists

\SetAcronymLists{〈list〉}

You can determine if a glossary has been identified as being a list of
acronyms using:

\glsIfListOfAcronyms

\glsIfListOfAcronyms{〈label〉}{〈true part〉}{〈false
part〉}

shortcuts This option provides shortcut commands for acronyms. See Sec-
tion 13 for further details. Alternatively you can use:

\DefineAcronymSynonyms

\DefineAcronymSynonyms

2.5.1 Deprecated Acronym Style Options

The package options listed in this section are now deprecated but are kept
for backward-compatibility. Use \setacronymstyle instead. See Sec-
tion 13 for further details.

description This option changes the definition of \newacronym to allow a
description. This option may be replaced by

\setacronymstyle{long-short-desc}

or (with smallcaps)

\setacronymstyle{long-sc-short-desc}

or (with smaller)

\setacronymstyle{long-sm-short-desc}

82



2 Package Options

or (with footnote)

\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)

\setacronymstyle{footnote-sc-desc}

or (with footnote and smaller)

\setacronymstyle{footnote-sm-desc}

or (with dua)

\setacronymstyle{dua-desc}

smallcaps This option changes the definition of \newacronym and the way
that acronyms are displayed. This option may be replaced by:

\setacronymstyle{long-sc-short}

or (with description)

\setacronymstyle{long-sc-short-desc}

or (with description and footnote)

\setacronymstyle{footnote-sc-desc}

smaller This option changes the definition of \newacronym and the way
that acronyms are displayed.

If you use this option, you will need to include the relsize package
or otherwise define \textsmaller or redefine \acronymfont.

This option may be replaced by:

\setacronymstyle{long-sm-short}

or (with description)

\setacronymstyle{long-sm-short-desc}

or (with description and footnote)

\setacronymstyle{footnote-sm-desc}

83



2 Package Options

footnote This option changes the definition of \newacronym and the way
that acronyms are displayed. This option may be replaced by:

\setacronymstyle{footnote}

or (with smallcaps)

\setacronymstyle{footnote-sc}

or (with smaller)

\setacronymstyle{footnote-sm}

or (with description)

\setacronymstyle{footnote-desc}

or (with smallcaps and description)

\setacronymstyle{footnote-sc-desc}

or (with smaller and description)

\setacronymstyle{footnote-sm-desc}

dua This option changes the definition of \newacronym so that acronyms
are always expanded. This option may be replaced by:

\setacronymstyle{dua}

or (with description)

\setacronymstyle{dua-desc}

2.6 Other Options

Other available options that don’t fit any of the above categories are:

symbols This option defines a new glossary type with the label symbols
via

\newglossary[slg]{symbols}{sls}{slo}{\glssymbolsgroupname}

84



2 Package Options

It also defines

\printsymbols

\printsymbols[〈options〉]

which is a synonym for

\printglossary[type=symbols,〈options〉]

If you use Option 1, you need to use:

\printnoidxglossary[type=symbols,〈options〉]

to display the list of symbols.

Remember to use the nomain package option if you’re only
interested in using this symbols glossary and don’t intend to use
the main glossary.

The glossaries-extra package has a slightly modified version of this op-
tion which additionally provides \glsxtrnewsymbol as a conve-
nient shortcut method for defining symbols. See the glossaries-extra
manual for further details.

numbers This option defines a new glossary type with the label numbers
via

\newglossary[nlg]{numbers}{nls}{nlo}{\glsnumbersgroupname}

It also defines

\printnumbers

\printnumbers[〈options〉]

which is a synonym for

\printglossary[type=numbers,〈options〉]

If you use Option 1, you need to use:

\printnoidxglossary[type=numbers,〈options〉]

85



2 Package Options

to display the list of numbers.

Remember to use the nomain package option if you’re only
interested in using this numbers glossary and don’t intend to use
the main glossary.

The glossaries-extra package has a slightly modified version of this op-
tion which additionally provides \glsxtrnewnumber as a conve-
nient shortcut method for defining numbers. See the glossaries-extra
manual for further details.

index This option defines a new glossary type with the label index via

\newglossary[ilg]{index}{ind}{idx}{\indexname}%

It also defines

\newterm

\newterm[〈options〉]{〈term〉}

which is a synonym for

\newglossaryentry{〈term〉}[type=index,name={〈term〉},%
description=\nopostdesc,〈options〉]

and

\printindex

\printindex[〈options〉]

which is a synonym for

\printglossary[type=index,〈options〉]

If you use Option 1, you need to use:

\printnoidxglossary[type=index,〈options〉]

to display this glossary.

86



2 Package Options

Remember to use the nomain package option if you’re only
interested in using this index glossary and don’t intend to use the
main glossary. Note that you can’t mix this option with \index.
Either use glossaries for the indexing or use a custom indexing
package, such as makeidx, index or imakeidx. (You can, of course,
load one of those packages and load glossaries without the index
package option.)

Since the index isn’t designed for terms with descriptions, you might
also want to disable the hyperlinks for this glossary using the package
option nohypertypes=index or the command

\GlsDeclareNoHyperList{index}

The example file sample-index.tex illustrates the use of the index
package option.

noglossaryindex This option switches off index if index has been passed im-
plicitly (for example, through global document options). This option
can’t be used in \setupglossaries.

compatible-2.07 Compatibility mode for old documents created using ver-
sion 2.07 or below.

compatible-3.07 Compatibility mode for old documents created using ver-
sion 3.07 or below.

kernelglossredefs As a legacy from the precursor glossary package, the stan-
dard glossary commands provided by the LATEX kernel (\makeglossary
and \glossary) are redefined in terms of the glossaries package’s
commands. However, they were never documented in this user man-
ual, and the conversion guide (“Upgrading from the glossary package
to the glossaries package”) explicitly discourages their use.

The use of those kernel commands (instead of the appropriate com-
mands documented in this user guide) are deprecated, and you will
now get a warning if you try using them.

In the event that you require the original form of these kernel com-
mands, for example, if you need to use the glossaries package with an-
other class or package that also performs glossary-style indexing, then
you can restore these commands to their previous definition (that is,
their definitions prior to loading the glossaries package) with the pack-
age option kernelglossredefs=false. You may also need to use the nomain

87



2 Package Options

option in the event of file extension conflicts. (In which case, you must
provide a new default glossary for use with the glossaries package.)

This option may take one of three values: true (redefine with warn-
ings, default), false (restore previous definitions) or nowarn (redefine
without warnings, not recommended).

Note that the only glossary-related commands provided by the LATEX
kernel are \makeglossary and \glossary. Other packages or
classes may provide additional glossary-related commands or envi-
ronments that conflict with glossaries (such as \printglossary and
theglossary). These non-kernel commands aren’t affected by this pack-
age option, and you will have to find some way to resolve the con-
flict if you require both glossary mechanisms. (The glossaries package
will override the existing definitions of \printglossary and the-
glossary.)

In general, if possible, it’s best to stick with just one package that pro-
vides a glossary mechanism. (The glossaries package does check for
the doc package and patches \PrintChanges.)

2.7 Setting Options After the Package is Loaded

Some of the options described above may also be set after the glossaries
package has been loaded using

\setupglossaries

\setupglossaries{〈key-val list〉}

The following package options can’t be used in \setupglossaries: xindy,
xindygloss, xindynoglsnumbers, makeindex, nolong, nosuper, nolist, notree, nostyles,
nomain, compatible-2.07, translate, notranslate, acronym. These options have to
be set while the package is loading, except for the xindy sub-options which
can be set using commands like \GlsSetXdyLanguage (see Section 11 for
further details).

If you need to use this command, use it as soon as possible after loading
glossaries otherwise you might end up using it too late for the change to
take effect. For example, if you try changing the acronym styles (such as
smallcaps) after you have started defining your acronyms, you are likely
to get unexpected results. If you try changing the sort option after you
have started to define entries, you may get unexpected results.

88



3 Setting Up

In the preamble you need to indicate whether you want to use Option 1,
Option 2 or Option 3. It’s not possible to mix these options within a doc-
ument, although some combinations are possible with glossaries-extra. (For
Options 4 and 5 see the bib2gls and glossaries-extra manuals.)

3.1 Option 1

The command

\makenoidxglossaries

\makenoidxglossaries

must be placed in the preamble. This sets up the internal commands re-
quired to make Option 1 work. If you omit \makenoidxglossaries
none of the glossaries will be displayed.

3.2 Options 2 and 3

The command

\makeglossaries

\makeglossaries

must be placed in the preamble in order to create the customised makeindex
(.ist) or xindy (.xdy) style file (for Options 2 or 3, respectively) and to
ensure that glossary entries are written to the appropriate output files. If
you omit \makeglossaries none of the glossary files will be created.

Note that some of the commands provided by the glossaries package
must not be used after \makeglossaries as they are required when
creating the customised style file. If you attempt to use those commands
after \makeglossaries you will generate an error.

Similarly, there are some commands that must not be used before
\makeglossaries.

89



3 Setting Up

You can suppress the creation of the customised xindy or makeindex
style file using

\noist

\noist

That this command must not be used after \makeglossaries.

Note that if you have a custom .xdy file created when using glossaries
version 2.07 or below, you will need to use the compatible-2.07 package
option with it.

The default name for the customised style file is given by \jobname.ist
(Option 2) or \jobname.xdy (Option 3). This name may be changed using:

\setStyleFile

\setStyleFile{〈name〉}

where 〈name〉 is the name of the style file without the extension. Note that
this command must not be used after \makeglossaries.

Each glossary entry is assigned a number list that lists all the locations
in the document where that entry was used. By default, the location refers
to the page number but this may be overridden using the counter package
option. The default form of the location number assumes a full stop com-
positor (e.g. 1.2), but if your location numbers use a different compositor
(e.g. 1-2) you need to set this using

\glsSetCompositor

\glsSetCompositor{〈symbol〉}

For example:

\glsSetCompositor{-}

This command must not be used after \makeglossaries.
If you use Option 3, you can have a different compositor for page num-

bers starting with an upper case alphabetical character using:

\glsSetAlphaCompositor

\glsSetAlphaCompositor{〈symbol〉}

This command has no effect if you use Option 2. For example, if you want
number lists containing a mixture of A-1 and 2.3 style formats, then do:

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

90



3 Setting Up

See Section 5 for further information about number lists.

91



4 Defining Glossary Entries

All glossary entries must be defined before they are used, so it is better
to define them in the preamble to ensure this. In fact, some commands
such as \longnewglossaryentry may only be used in the preamble. See
Section 4.8 for a discussion of the problems with defining entries within the
document instead of in the preamble. (The glossaries-extra package has an
option that provides a restricted form of document definitions that avoids
some of the issues discussed in Section 4.8.)

Option 1 enforces the preamble-only restriction on
\newglossaryentry. Option 4 requires that definitions are provided
in .bib format. Option 5 requires either preamble-only definitions or
the use of the glossaries-extra package option docdef=restricted.

Only those entries that are indexed in the document (using any of the
commands described in Section 6, Section 7 or Section 8) will appear in the
glossary. See Section 10 to find out how to display the glossary.

New glossary entries are defined using the command:

\newglossaryentry

\newglossaryentry{〈label〉}{〈key=value list〉}

This is a short command, so values in 〈key-val list〉 can’t contain any para-
graph breaks. Take care to enclose values containing any commas (,) or
equal signs (=) with braces to hide them from the key=value list parser. Be
careful to ensure that no spurious spaces are included at the start and end
of the braces.

If you have a long description that needs to span multiple paragraphs,
use

\longnewglossaryentry

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈long
description〉}

instead. Note that this command may only be used in the preamble. Be care-
ful of unwanted spaces. \longnewglossaryentry will remove trailing
spaces in the description (via \unskip) but won’t remove leading spaces

92



4 Defining Glossary Entries

(otherwise it would interfere with commands like \Glsentrydesc). This
command also appends \nopostdesc to the end of the description, which
suppresses the post-description hook. The glossaries-extra package provides
a starred version of \longnewglossaryentry that doesn’t append either
\unskip or \nopostdesc.

There are also commands that will only define the entry if it hasn’t already
been defined:

\provideglossaryentry

\provideglossaryentry{〈label〉}{〈key=value list〉}

and

\longprovideglossaryentry

\longprovideglossaryentry{〈label〉}{〈key=value list〉}
{〈long description〉}

(These are both preamble-only commands.)
For all the above commands, the first argument, 〈label〉, must be a unique

label with which to identify this entry. This can’t contain any non-
expandable commands or active characters. The reason for this restriction
is that the label is used to construct internal commands that store the associ-
ated information (similarly to commands like \label) and therefore must
be able to expand to a valid control sequence name.

Note that although an extended Latin character or other non-Latin
character, such as é or ß, looks like a plain character in your .tex file,
it’s actually a macro (an active character) and therefore can’t be used in
the label. (This applies to LATEX rather than X ELATEX.) Also be careful of
babel’s options that change certain punctuation characters (such as : or
-) to active characters.

The second argument, 〈key=value list〉, is a 〈key〉=〈value〉 list that supplies
the relevant information about this entry. There are two required fields:
description and either name or parent. The description is set in the third argu-
ment of \longnewglossaryentry and \longprovideglossaryentry.
With the other commands it’s set via the description key. As is typical with
〈key〉=〈value〉 lists, values that contain a comma or equal sign must be en-
closed in braces. Available fields are listed below. Additional fields are
provided by the supplementary packages glossaries-prefix (Section 17) and
glossaries-accsupp (Section 18) and also by glossaries-extra. You can also de-
fine your own custom keys (see Section 4.3).

name The name of the entry (as it will appear in the glossary). If this key is

93



4 Defining Glossary Entries

omitted and the parent key is supplied, this value will be the same as
the parent’s name.

If the name key contains any commands, you must also use the sort
key (described below) if you intend sorting the entries
alphabetically, otherwise the entries can’t be sorted correctly.

description A brief description of this term (to appear in the glossary).
Within this value, you can use

\nopostdesc

\nopostdesc

to suppress the description terminator for this entry. For example, if
this entry is a parent entry that doesn’t require a description, you can
do description={\nopostdesc}. If you want a paragraph break
in the description use

\glspar

\glspar

or, better, use \longnewglossaryentry. However, note that not all
glossary styles support multi-line descriptions. If you are using one
of the tabular-like glossary styles that permit multi-line descriptions,
use \newline not \\ if you want to force a line break.

parent The label of the parent entry. Note that the parent entry must be
defined before its sub-entries. See Section 4.5 for further details.

descriptionplural The plural form of the description, if required. If omitted,
the value is set to the same as the description key.

text How this entry will appear in the document text when using \gls (or
one of its upper case variants). If this field is omitted, the value of the
name key is used.

first How the entry will appear in the document text on first use with \gls
(or one of its upper case variants). If this field is omitted, the value of
the text key is used. Note that if you use \glspl, \Glspl, \GLSpl,
\glsdisp before using \gls, the firstplural value won’t be used with
\gls.

94



4 Defining Glossary Entries

plural How the entry will appear in the document text when using \glspl
(or one of its upper case variants). If this field is omitted, the value is
obtained by appending \glspluralsuffix to the value of the text
field. The default value of \glspluralsuffix is the letter “s”.

firstplural How the entry will appear in the document text on first use with
\glspl (or one of its upper case variants). If this field is omitted,
the value is obtained from the plural key, if the first key is omitted, or
by appending \glspluralsuffix to the value of the first field, if the
first field is present. Note that if you use \gls, \Gls, \GLS, \glsdisp
before using \glspl, the firstplural value won’t be used with \glspl.

Note: prior to version 1.13, the default value of firstplural was always
taken by appending “s” to the first key, which meant that you had to
specify both plural and firstplural, even if you hadn’t used the first key.

symbol This field is provided to allow the user to specify an associated sym-
bol. If omitted, the value is set to \relax. Note that not all glossary
styles display the symbol.

symbolplural This is the plural form of the symbol (as passed to \glsdisplay
and \glsdisplayfirst by \glspl, \Glspl and \GLSpl). If omit-
ted, the value is set to the same as the symbol key.

sort This value indicates how this entry should be sorted. If omitted, the
value is given by the name field unless one of the package options
sort=def and sort=use have been used. In general, it’s best to use the sort
key if the name contains commands (e.g. \ensuremath{\alpha}).
You can also override the sort key by redefining \glsprestandardsort
(see Section 2.4).

Option 1 by default strips the standard LATEX accents (that is, accents
generated by core LATEX commands) from the name key when it sets
the sort key. So with Option 1:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people}

}

This is equivalent to:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people},
sort={elite}

}

95



4 Defining Glossary Entries

Unless you use the package option sanitizesort=true, in which case it’s
equivalent to:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people},
sort={\'elite}

}

This will place the entry before the “A” letter group since the sort
value starts with a symbol.

Similarly if you use the inputenc package:

\newglossaryentry{elite}{%
name={{é}lite},
description={select group of people}

}

This is equivalent to

\newglossaryentry{elite}{%
name={{é}lite},
description={select group of people},
sort=elite

}

Unless you use the package option sanitizesort=true, in which case it’s
equivalent to:

\newglossaryentry{elite}{%
name={{é}lite},
description={select group of people},
sort=élite

}

Again, this will place the entry before the “A” group.

With Options 2 and 3, the default value of sort will either be set to
the name key (if sanitizesort=true) or it will set it to the expansion of the
name key (if sanitizesort=false).

96



4 Defining Glossary Entries

Take care with xindy (Option 3): if you have entries with the
same sort value they will be treated as the same entry. If you use
xindy and aren’t using the def or use sort methods, always use
the sort key for entries where the name just consists of a control
sequence (for example name={\alpha}).

Take care if you use Option 1 and the name contains fragile
commands. You will either need to explicitly set the sort key or use
the sanitizesort=true package option (unless you use the def or use
sort methods).

type This specifies the label of the glossary in which this entry belongs. If
omitted, the default glossary is assumed unless \newacronym is used
(see Section 13).

user1, . . . , user6 Six keys provided for any additional information the user
may want to specify. (For example, an associated dimension or an al-
ternative plural or some other grammatical construct.) Alternatively,
you can add new keys using \glsaddkey or \glsaddstoragekey
(see Section 4.3).

nonumberlist A boolean key. If the value is missing or is true, this will
suppress the number list just for this entry. Conversely, if you have
used the package option nonumberlist, you can activate the number list
just for this entry with nonumberlist=false. (See Section 5.)

see Cross-reference another entry. Using the see key will automatically add
this entry to the glossary, but will not automatically add the cross-
referenced entry. The referenced entry should be supplied as the
value to this key. If you want to override the “see” tag, you can
supply the new tag in square brackets before the label. For exam-
ple see=[see also]{anotherlabel}. Note that if you have sup-
pressed the number list, the cross-referencing information won’t ap-
pear in the glossary, as it forms part of the number list. You can
override this for individual glossary entries using nonumberlist=false
(see above). Alternatively, you can use the seeautonumberlist package
option. For further details, see Section 8.

This key essentially provides a convenient shortcut that performs

\glssee[〈tag〉]{〈label〉}{〈xr-label list〉}

after the entry has been defined.

97



4 Defining Glossary Entries

For Options 2 and 3, \makeglossaries must be used before any
occurrence of \newglossaryentry that contains the see key.
This key should not be used with entries defined in the document
environment.

Since it’s useful to suppress the indexing while working on a draft
document, consider using the seenoindex package option to warn or
ignore the see key while \makeglossaries is commented out.

If you use the see key, you may want to consider using the glossaries-
extra package which additionally provides a seealso and alias key.
If you want to avoid the automatic indexing triggered by the see key,
consider using Option 4.

The following keys are reserved for \newacronym (see Section 13): long,
longplural, short and shortplural.

Avoid using any of the \gls-like or \glstext-like commands within
the text, first, short or long keys (or their plural equivalent) or any other
key that you plan to access through those commands. (For example, the
symbol key if you intend to use \glssymbol.) Otherwise you end up
with nested links, which can cause complications and they won’t work
with the case-changing commands. You can use them within the value
of keys that won’t be accessed through those commands. For example,
the description key if you don’t use \glsdesc. Additionally, they’ll
confuse the entry formatting commands, such as \glslabel.

Note that if the name starts with non-Latin character, you must group the
character, otherwise it will cause a problem for commands like \Gls and
\Glspl. For example:

\newglossaryentry{elite}{name={{\'e}lite},
description={select group or class}}

Note that the same applies if you are using the inputenc package:

\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

(This doesn’t apply for X ELATEX documents using the fontspec package. For
further details, see the “UTF-8” section in the mfirstuc user manual.)

Note that in both of the above examples, you will also need to supply
the sort key if you are using Option 2 whereas xindy (Option 3) is usually
able to sort non-Latin characters correctly. Option 1 discards accents from
standard LATEX extended Latin characters unless you use the sanitizesort=true.

98



4 Defining Glossary Entries

4.1 Plurals

You may have noticed from above that you can specify the plural form when
you define a term. If you omit this, the plural will be obtained by appending

\glspluralsuffix

\glspluralsuffix

to the singular form. This command defaults to the letter “s”. For example:

\newglossaryentry{cow}{name=cow,description={a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form is
“cows”. However, if you are writing in archaic English, you may want to
use “kine” as the plural form, in which case you would have to do:

\newglossaryentry{cow}{name=cow,plural=kine,
description={a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for a given
term) then use the plural key for one of them and one of the user keys to
specify the other plural form. For example:

\newglossaryentry{cow}{%
name=cow,%
description={a fully grown female of any bovine animal

(plural cows, archaic plural kine)},%
user1={kine}}

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow}
to produce “kine”. You can, of course, define an easy to remember syn-
onym. For example:

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second
plural. Alternatively, you can define your own keys using \glsaddkey,
described in Section 4.3.

If you are using a language that usually forms plurals by appending a dif-
ferent letter, or sequence of letters, you can redefine \glspluralsuffix
as required. However, this must be done before the entries are defined. For
languages that don’t form plurals by simply appending a suffix, all the plu-
ral forms must be specified using the plural key (and the firstplural key where
necessary).

99



4 Defining Glossary Entries

4.2 Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles.
For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}{user1}
\newcommand*{\edkey}{user2}

\newcommand*{\newword}[3][]{%
\newglossaryentry{#2}{%
name={#2},%
description={#3},%
\edkey={#2ed},%
\ingkey={#2ing},#1%
}%

}

With the above definitions, I can now define terms like this:

\newword{play}{to take part in activities for enjoyment}
\newword[\edkey={ran},\ingkey={running}]{run}{to move fast using
the legs}

and use them in the text:

Peter is \glsing{play} in the park today.

Jane \glsd{play} in the park yesterday.

Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \glsaddkey, de-
scribed below in Section 4.3.

4.3 Additional Keys

You can now also define your own custom keys using the commands de-
scribed in this section. There are two types of keys: those for use within the
document and those to store information used behind the scenes by other
commands.

For example, if you want to add a key that indicates the associated unit
for a term, you might want to reference this unit in your document. In
this case use \glsaddkey described in Section 4.3.1. If, on the other hand,
you want to add a key to indicate to a glossary style or acronym style that

100



4 Defining Glossary Entries

this entry should be formatted differently to other entries, then you can use
\glsaddstoragekey described in Section 4.3.2.

In both cases, a new command 〈no link cs〉 will be defined that can
be used to access the value of this key (analogous to commands such as
\glsentrytext). This can be used in an expandable context (provided
any fragile commands stored in the key have been protected). The new
keys must be added using \glsaddkey or \glsaddstoragekey before
glossary entries are defined.

4.3.1 Document Keys

A custom key that can be used in the document is defined using:

\glsaddkey

\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no
link ucfirst cs〉}{〈link cs〉}{〈link ucfirst cs〉}{〈link
allcaps cs〉}

where:

〈key〉 is the new key to use in \newglossaryentry (or similar commands
such as \longnewglossaryentry);

〈default value〉 is the default value to use if this key isn’t used in an entry
definition (this may reference the current entry label via \glslabel,
but you will have to switch on expansion via the starred version of
\glsaddkey and protect fragile commands);

〈no link cs〉 is the control sequence to use analogous to commands like
\glsentrytext;

〈no link ucfirst cs〉 is the control sequence to use analogous to commands
like \Glsentrytext;

〈link cs〉 is the control sequence to use analogous to commands like \glstext;

〈link ucfirst cs〉 is the control sequence to use analogous to commands like
\Glstext;

〈link allcaps cs〉 is the control sequence to use analogous to commands like
\GLStext.

The starred version of \glsaddkey switches on expansion for this key. The
unstarred version doesn’t override the current expansion setting.

101



4 Defining Glossary Entries

Example 3 (Defining Custom Keys)

Suppose I want to define two new keys, ed and ing, that default to the
entry text followed by “ed” and “ing”, respectively. The default value will
need expanding in both cases, so I need to use the starred form:

% Define "ed" key:
\glsaddkey*
{ed}% key
{\glsentrytext{\glslabel}ed}% default value
{\glsentryed}% command analogous to \glsentrytext
{\Glsentryed}% command analogous to \Glsentrytext
{\glsed}% command analogous to \glstext
{\Glsed}% command analogous to \Glstext
{\GLSed}% command analogous to \GLStext

% Define "ing" key:
\glsaddkey*
{ing}% key
{\glsentrytext{\glslabel}ing}% default value
{\glsentrying}% command analogous to \glsentrytext
{\Glsentrying}% command analogous to \Glsentrytext
{\glsing}% command analogous to \glstext
{\Glsing}% command analogous to \Glstext
{\GLSing}% command analogous to \GLStext

Now I can define some entries:

% No need to override defaults for this entry:

\newglossaryentry{jump}{name={jump},description={}}

% Need to override defaults on these entries:

\newglossaryentry{run}{name={run},%
ed={ran},%
ing={running},%
description={}}

\newglossaryentry{waddle}{name={waddle},%
ed={waddled},%
ing={waddling},%
description={}}

These entries can later be used in the document:

The dog \glsed{jump} over the duck.

The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

102



4 Defining Glossary Entries

For a complete document, see the sample file sample-newkeys.tex.

4.3.2 Storage Keys

A custom key that can be used for simply storing information is defined
using:

\glsaddstoragekey

\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉}

where the arguments are as the first three arguments of \glsaddkey, de-
scribed above in Section 4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define
the additional commands. You can access or update the value of your new
field using the commands described in Section 16.3.

Example 4 (Defining Custom Storage Key (Acronyms and Ini-
tialisms))

Suppose I want to define acronyms and other forms of abbreviations,
such as initialisms, but I want them all in the same glossary and I want
the acronyms on first use to be displayed with the short form followed by
the long form in parentheses, but the opposite way round for other forms
of abbreviations. (The glossaries-extra package provides a simpler way of
achieving this.)

Here I can define a new key that determines whether the term is actually
an acronym rather than some other form of abbreviation. I’m going to call
this key abbrtype (since type already exists):

\glsaddstoragekey
{abbrtype}% key/field name
{word}% default value if not explicitly set
{\abbrtype}% custom command to access the value if required

Now I can define a style that looks up the value of this new key to deter-
mine how to display the full form:

\newacronymstyle
{mystyle}% style name
{% Use the generic display

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%
}
{% Put the long form in the description

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%

103



4 Defining Glossary Entries

% For the full format, test the value of the "abbrtype" key.
% If it's set to "word" put the short form first with
% the long form in brackets.
\renewcommand*{\genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\glsentryshort{##1}}##2\space
(\glsentrylong{##1})%

}
{% is another form of abbreviation
\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}})%

}%
}%
% first letter upper case version:
\renewcommand*{\Genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\Glsentryshort{##1}}##2\space
(\glsentrylong{##1})%

}
{% is another form of abbreviation
\Glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}})%

}%
}%
% plural
\renewcommand*{\genplacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\glsentryshortpl{##1}}##2\space
(\glsentrylong{##1})%

}
{% is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})%

}%
}%
% plural and first letter upper case
\renewcommand*{\Genplacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\Glsentryshortpl{##1}}##2\space
(\glsentrylong{##1})%

}
{% is another form of abbreviation
\Glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})%

}%

104



4 Defining Glossary Entries

}%
% Just use the short form as the name part in the glossary:
\renewcommand*{\acronymentry}[1]{%

\acronymfont{\glsentryshort{##1}}}%
% Sort by the short form:
\renewcommand*{\acronymsort}[2]{##1}%
% Just use the surrounding font for the short form:
\renewcommand*{\acronymfont}[1]{##1}%
% Same for first use:
\renewcommand*{\firstacronymfont}[1]{\acronymfont{##1}}%
% Default plural suffix if the plural isn't explicitly set
\renewcommand*{\acrpluralsuffix}{\glspluralsuffix}%

}

Remember that the new style needs to be set before defining any terms:

\setacronymstyle{mystyle}

Since it’s a bit confusing to use \newacronym for something that’s not
technically an acronym, let’s define a new command for initialisms:

\newcommand*{\newinitialism}[4][]{%
\newacronym[abbrtype=initialism,#1]{#2}{#3}{#4}%

}

Now the entries can all be defined:

\newacronym{radar}{radar}{radio detecting and ranging}
\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}
\newacronym{scuba}{scuba}{self-contained underwater breathing
apparatus}
\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM}{automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and rang-
ing)” but \gls{dsp} will produce “DSP (digital signal processing)”.

For a complete document, see the sample file sample-storage-abbr.tex.

In the above example, if \newglossaryentry is explicitly used (instead
of through \newacronym) the abbrtype key will be set to its default value
of “word” but the \ifglshaslong test in the custom acronym style will
be false (since the long key hasn’t been set) so the display style will switch to
that given by \glsgenentryfmt and they’ll be no test performed on the
abbrtype field.

105



4 Defining Glossary Entries

Example 5 (Defining Custom Storage Key (Acronyms and Non-
Acronyms with Descriptions))

The previous example can be modified if the description also needs to be
provided. Here I’ve changed “word” to “acronym”:

\glsaddstoragekey
{abbrtype}% key/field name
{acronym}% default value if not explicitly set
{\abbrtype}% custom command to access the value if required

This may seem a little odd for non-abbreviated entries defined using
\newglossaryentry directly, but \ifglshaslong can be used to de-
termine whether or not to reference the value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to
specify a description. In the previous example, the line:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%

needs to be changed to:

\renewcommand*{\GenericAcronymFields}{}%

Additionally, to accommodate the change in the default value of the
abbrtype key, all instances of

\ifglsfieldeq{##1}{abbrtype}{word}

need to be changed to:

\ifglsfieldeq{##1}{abbrtype}{acronym}

Once this new style has been set, the new acronyms can be defined using
the optional argument to set the description:

\newacronym[description={system for detecting the position and
speed of aircraft, ships, etc}]{radar}{radar}{radio detecting
and ranging}

No change is required for the definition of \newinitialism but again
the optional argument is required to set the description:

\newinitialism[description={mathematical manipulation of an
information signal}]{dsp}{DSP}{digital signal processing}

We can also accommodate contractions in a similar manner to the ini-
tialisms:

\newcommand*{\newcontraction}[4][]{%
\newacronym[abbrtype=contraction,#1]{#2}{#3}{#4}%

}

106



4 Defining Glossary Entries

The contractions can similarly been defined using this new command:

\newcontraction[description={front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

Since the custom acronym style just checks if abbrtype is acronym, the
contractions will be treated the same as the initialisms, but the style could
be modified by a further test of the abbrtype value if required.

To test regular non-abbreviated entries, I’ve also defined a simple word:

\newglossaryentry{apple}{name={apple},description={a fruit}}

Now for a new glossary style that provides information about the abbre-
viation (in addition to the description):

\newglossarystyle
{mystyle}% style name
{% base it on the "list" style

\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%

\item[\glsentryitem{##1}%
\glstarget{##1}{\glossentryname{##1}}]

\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1})\space}{}%
\glossentrydesc{##1}\glspostdescription\space ##2}%

}

This uses \ifglshaslong to determine whether or not the term is an ab-
breviation. If it has an abbreviation, the full form is supplied in parentheses
and \abbrtype (defined by \glsaddstoragekey earlier) is used to indi-
cate the type of abbreviation.

With this style set, the apple entry is simply displayed in the glossary as

apple a fruit.

but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) de-
vice that creates a narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an
information signal.

(for initalisms) or

fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).
For a complete document, see sample-storage-abbr-desc.tex.

107



4 Defining Glossary Entries

4.4 Expansion

When you define new glossary entries expansion is performed by default,
except for the name, description, descriptionplural, symbol, symbolplural and sort
keys (these keys all have expansion suppressed via \glssetnoexpandfield).

You can switch expansion on or off for individual keys using

\glssetexpandfield

\glssetexpandfield{〈field〉}

or

\glssetnoexpandfield

\glssetnoexpandfield{〈field〉}

respectively, where 〈field〉 is the field tag corresponding to the key. In most
cases, this is the same as the name of the key except for those listed in ta-
ble 4.1.

Table 4.1: Key to Field Mappings

Key Field
sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
user1 useri
user2 userii
user3 useriii
user4 useriv
user5 userv
user6 uservi
longplural longpl
shortplural shortpl

Any keys that haven’t had the expansion explicitly set using \glssetexpandfield
or \glssetnoexpandfield are governed by

\glsexpandfields

\glsexpandfields

and

\glsnoexpandfields

108



4 Defining Glossary Entries

\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch
off expansion via \glsnoexpandfields. (This should be used before you
define the entries.)

4.5 Sub-Entries

As from version 1.17, it is possible to specify sub-entries. These may be used
to order the glossary into categories, in which case the sub-entry will have a
different name to its parent entry, or it may be used to distinguish different
definitions for the same word, in which case the sub-entries will have the
same name as the parent entry. Note that not all glossary styles support
hierarchical entries and may display all the entries in a flat format. Of the
styles that support sub-entries, some display the sub-entry’s name whilst
others don’t. Therefore you need to ensure that you use a suitable style.
(See Section 15 for a list of predefined styles.) As from version 3.0, level 1
sub-entries are automatically numbered in the predefined styles if you use
the subentrycounter package option (see Section 2.3 for further details).

Note that the parent entry will automatically be added to the glossary if
any of its child entries are used in the document. If the parent entry is not
referenced in the document, it will not have a number list. Note also that
makeindex has a restriction on the maximum sub-entry depth.

4.5.1 Hierarchical Categories

To arrange a glossary with hierarchical categories, you need to first define
the category and then define the sub-entries using the relevant category en-
try as the value of the parent key.

Example 6 (Hierarchical Categories—Greek and Roman Mathemat-
ical Symbols)

Suppose I want a glossary of mathematical symbols that are divided into
Greek letters and Roman letters. Then I can define the categories as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentry{romanletter}{name={Roman letters},
description={\nopostdesc}}

Note that in this example, the category entries don’t need a description so
I have set the descriptions to \nopostdesc. This gives a blank description
and suppresses the description terminator.

109



4 Defining Glossary Entries

I can now define my sub-entries as follows:

\newglossaryentry{pi}{name={\ensuremath{\pi}},sort={pi},
description={ratio of the circumference of a circle to
the diameter},
parent=greekletter}

\newglossaryentry{C}{name={\ensuremath{C}},sort={C},
description={Euler's constant},
parent=romanletter}

For a complete document, see the sample file sampletree.tex.

4.5.2 Homographs

Sub-entries that have the same name as the parent entry, don’t need to have
the name key. For example, the word “glossary” can mean a list of technical
words or a collection of glosses. In both cases the plural is “glossaries”. So
first define the parent entry:

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},
plural={glossaries}}

Again, the parent entry has no description, so the description terminator
needs to be suppressed using \nopostdesc.

Now define the two different meanings of the word:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},
parent={glossary}}

Note that if I reference the parent entry, the location will be added to the
parent’s number list, whereas if I reference any of the child entries, the lo-
cation will be added to the child entry’s number list. Note also that since
the sub-entries have the same name, the sort key is required unless you are
using the sort=use or sort=def package options (see Section 2.4). You can use
the subentrycounter package option to automatically number the first-level
child entries. See Section 2.3 for further details.

In the above example, the plural form for both of the child entries is the
same as the parent entry, so the plural key was not required for the child

110



4 Defining Glossary Entries

entries. However, if the sub-entries have different plurals, they will need to
be specified. For example:

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description={cry of approval
(pl.\ bravos)},
sort={1},
plural={bravos},
parent=bravo}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl.\ bravoes)},
sort={2},
plural={bravoes},
parent=bravo}

4.6 Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

\loadglsentries

\loadglsentries[〈type〉]{〈filename〉}

where 〈filename〉 is the name of the file containing all the \newglossaryentry
or \longnewglossaryentry commands. The optional argument 〈type〉 is
the name of the glossary to which those entries should belong, for those en-
tries where the type key has been omitted (or, more specifically, for those en-
tries whose type has been specified by \glsdefaulttype, which is what
\newglossaryentry uses by default).

This is a preamble-only command. You may also use \input to load the
file but don’t use \include. If you find that your file is becoming unman-
ageably large, you may want to consider switching to bib2gls and use an
application such as JabRef to manage the entry definitions.

If you want to use \AtBeginDocument to \input all your entries
automatically at the start of the document, add the
\AtBeginDocument command before you load the glossaries package
(and babel, if you are also loading that) to avoid the creation of the
.glsdefs file and any associated problems that are caused by defining
commands in the document environment. (See Section 4.8.)

111



4 Defining Glossary Entries

Example 7 (Loading Entries from Another File)

Suppose I have a file called myentries.tex which contains:

\newglossaryentry{perl}{type=main,
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language},sort={TeX}}

\newglossaryentry{html}{type=\glsdefaulttype,
name={html},
description={A mark up language}}

and suppose in my document preamble I use the command:

\loadglsentries[languages]{myentries}

then this will add the entries tex and html to the glossary whose type is
given by languages, but the entry perl will be added to the main glos-
sary, since it explicitly sets the type to main.

Note: if you use \newacronym (see Section 13) the type is set as
type=\acronymtype unless you explicitly override it. For example, if my
file myacronyms.tex contains:

\newacronym{aca}{aca}{a contrived acronym}

then (supposing I have defined a new glossary type called altacronym)

\loadglsentries[altacronym]{myacronyms}

will add aca to the glossary type acronym, if the package option acronym
has been specified, or will add aca to the glossary type altacronym, if the
package option acronym is not specified.1

If you have used the acronym package option, there are two possible solu-
tions to this problem:

1. Change myacronyms.tex so that entries are defined in the form:

\newacronym[type=\glsdefaulttype]{aca}{aca}{a
contrived acronym}

and do:

\loadglsentries[altacronym]{myacronyms}

1This is because \acronymtype is set to \glsdefaulttype if the acronym package option
is not used.

112



4 Defining Glossary Entries

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\renewcommand{\acronymtype}{altacronym}
\loadglsentries{myacronyms}
\let\acronymtype\orgacronymtype

Note that only those entries that have been used in the text will appear
in the relevant glossaries. Note also that \loadglsentries may only be
used in the preamble.

Remember that you can use \provideglossaryentry rather than
\newglossaryentry. Suppose you want to maintain a large database
of acronyms or terms that you’re likely to use in your documents, but
you may want to use a modified version of some of those entries. (Sup-
pose, for example, one document may require a more detailed descrip-
tion.) Then if you define the entries using \provideglossaryentry
in your database file, you can override the definition by simply using
\newglossaryentry before loading the file. For example, suppose your
file (called, say, terms.tex) contains:

\provideglossaryentry{mallard}{name=mallard,
description={a type of duck}}

but suppose your document requires a more detailed description, you can
do:

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{mallard}{name=mallard,
description={a dabbling duck where the male has a green head}}

\loadglsentries{terms}

Now the mallard definition in the terms.tex file will be ignored.

4.7 Moving Entries to Another Glossary

As from version 3.02, you can move an entry from one glossary to another
using:

\glsmoveentry

\glsmoveentry{〈label〉}{〈target glossary label〉}

where 〈label〉 is the unique label identifying the required entry and 〈target
glossary label〉 is the unique label identifying the glossary in which to put the
entry.

113



4 Defining Glossary Entries

Note that no check is performed to determine the existence of the tar-
get glossary. If you want to move an entry to a glossary that’s skipped by
\printglossaries, then define an ignored glossary with \newignoredglossary.
(See Section 12.)

Unpredictable results may occur if you move an entry to a different
glossary from its parent or children.

4.8 Drawbacks With Defining Entries in the Document
Environment

Originally, \newglossaryentry (and \newacronym) could only be used
in the preamble. I reluctantly removed this restriction in version 1.13, but
there are issues with defining commands in the document environment in-
stead of the preamble, which is why the restriction is maintained for newer
commands. This restriction is also reimposed for \newglossaryentry
by the new Option 1. (The glossaries-extra package automatically reimposes
this restriction for Options 2 and 3 but provides a package option to allow
document definitions.)

4.8.1 Technical Issues

1. If you define an entry mid-way through your document, but subse-
quently shuffle sections around, you could end up using an entry be-
fore it has been defined.

2. Entry information is required when displaying the glossary. If this
occurs at the start of the document, but the entries aren’t defined until
later, then the entry details are being looked up before the entry has
been defined.

3. If you use a package, such as babel, that makes certain characters ac-
tive at the start of the document environment, there will be a problem
if those characters have a special significance when defining glossary
entries. These characters include the double-quote " character, the ex-
clamation mark ! character, the question mark ? character, and the
pipe | character. They must not be active when defining a glossary
entry where they occur in the sort key (and they should be avoided in
the label if they may be active at any point in the document). Addi-
tionally, the comma , character and the equals = character should not
be active when using commands that have 〈key〉=〈value〉 arguments.

114



4 Defining Glossary Entries

To overcome the first two problems, as from version 4.0 the glossaries
package modifies the definition of \newglossaryentry at the beginning
of the document environment so that the definitions are written to an exter-
nal file (\jobname.glsdefs) which is then read in at the start of the doc-
ument on the next run. The entry will then only be defined in the document
environment if it doesn’t already exist. This means that the entry can now
be looked up in the glossary, even if the glossary occurs at the beginning of
the document.

There are drawbacks to this mechanism: if you modify an entry def-
inition, you need a second run to see the effect of your modification;
this method requires an extra \newwrite, which may exceed TEX’s maxi-
mum allocation; unexpected expansion issues could occur; the see key isn’t
stored, which means it can’t be added to the .glsdefs file when it’s created
at the end of the document (and therefore won’t be present on subsequent
runs).

The glossaries-extra package provides a setting (but only for Options 2
and 3) that allows \newglossaryentry to occur in the document envi-
ronment but doesn’t create the .glsdefs file. This circumvents some prob-
lems but it means that you can’t display any of the glossaries before all the
entries have been defined (so it’s all right if all the glossaries are at the end
of the document but not if any occur in the front matter).

4.8.2 Good Practice Issues

The above section covers technical issues that can cause your document to
have compilation errors or produce incorrect output. This section focuses
on good writing practice. The main reason cited by users wanting to define
entries within the document environment rather than in the preamble is that
they want to write the definition as they type in their document text. This
suggests a “stream of consciousness” style of writing that may be acceptable
in certain literary genres but is inappropriate for factual documents.

When you write technical documents, regardless of whether it’s a PhD
thesis or an article for a journal or proceedings, you must plan what you
write in advance. If you plan in advance, you should have a fairly good
idea of the type of terminology that your document will contain, so while
you are planning, create a new file with all your entry definitions. If, while
you’re writing your document, you remember another term you need, then
you can switch over to your definition file and add it. Most text editors have
the ability to have more than one file open at a time. The other advantage
to this approach is that if you forget the label, you can look it up in the
definition file rather than searching through your document text to find the
definition.

115



5 Number lists

Each entry in the glossary has an associated number list. By default, these
numbers refer to the pages on which that entry has been indexed (using
any of the commands described in Section 6 and Section 7). The number
list can be suppressed using the nonumberlist package option, or an alterna-
tive counter can be set as the default using the counter package option. The
number list is also referred to as the location list.

Number lists are more common with indexes rather than glossaries (al-
though you can use the glossaries package for indexes as well). However, the
glossaries package makes use of makeindex or xindy to hierarchically sort
and collate the entries since they are readily available with most modern
TEX distributions. Since these are both designed as indexing applications
they both require that terms either have a valid location or a cross-reference.
Even if you use nonumberlist, the locations must still be provided and accept-
able to the indexing application or they will cause an error during the in-
dexing stage, which will interrupt the document build. However, if you’re
not interested in the locations, each entry only needs to be indexed once, so
consider using indexonlyfirst, which can improve the document build time by
only indexing the first use of each term.

The \glsaddall command (see Section 7), which is used to automati-
cally index all entries, iterates over all defined entries and does \glsadd
{〈label〉} for each entry (where 〈label〉 is that entry’s label). This means that
\glsaddall automatically adds the same location to every entry’s number
list, which looks weird if the number list hasn’t been suppressed.

With Option 4, the indexing is performed by bib2gls, which was specif-
ically designed for the glossaries-extra package. So it will allow any loca-
tion format, and its selection=all option will select all entries without
adding an unwanted location to the number list. If bib2gls can deduce a
numerical value for a location, it will attempt to form a range over consec-
utive locations, otherwise it won’t try to form a range and the location will
just form an individual item in the list. Option 1 also allows any location
but it doesn’t form ranges.

5.1 Encap Values

Each location in the number list is encapsulated with a command formed
from the encap value. By default this is the \glsnumberformat com-

116



5 Number lists

mand, which corresponds to the encap glsnumberformat, but this may
be overridden using the format key in the optional argument to commands
like \gls. (See Section 6.) For example, you may want the location to ap-
pear in bold to indicate the principle use of a term or symbol. If the encap
starts with an open parenthesis ( this signifies the start of a range and if the
encap starts with close parenthesis ) this signifies the end of a range. These
must always occur in matching pairs.

The glossaries package provides the command \glsignore which ig-
nores its argument. This is the format used by \glsaddallunused to sup-
press the location, which works fine as long as no other locations are added
to the number list. For example, if you use \gls{sample} on page 2 then
reset the first use flag and then use \glsaddallunused on page 10, the
number list for sample will be 2, \glsignore{10} which will result in
“2, ” which has a spurious comma.

This isn’t a problem with bib2gls because you’d use selection=all
instead of \glsaddallunused, but even if you explicitly had, for exam-
ple, \gls[format=glsignore]{〈label〉} for some reason, bib2gls will
recognise glsignore as a special encap indicating an ignored location, so
it will select the entry but not add that location to the number list. It’s a
problem for all the other options (except Option 5, which doesn’t perform
any indexing).

Complications can arise if you use different encap values for the same
location. For example, suppose on page 10 you have both the default
glsnumberformat and textbf encaps. While it may seem apparent that
textbf should override glsnumberformat in this situation, the indexing
application may not know it. This is therefore something you need to be
careful about if you use the format key or if you use a command that implic-
itly sets it.

In the case of xindy, it only accepts one encap (according to the order of
precedence given in the xindy module) and discards the others for identi-
cal locations (for the same entry). This can cause a problem if a discarded
location forms the start or end of a range.

In the case of makeindex, it accepts different encaps for the same loca-
tion, but warns about it. This leads to a number list with the same location
repeated in different formats. If you use the makeglossaries Perl script
with Option 2 it will detect makeindex’s warning and attempt to fix the
problem, ensuring that the glsnumberformat encap always has the least
precedence unless it includes a range identifier. Other conflicting encaps
will have the last one override earlier ones for the same location with range
identifiers taking priority.

No discard occurs with Option 1 so again you get the same location re-
peated in different formats. With Option 4, bib2gls will discard according
to order of precedence, giving priority to start and end range encaps. (See

117



5 Number lists

the bib2gls manual for further details.)

5.2 Locations

Neither Option 1 nor Option 4 care about the location syntax as long as it’s
valid LATEX code (and doesn’t contain fragile commands). In both cases, the
indexing is performed by writing a line to the .aux file. The write operation
is deferred to avoid the problems associated with TEX’s asynchronous out-
put routine. (See, for example, Finding if you’re on an odd or an even page
for more details on this issue.) Unfortunately Options 2 and 3 are far more
problematic and need some complex code to deal with awkward locations.

If you know that your locations will always expand to a format accept-
able to your chosen indexing application then use the package option es-
clocations=false to bypass this operation. This setting only affects Options 2
and 3 as the problem doesn’t arise with the other indexing options.

Both makeindex and xindy are fussy about the syntax of the loca-
tions. In the case of makeindex, only the numbering system obtained with
\arabic, \roman, \Roman, \alph and \Alph or composites formed from
them with the same separator (set with \glsSetCompositor{〈char〉}) are
accepted. (makeindex won’t accept an empty location.) In the case of
xindy, you can define your own location classes, but if the location con-
tains a robust command then the leading backslash must be escaped. The
glossaries package tries to do this, but it’s caught between two conflicting
requirements:

1. The location must be fully expanded before \ can be converted to \\
(there’s no point converting \thepage to \\thepage);

2. The page number can’t be expanded until the deferred write operation
(so \c@page mustn’t expand in the previous step but \the\c@page
mustn’t be converted to \\the\\c@page and \number\c@page
mustn’t be converted to \\number\\c@page etc).

There’s a certain amount of trickery needed to deal with this conflict and the
code requires the location to be in a form that doesn’t embed the counter’s
internal register in commands like \value. For example, suppose you have
a robust command called \tallynum that takes a number as the argument
and an expandable command called \tally that converts a counter name
into the associated register or number to pass to \tallynum. Let’s suppose
that this command is used to represent the page number:

\renewcommand{\thepage}{\tally{page}}

Now let’s suppose that a term is indexed at the beginning of page 2 at
the end of a paragraph that started on page 1. With xindy, the location

118

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=oddpage


5 Number lists

\tally{page} needs to be written to the file as \\tallynum{2}. If it’s
written as \tallynum{2} then xindy will interpret \t as the character
“t” (which means the location would appear as “tallynum2”). So glossaries
tries to expand \thepage without expanding \c@page and then escapes
all the backslashes, except for the page counter’s internal command. The
following definitions of \tally will work:

• In the following, \arabicworks as its internal command \c@arabic
is temporarily redefined to check for \c@page:

\newcommand{\tally}[1]{\tallynum{\arabic{#1}}}

• The form \expandafter\the\csname c@〈counter〉\endcsname also
works (provided \the is allowed to be temporarily redefined, see be-
low):

\newcommand{\tally}[1]{%
\tallynum{\expandafter\the\csname c@#1\endcsname}}

• \expandafter\the\value{〈counter〉} now also works (with the
same condition as above):

\newcommand{\tally}[1]{\tallynum{\expandafter\the\value{#1}}}

• Another variation that will work:

\newcommand{\tally}[1]{%
\expandafter\tallynum\expandafter{\the\csname c@#1\endcsname}}

• and also:

\newcommand{\tally}[1]{\tallynum{\the\csname c@#1\endcsname}}

The following don’t work:

• This definition leads to the premature expansion of \c@page to “1”
when, in this case, it should be “2”:

\newcommand{\tally}[1]{\tallynum{\the\value{#1}}}

• This definition leads to \\c@page in the glossary file:

\newcommand{\tally}[1]{\tallynum{\csname c@#1\endcsname}}

119



5 Number lists

If you have a numbering system where \〈cs name〉{page} expands to
\〈internal cs name〉\c@page (for example, if \tally{page} expands to
\tallynum\c@page) then you need to use:

\glsaddprotectedpagefmt

\glsaddprotectedpagefmt{〈internal cs name〉}

Note that the backslash must be omitted from 〈internal cs name〉 and the
corresponding command must be able to process a count register as the
(sole) argument.

For example, suppose you have a style samplenum that is implemented
as follows:

\newcommand*{\samplenum}[1]{%
\expandafter\@samplenum\csname c@#1\endcsname}

\newcommand*{\@samplenum}[1]{\two@digits{#1}}

(That is, it displays the value of the counter as a two-digit number.) Then to
ensure the location is correct for entries in page-spanning paragraphs, you
need to do:

\glsaddprotectedpagefmt{@samplenum}

(If you are using a different counter for the location, such as section or
equation, you don’t need to worry about this provided the inner com-
mand is expandable.)

If the inner macro (as given by \〈internal cs name〉) contains non-expandable
commands then you may need to redefine \gls〈internal cs name〉page after
using \glsaddprotectedpagefmt{〈internal cs name〉}. This command
doesn’t take any arguments as the location is assumed to be given by \c@page
because that’s the only occasion this command should be used. For exam-
ple, suppose now my page counter format uses small caps Roman numer-
als:

\newcommand*{\samplenum}[1]{%
\expandafter\@samplenum\csname c@#1\endcsname}
\newcommand*{\@samplenum}[1]{\textsc{\romannumeral#1}}

Again, the inner macro needs to be identified using:

\glsaddprotectedpagefmt{@samplenum}

However, since \textsc isn’t fully expandable, the location is written to
the file as \textsc {i} (for page 1), \textsc {ii} (for page 2), etc.
This format may cause a problem for the indexing application (particularly
for makeindex). To compensate for this, the \gls〈internal cs name〉page

120



5 Number lists

command may be redefined so that it expands to a format that’s acceptable
to the indexing application. For example:

\renewcommand*{\gls@samplenumpage}{\romannumeral\c@page}

While this modification means that the number list in the glossary won’t ex-
actly match the format of the page numbers (displaying lower case Roman
numbers instead of small cap Roman numerals) this method will at least
work correctly for both makeindex and xindy. If you are using xindy,
the following definition:

\renewcommand*{\gls@samplenumpage}{%
\glsbackslash\string\textsc{\romannumeral\c@page}}

combined with

\GlsAddXdyLocation{romansc}{:sep "\string\textsc\glsopenbrace"
"roman-numbers-lowercase" :sep "\glsclosebrace"}

will now have lowercase Roman numerals in the location list (see Sec-
tion 11.2 for further details on that command). Take care of the backslashes.
The location (which ends up in the :locref attribute) needs \\ but the lo-
cation class (identified with \GlsAddXdyLocation) just has a single back-
slash. Note that this example will cause problems if your locations should
be hyperlinks.

Another possibility that may work with both makeindex and xindy is
to redefine \gls〈internal cs name〉page (\gls@samplenumpage in this ex-
ample) to just expand to the decimal page number (\number\c@page) and
redefine \glsnumberformat to change the displayed format:

\renewcommand*{\gls@samplenumpage}{\number\c@page}
\renewcommand*{\glsnumberformat}[1]{\textsc{\romannumeral#1}}

If you redefine \gls〈internal cs name〉page, you must make sure that
\c@page is expanded when it’s written to the file. (So don’t, for
example, hide \c@page inside a robust command.)

The mechanism that allows this to work temporarily redefines \the and
\number while it processes the location. If this causes a problem you can
disallow it using

\glswrallowprimitivemodsfalse

\glswrallowprimitivemodsfalse

but you will need to find some other way to ensure the location expands
correctly.

121



5 Number lists

5.3 Range Formations

Both makeindex and xindy (Options 2 and 3) concatenate a sequence of 3
or more consecutive pages into a range. With xindy (Option 3) you can
vary the minimum sequence length using \GlsSetXdyMinRangeLength
{〈n〉} where 〈n〉 is either an integer or the keyword none which indicates
that there should be no range formation (see Section 11.2 for further details).

Note that \GlsSetXdyMinRangeLength must be used before
\makeglossaries and has no effect if \noist is used.

With both makeindex and xindy (Options 2 and 3), you can replace the
separator and the closing number in the range using:

\glsSetSuffixF

\glsSetSuffixF{〈suffix〉}

\glsSetSuffixFF

\glsSetSuffixFF{〈suffix〉}

where the former command specifies the suffix to use for a 2 page list and
the latter specifies the suffix to use for longer lists. For example:

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

Note that if you use xindy (Option 3), you will also need to set the mini-
mum range length to 1 if you want to change these suffixes:

\GlsSetXdyMinRangeLength{1}

Note that if you use the hyperref package, you will need to use \nohyperpage
in the suffix to ensure that the hyperlinks work correctly. For example:

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

Note that \glsSetSuffixF and \glsSetSuffixFF must be used
before \makeglossaries and have no effect if \noist is used.

It’s also possible to concatenate a sequence of consecutive locations into
a range or have suffixes with Option 4, but with bib2gls these implicit
ranges can’t be merged with explicit ranges (created with the ( and ) en-
caps). See the bib2gls manual for further details.

122



5 Number lists

Option 1 doesn’t form ranges. However, with this option you can iterate
over an entry’s number list using:

\glsnumberlistloop

\glsnumberlistloop{〈label〉}{〈handler cs〉}{〈xr handler
cs〉}

where 〈label〉 is the entry’s label and 〈handler cs〉 is a handler control se-
quence of the form:

〈handler cs〉{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

where 〈prefix〉 is the hyperref prefix, 〈counter〉 is the name of the counter used
for the location, 〈format〉 is the format used to display the location (e.g.
textbf) and 〈location〉 is the location. The third argument is the control
sequence to use for any cross-references in the list. This handler should
have the syntax:

〈xr handler cs〉[〈tag〉]{〈xr list〉}

where 〈tag〉 is the cross-referenced text (e.g. “see”) and 〈xr list〉 is a comma-
separated list of labels. (This actually has a third argument but it’s always
empty when used with Option 1.)

For example, if on page 12 I have used

\gls[format=textbf]{apple}

and on page 18 I have used

\gls[format=emph]{apple}

then

\glsnumberlistloop{apple}{\myhandler}

will be equivalent to:

\myhandler{}{page}{textbf}{12}%
\myhandler{}{page}{emph}{18}%

There is a predefined handler that’s used to display the number list in the
glossary:

\glsnoidxdisplayloc

123



5 Number lists

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}
{〈location〉}

The predefined handler used for the cross-references in the glossary is:

\glsseeformat[〈tag〉]{〈xr list〉}{〈location〉}

which is described in Section 8.1.

\glsnumberlistloop is not available for Options 2 and 3.

5.4 Style Hook

As from version 4.24, there’s a hook that’s used near the end of \writeist
before the file is closed. You can set the code to be performed then using:

\GlsSetWriteIstHook

\GlsSetWriteIstHook{〈code〉}

If you want the 〈code〉 to write any information to the file, you need to use

\glswrite

\write\glswrite{〈style information〉}

Make sure you use the correct format within 〈style information〉. For exam-
ple, if you are using makeindex:

\GlsSetWriteIstHook{%
\write\glswrite{page_precedence "arnAR"}%
\write\glswrite{line_max 80}%

}

This changes the page type precedence and the maximum line length used
by makeindex.

Remember that if you switch to xindy, this will no longer be valid code.

124



6 Links to Glossary Entries

Once you have defined a glossary entry using \newglossaryentry (Sec-
tion 4) or \newacronym (see Section 13), you can refer to that entry in the
document using one of the commands listed in Section 6.1 or Section 6.2.
The text which appears at that point in the document when using one of
these commands is referred to as the link text (even if there are no hyper-
links). These commands also add a line to an external file that is used to
generate the relevant entry in the glossary. This information includes an as-
sociated location that is added to the number list for that entry. By default,
the location refers to the page number. For further information on num-
ber lists, see Section 5. These external files need to be post-processed by
makeindex or xindy unless you have chosen Options 1 or 4. If you don’t
use \makeglossaries these external files won’t be created. (Options 1
and 4 write the information to the .aux file.)

Note that repeated use of these commands for the same entry can cause
the number list to become quite long, which may not be particular helpful to
the reader. In this case, you can use the non-indexing commands described
in Section 9 or you can use the supplemental glossaries-extra package, which
provides a means to suppress the automated indexing of the commands
listed in this chapter.

I strongly recommend that you don’t use the commands defined in this
chapter in the arguments of sectioning or caption commands or any
other command that has a moving argument.

Aside from problems with expansion issues, PDF bookmarks and
possible nested hyperlinks in the table of contents (or list of whatever)
any use of the commands described in Section 6.1 will have their first
use flag unset when they appear in the table of contents (or list of
whatever).

The above warning is particularly important if you are using the glossaries
package in conjunction with the hyperref package. Instead, use one of the ex-
pandable commands listed in Section 9 (such as \glsentrytext but not the
non-expandable case changing versions like \Glsentrytext). Alterna-
tively, provide an alternative via the optional argument to the sectioning/
caption command or use hyperref’s \texorpdfstring. Examples:

\chapter{An overview of \glsentrytext{perl}}

125



6 Links to Glossary Entries

\chapter[An overview of Perl]{An overview of \gls{perl}}
\chapter{An overview of \texorpdfstring{\gls{perl}}{Perl}}

If you want to retain the formatting that’s available through commands like
\acrshort (for example, if you are using one of the small caps styles),
then you might want to consider the glossaries-extra package which provides
commands for this purpose.

If you want the link text to produce a hyperlink to the corresponding
entry details in the glossary, you should load the hyperref package before the
glossaries package. That’s what I’ve done in this document, so if you see a
hyperlinked term, such as link text, you can click on the word or phrase and
it will take you to a brief description in this document’s glossary.

If you use the hyperref package, I strongly recommend you use
pdflatex rather than latex to compile your document, if possible.
The DVI format of LATEX has limitations with the hyperlinks that can
cause a problem when used with the glossaries package. Firstly, the DVI
format can’t break a hyperlink across a line whereas PDFLATEX can. This
means that long glossary entries (for example, the full form of an
acronym) won’t be able to break across a line with the DVI format.
Secondly, the DVI format doesn’t correctly size hyperlinks in subscripts
or superscripts. This means that if you define a term that may be used
as a subscript or superscript, if you use the DVI format, it won’t come
out the correct size.

These are limitations of the DVI format not of the glossaries package.

It may be that you only want terms in certain glossaries to have hyper-
links, but not for other glossaries. In this case, you can use the package
option nohypertypes to identify the glossary lists that shouldn’t have hyper-
linked link text. See Section 2.1 for further details.

The way the link text is displayed depends on

\glstextformat

\glstextformat{〈text〉}

For example, to make all link text appear in a sans-serif font, do:

\renewcommand*{\glstextformat}[1]{\textsf{#1}}

Further customisation can be done via \defglsentryfmt or by redefining
\glsentryfmt. See Section 6.3 for further details.

Each entry has an associated conditional referred to as the first use flag.
Some of the commands described in this chapter automatically unset this
flag and can also use it to determine what text should be displayed. These

126



6 Links to Glossary Entries

types of commands are the \gls-like commands and are described in Sec-
tion 6.1. The commands that don’t reference or change the first use flag
are \glstext-like commands and are described in Section 6.2. See Sec-
tion 14 for commands that unset (mark the entry as having been used) or
reset (mark the entry as not used) the first use flag without referencing the
entries.

The \gls-like and \glstext-like commands all take a first optional ar-
gument that is a comma-separated list of 〈key〉=〈value〉 options, described
below. They also have a star-variant, which inserts hyper=false at the
start of the list of options and a plus-variant, which inserts hyper=true at
the start of the list of options. For example \gls*{sample} is the same
as \gls[hyper=false]{sample} and \gls+{sample} is the same as
\gls[hyper=true]{sample}, whereas just \gls{sample} will use the
default hyperlink setting which depends on a number of factors (such as
whether the entry is in a glossary that has been identified in the nohyper-
types list). You can override the hyper key in the variant’s optional argument,
for example, \gls*[hyper=true]{sample} but this creates redundancy
and is best avoided. The glossaries-extra package provides the option to add
a third custom variant.

Avoid nesting these commands. For example don’t do \glslink
{〈label〉}{\gls{〈label2〉}} as this is likely to cause problems. By
implication, this means that you should avoid using any of these
commands within the text, first, short or long keys (or their plural
equivalent) or any other key that you plan to access through these
commands. (For example, the symbol key if you intend to use
\glssymbol.)

The keys listed below are available for the optional argument. The
glossaries-extra package provides additional keys. (See the glossaries-extra
manual for further details.)

hyper This is a boolean key which can be used to enable/disable the hy-
perlink to the relevant entry in the glossary. If this key is omitted,
the value is determined by current settings, as indicated above. For
example, when used with a \gls-like command, if this is the first
use and the hyperfirst=false package option has been used, then the
default value is hyper=false. The hyperlink can be forced on us-
ing hyper=true unless the hyperlinks have been suppressed using
\glsdisablehyper. You must load the hyperref package before the
glossaries package to ensure the hyperlinks work.

format This specifies how to format the associated location number for this
entry in the glossary. This value is equivalent to the makeindex en-

127



6 Links to Glossary Entries

cap value, and (as with \index) the value needs to be the name of
a command without the initial backslash. As with \index, the char-
acters ( and ) can also be used to specify the beginning and ending
of a number range and they must be in matching pairs. (For exam-
ple, \gls[format={(}]{sample} on one page to start the range
and later \gls[format={)}]{sample} to close the range.) Again
as with \index, the command should be the name of a command
which takes an argument (which will be the associated location). Be
careful not to use a declaration (such as bfseries) instead of a text
block command (such as textbf) as the effect is not guaranteed to be
localised. If you want to apply more than one style to a given entry
(e.g. bold and italic) you will need to create a command that applies
both formats, e.g.

\newcommand*{\textbfem}[1]{\textbf{\emph{#1}}}

and use that command.

In this document, the standard formats refer to the standard text block
commands such as \textbf or \emph or any of the commands listed
in table 6.1. You can combine a range and format using (〈format〉 to
start the range and )〈format〉 to end the range. The 〈format〉 part must
match. For example, format={(emph} and format={)emph}.

If you use xindy instead of makeindex, you must specify any
non-standard formats that you want to use with the format key
using \GlsAddXdyAttribute{〈name〉}. So if you use xindy
with the above example, you would need to add:

\GlsAddXdyAttribute{textbfem}

See Section 11 for further details.

If you are using hyperlinks and you want to change the font of the hy-
perlinked location, don’t use \hyperpage (provided by the hyperref
package) as the locations may not refer to a page number. Instead, the
glossaries package provides number formats listed in table 6.1.

Note that if the \hyperlink command hasn’t been defined, the
hyper〈xx〉 formats are equivalent to the analogous text〈xx〉 font
commands (and hyperemph is equivalent to emph). If you want to
make a new format, you will need to define a command which takes
one argument and use that. For example, if you want the location
number to be in a bold sans-serif font, you can define a command
called, say, \hyperbsf:

128



6 Links to Glossary Entries

Table 6.1: Predefined Hyperlinked Location Formats

hyperrm serif hyperlink
hypersf sans-serif hyperlink
hypertt monospaced hyperlink
hyperbf bold hyperlink
hypermd medium weight hyperlink
hyperit italic hyperlink
hypersl slanted hyperlink
hyperup upright hyperlink
hypersc small caps hyperlink
hyperemph emphasized hyperlink

\newcommand{\hyperbsf}[1]{\textbf{\hypersf{#1}}}

and then use hyperbsf as the value for the format key.1 Remember
that if you use xindy, you will need to add this to the list of location
attributes:

\GlsAddXdyAttribute{hyperbsf}

counter This specifies which counter to use for this location. This overrides
the default counter used by this entry. (See also Section 5.)

local This is a boolean key that only makes a difference when used with
\gls-like commands that change the entry’s first use flag. If local=true,
the change to the first use flag will be localised to the current scope.
The default is local=false.

The link text isn’t scoped by default. Any unscoped declarations in the
link text may affect subsequent text.

6.1 The \gls-Like Commands (First Use Flag Queried)

This section describes the commands that unset (mark as used) the first use
flag on completion, and in most cases they use the current state of the flag
to determine the text to be displayed. As described above, these commands
all have a star-variant (hyper=false) and a plus-variant (hyper=true)
and have an optional first argument that is a 〈key〉=〈value〉 list.

1See also section 1.16 “Displaying the glossary” in the documented code,
glossaries-code.pdf.

129



6 Links to Glossary Entries

These commands use \glsentryfmt or the equivalent definition pro-
vided by \defglsentryfmt to determine the automatically generated text
and its format (see Section 6.3).

Apart from \glsdisp, the commands described in this section also have
a final optional argument 〈insert〉 which may be used to insert material into
the automatically generated text.

Since the commands have a final optional argument, take care if you
actually want to display an open square bracket after the command
when the final optional argument is absent. Insert an empty set of
braces {} immediately before the opening square bracket to prevent it
from being interpreted as the final argument. For example:

\gls{sample} {}[Editor's comment]

Don’t use any of the \gls-like or \glstext-like commands in the
〈insert〉 argument.

Take care using these commands within commands or environments that
are processed multiple times as this can confuse the first use flag query and
state change. This includes frames with overlays in beamer and the tabu-
larx environment provided by tabularx. The glossaries package automatically
deals with this issue in amsmath’s align environment. You can apply a patch
to tabularx by placing the following command (new to v4.28) in the pream-
ble:

\glspatchtabularx

\glspatchtabularx

This does nothing if tabularx hasn’t been loaded. There’s no patch available
for beamer. See Section 14 for more details.

\gls

\gls[〈options〉]{〈label〉}[〈insert〉]

This command typically determines the link text from the values of the text
or first keys supplied when the entry was defined using \newglossaryentry.
However, if the entry was defined using \newacronym and \setacronymstyle
was used, then the link text will usually be determined from the long or short
keys.

There are two upper case variants:

\Gls

\Gls[〈options〉]{〈label〉}[〈insert〉]

130



6 Links to Glossary Entries

and

\GLS

\GLS[〈options〉]{〈label〉}[〈insert〉]

which make the first letter of the link text or all the link text upper case,
respectively. For the former, the uppercasing of the first letter is performed
by \makefirstuc.

The first letter uppercasing command \makefirstuc has limitations
which must be taken into account if you use \Gls or any of the other
commands that convert the first letter to uppercase.

The upper casing is performed as follows:

• If the first thing in the link text is a command follow by a group, the
upper casing is performed on the first object of the group. For exam-
ple, if an entry has been defined as

\newglossaryentry{sample}{
name={\emph{sample} phrase},
sort={sample phrase},
description={an example}}

Then \Gls{sample} will set the link text to2

\emph{\MakeUppercase sample} phrase

which will appear as Sample phrase.

• If the first thing in the link text isn’t a command or is a command but
isn’t followed by a group, then the upper casing will be performed on
that first thing. For example, if an entry has been defined as:

\newglossaryentry{sample}{
name={\oe-ligature},
sort={oe-ligature},
description={an example}

}

Then \Gls{sample} will set the link text to

\MakeUppercase \oe-ligature

2I’ve used \MakeUppercase in all the examples for clarity, but it will actually use
\mfirstucMakeUppercase.

131



6 Links to Glossary Entries

which will appear as Œ-ligature.

• If you have mfirstuc v2.01 or above, an extra case is added. If the first
thing is \protect it will be discarded and the above rules will then
be tried.

(Note the use of the sort key in the above examples.)
There are hundreds of LATEX packages that altogether define thousands

of commands with various syntax and it’s impossible for mfirstuc to take
them all into account. The above rules are quite simplistic and are designed
for link text that starts with a text-block command (such as \emph) or a
command that produces a character (such as \oe). This means that if your
link text starts with something that doesn’t adhere to mfirstuc’s assumptions
then things are likely to go wrong.

For example, starting with a math-shift symbol:

\newglossaryentry{sample}{
name={$a$},
sort={a},
description={an example}

}

This falls into case 2 above, so the link text will be set to

\MakeUppercase $a$

This attempts to uppercase the math-shift $, which will go wrong. In this
case it’s not appropriate to perform any case-changing, but it may be that
you want to use \Gls programmatically without checking if the text con-
tains any maths. In this case, the simplest solution is to insert an empty
brace at the start:

\newglossaryentry{sample}{
name={{}$a$},
sort={a},
description={an example}

}

Now the link text will be set to

\MakeUppercase{}$a$

and the \uppercase becomes harmless.
Another issue occurs when the link text starts with a command followed

by an argument (case 1) but the argument is a label, identifier or something
else that shouldn’t have a case-change. A common example is when the
link text starts with one of the commands described in this chapter. (But
you haven’t done that, have you? What with the warning not to do it at

132



6 Links to Glossary Entries

the beginning of the chapter.) Or when the link text starts with one of the
non-linking commands described in Section 9. For example:

\newglossaryentry{sample}{name={sample},description={an example}}
\newglossaryentry{sample2}{

name={\glsentrytext{sample} two},
sort={sample two},
description={another example}

}

Now the link text will be set to:

\glsentrytext{\MakeUppercase sample} two

This will generate an error because there’s no entry with the label given
by \MakeUppercase sample. The best solution here is to write the term
out in the text field and use the command in the name field. If you don’t
use \glsname anywhere in your document, you can use \gls in the name
field:

\newglossaryentry{sample}{name={sample},description={an example}}
\newglossaryentry{sample2}{

name={\gls{sample} two},
sort={sample two},
text={sample two},
description={another example}

}

If the link text starts with a command that has an optional argument or
with multiple arguments where the actual text isn’t in the first argument,
then \makefirstuc will also fail. For example:

\newglossaryentry{sample}{
name={\textcolor{blue}{sample} phrase},
sort={sample phrase},
description={an example}}

Now the link text will be set to:

\textcolor{\MakeUppercase blue}{sample} phrase

This won’t work because \MakeUppercase blue isn’t a recognised colour
name. In this case you will have to define a helper command where the first
argument is the text. For example:

\newglossaryentry{sample}{
\newcommand*{\blue}[1]{\textcolor{blue}{#1}}
name={\blue{sample} phrase},
sort={sample phrase},
description={an example}}

133



6 Links to Glossary Entries

In fact, since the whole design ethos of LATEX is the separation of content and
style, it’s better to use a semantic command. For example:

\newglossaryentry{sample}{
\newcommand*{\keyword}[1]{\textcolor{blue}{#1}}
name={\keyword{sample} phrase},
sort={sample phrase},
description={an example}}

For further details see the mfirstuc user manual.
There are plural forms that are analogous to \gls:

\glspl

\glspl[〈options〉]{〈label〉}[〈insert〉]

\Glspl

\Glspl[〈options〉]{〈label〉}[〈insert〉]

\GLSpl

\GLSpl[〈options〉]{〈label〉}[〈insert〉]

These typically determine the link text from the plural or firstplural keys sup-
plied when the entry was defined using \newglossaryentry or, if the
entry is an abbreviation and \setacronymstyle was used, from the long-
plural or shortplural keys.

Be careful when you use glossary entries in math mode especially if you
are using hyperref as it can affect the spacing of subscripts and
superscripts. For example, suppose you have defined the following
entry:

\newglossaryentry{Falpha}{name={F_\alpha},
description=sample}

and later you use it in math mode:

$\gls{Falpha}^2$

This will result in Fα
2 instead of F2

α . In this situation it’s best to bring the
superscript into the hyperlink using the final 〈insert〉 optional argument:

$\gls{Falpha}[^2]$

\glsdisp

\glsdisp[〈options〉]{〈label〉}{〈link text〉}

134



6 Links to Glossary Entries

This behaves in the same way as the above commands, except that the 〈link
text〉 is explicitly set. There’s no final optional argument as any inserted
material can be added to the 〈link text〉 argument.

Don’t use any of the \gls-like or \glstext-like commands in the 〈link
text〉 argument of \glsdisp.

6.2 The \glstext-Like Commands (First Use Flag Not
Queried)

This section describes the commands that don’t change or reference the
first use flag. As described above, these commands all have a star-
variant (hyper=false) and a plus-variant (hyper=true) and have an
optional first argument that is a 〈key〉=〈value〉 list. These commands
also don’t use \glsentryfmt or the equivalent definition provided by
\defglsentryfmt (see Section 6.3). Additional commands for abbrevi-
ations are described in Section 13.

Apart from \glslink, the commands described in this section also have
a final optional argument 〈insert〉 which may be used to insert material into
the automatically generated text. See the caveat above in Section 6.1.

\glslink

\glslink[〈options〉]{〈label〉}{〈link text〉}

This command explicitly sets the link text as given in the final argument.

Don’t use any of the \gls-like or \glstext-like commands in the
argument of \glslink. By extension, this means that you can’t use
them in the value of fields that are used to form link text.

\glstext

\glstext[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the text key as the link text.
There are also analogous commands:

\Glstext

\Glstext[〈options〉]{〈text〉}[〈insert〉]

\GLStext

135



6 Links to Glossary Entries

\GLStext[〈options〉]{〈text〉}[〈insert〉]

These convert the first character or all the characters to uppercase, respec-
tively. See the note on \Gls above for details on the limitations of convert-
ing the first letter to upper case.

There’s no equivalent command for title-casing, but you can use the more
generic command \glsentrytitlecase in combination with \glslink.
For example:

\glslink{sample}{\glsentrytitlecase{sample}{text}}

(See Section 9.)

\glsfirst

\glsfirst[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the first key as the link text.
There are also analogous uppercasing commands:

\Glsfirst

\Glsfirst[〈options〉]{〈text〉}[〈insert〉]

\GLSfirst

\GLSfirst[〈options〉]{〈text〉}[〈insert〉]

The value of the first key (and firstplural key) doesn’t necessarily match
the text produced by \gls (or \glspl) on first use as the link text used
by \gls may be modified through commands like \defglsentry.
(Similarly, the value of the text and plural keys don’t necessarily match
the link text used by \gls or \glspl on subsequent use.)

\glsplural

\glsplural[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the plural key as the link text.
There are also analogous uppercasing commands:

\Glsplural

\Glsplural[〈options〉]{〈text〉}[〈insert〉]

\GLSplural

136



6 Links to Glossary Entries

\GLSplural[〈options〉]{〈text〉}[〈insert〉]

\glsfirstplural

\glsfirstplural[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the firstplural key as the link text.
There are also analogous uppercasing commands:

\Glsfirstplural

\Glsfirstplural[〈options〉]{〈text〉}[〈insert〉]

\GLSfirstplural

\GLSfirstplural[〈options〉]{〈text〉}[〈insert〉]

\glsname

\glsname[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the name key as the link text. Note
that this may be different from the values of the text or first keys. In general
it’s better to use \glstext or \glsfirst instead of \glsname.

There are also analogous uppercasing commands:

\Glsname

\Glsname[〈options〉]{〈text〉}[〈insert〉]

\GLSname

\GLSname[〈options〉]{〈text〉}[〈insert〉]

In general it’s best to avoid \Glsname with acronyms. Instead, consider
using \Acrlong, \Acrshort or \Acrfull.

\glssymbol

\glssymbol[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the symbol key as the link text.
There are also analogous uppercasing commands:

\Glssymbol

137



6 Links to Glossary Entries

\Glssymbol[〈options〉]{〈text〉}[〈insert〉]

\GLSsymbol

\GLSsymbol[〈options〉]{〈text〉}[〈insert〉]

\glsdesc

\glsdesc[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the description key as the link text.
There are also analogous uppercasing commands:

\Glsdesc

\Glsdesc[〈options〉]{〈text〉}[〈insert〉]

\GLSdesc

\GLSdesc[〈options〉]{〈text〉}[〈insert〉]

If you want the title case version you can use

\glslink{sample}{\glsentrytitlecase{sample}{desc}}

\glsuseri

\glsuseri[〈options〉]{〈label〉}[〈insert〉]

This command always uses the value of the user1 key as the link text.
There are also analogous uppercasing commands:

\Glsuseri

\Glsuseri[〈options〉]{〈text〉}[〈insert〉]

\GLSuseri

\GLSuseri[〈options〉]{〈text〉}[〈insert〉]

\glsuserii

\glsuserii[〈options〉]{〈text〉}[〈insert〉]

This command always uses the value of the user2 key as the link text.
There are also analogous uppercasing commands:

\Glsuserii

138



6 Links to Glossary Entries

\Glsuserii[〈options〉]{〈text〉}[〈insert〉]

\GLSuserii

\GLSuserii[〈options〉]{〈text〉}[〈insert〉]

\glsuseriii

\glsuseriii[〈options〉]{〈text〉}[〈insert〉]

This command always uses the value of the user3 key as the link text.
There are also analogous uppercasing commands:

\Glsuseriii

\Glsuseriii[〈options〉]{〈text〉}[〈insert〉]

\GLSuseriii

\GLSuseriii[〈options〉]{〈text〉}[〈insert〉]

\glsuseriv

\glsuseriv[〈options〉]{〈text〉}[〈insert〉]

This command always uses the value of the user4 key as the link text.
There are also analogous uppercasing commands:

\Glsuseriv

\Glsuseriv[〈options〉]{〈text〉}[〈insert〉]

\GLSuseriv

\GLSuseriv[〈options〉]{〈text〉}[〈insert〉]

\glsuserv

\glsuserv[〈options〉]{〈text〉}[〈insert〉]

This command always uses the value of the user5 key as the link text.
There are also analogous uppercasing commands:

\Glsuserv

\Glsuserv[〈options〉]{〈text〉}[〈insert〉]

139



6 Links to Glossary Entries

\GLSuserv

\GLSuserv[〈options〉]{〈text〉}[〈insert〉]

\glsuservi

\glsuservi[〈options〉]{〈text〉}[〈insert〉]

This command always uses the value of the user6 key as the link text.
There are also analogous uppercasing commands:

\Glsuservi

\Glsuservi[〈options〉]{〈text〉}[〈insert〉]

\GLSuservi

\GLSuservi[〈options〉]{〈text〉}[〈insert〉]

6.3 Changing the format of the link text

The default format of the link text for the \gls-like commands is governed
by3:

\glsentryfmt

\glsentryfmt

This may be redefined but if you only want the change the display style for
a given glossary, then you need to use

\defglsentryfmt

\defglsentryfmt[〈type〉]{〈definition〉}

instead of redefining \glsentryfmt. The optional first argument 〈type〉
is the glossary type. This defaults to \glsdefaulttype if omitted. The
second argument is the entry format definition.

3\glsdisplayfirst and \glsdisplay are now deprecated. Backwards compatibility
should be preserved but you may need to use the compatible-3.07 option

140



6 Links to Glossary Entries

Note that \glsentryfmt is the default display format for entries. Once
the display format has been changed for an individual glossary using
\defglsentryfmt, redefining \glsentryfmt won’t have an effect
on that glossary, you must instead use \defglsentryfmt again. Note
that glossaries that have been identified as lists of acronyms (via the
package option acronymlists or the command \DeclareAcronymList,
see Section 2.5) use \defglsentryfmt to set their display style.

Within the 〈definition〉 argument of \defglsentryfmt, or if you want to
redefine \glsentryfmt, you may use the following commands:

\glslabel

\glslabel

This is the label of the entry being referenced. As from version 4.08, you can
also access the glossary entry type using:

\glstype

\glstype

This is defined using \edef so the replacement text is the actual glossary
type rather than \glsentrytype{\glslabel}.

\glscustomtext

\glscustomtext

This is the custom text supplied in \glsdisp. It’s always empty for
\gls, \glspl and their upper case variants. (You can use etoolbox’s
\ifdefempty to determine if \glscustomtext is empty.)

\glsinsert

\glsinsert

The custom text supplied in the final optional argument to \gls, \glspl
and their upper case variants.

\glsifplural

\glsifplural{〈true text〉}{〈false text〉}

If \glspl, \Glspl or \GLSpl was used, this command does 〈true text〉
otherwise it does 〈false text〉.

\glscapscase

141



6 Links to Glossary Entries

\glscapscase{〈no case〉}{〈first uc〉}{〈all caps〉}

If \gls, \glspl or \glsdisp were used, this does 〈no case〉. If \Gls or
\Glspl were used, this does 〈first uc〉. If \GLS or \GLSpl were used, this
does 〈all caps〉.

\glsifhyperon

\glsifhyperon{〈hyper true〉}{〈hyper false〉}

This will do 〈hyper true〉 if the hyperlinks are on for the current reference,
otherwise it will do 〈hyper false〉. The hyperlink may be off even if it wasn’t
explicitly switched off with the hyper key or the use of a starred command.
It may be off because the hyperref package hasn’t been loaded or because
\glsdisablehyper has been used or because the entry is in a glossary
type that’s had the hyperlinks switched off (using nohypertypes) or because
it’s the first use and the hyperlinks have been suppressed on first use.

Note that \glsifhyper is now deprecated. If you want to know if the
command used to reference this entry was used with the star or plus variant,
you can use:

\glslinkvar

\glslinkvar{〈unmodified〉}{〈star〉}{〈plus〉}

This will do 〈unmodified〉 if the unmodified version was used, or will do
〈star〉 if the starred version was used, or will do 〈plus〉 if the plus version
was used. Note that this doesn’t take into account if the hyper key was used
to override the default setting, so this command shouldn’t be used to guess
whether or not the hyperlink is on for this reference.

Note that you can also use commands such as \ifglsused within the
definition of \glsentryfmt (see Section 14).

The commands \glslabel, \glstype, \glsifplural, \glscapscase,
\glscustomtext and \glsinsert are typically updated at the start of
the \gls-like and \glstext-like commands so they can usually be ac-
cessed in the hook user commands, such as \glspostlinkhook and
\glslinkpostsetkeys.

142



6 Links to Glossary Entries

This means that using commands like \gls within the fields that are
accessed using the \gls-like or \glstext-like commands (such as the
first, text, long or short keys) will cause a problem. The entry formatting
performed by \glsentryfmt and related commands isn’t scoped
(otherwise if would cause problems for \glspostlinkhook which
may need to look ahead as well as look behind). This means that any
nested commands will, at the very least, change the label stored in
\glslabel.

If you only want to make minor modifications to \glsentryfmt, you
can use

\glsgenentryfmt

\glsgenentryfmt

This uses the above commands to display just the first, text, plural or firstplural
keys (or the custom text) with the insert text appended.

Alternatively, if want to change the entry format for abbreviations (de-
fined via \newacronym) you can use:

\glsgenacfmt

\glsgenacfmt

This uses the values from the long, short, longplural and shortplural keys, rather
than using the text, plural, first and firstplural keys. The first use singular text is
obtained via:

\genacrfullformat

\genacrfullformat{〈label〉}{〈insert〉}

instead of from the first key, and the first use plural text is obtained via:

\genplacrfullformat

\genplacrfullformat{〈label〉}{〈insert〉}

instead of from the firstplural key. In both cases, 〈label〉 is the entry’s label
and 〈insert〉 is the insert text provided in the final optional argument of
commands like \gls. The default behaviour is to do the long form (or
plural long form) followed by 〈insert〉 and a space and the short form (or
plural short form) in parentheses, where the short form is in the argument
of \firstacronymfont. There are also first letter upper case versions:

\Genacrfullformat

143



6 Links to Glossary Entries

\Genacrfullformat{〈label〉}{〈insert〉}

and

\Genplacrfullformat

\Genplacrfullformat{〈label〉}{〈insert〉}

By default these perform a protected expansion on their no-case-change
equivalents and then use \makefirstuc to convert the first charac-
ter to upper case. If there are issues caused by this expansion, you
will need to redefine those commands to explicitly use commands like
\Glsentrylong (which is what the predefined acronym styles, such as
long-short, do). Otherwise, you only need to redefine \genacrfullformat
and \genplacrfullformat to change the behaviour of \glsgenacfmt.
See Section 13 for further details on changing the style of acronyms.

Note that \glsentryfmt (or the formatting given by
\defglsentryfmt) is not used by the \glstext-like commands.

As from version 4.16, both the \gls-like and \glstext-like commands
use

\glslinkpostsetkeys

\glslinkpostsetkeys

after the 〈options〉 are set. This macro does nothing by default but can be re-
defined. (For example, to switch off the hyperlink under certain conditions.)
This version also introduces

\glspostlinkhook

\glspostlinkhook

which is done after the link text has been displayed and also after the first
use flag has been unset (see example 25).

Example 8 (Custom Entry Display in Text)

Suppose you want a glossary of measurements and units, you can use the
symbol key to store the unit:

\newglossaryentry{distance}{name=distance,
description={The length between two points},
symbol={km}}

144



6 Links to Glossary Entries

and now suppose you want \gls{distance} to produce “distance (km)”
on first use, then you can redefine \glsentryfmt as follows:

\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space (\glsentrysymbol{\glslabel})}%

}

(Note that I’ve used \glsentrysymbol rather than \glssymbol to
avoid nested hyperlinks.)

Note also that all of the link text will be formatted according to \glstextformat
(described earlier). So if you do, say:

\renewcommand{\glstextformat}[1]{\textbf{#1}}
\renewcommand*{\glsentryfmt}{%

\glsgenentryfmt
\ifglsused{\glslabel}{}{\space(\glsentrysymbol{\glslabel})}%

}

then \gls{distance} will produce “distance (km)”.
For a complete document, see the sample file sample-entryfmt.tex.

Example 9 (Custom Format for Particular Glossary)

Suppose you have created a new glossary called notation and you want
to change the way the entry is displayed on first use so that it includes the
symbol, you can do:

\defglsentryfmt[notation]{\glsgenentryfmt
\ifglsused{\glslabel}{}{\space

(denoted \glsentrysymbol{\glslabel})}}

Now suppose you have defined an entry as follows:

\newglossaryentry{set}{type=notation,
name=set,
description={A collection of objects},
symbol={$S$}

}

The first time you reference this entry it will be displayed as: “set (denoted
S)” (assuming \gls was used).

Alternatively, if you expect all the symbols to be set in math mode, you
can do:

\defglsentryfmt[notation]{\glsgenentryfmt
\ifglsused{\glslabel}{}{\space

(denoted $\glsentrysymbol{\glslabel}$)}}

145



6 Links to Glossary Entries

and define entries like this:

\newglossaryentry{set}{type=notation,
name=set,
description={A collection of objects},
symbol={S}

}

Remember that if you use the symbol key, you need to use a glossary style
that displays the symbol, as many of the styles ignore it.

6.4 Enabling and disabling hyperlinks to glossary entries

If you load the hyperref or html packages prior to loading the glossaries pack-
age, the \gls-like and \glstext-like commands will automatically have
hyperlinks to the relevant glossary entry, unless the hyper option has been
switched off (either explicitly or through implicit means, such as via the
nohypertypes package option).

You can disable or enable links using:

\glsdisablehyper

\glsdisablehyper

and

\glsenablehyper

\glsenablehyper

respectively. The effect can be localised by placing the commands within a
group. Note that you should only use \glsenablehyper if the commands
\hyperlink and \hypertarget have been defined (for example, by the
hyperref package).

You can disable just the first use links using the package option hyper-
first=false. Note that this option only affects the \gls-like commands that
recognise the first use flag.

Example 10 (First Use With Hyperlinked Footnote Description)

Suppose I want the first use to have a hyperlink to the description in a
footnote instead of hyperlinking to the relevant place in the glossary. First
I need to disable the hyperlinks on first use via the package option hyper-
first=false:

\usepackage[hyperfirst=false]{glossaries}

146



6 Links to Glossary Entries

Now I need to redefine \glsentryfmt (see Section 6.3):

\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc{\glslabel}}}%

}

Now the first use won’t have hyperlinked text, but will be followed by
a footnote. See the sample file sample-FnDesc.tex for a complete docu-
ment.

Note that the hyperfirst option applies to all defined glossaries. It may be
that you only want to disable the hyperlinks on first use for glossaries that
have a different form on first use. This can be achieved by noting that since
the entries that require hyperlinking for all instances have identical first and
subsequent text, they can be unset via \glsunsetall (see Section 14) so
that the hyperfirst option doesn’t get applied.

Example 11 (Suppressing Hyperlinks on First Use Just For Acronyms)

Suppose I want to suppress the hyperlink on first use for acronyms but
not for entries in the main glossary. I can load the glossaries package using:

\usepackage[hyperfirst=false,acronym]{glossaries}

Once all glossary entries have been defined I then do:

\glsunsetall[main]

For more complex requirements, you might find it easier to switch off
all hyperlinks via \glsdisablehyper and put the hyperlinks (where
required) within the definition of \glsentryfmt (see Section 6.3) via
\glshyperlink (see Section 9).

Example 12 (Only Hyperlink in Text Mode Not Math Mode)

This is a bit of a contrived example, but suppose, for some reason, I only
want the \gls-like commands to have hyperlinks when used in text mode,
but not in math mode. I can do this by adding the glossary to the list of
nohypertypes and redefining \glsentryfmt:

\GlsDeclareNoHyperList{main}

\renewcommand*{\glsentryfmt}{%
\ifmmode

147



6 Links to Glossary Entries

\glsgenentryfmt
\else

\glsifhyperon
{\glsgenentryfmt}% hyperlink already on
{\glshyperlink[\glsgenentryfmt]{\glslabel}}%

\fi
}

Note that this doesn’t affect the \glstext-like commands, which will have
the hyperlinks off unless they’re forced on using the plus variant.

See the sample file sample-nomathhyper.tex for a complete docu-
ment.

Example 13 (One Hyper Link Per Entry Per Chapter)

Here’s a more complicated example that will only have the hyperlink on
the first time an entry is used per chapter. This doesn’t involve resetting the
first use flag. Instead it adds a new key using \glsaddstoragekey (see
Section 4.3.2) that keeps track of the chapter number that the entry was last
used in:

\glsaddstoragekey{chapter}{0}{\glschapnum}

This creates a new user command called \glschapnum that’s analogous
to \glsentrytext. The default value for this key is 0. I then define my
glossary entries as usual.

Next I redefine the hook \glslinkpostsetkeys (see Section 6.3)
so that it determines the current chapter number (which is stored in
\currentchap using \edef). This value is then compared with the value
of the entry’s chapter key that I defined earlier. If they’re the same, this
entry has already been used in this chapter so the hyperlink is switched off
using xkeyval’s \setkeys command. If the chapter number isn’t the same,
then this entry hasn’t been used in the current chapter. The chapter field
is updated using \glsfieldxdef (Section 16.3) provided the user hasn’t
switched off the hyperlink. (This test is performed using \glsifhyperon.

\renewcommand*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%
\ifnum\currentchap=\glschapnum{\glslabel}\relax
\setkeys{glslink}{hyper=false}%

\else
\glsifhyperon{\glsfieldxdef{\glslabel}{chapter}{\currentchap}}{}%

\fi
}

148



6 Links to Glossary Entries

Note that this will be confused if you use \gls etc when the chapter counter
is 0. (That is, before the first \chapter.)

See the sample file sample-chap-hyperfirst.tex for a complete
document.

149



7 Adding an Entry to the Glossary
Without Generating Text

It is possible to add a line to the glossary file without generating any text at
that point in the document using:

\glsadd

\glsadd[〈options〉]{〈label〉}

This is similar to the \glstext-like commands, only it doesn’t produce any
text (so therefore, there is no hyper key available in 〈options〉 but all the other
options that can be used with \glstext-like commands can be passed to
\glsadd). For example, to add a page range to the glossary number list for
the entry whose label is given by set:

\glsadd[format=(]{set}
Lots of text about sets spanning many pages.
\glsadd[format=)]{set}

To add all entries that have been defined, use:

\glsaddall

\glsaddall[〈options〉]

The optional argument is the same as for \glsadd, except there is also
a key types which can be used to specify which glossaries to use. This
should be a comma separated list. For example, if you only want to add
all the entries belonging to the list of acronyms (specified by the glossary
type \acronymtype) and a list of notation (specified by the glossary type
notation) then you can do:

\glsaddall[types={\acronymtype,notation}]

Note that \glsadd and \glsaddall add the current location to the
number list. In the case of \glsaddall, all entries in the glossary will
have the same location in the number list. If you want to use
\glsaddall, it’s best to suppress the number list with the nonumberlist
package option. (See sections 2.3 and 5.)

150



7 Adding an Entry to the Glossary Without Generating Text

There is now a variation of \glsaddall that skips any entries that have
already been used:

\glsaddallunused

\glsaddallunused[〈list〉]

This command uses \glsadd[format=@gobble] which will ignore this
location in the number list. The optional argument 〈list〉 is a comma-
separated list of glossary types. If omitted, it defaults to the list of all defined
glossaries.

If you want to use \glsaddallunused, it’s best to place the command
at the end of the document to ensure that all the commands you intend to
use have already been used. Otherwise you could end up with a spurious
comma or dash in the location list.

Example 14 (Dual Entries)

The example file sample-dual.tex makes use of \glsadd to allow
for an entry that should appear both in the main glossary and in the list
of acronyms. This example sets up the list of acronyms using the acronym
package option:

\usepackage[acronym]{glossaries}

A new command is then defined to make it easier to define dual entries:

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%
text={#3\glsadd{#2}},%
description={#5},%
#1
}%
\newacronym{#2}{#3\glsadd{main-#2}}{#4}%

}

This has the following syntax:

\newdualentry[〈options〉]{〈label〉}{〈abbrv〉}{〈long〉}{〈description〉}

You can then define a new dual entry:

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}% description

Now you can reference the acronym with \gls{svm} or you can reference
the entry in the main glossary with \gls{main-svm}.

151



8 Cross-Referencing Entries

You must use \makeglossaries (Options 2 or 3) or
\makenoidxglossaries (Option 1) before defining any terms that
cross-reference entries. If any of the terms that you have
cross-referenced don’t appear in the glossary, check that you have put
\makeglossaries/\makenoidxglossaries before all entry
definitions. The glossaries-extra package provides better cross-reference
handling.

There are several ways of cross-referencing entries in the glossary:

1. You can use commands such as \gls in the entries description. For
example:

\newglossaryentry{apple}{name=apple,
description={firm, round fruit. See also \gls{pear}}}

Note that with this method, if you don’t use the cross-referenced
term in the main part of the document, you will need two runs of
makeglossaries:

latex filename
makeglossaries filename
latex filename
makeglossaries filename
latex filename

2. As described in Section 4, you can use the see key when you define
the entry. For example:

\newglossaryentry{MaclaurinSeries}{name={Maclaurin
series},
description={Series expansion},
see={TaylorsTheorem}}

Note that in this case, the entry with the see key will automatically
be added to the glossary, but the cross-referenced entry won’t. You
therefore need to ensure that you use the cross-referenced term with
the commands described in Section 6 or Section 7.

152



8 Cross-Referencing Entries

The “see” tag is produce using \seename, but can be overridden in
specific instances using square brackets at the start of the see value.
For example:

\newglossaryentry{MaclaurinSeries}{name={Maclaurin
series},
description={Series expansion},
see=[see also]{TaylorsTheorem}}

Take care if you want to use the optional argument of commands such
as \newacronym or \newterm as the value will need to be grouped.
For example:

\newterm{seal}
\newterm[see={[see also]seal}]{sea lion}

Similarly if the value contains a list. For example:

\glossaryentry{lemon}{
name={lemon},
description={Yellow citrus fruit}

}
\glossaryentry{lime}
{

name={lime},
description={Green citrus fruit}

}
\glossaryentry{citrus}
{

name={citrus},
description={Plant in the Rutaceae family},
see={lemon,lime}

}

3. After you have defined the entry, use

\glssee

\glssee[〈tag〉]{〈label〉}{〈xr label list〉}

where 〈xr label list〉 is a comma-separated list of entry labels to be
cross-referenced, 〈label〉 is the label of the entry doing the cross-
referencing and 〈tag〉 is the “see” tag. (The default value of 〈tag〉 is
\seename.) For example:

\glssee[see also]{series}{FourierSeries,TaylorsTheorem}

153



8 Cross-Referencing Entries

Note that this automatically adds the entry given by 〈label〉 to the glos-
sary but doesn’t add the cross-referenced entries (specified by 〈xr label
list〉) to the glossary.

In both cases 2 and 3 above, the cross-referenced information appears
in the number list, whereas in case 1, the cross-referenced information ap-
pears in the description. (See the sample-crossref.tex example file
that comes with this package.) This means that in cases 2 and 3, the cross-
referencing information won’t appear if you have suppressed the number
list. In this case, you will need to activate the number list for the given
entries using nonumberlist=false. Alternatively, if you just use the see key in-
stead of \glssee, you can automatically activate the number list using the
seeautonumberlist package option.

8.1 Customising Cross-reference Text

When you use either the see key or the command \glssee, the cross-
referencing information will be typeset in the glossary according to:

\glsseeformat

\glsseeformat[〈tag〉]{〈label-list〉}{〈location〉}

The default definition of \glsseeformat is:

\emph{〈tag〉} \glsseelist{〈label-list〉}

Note that the location is always ignored.1 For example, if you want the tag
to appear in bold, you can do:2

\renewcommand*{\glsseeformat}[3][\seename]{\textbf{#1}
\glsseelist{#2}}

The list of labels is dealt with by \glsseelist, which iterates through
the list and typesets each entry in the label. The entries are separated by

\glsseesep

\glsseesep

or (for the last pair)

\glsseelastsep

1makeindex will always assign a location number, even if it’s not needed, so it needs to
be discarded.

2If you redefine \glsseeformat, keep the default value of the optional argument as
\seename as both see and \glssee explicitly write [\seename] in the output file
if no optional argument is given.

154



8 Cross-Referencing Entries

\glsseelastsep

These default to “,\space” and “\space\andname\space” respectively.
The list entry text is displayed using:

\glsseeitemformat

\glsseeitemformat{〈label〉}

This defaults to \glsentrytext{〈label〉}.3 For example, to make the
cross-referenced list use small caps:

\renewcommand{\glsseeitemformat}[1]{%
\textsc{\glsentrytext{#1}}}

You can use \glsseeformat and \glsseelist in the main body of
the text, but they won’t automatically add the cross-referenced entries
to the glossary. If you want them added with that location, you can do:

Some information (see also
\glsseelist{FourierSeries,TaylorsTheorem}%
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}).

3In versions before 3.0, \glsentryname was used, but this could cause problems when
the name key was sanitized.

155



9 Using Glossary Terms Without Links

The commands described in this section display entry details without
adding any information to the glossary. They don’t use \glstextformat,
they don’t have any optional arguments, they don’t affect the first use flag
and, apart from \glshyperlink, they don’t produce hyperlinks.

Commands that aren’t expandable will be ignored by PDF bookmarks,
so you will need to provide an alternative via hyperref’s
\texorpdfstring if you want to use them in sectioning commands.
(This isn’t specific to the glossaries package.) See the hyperref
documentation for further details. All the commands that convert the
first letter to upper case aren’t expandable. The other commands
depend on whether their corresponding keys were assigned
non-expandable values.

If you want to title case a field, you can use:

\glsentrytitlecase

\glsentrytitlecase{〈label〉}{〈field〉}

where 〈label〉 is the label identifying the glossary entry, 〈field〉 is the field
label (see table 4.1). For example:

\glsentrytitlecase{sample}{desc}

(If you want title-casing in your glossary style, you might want to investi-
gate the glossaries-extra package.)

Note that this command has the same limitations as \makefirstuc
which is used by commands like \Gls and \Glsentryname to upper-case
the first letter (see the notes about \Gls in Section 6.1).

\glsentryname

\glsentryname{〈label〉}

\Glsentryname

\Glsentryname{〈label〉}

156



9 Using Glossary Terms Without Links

These commands display the name of the glossary entry given by 〈label〉,
as specified by the name key. \Glsentryname makes the first letter up-
per case. Neither of these commands check for the existence of 〈label〉. The
first form \glsentryname is expandable (unless the name contains un-
expandable commands). Note that this may be different from the values
of the text or first keys. In general it’s better to use \glsentrytext or
\glsentryfirst instead of \glsentryname.

In general it’s best to avoid \Glsentryname with abbreviations.
Instead, consider using \Glsentrylong, \Glsentryshort or
\Glsentryfull.

\glossentryname

\glossentryname{〈label〉}

This is like \glsnamefont{\glsentryname{〈label〉}} but also checks
for the existence of 〈label〉. This command is not expandable. It’s used in
the predefined glossary styles, so if you want to change the way the name
is formatted in the glossary, you can redefine \glsnamefont to use the
required fonts. For example:

\renewcommand*{\glsnamefont}[1]{\textmd{\sffamily #1}}

\Glossentryname

\Glossentryname{〈label〉}

This is like \glossentryname but makes the first letter of the name upper
case.

\glsentrytext

\glsentrytext{〈label〉}

\Glsentrytext

\Glsentrytext{〈label〉}

These commands display the subsequent use text for the glossary entry
given by 〈label〉, as specified by the text key. \Glsentrytext makes the
first letter upper case. The first form is expandable (unless the text contains
unexpandable commands). The second form is not expandable. Neither
checks for the existence of 〈label〉.

\glsentryplural

157



9 Using Glossary Terms Without Links

\glsentryplural{〈label〉}

\Glsentryplural

\Glsentryplural{〈label〉}

These commands display the subsequent use plural text for the glossary
entry given by 〈label〉, as specified by the plural key. \Glsentryplural
makes the first letter upper case. The first form is expandable (unless the
value of that key contains unexpandable commands). The second form is
not expandable. Neither checks for the existence of 〈label〉.

\glsentryfirst

\glsentryfirst{〈label〉}

\Glsentryfirst

\Glsentryfirst{〈label〉}

These commands display the first use text for the glossary entry given by
〈label〉, as specified by the first key. \Glsentryfirst makes the first let-
ter upper case. The first form is expandable (unless the value of that key
contains unexpandable commands). The second form is not expandable.
Neither checks for the existence of 〈label〉.

\glsentryfirstplural

\glsentryfirstplural{〈label〉}

\Glsentryfirstplural

\Glsentryfirstplural{〈label〉}

These commands display the plural form of the first use text for the glossary
entry given by 〈label〉, as specified by the firstplural key. \Glsentryfirstplural
makes the first letter upper case. The first form is expandable (unless the
value of that key contains unexpandable commands). The second form is
not expandable. Neither checks for the existence of 〈label〉.

\glsentrydesc

\glsentrydesc{〈label〉}

\Glsentrydesc

\Glsentrydesc{〈label〉}

158



9 Using Glossary Terms Without Links

These commands display the description for the glossary entry given by
〈label〉. \Glsentrydesc makes the first letter upper case. The first form
is expandable (unless the value of that key contains unexpandable com-
mands). The second form is not expandable. Neither checks for the exis-
tence of 〈label〉.

\glossentrydesc

\glossentrydesc{〈label〉}

This is like \glsentrydesc{〈label〉} but also checks for the existence of
〈label〉. This command is not expandable. It’s used in the predefined glos-
sary styles to display the description.

\Glossentrydesc

\Glossentrydesc{〈label〉}

This is like \glossentrydesc but converts the first letter to upper case.
This command is not expandable.

\glsentrydescplural

\glsentrydescplural{〈label〉}

\Glsentrydescplural

\Glsentrydescplural{〈label〉}

These commands display the plural description for the glossary entry given
by 〈label〉. \Glsentrydescplural makes the first letter upper case. The
first form is expandable (unless the value of that key contains unexpandable
commands). The second form is not expandable. Neither checks for the
existence of 〈label〉.

\glsentrysymbol

\glsentrysymbol{〈label〉}

\Glsentrysymbol

\Glsentrysymbol{〈label〉}

These commands display the symbol for the glossary entry given by 〈label〉.
\Glsentrysymbol makes the first letter upper case. The first form is ex-
pandable (unless the value of that key contains unexpandable commands).
The second form is not expandable. Neither checks for the existence of
〈label〉.

159



9 Using Glossary Terms Without Links

\glsletentryfield

\glsletentryfield{〈cs〉}{〈label〉}{〈field〉}

This command doesn’t display anything. It merely fetches the value as-
sociated with the given field (where the available field names are listed in
table 4.1) and stores the result in the control sequence 〈cs〉. For example,
to store the description for the entry whose label is “apple” in the control
sequence \tmp:

\glsletentryfield{\tmp}{apple}{desc}

\glossentrysymbol

\glossentrysymbol{〈label〉}

This is like \glsentrysymbol{〈label〉} but also checks for the existence of
〈label〉. This command is not expandable. It’s used in some of the predefined
glossary styles to display the symbol.

\Glossentrysymbol

\Glossentrysymbol{〈label〉}

This is like \glossentrysymbol but converts the first letter to upper case.
This command is not expandable.

\glsentrysymbolplural

\glsentrysymbolplural{〈label〉}

\Glsentrysymbolplural

\Glsentrysymbolplural{〈label〉}

These commands display the plural symbol for the glossary entry given by
〈label〉. \Glsentrysymbolplural makes the first letter upper case. The
first form is expandable (unless the value of that key contains unexpandable
commands). The second form is not expandable. Neither checks for the
existence of 〈label〉.

\glsentryuseri

\glsentryuseri{〈label〉}

\Glsentryuseri

\Glsentryuseri{〈label〉}

160



9 Using Glossary Terms Without Links

\glsentryuserii

\glsentryuserii{〈label〉}

\Glsentryuserii

\Glsentryuserii{〈label〉}

\glsentryuseriii

\glsentryuseriii{〈label〉}

\Glsentryuseriii

\Glsentryuseriii{〈label〉}

\glsentryuseriv

\glsentryuseriv{〈label〉}

\Glsentryuseriv

\Glsentryuseriv{〈label〉}

\glsentryuserv

\glsentryuserv{〈label〉}

\Glsentryuserv

\Glsentryuserv{〈label〉}

\glsentryuservi

\glsentryuservi{〈label〉}

\Glsentryuservi

\Glsentryuservi{〈label〉}

These commands display the value of the user keys for the glossary entry
given by 〈label〉. The lower case forms are expandable (unless the value
of the key contains unexpandable commands). The commands beginning
with an upper case letter convert the first letter of the required value to
upper case and are not expandable. None of these commands check for the
existence of 〈label〉.

161



9 Using Glossary Terms Without Links

\glshyperlink

\glshyperlink[〈link text〉]{〈label〉}

This command provides a hyperlink to the glossary entry given by 〈label〉
but does not add any information to the glossary file. The link text is given
by \glsentrytext{〈label〉} by default1, but can be overridden using the
optional argument. Note that the hyperlink will be suppressed if you have
used \glsdisablehyper or if you haven’t loaded the hyperref package.

If you use \glshyperlink, you need to ensure that the relevant entry
has been added to the glossary using any of the commands described in
Section 6 or Section 7 otherwise you will end up with an undefined link.

The next two commands are only available with Option 1 or with the
savenumberlist package option:

\glsentrynumberlist

\glsentrynumberlist{〈label〉}

\glsdisplaynumberlist

\glsdisplaynumberlist{〈label〉}

Both display the number list for the entry given by 〈label〉. When used with
Option 1 a rerun is required to ensure this list is up-to-date, when used
with Options 2 or 3 a run of makeglossaries (or makeindex/xindy)
followed by one or two runs of LATEX is required.

The first command, \glsentrynumberlist, simply displays the num-
ber list as is. The second command, \glsdisplaynumberlist, formats
the list using:

\glsnumlistsep

\glsnumlistsep

as the separator between all but the last two elements and

\glsnumlistlastsep

\glsnumlistlastsep

between the final two elements. The defaults are , and \& , respectively.

1versions before 3.0 used \glsentryname as the default, but this could cause problems
when name had been sanitized.

162



9 Using Glossary Terms Without Links

\glsdisplaynumberlist is fairly experimental. It works with
Option 1, but for Options 2 or 3 it only works when the default counter
format is used (that is, when the format key is set to
glsnumberformat). This command will only work with hyperref if you
choose Option 1. If you try using this command with Options 2 or 3 and
hyperref, \glsentrynumberlist will be used instead.

For further information see section 1.11 “Displaying entry details without
adding information to the glossary” in the documented code (glossaries-code.pdf).

163



10 Displaying a glossary

All defined glossaries may be displayed using:

Option 1:

\printnoidxglossaries

\printnoidxglossaries

(Must be used with \makenoidxglossaries in the preamble.)

Options 2 and 3:

\printglossaries

\printglossaries

(Must be used with \makeglossaries in the preamble.)

These commands will display all the glossaries in the order in which
they were defined. Note that, in the case of Options 2 and 3, no glossaries
will appear until you have either used the Perl script makeglossaries or
Lua script makeglossaries-lite or have directly used makeindex or
xindy (as described in Section 1.5). (While the external files are missing,
these commands will just do \null for each missing glossary to assist dic-
tionary style documents that just use \glsaddall without inserting any
text. If you use glossaries-extra, it will insert a heading and boilerplate text
when the external files are missing. The extension package also provides
\printunsrtglossaries as an alternative. See the glossaries-extra man-
ual for further details.)

If the glossary still does not appear after you re-LATEX your document,
check the makeindex/xindy log files to see if there is a problem. With
Option 1, you just need two LATEX runs to make the glossaries appear, but
you may need further runs to make the number lists up-to-date.

An individual glossary can be displayed using:

Option 1:

\printnoidxglossary

164



10 Displaying a glossary

\printnoidxglossary[〈options〉]

(Must be used with \makenoidxglossaries in the preamble.)

Options 2 and 3:

\printglossary

\printglossary[〈options〉]

(Must be used with \makeglossaries in the preamble.)

where 〈options〉 is a 〈key〉=〈value〉 list of options. (Again, when the associ-
ated external file is missing, \null is inserted into the document.)

The following keys are available:

type The value of this key specifies which glossary to print. If omitted,
the default glossary is assumed. For example, to print the list of
acronyms:

\printglossary[type=\acronymtype]

Note that you can’t display an ignored glossary, so don’t try setting
type to the name of a glossary that was defined using \newignoredglossary,
described in Section 12. (You can display an ignored glossary with
\printunsrtglossary provided by glossaries-extra.)

title This is the glossary’s title (overriding the title specified when the glos-
sary was defined).

toctitle This is the title to use for the table of contents (if the toc package
option has been used). It may also be used for the page header, de-
pending on the page style. If omitted, the value of title is used.

style This specifies which glossary style to use for this glossary, overriding
the effect of the style package option or \glossarystyle.

numberedsection This specifies whether to use a numbered section for this
glossary, overriding the effect of the numberedsection package option.
This key has the same syntax as the numberedsection package option,
described in Section 2.2.

nonumberlist This is a boolean key. If true (nonumberlist=true) the
numberlist is suppressed for this glossary. If false (nonumberlist=false)
the numberlist is displayed for this glossary.

165



10 Displaying a glossary

nogroupskip This is a boolean key. If true the vertical gap between groups
is suppressed for this glossary.

nopostdot This is a boolean key. If true the full stop after the description is
suppressed for this glossary.

entrycounter This is a boolean key. Behaves similar to the package option of
the same name. The corresponding package option must be used to
make \glsrefentry work correctly.

subentrycounter This is a boolean key. Behaves similar to the package op-
tion of the same name. If you want to set both entrycounter and suben-
trycounter, make sure you specify entrycounter first. The corresponding
package option must be used to make \glsrefentrywork correctly.

sort This key is only available for Option 1. Possible values are: word
(word order), letter (letter order), standard (word or letter order-
ing taken from the order package option), use (order of use), def (or-
der of definition) nocase (case-insensitive) or case (case-sensitive).
Note that the word and letter comparisons (that is, everything other
than sort=use and sort=def) just use a simple character code com-
parison. For a locale-sensitive sort, you must use either xindy (Op-
tion 3) or bib2gls (Option 4). Note that bib2gls provides many
other sort options.

If you use the use or def values make sure that you select a
glossary style that doesn’t have a visual indicator between groups,
as the grouping no longer makes sense. Consider using the
nogroupskip option.

The word and letter order sort methods use datatool’s
\dtlwordindexcompare and \dtlletterindexcompare
handlers. The case-insensitive sort method uses datatool’s
\dtlicompare handler. The case-sensitive sort method uses
datatool’s \dtlcompare handler. See the datatool documentation for
further details.

If you don’t get an error with sort=use and sort=def but you do
get an error with one of the other sort options, then you probably need
to use the sanitizesort=true package option or make sure none of the
entries have fragile commands in their sort field.

By default, the glossary is started either by \chapter* or by \section*,
depending on whether or not \chapter is defined. This can be overridden
by the section package option or the \setglossarysection command.

166



10 Displaying a glossary

Numbered sectional units can be obtained using the numberedsection pack-
age option. Each glossary sets the page header via the command

\glsglossarymark

\glsglossarymark{〈title〉}

If this mechanism is unsuitable for your chosen class file or page style pack-
age, you will need to redefine \glsglossarymark. Further information
about these options and commands is given in Section 2.2.

Information can be added to the start of the glossary (after the title and
before the main body of the glossary) by redefining

\glossarypreamble

\glossarypreamble

For example:

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}

This needs to be done before the glossary is displayed.
If you want a different preamble per glossary you can use

\setglossarypreamble

\setglossarypreamble[〈type〉]{〈preamble text〉}

If 〈type〉 is omitted, \glsdefaulttype is used.
For example:

\setglossarypreamble{Numbers in italic
indicate primary definitions.}

This will print the given preamble text for the main glossary, but not have
any preamble text for any other glossaries.

There is an analogous command to \glossarypreamble called

\glossarypostamble

\glossarypostamble

which is placed at the end of each glossary.

Example 15 (Switch to Two Column Mode for Glossary)

Suppose you are using the superheaderborder style1, and you want the

1you can’t use the longheaderborder style for this example as you can’t use the longtable en-
vironment in two column mode.

167



10 Displaying a glossary

glossary to be in two columns, but after the glossary you want to switch
back to one column mode, you could do:

\renewcommand*{\glossarysection}[2][]{%
\twocolumn[{\chapter*{#2}}]%
\setlength\glsdescwidth{0.6\linewidth}%
\glsglossarymark{\glossarytoctitle}%

}

\renewcommand*{\glossarypostamble}{\onecolumn}

Within each glossary, each entry name is formatted according to

\glsnamefont

\glsnamefont{〈name〉}

which takes one argument: the entry name. This command is always used
regardless of the glossary style. By default, \glsnamefont simply displays
its argument in whatever the surrounding font happens to be. This means
that in the list-like glossary styles (defined in the glossary-list style file) the
name will appear in bold, since the name is placed in the optional argu-
ment of \item, whereas in the tabular styles (defined in the glossary-long
and glossary-super style files) the name will appear in the normal font. The
hierarchical glossary styles (defined in the glossary-tree style file) also set the
name in bold.

If you want to change the font for the description, or if you only want to
change the name font for some types of entries but not others, you might
want to consider using the glossaries-extra package.

Example 16 (Changing the Font Used to Display Entry Names in
the Glossary)

Suppose you want all the entry names to appear in medium weight small
caps in your glossaries, then you can do:

\renewcommand{\glsnamefont}[1]{\textsc{\mdseries #1}}

168



11 Xindy (Option 3)

If you want to use xindy to sort the glossary, you must use the package
option xindy:

\usepackage[xindy]{glossaries}

This ensures that the glossary information is written in xindy syntax.
Section 1.5 covers how to use the external indexing application, and Sec-

tion 5.2 covers the issues involved in the location syntax. This section covers
the commands provided by the glossaries package that allow you to adjust
the xindy style file (.xdy) and parameters.

To assist writing information to the xindy style file, the glossaries package
provides the following commands:

\glsopenbrace

\glsopenbrace

\glsclosebrace

\glsclosebrace

which produce an open and closing brace. (This is needed because \{ and
\} don’t expand to a simple brace character when written to a file.) Simi-
larly, you can write a percent character using:

\glspercentchar

\glspercentchar

and a tilde character using:

\glstildechar

\glstildechar

For example, a newline character is specified in a xindy style file using ~n
so you can use \glstildechar n to write this correctly (or you can do
\string~n). A backslash can be written to a file using

\glsbackslash

\glsbackslash

169



11 Xindy (Option 3)

In addition, if you are using a package that makes the double quote char-
acter active (e.g. ngerman) you can use:

\glsquote

\glsquote{〈text〉}

which will produce "〈text〉". Alternatively, you can use \string" to write
the double-quote character. This document assumes that the double quote
character has not been made active, so the examples just use " for clarity.

If you want greater control over the xindy style file than is available
through the LATEX commands provided by the glossaries package, you will
need to edit the xindy style file. In which case, you must use \noist
to prevent the style file from being overwritten by the glossaries package.
For additional information about xindy, read the xindy documentation.
I’m sorry I can’t provide any assistance with writing xindy style files. If
you need help, I recommend you ask on the xindy mailing list (http:
//xindy.sourceforge.net/mailing-list.html).

11.1 Language and Encodings

When you use xindy, you need to specify the language and encoding used
(unless you have written your own custom xindy style file that defines
the relevant alphabet and sort rules). If you use makeglossaries, this
information is obtained from the document’s auxiliary (.aux) file. The
makeglossaries script attempts to find the root language given your doc-
ument settings, but in the event that it gets it wrong or if xindy doesn’t
support that language, then you can specify the required language using:

\GlsSetXdyLanguage

\GlsSetXdyLanguage[〈glossary type〉]{〈language〉}

where 〈language〉 is the name of the language. The optional argument can
be used if you have multiple glossaries in different languages. If 〈glossary
type〉 is omitted, it will be applied to all glossaries, otherwise the language
setting will only be applied to the glossary given by 〈glossary type〉.

If the inputenc package is used, the encoding will be obtained from the
value of \inputencodingname. Alternatively, you can specify the encod-
ing using:

\GlsSetXdyCodePage

\GlsSetXdyCodePage{〈code〉}

170

http://xindy.sourceforge.net/mailing-list.html
http://xindy.sourceforge.net/mailing-list.html


11 Xindy (Option 3)

where 〈code〉 is the name of the encoding. For example:

\GlsSetXdyCodePage{utf8}

Note that you can also specify the language and encoding using the pack-
age option xindy={language=〈lang〉,codepage=〈code〉}. For example:

\usepackage[xindy={language=english,codepage=utf8}]{glossaries}

If you write your own custom xindy style file that includes the language
settings, you need to set the language to nothing:

\GlsSetXdyLanguage{}

(and remember to use \noist to prevent the style file from being overwrit-
ten).

The commands \GlsSetXdyLanguage and \GlsSetXdyCodePage
have no effect if you don’t use makeglossaries. If you call xindy
without makeglossaries you need to remember to set the language
and encoding using the -L and -C switches.

11.2 Locations and Number lists

If you use xindy, the glossaries package needs to know which counters you
will be using in the number list in order to correctly format the xindy style
file. Counters specified using the counter package option or the 〈counter〉
option of \newglossary are automatically taken care of, but if you plan
to use a different counter in the counter key for commands like \glslink,
then you need to identify these counters before \makeglossaries using:

\GlsAddXdyCounters

\GlsAddXdyCounters{〈counter list〉}

where 〈counter list〉 is a comma-separated list of counter names.
The most likely attributes used in the format key (textrm, hyperrm etc)

are automatically added to the xindy style file, but if you want to use an-
other attribute, you need to add it using:

\GlsAddXdyAttribute

\GlsAddXdyAttribute{〈name〉}

where 〈name〉 is the name of the attribute, as used in the format key.
Take care if you have multiple instances of the same location with differ-

ent formats. The duplicate locations will be discarded according to the order

171



11 Xindy (Option 3)

in which the attributes are listed. Consider defining semantic commands to
use for primary references. For example:

\newcommand*{\primary}[1]{\textbf{#1}}
\GlsAddXdyAttribute{primary}

Then in the document:

A \gls[format=primary]{duck} is an aquatic bird.
There are lots of different types of \gls{duck}.

This will give the format=primary instance preference over the next use
that doesn’t use the format key.

Example 17 (Custom Font for Displaying a Location)

Suppose I want a bold, italic, hyperlinked location. I first need to define
a command that will do this:

\newcommand*{\hyperbfit}[1]{\textit{\hyperbf{#1}}}

but with xindy, I also need to add this as an allowed attribute:

\GlsAddXdyAttribute{hyperbfit}

Now I can use it in the optional argument of commands like \gls:

Here is a \gls[format=hyperbfit]{sample} entry.

(where sample is the label of the required entry).

Note that \GlsAddXdyAttribute has no effect if \noist is used or if
\makeglossaries is omitted. \GlsAddXdyAttribute must be used
before \makeglossaries. Additionally, \GlsAddXdyCounters
must come before \GlsAddXdyAttribute.

If the location numbers include formatting commands, then you need to
add a location style in the appropriate format using

\GlsAddXdyLocation

\GlsAddXdyLocation[〈prefix-location〉]{〈name〉}
{〈definition〉}

where 〈name〉 is the name of the format and 〈definition〉 is the xindy defi-
nition. The optional argument 〈prefix-location〉 is needed if \theH〈counter〉
either isn’t defined or is different from \the〈counter〉. Be sure to also read
Section 5.2 for some issues that you may encounter.

172



11 Xindy (Option 3)

Note that \GlsAddXdyLocation has no effect if \noist is used or if
\makeglossaries is omitted. \GlsAddXdyLocation must be used
before \makeglossaries.

Example 18 (Custom Numbering System for Locations)

Suppose I decide to use a somewhat eccentric numbering system for sec-
tions where I redefine \thesection as follows:

\renewcommand*{\thesection}{[\thechapter]\arabic{section}}

If I haven’t done counter=section in the package option, I need to spec-
ify that the counter will be used as a location number:

\GlsAddXdyCounters{section}

Next I need to add the location style (\thechapter is assumed to be the
standard \arabic{chapter}):

\GlsAddXdyLocation{section}{:sep "[" "arabic-numbers" :sep "]"
"arabic-numbers"

}

Note that if I have further decided to use the hyperref package and want to
redefine \theHsection as:

\renewcommand*{\theHsection}{\thepart.\thesection}
\renewcommand*{\thepart}{\Roman{part}}

then I need to modify the \GlsAddXdyLocation code above to:

\GlsAddXdyLocation["roman-numbers-uppercase"]{section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

Since \Roman will result in an empty string if the counter is zero, it’s a good
idea to add an extra location to catch this:

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

This example is illustrated in the sample file samplexdy2.tex.

Example 19 (Locations as Dice)

Suppose I want a rather eccentric page numbering system that’s repre-
sented by the number of dots on dice. The stix package provides \dicei,

173



11 Xindy (Option 3)

. . . , \dicevi that represent the six sides of a die. I can define a command
that takes a number as its argument. If the number is less than seven, the
appropriate \dice〈n〉 command is used otherwise it does \dicevi the re-
quired number of times with the leftover in a final \dice〈n〉. For example,
the number 16 is represented by \dicevi\dicevi\diceiv (6 + 6 + 4 =
16). I’ve called this command \tallynum to match the example given ear-
lier in Section 5.2:

\newrobustcmd{\tallynum}[1]{%
\ifnum\number#1<7
$\csname dice\romannumeral#1\endcsname$%

\else
$\dicevi$%
\expandafter\tallynum\expandafter{\numexpr#1-6}%

\fi
}

Here’s the counter command:

newcommand{\tally}[1]{\tallynum{\arabic{#1}}}

The page counter representation (\thepage) needs to be changed to use
this command:

\renewcommand*{\thepage}{\tally{page}}

The \tally command expands to \tallynum {〈number〉} so this needs a
location class that matches this format:

\GlsAddXdyLocation{tally}{%
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"
}

The space between \tallynum and {〈number〉} is significant to xindy so
\space is required.

Note that \GlsAddXdyLocation{〈name〉}{〈definition〉}will define com-
mands in the form:

\glsX〈counter〉X〈name〉{〈Hprefix〉}{〈location〉}

for each counter that has been identified either by the counter package
option, the 〈counter〉 option for \newglossary or in the argument of
\GlsAddXdyCounters. The first argument 〈Hprefix〉 is only relevant when
used with the hyperref package and indicates that \theH〈counter〉 is given by
\Hprefix.\the〈counter〉.

174



11 Xindy (Option 3)

The sample file samplexdy.tex, which comes with the glossaries pack-
age, uses the default page counter for locations, and it uses the default
\glsnumberformat and a custom \hyperbfit format. A new xindy
location called tallynum, as illustrated above, is defined to make the page
numbers appear as dice. In order for the location numbers to hyperlink to
the relevant pages, I need to redefine the necessary \glsX〈counter〉X〈format〉
commands:

\renewcommand{\glsXpageXglsnumberformat}[2]{%
\linkpagenumber#2%

}

\renewcommand{\glsXpageXhyperbfit}[2]{%
\textbf{\em\linkpagenumber#2}%

}

\newcommand{\linkpagenumber}[2]{\hyperlink{page.#2}{#1{#2}}}

Note that the second argument of \glsXpageXglsnumberformat is in
the format \tallynum{〈n〉} so the line

\linkpagenumber#2%

does

\linkpagenumber\tallynum{〈number〉}

so \tallynum is the first argument of \linkpagenumber and 〈number〉 is
the second argument.

This method is very sensitive to the internal definition of the location
command.

Example 20 (Locations as Words not Digits)

Suppose I want the page numbers written as words rather than digits and
I use the fmtcount package to do this. I can redefine \thepage as follows:

\renewcommand*{\thepage}{\Numberstring{page}}

This used to get expanded to \protect \Numberstringnum {〈n〉}where
〈n〉 is the Arabic page number. This means that I needed to define a new
location with the form:

\GlsAddXdyLocation{Numberstring}{:sep "\string\protect\space
\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

175



11 Xindy (Option 3)

and if I’d used the \linkpagenumber command from the previous exam-
ple, it would need three arguments (the first being \protect):

\newcommand{\linkpagenumber}[3]{\hyperlink{page.#3}{#1#2{#3}}}

The internal definition of \Numberstring has since changed so that it
now expands to \Numberstringnum {〈n〉} (no \protect). This means
that the location class definition must be changed to:

\GlsAddXdyLocation{Numberstring}{% no \protect now!
:sep "\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

and \linkpagenumber goes back to only two arguments:

\newcommand{\linkpagenumber}[2]{\hyperlink{page.#2}{#1{#2}}}

The other change is that \Numberstring uses

\the\value{〈counter〉}

instead of

\expandafter\the\csname c@〈counter〉\endcsname

so it hides \c@page from the location escaping mechanism (see Section 5.2).
This means that the page number may be incorrect if the indexing occurs
during the output routine.

A more recent change to fmtcount (v3.03) now puts three instances of
\expandafter before \the\value which no longer hides \c@page from
the location escaping mechanism, so the page numbers should once more
be correct. Further changes to the fmtcount package may cause a problem
again.

When dealing with custom formats where the internal definitions are
outside of your control and liable to change, it’s best to provide a
wrapper command.

Instead of directly using \Numberstring in the definition of \thepage,
I can provide a custom command in the same form as the earlier \tally
command:

\newcommand{\customfmt}[1]{\customfmtnum{\arabic{#1}}}
\newrobustcmd{\customfmtnum}[1]{\Numberstringnum{#1}}

This ensures that the location will always be written to the indexing file in
the form:

:locref "{}{\\customfmtnum {〈n〉}}"

176



11 Xindy (Option 3)

So the location class can be defined as:

\GlsAddXdyLocation{customfmt}{
:sep "\string\customfmtnum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"}

The sample file samplexdy3.tex illustrates this.

In the number list, the locations are sorted according to the list of pro-
vided location classes. The default ordering is: roman-page-numbers (i,
ii, . . . ), arabic-page-numbers (1, 2, . . . ), arabic-section-numbers
(for example, 1.1 if the compositor is a full stop or 1-1 if the compositor
is a hyphen1), alpha-page-numbers (a, b, . . . ), Roman-page-numbers
(I, II, . . . ), Alpha-page-numbers (A, B, . . . ), Appendix-page-numbers
(for example, A.1 if the Alpha compositor is a full stop or A-1 if the Al-
pha compositor is a hyphen2), user defined location names (as specified by
\GlsAddXdyLocation in the order in which they were defined), and fi-
nally see (cross-referenced entries).3 This ordering can be changed using:

\GlsSetXdyLocationClassOrder

\GlsSetXdyLocationClassOrder{〈location names〉}

where each location name is delimited by double quote marks and sepa-
rated by white space. For example:

\GlsSetXdyLocationClassOrder{
"arabic-page-numbers"
"arabic-section-numbers"
"roman-page-numbers"
"Roman-page-numbers"
"alpha-page-numbers"
"Alpha-page-numbers"
"Appendix-page-numbers"
"see"

}

(Remember to add "seealso" if you’re using glossaries-extra.)

Note that \GlsSetXdyLocationClassOrder has no effect if \noist
is used or if \makeglossaries is omitted.
\GlsSetXdyLocationClassOrder must be used before
\makeglossaries.

1see \glsSetCompositor described in Section 3
2see \glsSetAlphaCompositor described in Section 3
3With glossaries-extra seealso is appended to the end of the list.

177



11 Xindy (Option 3)

If a number list consists of a sequence of consecutive numbers, the range
will be concatenated. The number of consecutive locations that causes a
range formation defaults to 2, but can be changed using:

\GlsSetXdyMinRangeLength

\GlsSetXdyMinRangeLength{〈n〉}

For example:

\GlsSetXdyMinRangeLength{3}

The argument may also be the keyword none, to indicate that there should
be no range formations. See the xindy manual for further details on range
formations.

Note that \GlsSetXdyMinRangeLength has no effect if \noist is
used or if \makeglossaries is omitted.
\GlsSetXdyMinRangeLength must be used before
\makeglossaries.

See also Section 5.3.

11.3 Glossary Groups

The glossary is divided into groups according to the first letter of the sort
key. The glossaries package also adds a number group by default, unless
you suppress it in the xindy package option. For example:

\usepackage[xindy={glsnumbers=false}]{glossaries}

Any entry that doesn’t go in one of the letter groups or the number group
is placed in the default group. If you want xindy to sort the number group
numerically (rather than by a string sort) then you need to use xindy’s
numeric-sort module:

\GlsAddXdyStyle{numeric-sort}

If you don’t use glsnumbers=false, the default behaviour is to locate
the number group before the “A” letter group. If you are not using a Roman
alphabet, you need to change this using:

\GlsSetXdyFirstLetterAfterDigits

\GlsSetXdyFirstLetterAfterDigits{〈letter〉}

where 〈letter〉 is the first letter of your alphabet. Take care if you’re us-
ing inputenc as non-ASCII characters are actually active characters that ex-
pand. (This isn’t a problem with the native UTF-8 engines and fontspec.) The

178



11 Xindy (Option 3)

starred form will sanitize the argument to prevent expansion. Alternatively
you can use:

\GlsSetXdyNumberGroupOrder

\GlsSetXdyNumberGroupOrder{〈relative location〉}

to change the default

:before \string"〈letter〉\string"

to 〈relative location〉. For example:

\GlsSetXdyNumberGroupOrder{:after \string"Z\string"}

will put the number group after the “Z” letter group. Again take care of
active characters. There’s a starred version that sanitizes the argument (so
don’t use \string in it).

\GlsSetXdyNumberGroupOrder*{:after "Ö"}

Note that these commands have no effect if \noist is used or if
\makeglossaries is omitted.
\GlsSetXdyFirstLetterAfterDigits must be used before
\makeglossaries.

179



12 Defining New Glossaries

A new glossary can be defined using:

\newglossary

\newglossary[〈log-ext〉]{〈name〉}{〈in-ext〉}{〈out-ext〉}
{〈title〉}[〈counter〉]

where 〈name〉 is the label to assign to this glossary. The arguments 〈in-ext〉
and 〈out-ext〉 specify the extensions to give to the input and output files for
that glossary, 〈title〉 is the default title for this new glossary and the final op-
tional argument 〈counter〉 specifies which counter to use for the associated
number lists (see also Section 5). The first optional argument specifies the
extension for the makeindex (Option 2) or xindy (Option 3) transcript file
(this information is only used by makeglossaries which picks up the in-
formation from the auxiliary file). If you use Option 1, the 〈log-ext〉, 〈in-ext〉
and 〈out-ext〉 arguments are ignored.

The glossary label 〈name〉 must not contain any active characters. It’s
generally best to stick with just characters that have category code 11
(typically the non-extended Latin characters for standard LATEX).

There is also a starred version (new to v4.08):

\newglossary*

\newglossary*{〈name〉}{〈title〉}[〈counter〉]

which is equivalent to

\newglossary[〈name〉-glg]{〈name〉}{〈name〉-gls}{〈name〉-glo}
{〈title〉}[〈counter〉]

or you can also use:

\altnewglossary

\altnewglossary{〈name〉}{〈tag〉}{〈title〉}[〈counter〉]

which is equivalent to

180



12 Defining New Glossaries

\newglossary[〈tag〉-glg]{〈name〉}{〈tag〉-gls}{〈tag〉-glo}{〈title〉}
[〈counter〉]

It may be that you have some terms that are so common that they don’t
need to be listed. In this case, you can define a special type of glossary
that doesn’t create any associated files. This is referred to as an “ignored
glossary” and it’s ignored by commands that iterate over all the glossaries,
such as \printglossaries. To define an ignored glossary, use

\newignoredglossary

\newignoredglossary{〈name〉}

where 〈name〉 is the name of the glossary (as above). This glossary
type will automatically be added to the nohypertypes list, since there are
no hypertargets for the entries in an ignored glossary. (The sample file
sample-entryfmt.tex defines an ignored glossary.)

You can test if a glossary is an ignored one using:

\ifignoredglossary

\ifignoredglossary{〈name〉}{〈true〉}{〈false〉}

This does 〈true〉 if 〈name〉 was defined as an ignored glossary, otherwise it
does 〈false〉.

Note that the main (default) glossary is automatically created as:

\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label main (unless the nomain package option
is used). Using the acronym package option is equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

so it can be identified by the label acronym. If you are not sure whether the
acronym option has been used, you can identify the list of acronyms by the
command \acronymtype which is set to acronym, if the acronym option\acronymtype

has been used, otherwise it is set to main. Note that if you are using the
main glossary as your list of acronyms, you need to declare it as a list of
acronyms using the package option acronymlists.

The symbols package option creates a new glossary with the label symbols
using:

\newglossary[slg]{symbols}{sls}{slo}{\glssymbolsgroupname}

The numbers package option creates a new glossary with the label numbers
using:

\newglossary[nlg]{numbers}{nls}{nlo}{\glsnumbersgroupname}

181



12 Defining New Glossaries

The index package option creates a new glossary with the label index using:

\newglossary[ilg]{index}{ind}{idx}{\indexname}

Options 2 and 3: all glossaries must be defined before
\makeglossaries to ensure that the relevant output files are opened.

See Section 1.4.1 if you want to redefine \glossaryname, especially
if you are using babel or translator. (Similarly for
\glssymbolsgroupname and \glsnumbersgroupname.) If you
want to redefine \indexname, just follow the advice in How to change
LaTeX’s “fixed names”.

182

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fixnam
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fixnam


13 Acronyms and Other Abbreviations

The glossaries-extra package provides superior abbreviation handling. You
may want to consider using that package instead of the commands de-
scribed here.

Note that although this chapter uses the term “acronym”, you can also
use the commands described here for initialisms or contractions (as in
the case of some of the examples given below). If the glossary title is no
longer applicable (for example, it should be “Abbreviations” rather than
“Acronyms”) then you can change the title either by redefining
\acronymname (see Section 1.4) or by using the title in the optional
argument of \printglossary (or \printacronym). Alternatively
consider using the glossaries-extra package’s abbreviations option instead.

You may have noticed in Section 4 that when you specify a new entry, you
can specify alternate text to use when the term is first used in the document.
This provides a useful means to define abbreviations. For convenience, the
glossaries package defines the command:

\newacronym

\newacronym[〈key-val list〉]{〈label〉}{〈abbrv〉}{〈long〉}

This uses \newglossaryentry to create an entry with the given la-
bel in the glossary given by \acronymtype. You can specify a dif-
ferent glossary using the type key within the optional argument. The
\newacronym command also uses the long, longplural, short and shortplural
keys in \newglossaryentry to store the long and abbreviated forms and
their plurals.

Note that the same restrictions on the entry 〈label〉 in \newglossaryentry
also apply to \newacronym (see Section 4).

183



13 Acronyms and Other Abbreviations

If you haven’t identified the specified glossary type as a list of acronyms
(via the package option acronymlists or the command
\DeclareAcronymList, see Section 2.5) \newacronym will add it to
the list and reset the display style for that glossary via
\defglsentryfmt. If you have a mixture of acronyms and regular
entries within the same glossary, care is needed if you want to change
the display style: you must first identify that glossary as a list of
acronyms and then use \defglsentryfmt (not redefine
\glsentryfmt) before defining your entries.

The optional argument {〈key-val list〉} allows you to specify additional in-
formation. Any key that can be used in the second argument of \newglossaryentry
can also be used here in 〈key-val list〉. For example, description (when used
with one of the styles that require a description, described in Section 13.1)
or you can override plural forms of 〈abbrv〉 or 〈long〉 using the shortplural or
longplural keys. For example:

\newacronym[longplural={diagonal matrices}]%
{dm}{DM}{diagonal matrix}

If the first use uses the plural form, \glspl{dm} will display: diagonal
matrices (DMs). If you want to use the longplural or shortplural keys, I rec-
ommend you use \setacronymstyle to set the display style rather than
using one of the pre-version 4.02 acronym styles.

As with plural and firstplural, if longplural is missing, it’s obtained by ap-
pended \glspluralsuffix to the singular form. The short plural short-
plural is obtained (is not explicitly set) by appending \glsacrpluralsuffix
to the short form. These commands may be changed by the associated lan-
guage files, but they can’t be added to the usual caption hooks as there’s
no guarantee when they’ll be expanded (as discussed earlier). A different
approach is used by glossaries-extra, which has category attributes to deter-
mine whether or not to append a suffix when forming the default value of
shortplural.

Since \newacronym uses \newglossaryentry, you can use com-
mands like \gls and \glsreset as with any other glossary entry.

Since \newacronym sets type=\acronymtype, if you want to load a
file containing acronym definitions using \loadglsentries[〈type〉]
{〈filename〉}, the optional argument 〈type〉 will not have an effect unless
you explicitly set the type as type=\glsdefaulttype in the optional
argument to \newacronym. See Section 4.6.

184



13 Acronyms and Other Abbreviations

Example 21 (Defining an Abbreviation)

The following defines the abbreviation IDN:

\newacronym{idn}{IDN}{identification number}

\gls{idn} will produce “identification number (IDN)” on first use and
“IDN” on subsequent uses. If you want to use one of the smallcaps acronym
styles, described in Section 13.1, you need to use lower case characters for
the shortened form:

\newacronym{idn}{idn}{identification number}

Now \gls{idn} will produce “identification number (IDN)” on first use
and “IDN” on subsequent uses.

Avoid nested definitions.

Recall from the warning in Section 4 that you should avoid using the
\gls-like and \glstext-like commands within the value of keys like text
and first due to complications arising from nested links. The same applies to
abbreviations defined using \newacronym.

For example, suppose you have defined:

\newacronym{ssi}{SSI}{server side includes}
\newacronym{html}{HTML}{hypertext markup language}

you may be tempted to do:

\newacronym{shtml}{S\gls{html}}{\gls{ssi} enabled \gls{html}}

Don’t! This will break the case-changing commands, such as \Gls, it will
cause inconsistencies on first use, and, if hyperlinks are enabled, will cause
nested hyperlinks. It will also confuse the commands used by the entry
formatting (such as \glslabel).

Instead, consider doing:

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{SSI enabled HTML}

or

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}
{server side includes enabled hypertext markup language}

185



13 Acronyms and Other Abbreviations

Similarly for the \glstext-like commands.
Other approaches are available with glossaries-extra. See the section

“Nested Links” in the glossaries-extra user manual.

The commands described below are similar to the \glstext-like
commands in that they don’t modify the first use flag. However, their
display is governed by \defentryfmt with \glscustomtext set as
appropriate. All caveats that apply to the \glstext-like commands
also apply to the following commands. (Including the warning
immediately above this box.)

The optional arguments are the same as those for the \glstext-like com-
mands, and there are similar star and plus variants that switch off or on the
hyperlinks. As with the \glstext-like commands, the link text is placed
in the argument of \glstextformat.

\acrshort

\acrshort[〈options〉]{〈label〉}[〈insert〉]

This sets the link text to the short form (within the argument of \acronymfont)
for the entry given by 〈label〉. The short form is as supplied by the short key,
which \newacronym implicitly sets.

There are also analogous upper case variants:

\Acrshort

\Acrshort[〈options〉]{〈label〉}[〈insert〉]

\ACRshort

\ACRshort[〈options〉]{〈label〉}[〈insert〉]

There are also plural versions:

\acrshortpl

\acrshortpl[〈options〉]{〈label〉}[〈insert〉]

\Acrshortpl

\Acrshortpl[〈options〉]{〈label〉}[〈insert〉]

\ACRshortpl

\ACRshortpl[〈options〉]{〈label〉}[〈insert〉]

186



13 Acronyms and Other Abbreviations

The short plural form is as supplied by the shortplural key, which \newacronym
implicitly sets.

\acrlong

\acrlong[〈options〉]{〈label〉}[〈insert〉]

This sets the link text to the long form for the entry given by 〈label〉. The
long form is as supplied by the long key, which \newacronym implicitly
sets.

There are also analogous upper case variants:

\Acrlong

\Acrlong[〈options〉]{〈label〉}[〈insert〉]

\ACRlong

\ACRlong[〈options〉]{〈label〉}[〈insert〉]

Again there are also plural versions:

\acrlongpl

\acrlongpl[〈options〉]{〈label〉}[〈insert〉]

\Acrlongpl

\Acrlongpl[〈options〉]{〈label〉}[〈insert〉]

\ACRlongpl

\ACRlongpl[〈options〉]{〈label〉}[〈insert〉]

The long plural form is as supplied by the longplural key, which \newacronym
implicitly sets.

The commands below display the full form of the acronym, but note that
this isn’t necessarily the same as the form used on first use. These full-form
commands are shortcuts that use the above commands, rather than creating
the link text from the complete full form. These full-form commands have
star and plus variants and optional arguments that are passed to the above
commands.

\acrfull

\acrfull[〈options〉]{〈label〉}[〈insert〉]

This is a shortcut for

187



13 Acronyms and Other Abbreviations

\acrfullfmt

\acrfullfmt{〈options〉}{〈label〉}{〈insert〉}

which by default does

\acrfullformat
{\acrlong[〈options〉]{〈label〉}{〈insert〉}}
{\acrshort[〈options〉]{〈label〉}}

where

\acrfullformat

\acrfullformat{〈long〉}{〈short〉}

by default does 〈long〉 (〈short〉). This command is now deprecated for
new acronym styles but is used by the default for backward compatibility
if \setacronymstyle (Section 13.1) hasn’t been used. (For further de-
tails of these format commands see section 1.17 in the documented code,
glossaries-code.pdf.)

There are also analogous upper case variants:

\Acrfull

\Acrfull[〈options〉]{〈label〉}[〈insert〉]

\ACRfull

\ACRfull[〈options〉]{〈label〉}[〈insert〉]

and plural versions:

\acrfullpl

\acrfullpl[〈options〉]{〈label〉}[〈insert〉]

\Acrfullpl

\Acrfullpl[〈options〉]{〈label〉}[〈insert〉]

\ACRfullpl

\ACRfullpl[〈options〉]{〈label〉}[〈insert〉]

If you find the above commands too cumbersome to write, you can use
the shortcuts package option to activate the shorter command names listed
in table 13.1.

188



13 Acronyms and Other Abbreviations

Table 13.1: Synonyms provided by the package option shortcuts

Shortcut Command Equivalent Command
\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\acf \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls
\Ac \Gls
\acp \glspl
\Acp \Glspl

It is also possible to access the long and short forms without adding in-
formation to the glossary using commands analogous to \glsentrytext
(described in Section 9).

The commands that convert the first letter to upper case come with the
same caveats as those for analogous commands like \Glsentrytext
(non-expandable, can’t be used in PDF bookmarks, care needs to be
taken if the first letter is an accented character etc). See Section 9.

The long form can be accessed using:

\glsentrylong

\glsentrylong{〈label〉}

or, with the first letter converted to upper case:

\Glsentrylong

\Glsentrylong{〈label〉}

Plural forms:

\glsentrylongpl

189



13 Acronyms and Other Abbreviations

\glsentrylongpl{〈label〉}

\Glsentrylongpl

\Glsentrylongpl{〈label〉}

Similarly, to access the short form:

\glsentryshort

\glsentryshort{〈label〉}

or, with the first letter converted to upper case:

\Glsentryshort

\Glsentryshort{〈label〉}

Plural forms:

\glsentryshortpl

\glsentryshortpl{〈label〉}

\Glsentryshortpl

\Glsentryshortpl{〈label〉}

And the full form can be obtained using:

\glsentryfull

\glsentryfull{〈label〉}

\Glsentryfull

\Glsentryfull{〈label〉}

\glsentryfullpl

\glsentryfullpl{〈label〉}

\Glsentryfullpl

\Glsentryfullpl{〈label〉}

These again use \acrfullformat by default, but the new styles described
in the section below use different formatting commands.

190



13 Acronyms and Other Abbreviations

13.1 Changing the Abbreviation Style

It may be that the default style doesn’t suit your requirements in which case
you can switch to another style using

\setacronymstyle

\setacronymstyle{〈style name〉}

where 〈style name〉 is the name of the required style.

You must use \setacronymstyle before you define the acronyms with
\newacronym.

For example:

\usepackage[acronym]{glossaries}

\makeglossaries

\setacronymstyle{long-sc-short}

\newacronym{html}{html}{hypertext markup language}
\newacronym{xml}{xml}{extensible markup language}

Unpredictable results can occur if you try to use multiple styles.

If you need multiple abbreviation styles, then try using the
glossaries-extra package, which has better abbreviation management.

Note that unlike the default behaviour of \newacronym, the styles used
via \setacronymstyle don’t use the first or text keys, but instead they use
\defglsentryfmt to set a custom format that uses the long and short keys
(or their plural equivalents). This means that these styles cope better with
plurals that aren’t formed by simply appending the singular form with the
letter “s”. In fact, most of the predefined styles use \glsgenacfmt and
modify the definitions of commands like \genacrfullformat.

Note that when you use \setacronymstyle the name key is set to

\acronymentry

\acronymentry{〈label〉}

and the sort key is set to

\acronymsort

\acronymsort{〈short〉}{〈long〉}

191



13 Acronyms and Other Abbreviations

These commands are redefined by the acronym styles. However, you
can redefine them again after the style has been set but before you use
\newacronym. Protected expansion is performed on \acronymsort
when the entry is defined.

13.1.1 Predefined Acronym Styles

The glossaries package provides a number of predefined styles. These styles
apply

\firstacronymfont

\firstacronymfont{〈text〉}

to the short form on first use and

\acronymfont

\acronymfont{〈text〉}

on subsequent use. The styles modify the definition of \acronymfont
as required, but \firstacronymfont is only set once by the package
when it’s loaded. By default \firstacronymfont{〈text〉} is the same as
\acronymfont{〈text〉}. If you want the short form displayed differently
on first use, you can redefine \firstacronymfont independently of the
acronym style.

The predefined styles that contain sc in their name (for example long-sc-
short) redefine \acronymfont to use \textsc, which means that the short
form needs to be specified in lower case. Remember that \textsc{abc}
produces ABC but \textsc{ABC} produces ABC.

Some fonts don’t support bold smallcaps, so you may need to redefine
\glsnamefont (see Section 10) to switch to medium weight if you are
using a glossary style that displays entry names in bold and you have
chosen an acronym style that uses \textsc.

The predefined styles that contain sm in their name (for example long-sm-
short) redefine \acronymfont to use \textsmaller.

Note that the glossaries package doesn’t define or load any package that
defines \textsmaller. If you use one of the acronym styles that set
\acronymfont to \textsmaller you must explicitly load the relsize
package or otherwise define \textsmaller.

192



13 Acronyms and Other Abbreviations

The remaining predefined styles redefine \acronymfont{〈text〉} to sim-
ply do its argument 〈text〉.

In most cases, the predefined styles adjust \acrfull and
\glsentryfull (and their plural and upper case variants) to reflect
the style. The only exceptions to this are the dua and footnote styles (and
their variants).

The following styles are supplied by the glossaries package:

• long-short, long-sc-short, long-sm-short, long-sp-short:

With these three styles, acronyms are displayed in the form

〈long〉 (\firstacronymfont{〈short〉})

on first use and

\acronymfont{〈short〉}

on subsequent use. They also set \acronymsort{〈short〉}{〈long〉}
to just 〈short〉. This means that the acronyms are sorted according to
their short form. In addition, \acronymentry{〈label〉} is set to just
the short form (enclosed in \acronymfont) and the description key is
set to the long form.

The long-sp-short style was introduced in version 4.16 and uses

\glsacspace

\glsacspace{〈label〉}

for the space between the long and short forms. This defaults to a non-
breakable space (~) if (\acronymfont{〈short〉}) is less than 3em, oth-
erwise it uses a normal space. This may be redefined as required. For
example, to always use a non-breakable space:

\renewcommand*{\glsacspace}[1]{~}

• short-long, sc-short-long, sm-short-long:

193



13 Acronyms and Other Abbreviations

These three styles are analogous to the above three styles, except the
display order is swapped to

\firstacronymfont{〈short〉} (〈long〉)

on first use.

Note, however, that \acronymsort and \acronymentry are the
same as for the 〈long〉 (〈short〉) styles above, so the acronyms are still
sorted according to the short form.

• long-short-desc, long-sc-short-desc, long-sm-short-desc, long-sp-short-desc:

These are like the long-short, long-sc-short, long-sm-short and long-sp-short
styles described above, except that the description key must be sup-
plied in the optional argument of \newacronym. They also redefine
\acronymentry to {〈long〉} (\acronymfont{〈short〉}) and rede-
fine \acronymsort{〈short〉}{〈long〉} to just 〈long〉. This means that
the acronyms are sorted according to the long form, and in the list
of acronyms the name field has the long form followed by the short
form in parentheses. I recommend you use a glossary style such as
altlist with these acronym styles to allow for the long name field.

• short-long-desc, sc-short-long-desc, sm-short-long-desc:

These styles are analogous to the above three styles, but the first use
display style is:

\firstacronymfont{〈short〉} (〈long〉)

The definitions of \acronymsort and \acronymentry are the same
as those for long-short-desc etc.

• dua, dua-desc:

With these styles, the \gls-like commands always display the long
form regardless of whether the entry has been used or not. However,
\acrfull and \glsentryfullwill display 〈long〉 (\acronymfont
{〈short〉}). In the case of dua, the name and sort keys are set to the short
form and the description is set to the long form. In the case of dua-desc,
the name and sort keys are set to the long form and the description is
supplied in the optional argument of \newacronym.

194



13 Acronyms and Other Abbreviations

• footnote, footnote-sc, footnote-sm:

With these three styles, on first use the \gls-like commands display:

\firstacronymfont{〈short〉}\footnote{〈long〉}

However, \acrfull and \glsentryfull are set to \acronymfont
{〈short〉} (〈long〉). On subsequent use the display is:

\acronymfont{〈short〉}

The sort and name keys are set to the short form, and the description is
set to the long form.

In order to avoid nested hyperlinks on first use the footnote styles
automatically implement hyperfirst=false for the acronym lists.

• footnote-desc, footnote-sc-desc, footnote-sm-desc:

These three styles are similar to the previous three styles, but the de-
scription has to be supplied in the optional argument of \newacronym.
The name key is set to the long form followed by the short form in
parentheses and the sort key is set to the long form. This means that
the acronyms will be sorted according to the long form. In addition,
since the name will typically be quite wide it’s best to choose a glossary
style that can accommodate this, such as altlist.

Example 22 (Adapting a Predefined Acronym Style)

Suppose I want to use the footnote-sc-desc style, but I want the name key
set to the short form followed by the long form in parentheses and the sort
key set to the short form. Then I need to specify the footnote-sc-desc style:

\setacronymstyle{footnote-sc-desc}

and then redefine \acronymsort and \acronymentry:

\renewcommand*{\acronymsort}[2]{#1}% sort by short form
\renewcommand*{\acronymentry}[1]{%

\acronymfont{\glsentryshort{#1}}\space (\glsentrylong{#1})}%

195



13 Acronyms and Other Abbreviations

(I’ve used \space for extra clarity, but you can just use an actual space
instead.)

Since the default Computer Modern fonts don’t support bold smallcaps,
I’m also going to redefine \acronymfont so that it always switches to
medium weight to ensure the smallcaps setting is used:

\renewcommand*{\acronymfont}[1]{\textmd{\scshape #1}}

This isn’t necessary if you use a font that supports bold smallcaps.
The sample file sampleFnAcrDesc.tex illustrates this example.

13.1.2 Defining A Custom Acronym Style

You may find that the predefined acronyms styles that come with the glos-
saries package don’t suit your requirements. In this case you can define your
own style using:

\newacronymstyle

\newacronymstyle{〈style name〉}{〈display〉}
{〈definitions〉}

where 〈style name〉 is the name of the new style (avoid active characters).
The second argument, 〈display〉, is equivalent to the mandatory argument
of \defglsentryfmt. You can simply use \glsgenacfmt or you can
customize the display using commands like \ifglsused, \glsifplural
and \glscapscase. (See Section 6.3 for further details.) If the style is
likely to be used with a mixed glossary (that is entries in that glossary
are defined both with \newacronym and \newglossaryentry) then you
can test if the entry is an acronym and use \glsgenacfmt if it is or
\glsgenentryfmt if it isn’t. For example, the long-short style sets 〈display〉
as

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%

(You can use \ifglshasshort instead of \ifglshaslong to test if the
entry is an acronym if you prefer.)

The third argument, 〈definitions〉, can be used to redefine the commands
that affect the display style, such as \acronymfont or, if 〈display〉 uses
\glsgenacfmt, \genacrfullformat and its variants.

Note that \setacronymstyle redefines \glsentryfull and \acrfullfmt
to use \genacrfullformat (and similarly for the plural and upper case
variants). If this isn’t appropriate for the style (as in the case of styles like
footnote and dua) \newacronymstyle should redefine these commands
within 〈definitions〉.

196



13 Acronyms and Other Abbreviations

Within \newacronymstyle’s 〈definitions〉 argument you can also rede-
fine

\GenericAcronymFields

\GenericAcronymFields

This is a list of additional fields to be set in \newacronym. You can use
the following token registers to access the entry label, long form and short
form: \glslabeltok, \glslongtok and \glsshorttok. As with all\glslabeltok

\glslongtok

\glsshorttok

TEX registers, you can access their values by preceding the register with
\the. For example, the long-short style does:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%

which sets the description field to the long form of the acronym whereas the
long-short-desc style does:

\renewcommand*{\GenericAcronymFields}{}%

since the description needs to be specified by the user.
It may be that you want to define a new acronym style that’s based on an

existing style. Within 〈display〉 you can use

\GlsUseAcrEntryDispStyle

\GlsUseAcrEntryDispStyle{〈style name〉}

to use the 〈display〉 definition from the style given by 〈style name〉. Within
〈definitions〉 you can use

\GlsUseAcrStyleDefs

\GlsUseAcrStyleDefs{〈style name〉}

to use the 〈definitions〉 from the style given by 〈style name〉. For example,
the long-sc-short acronym style is based on the long-short style with minor
modifications (remember to use ## instead of # within 〈definitions〉):

\newacronymstyle{long-sc-short}%
{% use the same display as "long-short"

\GlsUseAcrEntryDispStyle{long-short}%
}%
{% use the same definitions as "long-short"

\GlsUseAcrStyleDefs{long-short}%
% Minor modifications:
\renewcommand{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\glspluralsuffix}}%

}

197



13 Acronyms and Other Abbreviations

(\glstextup is used to cancel the effect of \textsc. This defaults to\glstextup

\textulc, if defined, otherwise \textup. For example, the plural of SVM

should be rendered as SVMs rather than SVMS.)

Example 23 (Defining a Custom Acronym Style)

Suppose I want my acronym on first use to have the short form in the
text and the long form with the description in a footnote. Suppose also
that I want the short form to be put in small caps in the main body of the
document, but I want it in normal capitals in the list of acronyms. In my
list of acronyms, I want the long form as the name with the short form in
brackets followed by the description. That is, in the text I want \gls on first
use to display:

\textsc{〈abbrv〉}\footnote{〈long〉: 〈description〉}

on subsequent use:

\textsc{〈abbrv〉}

and in the list of acronyms, each entry will be displayed in the form:

〈long〉 (〈short〉) 〈description〉

Let’s suppose it’s possible that I may have a mixed glossary. I can check
this in the second argument of \newacronymstyle using:

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%

This will use \glsgenentryfmt if the entry isn’t an acronym, other-
wise it will use \glsgenacfmt. The third argument (〈definitions〉) of
\newacronymstyle needs to redefine \genacrfullformat etc so that
the first use displays the short form in the text with the long form in a foot-
note followed by the description. This is done as follows (remember to use
## instead of #):

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%

}%
% First letter upper case, singular first use:
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%

}%

198



13 Acronyms and Other Abbreviations

% No case change, plural first use:
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
}%

% First letter upper case, plural first use:
\renewcommand*{\Genplacrfullformat}[2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
}%

If you think it inappropriate for the short form to be capitalised at the start
of a sentence you can change the above to:

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%

% No case change, plural first use:
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
}%

\let\Genacrfullformat\genacrfullformat
\let\Genplacrfullformat\genplacrfullformat

Another variation is to use \Glsentrylong and \Glsentrylongpl in
the footnote instead of \glsentrylong and \glsentrylongpl.

Now let’s suppose that commands such as \glsentryfull and \acrfull
shouldn’t use a footnote, but instead use the format: 〈long〉 (〈short〉). This
means that the style needs to redefine \glsentryfull, \acrfullfmt
and their plural and upper case variants.

First, the non-linking commands:

\renewcommand*{\glsentryfull}[1]{%
\glsentrylong{##1}\space

(\acronymfont{\glsentryshort{##1}})%
}%
\renewcommand*{\Glsentryfull}[1]{%

\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\glsentryfullpl}[1]{%

\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
\renewcommand*{\Glsentryfullpl}[1]{%

\Glsentrylongpl{##1}\space

199



13 Acronyms and Other Abbreviations

(\acronymfont{\glsentryshortpl{##1}})%
}%

Now for the linking commands:

\renewcommand*{\acrfullfmt}[3]{%
\glslink[##1]{##2}{%
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%
\renewcommand*{\Acrfullfmt}[3]{%

\glslink[##1]{##2}{%
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%
\renewcommand*{\ACRfullfmt}[3]{%

\glslink[##1]{##2}{%
\MakeTextUppercase{%

\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%

}%
\renewcommand*{\acrfullplfmt}[3]{%

\glslink[##1]{##2}{%
\glsentrylongpl{##2}##3\space

(\acronymfont{\glsentryshortpl{##2}})%
}%

}%
\renewcommand*{\Acrfullplfmt}[3]{%

\glslink[##1]{##2}{%
\Glsentrylongpl{##2}##3\space

(\acronymfont{\glsentryshortpl{##2}})%
}%

}%
\renewcommand*{\ACRfullplfmt}[3]{%

\glslink[##1]{##2}{%
\MakeTextUppercase{%

\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

}%
}%

}%

(This may cause problems with long hyperlinks, in which case adjust the
definitions so that, for example, only the short form is inside the argument
of \glslink.)

200



13 Acronyms and Other Abbreviations

The style also needs to redefine \acronymsort so that the acronyms are
sorted according to the long form:

\renewcommand*{\acronymsort}[2]{##2}%

If you prefer them to be sorted according to the short form you can change
the above to:

\renewcommand*{\acronymsort}[2]{##1}%

The acronym font needs to be set to \textsc and the plural suffix adjusted
so that the “s” suffix in the plural short form doesn’t get converted to small-
caps:

\renewcommand*{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\glspluralsuffix}}%

There are a number of ways of dealing with the format in the list of
acronyms. The simplest way is to redefine \acronymentry to the long
form followed by the upper case short form in parentheses:

\renewcommand*{\acronymentry}[1]{%
\Glsentrylong{##1}\space

(\MakeTextUppercase{\glsentryshort{##1}})}%

(I’ve used \Glsentrylong instead of \glsentrylong to capitalise the
name in the glossary.)

An alternative approach is to set \acronymentry to just the long form
and redefine \GenericAcronymFields to set the symbol key to the short
form and use a glossary style that displays the symbol in parentheses after
the name (such as the tree style) like this:

\renewcommand*{\acronymentry}[1]{\Glsentrylong{##1}}%
\renewcommand*{\GenericAcronymFields}{%

symbol={\protect\MakeTextUppercase{\the\glsshorttok}}}%

I’m going to use the first approach and set \GenericAcronymFields to
do nothing:

\renewcommand*{\GenericAcronymFields}{}%

Finally, this style needs to switch off hyperlinks on first use to avoid
nested links:

\glshyperfirstfalse

Putting this all together:

\newacronymstyle{custom-fn}% new style name
{%

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%

201



13 Acronyms and Other Abbreviations

}%
{%
\renewcommand*{\GenericAcronymFields}{}%
\glshyperfirstfalse
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
}%
\renewcommand*{\Genplacrfullformat}[2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
}%
\renewcommand*{\glsentryfull}[1]{%

\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\Glsentryfull}[1]{%

\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\glsentryfullpl}[1]{%

\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
\renewcommand*{\Glsentryfullpl}[1]{%

\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
\renewcommand*{\acrfullfmt}[3]{%

\glslink[##1]{##2}{%
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%
\renewcommand*{\Acrfullfmt}[3]{%

\glslink[##1]{##2}{%
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%
\renewcommand*{\ACRfullfmt}[3]{%

202



13 Acronyms and Other Abbreviations

\glslink[##1]{##2}{%
\MakeTextUppercase{%

\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
}%

}%
\renewcommand*{\acrfullplfmt}[3]{%
\glslink[##1]{##2}{%
\glsentrylongpl{##2}##3\space

(\acronymfont{\glsentryshortpl{##2}})%
}%

}%
\renewcommand*{\Acrfullplfmt}[3]{%

\glslink[##1]{##2}{%
\Glsentrylongpl{##2}##3\space

(\acronymfont{\glsentryshortpl{##2}})%
}%

}%
\renewcommand*{\ACRfullplfmt}[3]{%

\glslink[##1]{##2}{%
\MakeTextUppercase{%

\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

}%
}%

}%
\renewcommand*{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\glspluralsuffix}}%
\renewcommand*{\acronymsort}[2]{##2}%
\renewcommand*{\acronymentry}[1]{%
\Glsentrylong{##1}\space

(\MakeTextUppercase{\glsentryshort{##1}})}%
}

Now I need to specify that I want to use this new style:

\setacronymstyle{custom-fn}

I also need to use a glossary style that suits this acronym style, for example
altlist:

\setglossarystyle{altlist}

Once the acronym style has been set, I can define my acronyms:

\newacronym[description={set of tags for use in
developing hypertext documents}]{html}{html}{Hyper
Text Markup Language}

203



13 Acronyms and Other Abbreviations

\newacronym[description={language used to describe the
layout of a document written in a markup language}]{css}
{css}{Cascading Style Sheet}

The sample file sample-custom-acronym.tex illustrates this exam-
ple.

Example 24 (Italic and Upright Abbreviations)

Suppose I want to have some abbreviations in italic and some that just
use the surrounding font. Hard-coding this into the 〈short〉 argument of
\newacronym can cause complications.

This example uses \glsaddstoragekey to add an extra field that can
be used to store the formatting declaration (such as \em).

\glsaddstoragekey{font}{}{\entryfont}

This defines a new field/key called font, which defaults to nothing if it’s
not explicitly set. This also defines a command called \entryfont that’s
analogous to \glsentrytext. A new style is then created to format ab-
breviations that access this field.

There are two ways to do this. The first is to create a style that doesn’t use
\glsgenacfmt but instead provides a modified version that doesn’t use
\acronymfont{〈short〉} but instead uses {\entryfont{\glslabel}〈short〉}.
The full format given by commands such as \genacrfullformat need to
be similarly adjusted. For example:

\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%
}%

This will deal with commands like \gls but not commands like \acrshort
which still use \acronymfont. Another approach is to redefine \acronymfont
to look up the required font declaration. Since \acronymfont doesn’t
take the entry label as an argument, the following will only work if
\acronymfont is used in a context where the label is provided by \glslabel.
This is true in \gls, \acrshort and \acrfull. The redefinition is now:

\renewcommand*{\acronymfont}[1]{{\entryfont{\glslabel}#1}}%

So the new style can be defined as:

\newacronymstyle{long-font-short}
{%

\GlsUseAcrEntryDispStyle{long-short}%

204



13 Acronyms and Other Abbreviations

}
{%

\GlsUseAcrStyleDefs{long-short}%
\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%
}%
\renewcommand*{\Genacrfullformat}[2]{%
\Glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%
}%
\renewcommand*{\genplacrfullformat}[2]{%
\glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshortpl{##1}})%
}%
\renewcommand*{\Genplacrfullformat}[2]{%
\Glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshortpl{##1}})%
}%
\renewcommand*{\acronymfont}[1]{{\entryfont{\glslabel}##1}}%
\renewcommand*{\acronymentry}[1]{{\entryfont{##1}\glsentryshort{##1}}}%

}

Remember the style needs to be set before defining the entries:

\setacronymstyle{long-font-short}

The complete document is contained in the sample file sample-font-abbr.tex.

Some writers and publishing houses have started to drop full stops (pe-
riods) from upper case initials but may still retain them for lower case ab-
breviations, while others may still use them for both upper and lower case.
This can cause complications. Chapter 12 of The TEXbook discusses the spac-
ing between words but, briefly, the default behaviour of TEX is to assume
that an upper case character followed by a full stop and space is an abbre-
viation, so the space is the default inter-word space whereas a lower case
character followed by a full stop and space is a word occurring at the end
of a sentence. In the event that this isn’t true, you need to make a manual
adjustment using (back slash space) in place of just a space character for
an inter-word mid-sentence space and use \@ before the full stop to indicate
the end of the sentence.

For example:

I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

205



13 Acronyms and Other Abbreviations

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The spacing is more noticeable with the typewriter font:

\ttfamily
I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The lower case letter at the end of “B.Sc.” is confusing TEX into thinking that
the full stop after it marks the end of the sentence. Whereas the upper case
letter at the end of “Ph.D.” has confused TEX into thinking that the following
full stop is just part of the abbreviation. These can be corrected:

I was awarded a B.Sc.\ and a Ph.D\@. (From the same place.)

This situation is a bit problematic for glossaries. The full stops can form
part of the 〈short〉 argument of \newacronym and the B.Sc.\ part can be
dealt with by remembering to add \ (for example, \gls{bsc}\ ) but the
end of sentence case is more troublesome as you need to omit the sentence
terminating full stop (to avoid two dots) which can make the source code
look a little strange but you also need to adjust the space factor, which is
usually done by inserting \@ before the full stop.

The next example shows one way of achieving this. (Note that the sup-
plemental glossaries-extra package provides a much simpler way of doing
this, which you may prefer to use. See the initialisms example.)

Example 25 (Abbreviations with Full Stops (Periods))

As from version 4.16, there’s now a hook (\glspostlinkhook) that’s
called at the very end of the \gls-like and \glstext-like commands. This
can be redefined to check if the following character is a full stop. The amsgen
package (which is automatically loaded by glossaries) provides an internal
command called \new@ifnextchar that can be used to determine if the
given character appears next. (For more information see the amsgen docu-
mentation.)

It’s possible that I may also want acronyms or contractions in my docu-
ment, so I need some way to differentiate between them. Here I’m going
to use the same method as in example 4 where a new field is defined to
indicate the type of abbreviation:

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

\newcommand*{\newabbr}[1][]{\newacronym[abbrtype=initials,#1]}

206

http://www.dickimaw-books.com/gallery/sample-initialisms.shtml


13 Acronyms and Other Abbreviations

Now I just use \newacronym for the acronyms, for example,

\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

and my new command \newabbr for initials, for example,

\newabbr{eg}{e.g.}{exempli gratia}
\newabbr{ie}{i.e.}{id est}
\newabbr{bsc}{B.Sc.}{Bachelor of Science}
\newabbr{ba}{B.A.}{Bachelor of Arts}
\newabbr{agm}{A.G.M.}{annual general meeting}

Within \glspostlinkhook the entry’s label can be accessed using \glslabel
and \ifglsfieldeq can be used to determine if the current entry has the
new abbrtype field set to “initials”. If it doesn’t, then nothing needs to
happen, but if it does, a check is performed to see if the next character is
a full stop. If it is, this signals the end of a sentence otherwise it’s mid-
sentence.

Remember that internal commands within the document file (rather than
in a class or package) need to be placed between \makeatletter and
\makeatother:

\makeatletter
\renewcommand{\glspostlinkhook}{%
\ifglsfieldeq{\glslabel}{abbrtype}{initials}%
{\new@ifnextchar.\doendsentence\doendword}
{}%

}
\makeatother

In the event that a full stop is found \doendsentence is performed but it
will be followed by the full stop, which needs to be discarded. Otherwise
\doendword will be done but it won’t be followed by a full stop so there’s
nothing to discard. The definitions for these commands are:

\newcommand{\doendsentence}[1]{\spacefactor=10000{}}
\newcommand{\doendword}{\spacefactor=1000{}}

Now, I can just do \gls{bsc} mid-sentence and \gls{phd}. at the end
of the sentence. The terminating full stop will be discarded in the latter case,
but it won’t be discarded in, say, \gls{laser}. as that doesn’t have the
abbrtype field set to “initials”.

This also works on first use when the style is set to one of the 〈long〉
(〈short〉) styles but it will fail with the 〈short〉 (〈long〉) styles as in this case the
terminating full stop shouldn’t be discarded. Since \glspostlinkhook is
used after the first use flag has been unset for the entry, this can’t be fixed
by simply checking with \ifglsused. One possible solution to this is to

207



13 Acronyms and Other Abbreviations

redefine \glslinkpostsetkeys to check for the first use flag and define
a macro that can then be used in \glspostlinkhook.

The other thing to consider is what to do with plurals. One possibility is
to check for plural use within \doendsentence (using \glsifplural)
and put the full stop back if the plural has been used.

The complete document is contained in the sample file sample-dot-abbr.tex.

13.2 Displaying the List of Acronyms

The list of acronyms is just like any other type of glossary and can be dis-
played on its own using:

Option 1:

\printnoidxglossary[type=\acronymtype]

Options 2 and 3:

\printglossary[type=\acronymtype]

(If you use the acronym package option you can also use

\printacronyms[〈options〉]

as a synonym for

\printglossary[type=\acronymtype,〈options〉]

See Section 2.5.)

Alternatively the list of acronyms can be displayed with all the other glos-
saries using:

Option 1: \printnoidxglossaries

Options 2 and 3: \printglossaries

However, care must be taken to choose a glossary style that’s appropriate
to your acronym style. Alternatively, you can define your own custom style
(see Section 15.2 for further details).

208



13 Acronyms and Other Abbreviations

13.3 Upgrading From the glossary Package

Users of the obsolete glossary package may recall that the syntax used to de-
fine new acronyms has changed with the replacement glossaries package. In
addition, the old glossary package created the command \〈acr-name〉 when
defining the acronym 〈acr-name〉.

In order to facilitate migrating from the old package to the new one, the
glossaries package1 provides the command:

\oldacronym

\oldacronym[〈label〉]{〈abbrv〉}{〈long〉}{〈key-val list〉}

This uses the same syntax as the glossary package’s method of defining
acronyms. It is equivalent to:

\newacronym[〈key-val list〉]{〈label〉}{〈abbrv〉}{〈long〉}

In addition, \oldacronym also defines the commands \〈label〉, which is
equivalent to \gls{〈label〉}, and \〈label〉*, which is equivalent to \Gls
{〈label〉}. If 〈label〉 is omitted, 〈abbrv〉 is used. Since commands names must
consist only of alphabetical characters, 〈label〉 must also only consist of al-
phabetical characters. Note that \〈label〉 doesn’t allow you to use the first
optional argument of \gls or \Gls — you will need to explicitly use \gls
or \Gls to change the settings.

Recall that, in general, LATEX ignores spaces following command names
consisting of alphabetical characters. This is also true for \〈label〉 unless
you additionally load the xspace package, but be aware that there are
some issues with using xspace.2

The glossaries package doesn’t load the xspace package since there are
both advantages and disadvantages to using \xspace in \〈label〉. If you
don’t use the xspace package you need to explicitly force a space using \
(backslash space) however you can follow \〈label〉 with additional text in
square brackets (the final optional argument to \gls). If you use the xspace
package you don’t need to escape the spaces but you can’t use the optional
argument to insert text (you will have to explicitly use \gls).

To illustrate this, suppose I define the acronym “abc” as follows:

\oldacronym{abc}{example acronym}{}

1as from version 1.18
2See David Carlisle’s explanation in http://tex.stackexchange.com/questions/
86565/drawbacks-of-xspace

209

http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace
http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace


13 Acronyms and Other Abbreviations

This will create the command \abc and its starred version \abc*. Ta-
ble 13.2 illustrates the effect of \abc (on subsequent use) according to
whether or not the xspace package has been loaded. As can be seen from
the final row in the table, the xspace package prevents the optional argu-
ment from being recognised.

Table 13.2: The effect of using xspace with \oldacronym

Code With xspace Without xspace
\abc. abc. abc.
\abc xyz abc xyz abcxyz
\abc\ xyz abc xyz abc xyz
\abc* xyz Abc xyz Abc xyz
\abc[’s] xyz abc [’s] xyz abc’s xyz

210



14 Unsetting and Resetting Entry Flags

When using the \gls-like commands it is possible that you may want to
use the value given by the first key, even though you have already used the
glossary entry. Conversely, you may want to use the value given by the text
key, even though you haven’t used the glossary entry. The former can be
achieved by one of the following commands:

\glsreset

\glsreset{〈label〉}

\glslocalreset

\glslocalreset{〈label〉}

while the latter can be achieved by one of the following commands:

\glsunset

\glsunset{〈label〉}

\glslocalunset

\glslocalunset{〈label〉}

You can also reset or unset all entries for a given glossary or list of glossaries
using:

\glsresetall

\glsresetall[〈glossary list〉]

\glslocalresetall

\glslocalresetall[〈glossary list〉]

\glsunsetall

\glsunsetall[〈glossary list〉]

\glslocalunsetall

211



14 Unsetting and Resetting Entry Flags

\glslocalunsetall[〈glossary list〉]

where 〈glossary list〉 is a comma-separated list of glossary labels. If omit-
ted, all defined glossaries are assumed (except for the ignored ones). For
example, to reset all entries in the main glossary and the list of acronyms:

\glsresetall[main,acronym]

You can determine whether an entry’s first use flag is set using:

\ifglsused

\ifglsused{〈label〉}{〈true part〉}{〈false part〉}

where 〈label〉 is the label of the required entry. If the entry has been used,
〈true part〉 will be done, otherwise 〈false part〉 will be done.

Be careful when using \gls-like commands within an environment or
command argument that gets processed multiple times as it can cause
unwanted side-effects when the first use displayed text is different from
subsequent use.

For example, the frame environment in beamer processes its argument for
each overlay. This means that the first use flag will be unset on the first
overlay and subsequent overlays will use the non-first use form.

Consider the following example:

\documentclass{beamer}

\usepackage{glossaries}

\newacronym{svm}{SVM}{support vector machine}

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

\end{document}

On the first overlay, \gls{svm} produces “support vector machine
(SVM)” and then unsets the first use flag. When the second overlay is pro-

212



14 Unsetting and Resetting Entry Flags

cessed, \gls{svm} now produces “SVM”, which is unlikely to be the de-
sired effect. I don’t know anyway around this and I can only offer two
suggestions.

Firstly, unset all acronyms at the start of the document and explicitly use
\acrfull when you want the full version to be displayed:

\documentclass{beamer}

\usepackage{glossaries}

\newacronym{svm}{SVM}{support vector machine}

\glsunsetall

\begin{document}
\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \acrfull{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}
\end{document}

Secondly, explicitly reset each acronym on first use:

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \glsreset{svm}\gls{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

These are non-optimal, but the beamer class is too complex for me to pro-
vide a programmatic solution. Other potentially problematic environments
are some tabular-like environments (but not tabular itself) that process the
contents in order to work out the column widths and then reprocess the
contents to do the actual typesetting.

The amsmath environments, such as align, also process their contents mul-
tiple times, but the glossaries package now checks for this. For tabularx, you
need to explicitly patch it by placing \glspatchtabularx in the preamble
(or anywhere before the problematic use of tabularx).

213



14 Unsetting and Resetting Entry Flags

14.1 Counting the Number of Times an Entry has been Used
(First Use Flag Unset)

As from version 4.14, it’s now possible to keep track of how many times an
entry is used. That is, how many times the first use flag is unset. Note that
the supplemental glossaries-extra package improves this function and also
provides per-unit counting, which isn’t available with the glossaries pack-
age.

This function is disabled by default as it adds extra overhead to the
document build time and also switches \newglossaryentry (and
therefore \newacronym) into a preamble-only command.

To enable this function, use

\glsenableentrycount

\glsenableentrycount

before defining your entries. This adds two extra (internal) fields to entries:
currcount and prevcount.

The currcount field keeps track of how many times \glsunset is used
within the document. A local unset (using \glslocalunset) performs
a local rather than global increment to currcount. Remember that not all
commands use \glsunset. Only the \gls-like commands do this. The
reset commands \glsreset and \glslocalreset reset this field back to
zero (where \glslocalreset performs a local change).

The prevcount field stores the final value of the currcount field from
the previous run. This value is read from the .aux file at the beginning of the
document environment.

You can access these fields using

\glsentrycurrcount

\glsentrycurrcount{〈label〉}

for the currcount field, and

\glsentryprevcount

\glsentryprevcount{〈label〉}

for the prevcount field. These commands are only defined if you have
used \glsenableentrycount.

For example:

\documentclass{article}

214



14 Unsetting and Resetting Entry Flags

\usepackage{glossaries}
\makeglossaries

\glsenableentrycount

\newglossaryentry{apple}{name=apple,description={a fruit}}

\begin{document}
Total usage on previous run: \glsentryprevcount{apple}.

\gls{apple}. \gls{apple}. \glsadd{apple}\glsentrytext{apple}.
\glslink{apple}{apple}. \glsdisp{apple}{apple}. \Gls{apple}.

Number of times apple has been used: \glsentrycurrcount{apple}.
\end{document}

On the first LATEX run, \glsentryprevcount{apple} produces 0. At the
end of the document, \glsentrycurrcount{apple} produces 4. This
is because the only commands that have incremented the entry count are
those that use \glsunset. That is: \gls, \glsdisp and \Gls. The other
commands used in the above example, \glsadd, \glsentrytext and
\glslink, don’t use \glsunset so they don’t increment the entry count.
On the next LATEX run, \glsentryprevcount{apple} now produces 4 as
that was the value of the currcount field for the apple entry at the end of
the document on the previous run.

When you enable the entry count using \glsenableentrycount, you
also enable the following commands:

\cgls

\cgls[〈options〉]{〈label〉}[〈insert〉]

(no case-change, singular)

\cglspl

\cglspl[〈options〉]{〈label〉}[〈insert〉]

(no case-change, plural)

\cGls

\cGls[〈options〉]{〈label〉}[〈insert〉]

(first letter uppercase, singular), and

\cGlspl

\cGlspl[〈options〉]{〈label〉}[〈insert〉]

215



14 Unsetting and Resetting Entry Flags

(first letter uppercase, plural). These all have plus and starred variants like
the analogous \gls, \glspl, \Gls and \Glspl commands.

If you don’t use \glsenableentrycount, these commands behave like
\gls, \glspl, \Gls and \Glspl, respectively, only there will be a warn-
ing that you haven’t enabled entry counting. If you have enabled en-
try counting with \glsenableentrycount then these commands test if
\glsentryprevcount{〈label〉} equals 1. If it doesn’t then the analogous
\gls etc will be used. If it does, then the first optional argument will be
ignored and

〈cs format〉{〈label〉}{〈insert〉}\glsunset{〈label〉}

will be performed, where 〈cs format〉 is a command that takes two ar-
guments. The command used depends whether you have used \cgls,
\cglspl, \cGls or \cGlspl.

\cglsformat

\cglsformat{〈label〉}{〈insert〉}

This command is used by \cgls and defaults to

\glsentrylong{〈label〉}〈insert〉

if the entry given by 〈label〉 has a long form or

\glsentryfirst{〈label〉}〈insert〉

otherwise.

\cglsplformat

\cglsplformat{〈label〉}{〈insert〉}

This command is used by \cglspl and defaults to

\glsentrylongpl{〈label〉}〈insert〉

if the entry given by 〈label〉 has a long form or

\glsentryfirstplural{〈label〉}〈insert〉

otherwise.

\cGlsformat

\cGlsformat{〈label〉}{〈insert〉}

This command is used by \cGls and defaults to

\Glsentrylong{〈label〉}〈insert〉

216



14 Unsetting and Resetting Entry Flags

if the entry given by 〈label〉 has a long form or

\Glsentryfirst{〈label〉}〈insert〉

otherwise.

\cGlsplformat

\cGlsplformat{〈label〉}{〈insert〉}

This command is used by \cGlspl and defaults to

\Glsentrylongpl{〈label〉}〈insert〉

if the entry given by 〈label〉 has a long form or

\Glsentryfirstplural{〈label〉}〈insert〉

otherwise.
This means that if the previous count for the given entry was 1, the entry

won’t be hyperlinked with the \cgls-like commands and they won’t add
a line to the external glossary file. If you haven’t used any of the other
commands that add information to glossary file (such as \glsadd or the
\glstext-like commands) then the entry won’t appear in the glossary.

Remember that since these commands use \glsentryprevcount you
need to run LATEX twice to ensure they work correctly. The document build
order is now (at least): (pdf)latex, (pdf)latex, makeglossaries,
(pdf)latex.

Example 26 (Don’t index entries that are only used once)

In this example, the abbreviations that have only been used once (on the
previous run) only have their long form shown with \cgls.

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[acronym]{glossaries}
\makeglossaries

\glsenableentrycount

\setacronymstyle{long-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}{relational database management system}

217



14 Unsetting and Resetting Entry Flags

\newacronym{rdsms}{RDSMS}{relational data stream management system}

\begin{document}
These entries are only used once: \cgls{sql}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

After a complete document build (latex, latex, makeglossaries,
latex) the list of abbrevaitions only includes the entries HTML, CSS and
RDSMS. The entries SQL, RDBMS and XML only have their long forms dis-
played and don’t have a hyperlink.

Remember that if you don’t like typing \cgls you can create a synonym.
For example

\let\ac\cgls

218



15 Glossary Styles

Glossaries vary from lists that simply contain a symbol with a terse de-
scription to lists of terms or phrases with lengthy descriptions. Some glos-
saries may have terms with associated symbols. Some may have hierarchi-
cal entries. There is therefore no single style that fits every type of glos-
sary. The glossaries package comes with a number of pre-defined glossary
styles, described in Section 15.1. You can choose one of these that best suits
your type of glossary or, if none of them suit your document, you can de-
fined your own style (see Section 15.2). There are some examples of glos-
sary styles available at http://www.dickimaw-books.com/gallery/
#glossaries.

The glossary style can be set using the style key in the optional argument
to \printnoidxglossary (Option 1) or \printglossary (Options 2
and 3) or using the command:

\setglossarystyle

\setglossarystyle{〈style-name〉}

(before the glossary is displayed).
Some of the predefined glossary styles may also be set using the style

package option, it depends if the package in which they are defined is auto-
matically loaded by the glossaries package.

You can use the lorum ipsum dummy entries provided in the accompa-
nying example-glossaries-*.tex files (described in Section 1.3) to test
the different styles.

15.1 Predefined Styles

The predefined styles can accommodate numbered level 0 (main) and
level 1 entries. See the package options entrycounter, counterwithin and suben-
trycounter described in Section 2.3. There is a summary of available styles in
table 15.1. You can view samples of all the predefined styles at http://
www.dickimaw-books.com/gallery/glossaries-styles/. Note
that glossaries-extra provides additional styles in the supplementary pack-
ages glossary-bookindex and glossary-longnoloc. See the glossaries-extra manual
for further details.

219

http://www.dickimaw-books.com/gallery/#glossaries
http://www.dickimaw-books.com/gallery/#glossaries
http://www.dickimaw-books.com/gallery/glossaries-styles/
http://www.dickimaw-books.com/gallery/glossaries-styles/


15 Glossary Styles

Note that the group styles (such as listgroup) will have unexpected
results if used with the sort=def or sort=use options. If you don’t sort
your entries alphabetically, it’s best to set the nogroupskip package option
to prevent odd vertical gaps appearing.

The group title is obtained using \glsgetgrouptitle{〈label〉}, which
is described in Section 15.2.

Table 15.1: Glossary Styles. An asterisk in the style name indicates anything
that matches that doesn’t match any previously listed style (e.g.
long3col* matches long3col, long3colheader, long3colborder and
long3colheaderborder). A maximum level of 0 indicates a flat glos-
sary (sub-entries are displayed in the same way as main entries).
Where the maximum level is given as — there is no limit, but
note that makeindex (Option 2) imposes a limit of 2 sub-levels.
If the homograph column is checked, then the name is not dis-
played for sub-entries. If the symbol column is checked, then the
symbol will be displayed.

Style Maximum Level Homograph Symbol
listdotted 0
sublistdotted 1
list* 1 3

altlist* 1 3

long*3col* 1 3

long4col* 1 3 3

altlong*4col* 1 3 3

long* 1 3

super*3col* 1 3

super4col* 1 3 3

altsuper*4col* 1 3 3

super* 1 3

*index* 2 3

treenoname* — 3 3

*alttree* — 3

*tree* — 3

inline 1 3

The tabular-like styles that allow multi-line descriptions and page lists
use the length \glsdescwidth to set the width of the description column\glsdescwidth

and the length \glspagelistwidth to set the width of the page list col-\glspagelistwidth

220



15 Glossary Styles

umn.1 These will need to be changed using \setlength if the glossary is
too wide. Note that the long4col and super4col styles (and their header and
border variations) don’t use these lengths as they are designed for single
line entries. Instead you should use the analogous altlong4col and altsuper4col
styles. If you want to explicitly create a line-break within a multi-line de-
scription in a tabular-like style it’s better to use \newline instead of \\.

Remember that a cell within a tabular-like environment can’t be broken
across a page, so even if a tabular-like style, such as long, allows
multilined descriptions, you’ll probably encounter page-breaking
problems if you have entries with long descriptions. You may want to
consider using the alttree style instead.

Note that if you use the style key in the optional argument to \printnoidxglossary
(Option 1) or \printglossary (Options 2 and 3), it will override any pre-
vious style settings for the given glossary, so if, for example, you do

\renewcommand*{\glsgroupskip}{}
\printglossary[style=long]

then the new definition of \glsgroupskip will not have an affect for
this glossary, as \glsgroupskip is redefined by style=long. Likewise,
\setglossarystyle will also override any previous style definitions, so,
again

\renewcommand*{\glsgroupskip}{}
\setglossarystyle{long}

will reset \glsgroupskip back to its default definition for the named glos-
sary style (long in this case). If you want to modify the styles, either use
\newglossarystyle (described in the next section) or make the modifi-
cations after \setglossarystyle, e.g.:

\setglossarystyle{long}
\renewcommand*{\glsgroupskip}{}

As from version 3.03, you can now use the package option nogroupskip to
suppress the gap between groups for the default styles instead of redefining
\glsgroupskip.

All the styles except for the three- and four-column styles and the listdotted
style use the command

\glspostdescription

\glspostdescription

1These lengths will not be available if you use both the nolong and nosuper package options
or if you use the nostyles package option unless you explicitly load the relevant package.

221



15 Glossary Styles

after the description. This simply displays a full stop by default. To elim-
inate this full stop (or replace it with something else, say, a comma) you
will need to redefine \glspostdescription before the glossary is dis-
played. Alternatively, you can suppress it for a given entry by placing
\nopostdesc in the entry’s description. Note that \longnewglossaryentry
puts \nopostdesc at the end of the description. The glossaries-extra pack-
age provides a starred version that doesn’t.

As from version 3.03 you can now use the package option nopostdot
to suppress this full stop. This is the better option if you want to use
the glossaries-extra package. The glossaries-extra-stylemods package provides
some adjustments some of to the predefined styles listed here, allowing for
greater flexibility. See the glossaries-extra documentation for further details.

15.1.1 List Styles

The styles described in this section are all defined in the package glossary-
list. Since they all use the description environment, they are governed by the
same parameters as that environment. These styles all ignore the entry’s
symbol. Note that these styles will automatically be available unless you
use the nolist or nostyles package options.

Note that, except for the listdotted style, these list styles are incompatible
with classicthesis. They may also be incompatible with other classes or
packages that modify the description environment.

list The list style uses the description environment. The entry name is placed
in the optional argument of the \item command (so it will usu-
ally appear in bold by default). The description follows, and then
the associated number list for that entry. The symbol is ignored. If
the entry has child entries, the description and number list follows
(but not the name) for each child entry. Groups are separated using
\indexspace.

The closest matching non-list style is the index style.

listgroup The listgroup style is like list but the glossary groups have headings
obtained using \glsgetgrouptitle{〈label〉}, which is described in
Section 15.2.

listhypergroup The listhypergroup style is like listgroup but has a navigation
line at the start of the glossary with links to each group that is present
in the glossary. This requires an additional run through LATEX to ensure
the group information is up to date. In the navigation line, each group
is separated by

222



15 Glossary Styles

\glshypernavsep

\glshypernavsep

which defaults to a vertical bar with a space on either side. For exam-
ple, to simply have a space separating each group, do:

\renewcommand*{\glshypernavsep}{\space}

Note that the hyper-navigation line is now (as from version 1.14) set
inside the optional argument to \item instead of after it to prevent a
spurious space at the start. This can cause a problem if the navigation
line is too long. As from v4.22, if you need to adjust this, you can
redefine

\glslistnavigationitem

\glslistnavigationitem{〈navigation line〉}

The default definition is \item[〈navigation line〉] but may be rede-
fined independently of setting the style. For example:

\renewcommand*{\glslistnavigationitem}[1]{\item \textbf{#1}}

You may prefer to use the tree-like styles, such as treehypergroup in-
stead.

altlist The altlist style is like list but the description starts on the line following
the name. (As with the list style, the symbol is ignored.) Each child
entry starts a new line, but as with the list style, the name associated
with each child entry is ignored.

The closest matching non-list style is the index style with the following
adjustment:

\renewcommand{\glstreepredesc}{%
\glstreeitem\parindent\hangindent}

altlistgroup The altlistgroup style is like altlist but the glossary groups have
headings.

altlisthypergroup The altlisthypergroup style is like altlistgroup but has a set of
links to the glossary groups. The navigation line is the same as that
for listhypergroup, described above.

223



15 Glossary Styles

listdotted This style uses the description environment.2 Each entry starts with
\item[], followed by the name followed by a dotted line, followed
by the description. Note that this style ignores both the number list
and the symbol. The length

\glslistdottedwidth

\glslistdottedwidth

governs where the description should start. This is a flat style, so child
entries are formatted in the same way as the parent entries.

A non-list alternative is to use the index style with

\renewcommand{\glstreepredesc}{\dotfill}
\renewcommand{\glstreechildpredesc}{\dotfill}

Note that this doesn’t use \glslistdottedwidth and causes the
description to be flush-right and will display the symbol, if provided.
(It also doesn’t suppress the number list, but that can be achieved with
the nonumberlist option.)

sublistdotted This is a variation on the listdotted style designed for hierarchi-
cal glossaries. The main entries have just the name displayed. The
sub entries are displayed in the same manner as listdotted. Unlike the
listdotted style, this style is incompatible with classicthesis.

15.1.2 Longtable Styles

The styles described in this section are all defined in the package glossary-
long. Since they all use the longtable environment, they are governed by the
same parameters as that environment. Note that these styles will automat-
ically be available unless you use the nolong or nostyles package options.
These styles fully justify the description and page list columns. If you want
ragged right formatting instead, use the analogous styles described in Sec-
tion 15.1.3. If you want to incorporate rules from the booktabs package, try
the styles described in Section 15.1.4.

long The long style uses the longtable environment (defined by the longtable
package). It has two columns: the first column contains the entry’s
name and the second column contains the description followed by the
number list. The entry’s symbol is ignored. Sub groups are separated
with a blank row. The width of the first column is governed by the

2This style was supplied by Axel Menzel.

224



15 Glossary Styles

widest entry in that column. The width of the second column is gov-
erned by the length \glsdescwidth. Child entries have a similar
format to the parent entries except that their name is suppressed.

longborder The longborder style is like long but has horizontal and vertical
lines around it.

longheader The longheader style is like long but has a header row.

longheaderborder The longheaderborder style is like longheader but has hori-
zontal and vertical lines around it.

long3col The long3col style is like long but has three columns. The first col-
umn contains the entry’s name, the second column contains the de-
scription and the third column contains the number list. The entry’s
symbol is ignored. The width of the first column is governed by the
widest entry in that column, the width of the second column is gov-
erned by the length \glsdescwidth, and the width of the third col-
umn is governed by the length \glspagelistwidth.

long3colborder The long3colborder style is like the long3col style but has hori-
zontal and vertical lines around it.

long3colheader The long3colheader style is like long3col but has a header row.

long3colheaderborder The long3colheaderborder style is like long3colheader but
has horizontal and vertical lines around it.

long4col The long4col style is like long3col but has an additional column in
which the entry’s associated symbol appears. This style is used for
brief single line descriptions. The column widths are governed by
the widest entry in the given column. Use altlong4col for multi-line
descriptions.

long4colborder The long4colborder style is like the long4col style but has hori-
zontal and vertical lines around it.

long4colheader The long4colheader style is like long4col but has a header row.

long4colheaderborder The long4colheaderborder style is like long4colheader but
has horizontal and vertical lines around it.

altlong4col The altlong4col style is like long4col but allows multi-line descrip-
tions and page lists. The width of the description column is governed
by the length \glsdescwidth and the width of the page list column
is governed by the length \glspagelistwidth. The widths of the
name and symbol columns are governed by the widest entry in the
given column.

225



15 Glossary Styles

altlong4colborder The altlong4colborder style is like the long4colborder but al-
lows multi-line descriptions and page lists.

altlong4colheader The altlong4colheader style is like long4colheader but allows
multi-line descriptions and page lists.

altlong4colheaderborder The altlong4colheaderborder style is like long4colheaderborder
but allows multi-line descriptions and page lists.

15.1.3 Longtable Styles (Ragged Right)

The styles described in this section are all defined in the package glossary-
longragged. These styles are analogous to those defined in glossary-long but
the multiline columns are left justified instead of fully justified. Since these
styles all use the longtable environment, they are governed by the same pa-
rameters as that environment. The glossary-longragged package additionally
requires the array package. Note that these styles will only be available if
you explicitly load glossary-longragged:

\usepackage{glossaries}
\usepackage{glossary-longragged}

Note that you can’t set these styles using the style package option since the
styles aren’t defined until after the glossaries package has been loaded. If
you want to incorporate rules from the booktabs package, try the styles de-
scribed in Section 15.1.4.

longragged The longragged style has two columns: the first column con-
tains the entry’s name and the second column contains the (left-
justified) description followed by the number list. The entry’s sym-
bol is ignored. Sub groups are separated with a blank row. The
width of the first column is governed by the widest entry in that col-
umn. The width of the second column is governed by the length
\glsdescwidth. Child entries have a similar format to the parent
entries except that their name is suppressed.

longraggedborder The longraggedborder style is like longragged but has hori-
zontal and vertical lines around it.

longraggedheader The longraggedheader style is like longragged but has a
header row.

longraggedheaderborder The longraggedheaderborder style is like longragged-
header but has horizontal and vertical lines around it.

226



15 Glossary Styles

longragged3col The longragged3col style is like longragged but has three
columns. The first column contains the entry’s name, the second col-
umn contains the (left justified) description and the third column con-
tains the (left justified) number list. The entry’s symbol is ignored.
The width of the first column is governed by the widest entry in that
column, the width of the second column is governed by the length
\glsdescwidth, and the width of the third column is governed by
the length \glspagelistwidth.

longragged3colborder The longragged3colborder style is like the longragged3col
style but has horizontal and vertical lines around it.

longragged3colheader The longragged3colheader style is like longragged3col
but has a header row.

longragged3colheaderborder The longragged3colheaderborder style is like lon-
gragged3colheader but has horizontal and vertical lines around it.

altlongragged4col The altlongragged4col style is like longragged3col but has
an additional column in which the entry’s associated symbol ap-
pears. The width of the description column is governed by the length
\glsdescwidth and the width of the page list column is governed
by the length \glspagelistwidth. The widths of the name and
symbol columns are governed by the widest entry in the given col-
umn.

altlongragged4colborder The altlongragged4colborder style is like the altlon-
gragged4col but has horizontal and vertical lines around it.

altlongragged4colheader The altlongragged4colheader style is like altlongragged4col
but has a header row.

altlongragged4colheaderborder The altlongragged4colheaderborder style is like
altlongragged4colheader but has horizontal and vertical lines around it.

15.1.4 Longtable Styles (booktabs)

The styles described in this section are all defined in the package glossary-
longbooktabs.

Since these styles all use the longtable environment, they are governed by
the same parameters as that environment. The glossary-longbooktabs package
automatically loads the glossary-long (Section 15.1.2) and glossary-longragged
(Section 15.1.3) packages. Note that these styles will only be available if you
explicitly load glossary-longbooktabs:

\usepackage{glossaries}
\usepackage{glossary-longbooktabs}

227



15 Glossary Styles

Note that you can’t set these styles using the style package option since the
styles aren’t defined until after the glossaries package has been loaded.

These styles are similar to the “header” styles in the glossary-long and
glossary-ragged packages, but they add the rules provided by the booktabs
package, \toprule, \midrule and \bottomrule. Additionally these
styles patch the longtable environment to check for instances of the group
skip occurring at a page break. If you don’t want this patch to affect
any other use of longtable in your document, you can scope the effect by
only setting the style through the style key in the optional argument of
\printglossary. (The nogroupskip package option is checked by these
styles.)

Alternatively, you can restore the original longtable behaviour with:

\glsrestoreLToutput

\glsrestoreLToutput

For more information about the patch, see the documented code (glossaries-code.pdf).

long-booktabs This style is similar to the longheader style but adds rules
above and below the header (\toprule and \midrule) and inserts
a rule at the bottom of the table (\bottomrule).

long3col-booktabs This style is similar to the long3colheader style but adds
rules as per long-booktabs.

long4col-booktabs This style is similar to the long4colheader style but adds
rules as above.

altlong4col-booktabs This style is similar to the altlong4colheader style but
adds rules as above.

longragged-booktabs This style is similar to the longraggedheader style but
adds rules as above.

longragged3col-booktabs This style is similar to the longragged3colheader
style but adds rules as above.

altlongragged4col-booktabs This style is similar to the altlongragged4colheader
style but adds rules as above.

15.1.5 Supertabular Styles

The styles described in this section are all defined in the package glossary-
super. Since they all use the supertabular environment, they are governed
by the same parameters as that environment. Note that these styles will
automatically be available unless you use the nosuper or nostyles package

228



15 Glossary Styles

options. In general, the longtable environment is better, but there are some
circumstances where it is better to use supertabular.3 These styles fully justify
the description and page list columns. If you want ragged right formatting
instead, use the analogous styles described in Section 15.1.6.

super The super style uses the supertabular environment (defined by the su-
pertabular package). It has two columns: the first column contains
the entry’s name and the second column contains the description fol-
lowed by the number list. The entry’s symbol is ignored. Sub groups
are separated with a blank row. The width of the first column is gov-
erned by the widest entry in that column. The width of the second
column is governed by the length \glsdescwidth. Child entries
have a similar format to the parent entries except that their name is
suppressed.

superborder The superborder style is like super but has horizontal and vertical
lines around it.

superheader The superheader style is like super but has a header row.

superheaderborder The superheaderborder style is like superheader but has
horizontal and vertical lines around it.

super3col The super3col style is like super but has three columns. The first
column contains the entry’s name, the second column contains the de-
scription and the third column contains the number list. The entry’s
symbol is ignored. The width of the first column is governed by the
widest entry in that column. The width of the second column is gov-
erned by the length \glsdescwidth. The width of the third column
is governed by the length \glspagelistwidth.

super3colborder The super3colborder style is like the super3col style but has
horizontal and vertical lines around it.

super3colheader The super3colheader style is like super3col but has a header
row.

super3colheaderborder The super3colheaderborder style is like the super3colheader
style but has horizontal and vertical lines around it.

super4col The super4col style is like super3col but has an additional column
in which the entry’s associated symbol appears. This style is designed
for entries with brief single line descriptions. The column widths are
governed by the widest entry in the given column. Use altsuper4col for
multi-line descriptions.

3e.g. with the flowfram package.

229



15 Glossary Styles

super4colborder The super4colborder style is like the super4col style but has
horizontal and vertical lines around it.

super4colheader The super4colheader style is like super4col but has a header
row.

super4colheaderborder The super4colheaderborder style is like the super4colheader
style but has horizontal and vertical lines around it.

altsuper4col The altsuper4col style is like super4col but allows multi-line de-
scriptions and page lists. The width of the description column is gov-
erned by the length \glsdescwidth and the width of the page list
column is governed by the length \glspagelistwidth. The width
of the name and symbol columns is governed by the widest entry in
the given column.

altsuper4colborder The altsuper4colborder style is like the super4colborder style
but allows multi-line descriptions and page lists.

altsuper4colheader The altsuper4colheader style is like super4colheader but al-
lows multi-line descriptions and page lists.

altsuper4colheaderborder The altsuper4colheaderborder style is like super4colheaderborder
but allows multi-line descriptions and page lists.

15.1.6 Supertabular Styles (Ragged Right)

The styles described in this section are all defined in the package glossary-
superragged. These styles are analogous to those defined in glossary-super but
the multiline columns are left justified instead of fully justified. Since these
styles all use the supertabular environment, they are governed by the same
parameters as that environment. The glossary-superragged package addition-
ally requires the array package. Note that these styles will only be available
if you explicitly load glossary-superragged:

\usepackage{glossaries}
\usepackage{glossary-superragged}

Note that you can’t set these styles using the style package option since the
styles aren’t defined until after the glossaries package has been loaded.

superragged The superragged style uses the supertabular environment (de-
fined by the supertabular package). It has two columns: the first col-
umn contains the entry’s name and the second column contains the
(left justified) description followed by the number list. The entry’s
symbol is ignored. Sub groups are separated with a blank row. The

230



15 Glossary Styles

width of the first column is governed by the widest entry in that col-
umn. The width of the second column is governed by the length
\glsdescwidth. Child entries have a similar format to the parent
entries except that their name is suppressed.

superraggedborder The superraggedborder style is like superragged but has
horizontal and vertical lines around it.

superraggedheader The superraggedheader style is like superragged but has a
header row.

superraggedheaderborder The superraggedheaderborder style is like superragged-
header but has horizontal and vertical lines around it.

superragged3col The superragged3col style is like superragged but has three
columns. The first column contains the entry’s name, the second col-
umn contains the (left justified) description and the third column con-
tains the (left justified) number list. The entry’s symbol is ignored.
The width of the first column is governed by the widest entry in that
column. The width of the second column is governed by the length
\glsdescwidth. The width of the third column is governed by the
length \glspagelistwidth.

superragged3colborder The superragged3colborder style is like the superragged3col
style but has horizontal and vertical lines around it.

superragged3colheader The superragged3colheader style is like superragged3col
but has a header row.

superragged3colheaderborder The superragged3colheaderborder style is like
superragged3colheader but has horizontal and vertical lines around it.

altsuperragged4col The altsuperragged4col style is like superragged3col but has
an additional column in which the entry’s associated symbol appears.
The column widths for the name and symbol column are governed by
the widest entry in the given column.

altsuperragged4colborder The altsuperragged4colborder style is like the altsu-
perragged4col style but has horizontal and vertical lines around it.

altsuperragged4colheader The altsuperragged4colheader style is like altsuper-
ragged4col but has a header row.

altsuperragged4colheaderborder The altsuperragged4colheaderborder style is
like altsuperragged4colheader but has horizontal and vertical lines around
it.

231



15 Glossary Styles

15.1.7 Tree-Like Styles

The styles described in this section are all defined in the package glossary-
tree. These styles are designed for hierarchical glossaries but can also be
used with glossaries that don’t have sub-entries. These styles will display
the entry’s symbol if it exists. Note that these styles will automatically be
available unless you use the notree or nostyles package options.

These styles all format the entry name using:

\glstreenamefmt

\glstreenamefmt{〈name〉}

This defaults to \textbf{〈name〉}, but note that 〈name〉 includes \glsnamefont
so the bold setting in \glstreenamefontmay be counteracted by another
font change in \glsnamefont (or in \acronymfont). The tree-like styles
that also display the header use

\glstreegroupheaderfmt

\glstreegroupheaderfmt{〈text〉}

to format the heading. This defaults to \glstreenamefmt{〈text〉}. The
tree-like styles that display navigation links to the groups (such as indexhy-
pergroup), format the navigation line using

\glstreenavigationfmt

\glstreenavigationfmt{〈text〉}

which defaults to \glstreenamefmt{〈text〉}. Note that this is different
from \glslistnavigationitem, provided with the styles such as listhy-
pergroup, as that also includes \item.

With the exception of the alttree style (and those derived from it), the space
before the description for top-level entries is produced with

\glstreepredesc

\glstreepredesc

This defaults to \space.
With the exception of the treenoname and alttree styles (and those derived

from them), the space before the description for child entries is produced
with

\glstreechildpredesc

\glstreechildpredesc

232



15 Glossary Styles

This defaults to \space.

Most of these styles are not designed for multi-paragraph descriptions.
(The tree style isn’t too bad for multi-paragraph top-level entry
descriptions, or you can use the index style with the adjustment shown
below.)

index The index style is similar to the way indices are usually formatted in
that it has a hierarchical structure up to three levels (the main level
plus two sub-levels). The name is typeset in bold, and if the symbol is
present it is set in parentheses after the name and before the descrip-
tion. Sub-entries are indented and also include the name, the symbol
in brackets (if present) and the description. Groups are separated us-
ing \indexspace.

Each main level item is started with

\glstreeitem

\glstreeitem

The level 1 entries are started with

\glstreesubitem

\glstreesubitem

The level 2 entries are started with

\glstreesubsubitem

\glstreesubsubitem

Note that the index style automatically sets

\let\item\glstreeitem
\let\subitem\glstreesubitem
\let\subsubitem\glstreesubsubitem

at the start of the glossary for backward compatibility.

The index style isn’t suitable for multi-paragraph descriptions, but this
limitation can be overcome by redefining the above commands. For
example:

233



15 Glossary Styles

\renewcommand{\glstreeitem}{%
\parindent0pt\par\hangindent40pt
\everypar{\parindent50pt\hangindent40pt}}

indexgroup The indexgroup style is similar to the index style except that each
group has a heading obtained using \glsgetgrouptitle{〈label〉},
which is described in Section 15.2.

indexhypergroup The indexhypergroup style is like indexgroup but has a set
of links to the glossary groups. The navigation line is the same
as that for listhypergroup, described above, but is formatted using
\glstreenavigationfmt.

tree The tree style is similar to the index style except that it can have arbitrary
levels. (Note that makeindex is limited to three levels, so you will
need to use xindy if you want more than three levels.) Each sub-
level is indented by \glstreeindent. Note that the name, symbol\glstreeindent

(if present) and description are placed in the same paragraph block.
If you want the name to be apart from the description, use the alttree
style instead. (See below.)

treegroup The treegroup style is similar to the tree style except that each
group has a heading.

treehypergroup The treehypergroup style is like treegroup but has a set of links
to the glossary groups. The navigation line is the same as that for listhy-
pergroup, described above, but is formatted using \glstreenavigationfmt.

treenoname The treenoname style is like the tree style except that the name
for each sub-entry is ignored.

treenonamegroup The treenonamegroup style is similar to the treenoname style
except that each group has a heading.

treenonamehypergroup The treenonamehypergroup style is like treenonamegroup
but has a set of links to the glossary groups. The navigation line is the
same as that for listhypergroup, described above, but is formatted using
\glstreenavigationfmt.

alttree The alttree style is similar to the tree style except that the indentation
for each level is determined by the width of the text specified by

\glssetwidest

\glssetwidest[〈level〉]{〈text〉}

234



15 Glossary Styles

The optional argument 〈level〉 indicates the level, where 0 indicates
the top-most level, 1 indicates the first level sub-entries, etc. If
\glssetwidest hasn’t been used for a given sub-level, the level 0
widest text is used instead. If 〈level〉 is omitted, 0 is assumed.

As from v4.22, the glossary-tree package also provides

\glsfindwidesttoplevelname

\glsfindwidesttoplevelname[〈glossary list〉]

This iterates over all parentless entries in the given glossary lists and
determines the widest entry. If the optional argument is omitted, all
glossaries are assumed (as per \forallglossaries).

For example, to have the same name width for all glossaries:

\glsfindwidesttoplevelname
\setglossarystyle{alttree}
\printglossaries

Alternatively, to compute the widest entry for each glossary before it’s
displayed:

\renewcommand{\glossarypreamble}{%
\glsfindwidesttoplevelname[\currentglossary]}

\setglossarystyle{alttree}
\printglossaries

These commands only affects the alttree styles, including those
listed below and the ones in the glossary-mcols package. If you
forget to set the widest entry name, the description will overwrite
the name.

For each level, the name is placed to the left of the paragraph block
containing the symbol (optional) and the description. If the symbol is
present, it is placed in parentheses before the description.

The name is placed inside a left-aligned \makebox. As from v4.19,
this can now be adjusted by redefining

\glstreenamebox

\glstreenamebox{〈width〉}{〈text〉}

235



15 Glossary Styles

where 〈width〉 is the width of the box and 〈text〉 is the contents of the
box. For example, to make the name right-aligned:

\renewcommand*{\glstreenamebox}[2]{%
\makebox[#1][r]{#2}%

}

alttreegroup The alttreegroup is like the alttree style except that each group
has a heading.

alttreehypergroup The alttreehypergroup style is like alttreegroup but has a set
of links to the glossary groups. The navigation line is the same as that
for listhypergroup, described above.

15.1.8 Multicols Style

The glossary-mcols package provides tree-like styles that are in the multi-
cols environment (defined by the multicol package). The style names are
as their analogous tree styles (as defined in Section 15.1.7) but are pre-
fixed with “mcol”. For example, the mcolindex style is essentially the in-
dex style but put in a multicols environment. For the complete list, see ta-
ble 15.2. The glossary-tree package is automatically loaded by glossary-mcols
(even if the notree package option is used when loading glossaries). The
formatting commands \glstreenamefmt, \glstreegroupheaderfmt
and \glstreenavigationfmt are all used by the corresponding glossary-
mcols styles.

Note that glossary-mcols is not loaded by glossaries. If you want to use
any of the multicol styles in that package you need to load it explicitly
with \usepackage and set the required glossary style using
\setglossarystyle.

The default number of columns is 2, but can be changed by redefining

\glsmcols

\glsmcols

to the required number. For example, for a three column glossary:

\usepackage{glossary-mcols}
\renewcommand*{\glsmcols}{3}
\setglossarystyle{mcolindex}

The styles with a navigation line, such as mcoltreehypergroup, now have a
variant (as from v4.22) with “hypergroup” replaced with “spannav” in the
style name. The original “hypergroup” styles place the navigation line at

236



15 Glossary Styles

Table 15.2: Multicolumn Styles

glossary-mcols Style Analogous Tree Style
mcolindex index
mcolindexgroup indexgroup
mcolindexhypergroup or mcolindexspannav indexhypergroup
mcoltree tree
mcoltreegroup treegroup
mcoltreehypergroup or mcoltreespannav treehypergroup
mcoltreenoname treenoname
mcoltreenonamegroup treenonamegroup
mcoltreenonamehypergroup or mcoltreenonamespannav treenonamehypergroup
mcolalttree alttree
mcolalttreegroup alttreegroup
mcolalttreehypergroup or mcolalttreespannav alttreehypergroup

the start of the first column. The newer “spannav” styles put the navigation
line in the optional argument of the multicols environment so that it spans
across all the columns.

15.1.9 In-Line Style

This section covers the glossary-inline package that supplies the inline style.
This is a style that is designed for in-line use (as opposed to block styles,
such as lists or tables). This style doesn’t display the number list.

You will most likely need to redefine \glossarysection with this
style. For example, suppose you are required to have your glossaries and
list of acronyms in a footnote, you can do:

\usepackage{glossary-inline}

\renewcommand*{\glossarysection}[2][]{\textbf{#1}: }
\setglossarystyle{inline}

Note that you need to include glossary-inline with \usepackage as it’s
not automatically included by the glossaries package and then set the
style using \setglossarystyle.

Where you need to include your glossaries as a footnote you can do:

\footnote{\printglossaries}

The inline style is governed by the following:

\glsinlineseparator

237



15 Glossary Styles

\glsinlineseparator

This defaults to “; ” and is used between main (i.e. level 0) entries.

\glsinlinesubseparator

\glsinlinesubseparator

This defaults to “, ” and is used between sub-entries.

\glsinlineparentchildseparator

\glsinlineparentchildseparator

This defaults to “: ” and is used between a parent main entry and its first
sub-entry.

\glspostinline

\glspostinline

This defaults to “; ” and is used at the end of the glossary.

\glsinlinenameformat

\glsinlinenameformat{〈label〉}{〈name〉}

This is used to format the entry name and defaults to \glstarget{〈label〉}
{〈name〉}, where 〈name〉 is provided in the form \glossentryname{〈label〉}
and 〈label〉 is the entry’s label. For example, if you want the name to appear
in smallcaps:

\renewcommand*{\glsinlinenameformat}[2]{\glstarget{#1}{\textsc{#2}}}

Sub-entry names are formatted according to

\glsinlinesubnameformat

\glsinlinesubnameformat{〈label〉}{〈name〉}

This defaults to \glstarget{〈label〉}{} so the sub-entry name is ignored.
If the description has been suppressed (according to \ifglsdescsuppressed)

then

\glsinlineemptydescformat

\glsinlineemptydescformat{〈symbol〉}{〈number list〉}

(which defaults to nothing) is used, otherwise the description is formatted
according to

238



15 Glossary Styles

\glsinlinedescformat

\glsinlinedescformat{〈description〉}{〈symbol〉}{〈number
list〉}

This defaults to just \space〈description〉 so the symbol and location list are
ignored. If the description is missing (according to \ifglshasdesc), then
\glsinlineemptydescformat is used instead.

For example, if you want a colon between the name and the description:

\renewcommand*{\glsinlinedescformat}[3]{: #1}

The sub-entry description is formatted according to:

\glsinlinesubdescformat

\glsinlinesubdescformat{〈description〉}{〈symbol〉}
{〈number list〉}

This defaults to just 〈description〉.

15.2 Defining your own glossary style

If the predefined styles don’t fit your requirements, you can define your
own style using:

\newglossarystyle

\newglossarystyle{〈name〉}{〈definitions〉}

where 〈name〉 is the name of the new glossary style (to be used in \setglossarystyle).
The second argument 〈definitions〉 needs to redefine all of the following:

theglossary

theglossary

This environment defines how the main body of the glossary should be
typeset. Note that this does not include the section heading, the glossary
preamble (defined by \glossarypreamble) or the glossary postamble
(defined by \glossarypostamble). For example, the list style uses the
description environment, so the theglossary environment is simply redefined
to begin and end the description environment.

\glossaryheader

\glossaryheader

239



15 Glossary Styles

This macro indicates what to do at the start of the main body of the glossary.
Note that this is not the same as \glossarypreamble, which should not
be affected by changes in the glossary style. The list glossary style redefines
\glossaryheader to do nothing, whereas the longheader glossary style
redefines \glossaryheader to do a header row.

\glsgroupheading

\glsgroupheading{〈label〉}

This macro indicates what to do at the start of each logical block within
the main body of the glossary. If you use makeindex the glossary is sub-
divided into a maximum of twenty-eight logical blocks that are determined
by the first character of the sort key (or name key if the sort key is omitted).
The sub-divisions are in the following order: symbols, numbers, A, . . . , Z.
If you use xindy, the sub-divisions depend on the language settings.

Note that the argument to \glsgroupheading is a label not the group
title. The group title can be obtained via

\glsgetgrouptitle

\glsgetgrouptitle{〈label〉}

This obtains the title as follows: if 〈label〉 consists of a single non-active char-
acter or 〈label〉 is equal to glssymbols or glsnumbers and \〈label〉groupname
exists, this is taken to be the title, otherwise the title is just 〈label〉. (The “sym-
bols” group has the label glssymbols, so the command \glssymbolsgroupname
is used, and the “numbers” group has the label glsnumbers, so the com-
mand \glsnumbersgrouptitle is used.) If you are using xindy, 〈label〉
may be an active character (for example ø), in which case the title will be set
to just 〈label〉. You can redefine \glsgetgrouptitle if this is unsuitable
for your document.

A navigation hypertarget can be created using

\glsnavhypertarget

\glsnavhypertarget{〈label〉}{〈text〉}

This typically requires \glossaryheader to be redefined to use

\glsnavigation

\glsnavigation

which displays the navigation line.
For further details about \glsnavhypertarget, see section 3.1 in the

documented code (glossaries-code.pdf).

240



15 Glossary Styles

Most of the predefined glossary styles redefine \glsgroupheading to
simply ignore its argument. The listhypergroup style redefines \glsgroupheading
as follows:

\renewcommand*{\glsgroupheading}[1]{%
\item[\glsnavhypertarget{##1}{\glsgetgrouptitle{##1}}]}

See also \glsgroupskip below. (Note that command definitions within
\newglossarystyle must use ##1 instead of #1 etc.)

\glsgroupskip

\glsgroupskip

This macro determines what to do after one logical group but before the
header for the next logical group. The list glossary style simply redefines
\glsgroupskip to be \indexspace, whereas the tabular-like styles re-
define \glsgroupskip to produce a blank row.

As from version 3.03, the package option nogroupskip can be used to sup-
press this default gap for the predefined styles.

\glossentry

\glossentry{〈label〉}{〈number list〉}

This macro indicates what to do for each top-level (level 0) glossary
entry. The entry label is given by 〈label〉 and the associated number
list is given by 〈number list〉. You can redefine \glossentry to use
commands like \glossentryname{〈label〉}, \glossentrydesc{〈label〉}
and \glossentrysymbol{〈label〉} to display the name, description and
symbol fields, or to access other fields, use commands like \glsentryuseri
{〈label〉}. (See Section 9 for further details.) You can also use the following
commands:

\glsentryitem

\glsentryitem{〈label〉}

This macro will increment and display the associated counter for the main
(level 0) entries if the entrycounter or counterwithin package options have been
used. This macro is typically called by \glossentry before \glstarget.
The format of the counter is controlled by the macro

\glsentrycounterlabel

\glsentrycounterlabel

Each time you use a glossary entry it creates a hyperlink (if hyperlinks are
enabled) to the relevant line in the glossary. Your new glossary style must

241



15 Glossary Styles

therefore redefine \glossentry to set the appropriate target. This is done
using

\glstarget

\glstarget{〈label〉}{〈text〉}

where 〈label〉 is the entry’s label. Note that you don’t need to worry about
whether the hyperref package has been loaded, as \glstarget won’t create
a target if \hypertarget hasn’t been defined.

For example, the list style defines \glossentry as follows:

\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}%

\glstarget{##1}{\glossentryname{##1}}]
\glossentrydesc{##1}\glspostdescription\space ##2}

Note also that 〈number list〉 will always be of the form

\glossaryentrynumbers{\relax
\setentrycounter[〈Hprefix〉]{〈counter name〉}〈format cmd〉
{〈number(s)〉}}

where 〈number(s)〉 may contain \delimN (to delimit individual numbers)
and/or \delimR (to indicate a range of numbers). There may be multiple
occurrences of \setentrycounter[〈Hprefix〉]{〈counter name〉}〈format cmd〉
{〈number(s)〉}, but note that the entire number list is enclosed within the
argument of \glossaryentrynumbers. The user can redefine this to
change the way the entire number list is formatted, regardless of the glos-
sary style. However the most common use of \glossaryentrynumbers
is to provide a means of suppressing the number list altogether. (In fact, the
nonumberlist option redefines \glossaryentrynumbers to ignore its argu-
ment.) Therefore, when you define a new glossary style, you don’t need to
worry about whether the user has specified the nonumberlist package option.

\subglossentry

\subglossentry{〈level〉}{〈label〉}{〈number list〉}

This is used to display sub-entries. The first argument, 〈level〉, indicates
the sub-entry level. This must be an integer from 1 (first sub-level) on-
wards. The remaining arguments are analogous to those for \glossentry
described above.

\glssubentryitem

\glssubentryitem{〈label〉}

242



15 Glossary Styles

This macro will increment and display the associated counter for the level 1
entries if the subentrycounter package option has been used. This macro is
typically called by \subglossentry before \glstarget. The format of
the counter is controlled by the macro

\glssubentrycounterlabel

\glssubentrycounterlabel

Note that \printglossary (which \printglossaries calls) sets

\currentglossary

\currentglossary

to the current glossary label, so it’s possible to create a glossary style that
varies according to the glossary type.

For further details of these commands, see section 1.16 “Displaying the
glossary” in the documented code (glossaries-code.pdf).

Example 27 (Creating a completely new style)

If you want a completely new style, you will need to redefine all of the
commands and the environment listed above.

For example, suppose you want each entry to start with a bullet point.
This means that the glossary should be placed in the itemize environ-
ment, so theglossary should start and end that environment. Let’s also
suppose that you don’t want anything between the glossary groups (so
\glsgroupheading and \glsgroupskip should do nothing) and sup-
pose you don’t want anything to appear immediately after \begin{theglossary}
(so \glossaryheader should do nothing). In addition, let’s suppose the
symbol should appear in brackets after the name, followed by the descrip-
tion and last of all the number list should appear within square brackets at
the end. Then you can create this new glossary style, called, say, mylist,
as follows:

\newglossarystyle{mylist}{%
% put the glossary in the itemize environment:
\renewenvironment{theglossary}%

{\begin{itemize}}{\end{itemize}}%
% have nothing after \begin{theglossary}:
\renewcommand*{\glossaryheader}{}%
% have nothing between glossary groups:
\renewcommand*{\glsgroupheading}[1]{}%
\renewcommand*{\glsgroupskip}{}%
% set how each entry should appear:
\renewcommand*{\glossentry}[2]{%
\item % bullet point

243



15 Glossary Styles

\glstarget{##1}{\glossentryname{##1}}% the entry name
\space (\glossentrysymbol{##1})% the symbol in brackets
\space \glossentrydesc{##1}% the description
\space [##2]% the number list in square brackets
}%
% set how sub-entries appear:
\renewcommand*{\subglossentry}[3]{%

\glossentry{##2}{##3}}%
}

Note that this style creates a flat glossary, where sub-entries are displayed
in exactly the same way as the top level entries. It also hasn’t used
\glsentryitem or \glssubentryitem so it won’t be affected by the en-
trycounter, counterwithin or subentrycounter package options.

Variations:

• You might want the entry name to be capitalised, in which case use
\Glossentryname instead of \glossentryname.

• You might want to check if the symbol hasn’t been set and omit
the parentheses if the symbol is absent. In this case you can use
\ifglshassymbol (see Section 16):

\renewcommand*{\glossentry}[2]{%
\item % bullet point
\glstarget{##1}{\glossentryname{##1}}% the entry name
\ifglshassymbol{##1}% check if symbol exists
{%

\space (\glossentrysymbol{##1})% the symbol in brackets
}%
{}% no symbol so do nothing
\space \glossentrydesc{##1}% the description
\space [##2]% the number list in square brackets
}%

Example 28 (Creating a new glossary style based on an existing
style)

If you want to define a new style that is a slightly modified version of
an existing style, you can use \setglossarystyle within the second ar-
gument of \newglossarystyle followed by whatever alterations you re-
quire. For example, suppose you want a style like the list style but you don’t
want the extra vertical space created by \indexspace between groups,
then you can create a new glossary style called, say, mylist as follows:

244



15 Glossary Styles

\newglossarystyle{mylist}{%
\setglossarystyle{list}% base this style on the list style
\renewcommand{\glsgroupskip}{}% make nothing happen

% between groups
}

(In this case, you can actually achieve the same effect using the list style in
combination with the package option nogroupskip.)

Example 29 (Example: creating a glossary style that uses the user1,
. . . , user6 keys)

Suppose each entry not only has an associated symbol, but also units
(stored in user1) and dimension (stored in user2). Then you can define a
glossary style that displays each entry in a longtable as follows:

\newglossarystyle{long6col}{%
% put the glossary in a longtable environment:
\renewenvironment{theglossary}%
{\begin{longtable}{lp{\glsdescwidth}cccp{\glspagelistwidth}}}%
{\end{longtable}}%

% Set the table's header:
\renewcommand*{\glossaryheader}{%
\bfseries Term & \bfseries Description & \bfseries Symbol &
\bfseries Units & \bfseries Dimensions & \bfseries Page List
\\\endhead}%

% No heading between groups:
\renewcommand*{\glsgroupheading}[1]{}%

% Main (level 0) entries displayed in a row optionally numbered:
\renewcommand*{\glossentry}[2]{%

\glsentryitem{##1}% Entry number if required
\glstarget{##1}{\glossentryname{##1}}% Name
& \glossentrydesc{##1}% Description
& \glossentrysymbol{##1}% Symbol
& \glsentryuseri{##1}% Units
& \glsentryuserii{##1}% Dimensions
& ##2% Page list
\tabularnewline % end of row

}%
% Similarly for sub-entries (no sub-entry numbers):
\renewcommand*{\subglossentry}[3]{%

% ignoring first argument (sub-level)
\glstarget{##2}{\glossentryname{##2}}% Name
& \glossentrydesc{##2}% Description
& \glossentrysymbol{##2}% Symbol
& \glsentryuseri{##2}% Units
& \glsentryuserii{##2}% Dimensions

245



15 Glossary Styles

& ##3% Page list
\tabularnewline % end of row

}%
% Nothing between groups:
\renewcommand*{\glsgroupskip}{}%

}

246



16 Utilities

This section describes some utility commands. Additional commands can
be found in the documented code (glossaries-code.pdf).

16.1 Loops

Some of the commands described here take a comma-separated list as
an argument. As with LATEX’s \@for command, make sure your list
doesn’t have any unwanted spaces in it as they don’t get stripped.
(Discussed in more detail in §2.7.2 of “LATEX for Administrative Work”.)

\forallglossaries

\forallglossaries[〈glossary list〉]{〈cs〉}{〈body〉}

This iterates through 〈glossary list〉, a comma-separated list of glossary la-
bels (as supplied when the glossary was defined). At each iteration 〈cs〉
(which must be a control sequence) is set to the glossary label for the current
iteration and 〈body〉 is performed. If 〈glossary list〉 is omitted, the default is
to iterate over all glossaries (except the ignored ones).

\forallacronyms

\forallacronyms{〈cs〉}{〈body〉}

This is like \forallglossaries but only iterates over the lists of acronyms
(that have previously been declared using \DeclareAcronymList or the
acronymlists package option). This command doesn’t have an optional argu-
ment. If you want to explicitly say which lists to iterate over, just use the
optional argument of \forallglossaries.

\forglsentries

\forglsentries[〈glossary label〉]{〈cs〉}{〈body〉}

This iterates through all entries in the glossary given by 〈glossary label〉. At
each iteration 〈cs〉 (which must be a control sequence) is set to the entry

247

http://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists


16 Utilities

label for the current iteration and 〈body〉 is performed. If 〈glossary label〉 is
omitted, \glsdefaulttype (usually the main glossary) is used.

\forallglsentries

\forallglsentries[〈glossary list〉]{〈cs〉}{〈body〉}

This is like \forglsentries but for each glossary in 〈glossary list〉 (a
comma-separated list of glossary labels). If 〈glossary list〉 is omitted, the
default is the list of all defined glossaries (except the ignored ones). At each
iteration 〈cs〉 is set to the entry label and 〈body〉 is performed. (The current
glossary label can be obtained using \glsentrytype{〈cs〉}within 〈body〉.)

16.2 Conditionals

\ifglossaryexists

\ifglossaryexists〈label〉〈true part〉〈false part〉

This checks if the glossary given by 〈label〉 exists. If it does 〈true part〉 is
performed, otherwise 〈false part〉.

\ifglsentryexists

\ifglsentryexists〈label〉〈true part〉〈false part〉

This checks if the glossary entry given by 〈label〉 exists. If it does 〈true
part〉 is performed, otherwise 〈false part〉. (Note that \ifglsentryexists
will always be true after the containing glossary has been displayed via
\printglossary or \printglossaries even if the entry is explicitly
defined later in the document. This is because the entry has to be defined
before it can be displayed in the glossary, see Section 4.8.1 for further de-
tails.)

\glsdoifexists

\glsdoifexists{〈label〉}{〈code〉}

Does 〈code〉 if the entry given by 〈label〉 exists. If it doesn’t exist, an error is
generated. (This command uses \ifglsentryexists.)

\glsdoifnoexists

\glsdoifnoexists{〈label〉}{〈code〉}

Does the reverse of \glsdoifexists. (This command uses \ifglsentryexists.)

248



16 Utilities

\glsdoifexistsorwarn

\glsdoifexistsorwarn{〈label〉}{〈code〉}

As \glsdoifexists but issues a warning rather than an error if the entry
doesn’t exist.

\glsdoifexistsordo

\glsdoifexistsordo{〈label〉}{〈code〉}{〈else code〉}

Does 〈code〉 if the entry given by 〈label〉 exists otherwise generate an error
and do 〈else code〉.

\glsdoifnoexistsordo

\glsdoifnoexistsordo{〈label〉}{〈code〉}{〈else code〉}

Does 〈code〉 if the entry given by 〈label〉 doesn’t exist otherwise generate an
error and do 〈else code〉.

\ifglsused

\ifglsused〈label〉〈true part〉〈false part〉

See Section 14.

\ifglshaschildren

\ifglshaschildren〈label〉〈true part〉〈false part〉

This checks if the glossary entry given by 〈label〉 has any sub-entries. If it
does, 〈true part〉 is performed, otherwise 〈false part〉.

\ifglshasparent

\ifglshasparent〈label〉〈true part〉〈false part〉

This checks if the glossary entry given by 〈label〉 has a parent entry. If it
does, 〈true part〉 is performed, otherwise 〈false part〉.

\ifglshassymbol

\ifglshassymbol{〈label〉}{〈true part〉}{〈false part〉}

This checks if the glossary entry given by 〈label〉 has had the symbol field set.
If it has, 〈true part〉 is performed, otherwise 〈false part〉.

\ifglshaslong

\ifglshaslong{〈label〉}{〈true part〉}{〈false part〉}

249



16 Utilities

This checks if the glossary entry given by 〈label〉 has had the long field set.
If it has, 〈true part〉 is performed, otherwise 〈false part〉. This should be true
for any entry that has been defined via \newacronym. There is no check
for the existence of 〈label〉.

\ifglshasshort

\ifglshasshort{〈label〉}{〈true part〉}{〈false part〉}

This checks if the glossary entry given by 〈label〉 has had the short field set.
If it has, 〈true part〉 is performed, otherwise 〈false part〉. This should be true
for any entry that has been defined via \newacronym. There is no check
for the existence of 〈label〉.

\ifglshasdesc

\ifglshasdesc{〈label〉}{〈true part〉}{〈false part〉}

This checks if the description field is non-empty for the entry given by 〈label〉.
If it has, 〈true part〉 is performed, otherwise 〈false part〉. Compare with:

\ifglsdescsuppressed

\ifglsdescsuppressed{〈label〉}{〈true part〉}{〈false
part〉}

This checks if the description field has been set to just \nopostdesc for the
entry given by 〈label〉. If it has, 〈true part〉 is performed, otherwise 〈false
part〉. There is no check for the existence of 〈label〉.

For all other fields you can use:

\ifglshasfield

\ifglshasfield{〈field〉}{〈label〉}{〈true part〉}{〈false
part〉}

This tests the value of the field given by 〈field〉 for the entry identified by
〈label〉. If the value is empty or the default value, then 〈false part〉 is per-
formed, otherwise 〈true part〉 is performed. If the field supplied is unrecog-
nised 〈false part〉 is performed and a warning is issued. Unlike the above
commands, such as \ifglshasshort, an error occurs if the entry is unde-
fined.

As from version 4.23, within 〈true part〉 you can use

\glscurrentfieldvalue

\glscurrentfieldvalue

250



16 Utilities

to access the field value. This command is initially defined to nothing but
has no relevance outside 〈true part〉. This saves re-accessing the field if the
test is true. For example:

\ifglshasfield{useri}{sample}{, \glscurrentfieldvalue}{}

will insert a comma, space and the field value if the user1 key has been set
for the entry whose label is sample.

You can test if the value of the field is equal to a given string using:

\ifglsfieldeq

\ifglsfieldeq{〈label〉}{〈field〉}{〈string〉}{〈true〉}
{〈false〉}

In this case the 〈field〉 must be the field name not the key (see table 4.1).
If the field isn’t recognised, an error will occur. This command internally
uses etoolbox’s \ifcsstring to perform the comparison. The string is not
expanded during the test.

The result may vary depending on whether or not expansion is on for the
given field (when the entry was defined). For example:

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\newglossaryentry{sample1}{name={sample1},description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2},description={an example},
user1={\foo}}

\begin{document}
\ifglsfieldeq{sample1}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This will produce “TRUE” in both cases since expansion is on, so \foo was
expanded to “FOO” when sample2 was defined. If the tests are changed
to:

\ifglsfieldeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{\foo}{TRUE}{FALSE}.

then this will produce “FALSE” in both cases. Now suppose expansion is
switched off for the user1 key:

251



16 Utilities

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

\newglossaryentry{sample1}{name={sample1},description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2},description={an example},
user1={\foo}}

\begin{document}
\ifglsfieldeq{sample1}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This now produces “TRUE” for the first case (comparing “FOO” with
“FOO”) and “FALSE” for the second case (comparing “\foo” with “FOO”).

The reverse happens in the following:

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

\newglossaryentry{sample1}{name={sample1},description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2},description={an example},
user1={\foo}}

\begin{document}
\ifglsfieldeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

This now produces “FALSE” for the first case (comparing “FOO” with
“\foo”) and “TRUE” for the second case (comparing “\foo” with “\foo”).

You can test if the value of a field is equal to the replacement text of a
command using:

\ifglsfielddefeq

252



16 Utilities

\ifglsfielddefeq{〈label〉}{〈field〉}{〈command〉}{〈true〉}
{〈false〉}

This internally uses etoolbox’s \ifdefstrequal command to perform the
comparison. The argument 〈command〉 must be a macro.

For example:

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

\newglossaryentry{sample1}{name={sample1},description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2},description={an example},
user1={\foo}}

\begin{document}
\ifglsfielddefeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfielddefeq{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

Here, the first case produces “TRUE” since the value of the useri field
(“FOO”) is the same as the replacement text (definition) of \foo (“FOO”).
We have the result “FOO” is equal to “FOO”.

The second case produces “FALSE” since the value of the useri field
(“\foo”) is not the same as the replacement text (definition) of \foo
(“FOO”). No expansion has been performed on the value of the useri field.
We have the result “\foo” is not equal to “FOO”.

If we add:

\newcommand{\FOO}{\foo}
\ifglsfielddefeq{sample2}{useri}{\FOO}{TRUE}{FALSE}.

we now get “TRUE” since the value of the useri field (“\foo”) is the same
as the replacement text (definition) of \FOO (“\foo”). We have the result
“\foo” is equal to “\foo”.

There is a similar command that requires the control sequence name
(without the leading backslash) instead of the actual control sequence:

\ifglsfieldcseq

\ifglsfieldcseq{〈label〉}{〈field〉}{〈csname〉}{〈true〉}
{〈false〉}

253



16 Utilities

This internally uses etoolbox’s \ifcsstrequal command instead of \ifdefstrequal.

16.3 Fetching and Updating the Value of a Field

You can fetch the value of a given field and store it in a control sequence
using:

\glsfieldfetch

\glsfieldfetch{〈label〉}{〈field〉}{〈cs〉}

where 〈label〉 is the label identifying the glossary entry, 〈field〉 is the field la-
bel (see table 4.1) and 〈cs〉 is the control sequence in which to store the value.
Remember that 〈field〉 is the internal label and is not necessarily the same as
the key used to set that field in the argument of \newglossaryentry (or
the optional argument of \newacronym).

You can change the value of a given field using one of the following com-
mands. Note that these commands only change the value of the given field.
They have no affect on any related field. For example, if you change the
value of the text field, it won’t modify the value given by the name, plural, first
or any other related key.

In all the four related commands below, 〈label〉 and 〈field〉 are as above
and 〈definition〉 is the new value of the field.

\glsfielddef

\glsfielddef{〈label〉}{〈field〉}{〈definition〉}

This uses \def to change the value of the field (so it will be localised by any
grouping).

\glsfieldedef

\glsfieldedef{〈label〉}{〈field〉}{〈definition〉}

This uses \edef to change the value of the field (so it will be localised by
any grouping). Any fragile commands contained in the 〈definition〉 must be
protected.

\glsfieldgdef

\glsfieldgdef{〈label〉}{〈field〉}{〈definition〉}

This uses \gdef to change the value of the field.

\glsfieldxdef

\glsfieldxdef{〈label〉}{〈field〉}{〈definition〉}

254



16 Utilities

This uses \xdef to change the value of the field. Any fragile commands
contained in the 〈definition〉 must be protected.

255



17 Prefixes or Determiners

The glossaries-prefix package that comes with the glossaries package provides
additional keys that can be used as prefixes. For example, if you want to
specify determiners (such as “a”, “an” or “the”). The glossaries-prefix pack-
age automatically loads the glossaries package and has the same package
options.

The extra keys for \newglossaryentry are as follows:

prefix The prefix associated with the text key. This defaults to nothing.

prefixplural The prefix associated with the plural key. This defaults to noth-
ing.

prefixfirst The prefix associated with the first key. If omitted, this defaults to
the value of the prefix key.

prefixfirstplural The prefix associated with the firstplural key. If omitted, this
defaults to the value of the prefixplural key.

Example 30 (Defining Determiners)

Here’s the start of my example document:

documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[toc,acronym]{glossaries-prefix}

Note that I’ve simply replaced glossaries from previous sample documents
with glossaries-prefix. Now for a sample definition1:

\newglossaryentry{sample}{name={sample},%
description={an example},%
prefix={a~},%
prefixplural={the\space}%

}

Note that I’ve had to explicitly insert a space after the prefix. This allows
for the possibility of prefixes that shouldn’t have a space, such as:

1Single letter words, such as “a” and “I” should typically not appear at the end of a line,
hence the non-breakable space after “a” in the prefix field.

256



17 Prefixes or Determiners

\newglossaryentry{oeil}{name={oeil},
plural={yeux},
description={eye},
prefix={l'},
prefixplural={les\space}}

Where a space is required at the end of the prefix, you must use a spacing
command, such as \space, \ (backslash space) or ~ due to the automatic
spacing trimming performed in 〈key〉=〈value〉 options.

The prefixes can also be used with acronyms. For example:

\newacronym
[%

prefix={an\space},prefixfirst={a~}%
]{svm}{SVM}{support vector machine}

The glossaries-prefix package provides convenient commands to use these
prefixes with commands such as \gls. Note that the prefix is not consid-
ered part of the link text, so it’s not included in the hyperlink (where hyper-
links are enabled). The options and any star or plus modifier are passed on
to the \gls-like command. (See Section 6 for further details.)

\pgls

\pgls[〈options〉]{〈label〉}[〈insert〉]

This is inserts the value of the prefix key (or prefixfirst key, on first use) in front
of \gls[〈options〉]{〈label〉}[〈insert〉].

\Pgls

\Pgls[〈options〉]{〈label〉}[〈insert〉]

If the prefix key (or prefixfirst, on first use) has been set, this displays the value
of that key with the first letter converted to upper case followed by \gls
[〈options〉]{〈label〉}[〈insert〉]. If that key hasn’t been set, this is equivalent
to \Gls[〈options〉]{〈label〉}[〈insert〉].

\PGLS

\PGLS[〈options〉]{〈label〉}[〈insert〉]

As \pgls but converts the prefix to upper case and uses \GLS instead of
\gls.

\pglspl

257



17 Prefixes or Determiners

\pglspl[〈options〉]{〈label〉}[〈insert〉]

This is inserts the value of the prefixplural key (or prefixfirstplural key, on first
use) in front of \glspl[〈options〉]{〈label〉}[〈insert〉].

\Pglspl

\Pglspl[〈options〉]{〈label〉}[〈insert〉]

If the prefixplural key (or prefixfirstplural, on first use) has been set, this displays
the value of that key with the first letter converted to upper case followed
by \glspl[〈options〉]{〈label〉}[〈insert〉]. If that key hasn’t been set, this is
equivalent to \Glspl[〈options〉]{〈label〉}[〈insert〉].

\PGLSpl

\PGLSpl[〈options〉]{〈label〉}[〈insert〉]

As \pglspl but converts the prefix to upper case and uses \GLSpl instead
of \glspl.

Example 31 (Using Prefixes)

Continuing from Example 30, now that I’ve defined my entries, I can use
them in the text via the above commands:

First use: \pgls{svm}. Next use: \pgls{svm}.
Singular: \pgls{sample}, \pgls{oeil}.
Plural: \pglspl{sample}, \pglspl{oeil}.

which produces:

First use: a support vector machine (SVM). Next use: an SVM.
Singular: a sample, l’oeil. Plural: the samples, les yeux.

For a complete document, see sample-prefix.tex.

This package also provides the commands described below, none of
which perform any check to determine the entry’s existence.

\ifglshasprefix

\ifglshasprefix{〈label〉}{〈true part〉}{〈false part〉}

Does 〈true part〉 if the entry identified by 〈label〉 has a non-empty value for
the prefix key.

This package also provides the following commands:

258



17 Prefixes or Determiners

\ifglshasprefixplural

\ifglshasprefixplural{〈label〉}{〈true part〉}{〈false
part〉}

Does 〈true part〉 if the entry identified by 〈label〉 has a non-empty value for
the prefixplural key.

\ifglshasprefixfirst

\ifglshasprefixfirst{〈label〉}{〈true part〉}{〈false
part〉}

Does 〈true part〉 if the entry identified by 〈label〉 has a non-empty value for
the prefixfirst key.

\ifglshasprefixfirstplural

\ifglshasprefixfirstplural{〈label〉}{〈true part〉}{〈false
part〉}

Does 〈true part〉 if the entry identified by 〈label〉 has a non-empty value for
the prefixfirstplural key.

\glsentryprefix

\glsentryprefix{〈label〉}

Displays the value of the prefix key for the entry given by 〈label〉.

\glsentryprefixfirst

\glsentryprefixfirst{〈label〉}

Displays the value of the prefixfirst key for the entry given by 〈label〉.

\glsentryprefixplural

\glsentryprefixplural{〈label〉}

Displays the value of the prefixplural key for the entry given by 〈label〉. (No
check is performed to determine if the entry exists.)

\glsentryprefixfirstplural

\glsentryprefixfirstplural{〈label〉}

Displays the value of the prefixfirstplural key for the entry given by 〈label〉.
(No check is performed to determine if the entry exists.)

259



17 Prefixes or Determiners

There are also variants that convert the first letter to upper case2:

\Glsentryprefix

\Glsentryprefix{〈label〉}

\Glsentryprefixfirst

\Glsentryprefixfirst{〈label〉}

\Glsentryprefixplural

\Glsentryprefixplural{〈label〉}

\Glsentryprefixfirstplural

\Glsentryprefixfirstplural{〈label〉}

As with analogous commands such as \Glsentrytext, these
commands aren’t expandable so can’t be used in PDF bookmarks.

Example 32 (Adding Determiner to Glossary Style)

You can use the above commands to define a new glossary style that uses
the determiner. For example, the following style is a slight modification of
the list style that inserts the prefix before the name:

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}%

\Glsentryprefix{##1}%
\glstarget{##1}{\glossentryname{##1}}]

\glossentrydesc{##1}\glspostdescription\space ##2}%
}

2The earlier caveats about initial non-Latin characters apply.

260



18 Accessibility Support

Limited accessibility support is provided by the accompanying glossaries-
accsupp package, but note that this package is experimental and it requires
the accsupp package which is also listed as experimental. This package de-
fines additional keys that may be used when defining glossary entries. The
keys are as follows:

access The replacement text corresponding to the name key.

textaccess The replacement text corresponding to the text key.

firstaccess The replacement text corresponding to the first key.

pluralaccess The replacement text corresponding to the plural key.

firstpluralaccess The replacement text corresponding to the firstplural key.

symbolaccess The replacement text corresponding to the symbol key.

symbolpluralaccess The replacement text corresponding to the symbolplural
key.

descriptionaccess The replacement text corresponding to the description key.

descriptionpluralaccess The replacement text corresponding to the descrip-
tionplural key.

longaccess The replacement text corresponding to the long key (used by
\newacronym).

shortaccess The replacement text corresponding to the short key (used by
\newacronym).

longpluralaccess The replacement text corresponding to the longplural key
(used by \newacronym).

shortpluralaccess The replacement text corresponding to the shortplural key
(used by \newacronym).

For example:

\newglossaryentry{tex}{name={\TeX},description={Document
preparation language},access={TeX}}

261



18 Accessibility Support

Now \gls{tex} will be equivalent to

\BeginAccSupp{ActualText=TeX}\TeX\EndAccSupp{}

The sample file sampleaccsupp.tex illustrates the glossaries-accsupp
package.

See section 5 in the documented code (glossaries-code.pdf) for fur-
ther details. I recommend that you also read the accsupp documentation.

262



19 Troubleshooting

In addition to the sample files listed in Section 1.2, the glossaries package
comes with some minimal example files, minimalgls.tex, mwe-gls.tex,
mwe-acr.tex and mwe-acr-desc.tex, which can be used for testing.
These should be located in the samples subdirectory (folder) of the glos-
saries documentation directory. The location varies according to your op-
erating system and TEX installation. For example, on my Linux parti-
tion it can be found in /usr/local/texlive/2014/texmf-dist/doc/
latex/glossaries/. The makeglossariesgui application can also
be used to test for various problems. Further information on debugging
LATEX code is available at http://www.dickimaw-books.com/latex/
minexample/.

If you have any problems, please first consult the glossaries FAQ1. If that
doesn’t help, try posting your query to somewhere like the comp.text.tex
newsgroup, the LATEX Community Forum2 or TEX on StackExchange3. Bug
reports can be submitted via my package bug report form4.

1http://www.dickimaw-books.com/faqs/glossariesfaq.html
2http://www.latex-community.org/
3http://tex.stackexchange.com/
4http://www.dickimaw-books.com/bug-report.html

263

http://www.dickimaw-books.com/latex/minexample/
http://www.dickimaw-books.com/latex/minexample/
http://www.dickimaw-books.com/faqs/glossariesfaq.html
http://www.latex-community.org/
http://tex.stackexchange.com/
http://www.dickimaw-books.com/bug-report.html


Index

Symbols
\@gls@codepage . . . . . . . . . . . . 58
\@glsorder . . . . . . . . . . . . . . . . 58
\@istfilename . . . . . . . . . . . . . 58
\@newglossary . . . . . . . . . . . . . 58
\@xdylanguage . . . . . . . . . . . . . 58

A
accsupp package . . . . . . . . . . 261, 262
\ACRfull . . . . . . . . . . . . . . . . . 188
\Acrfull . . . . . . . . . . . . . . . . . 188
\acrfull . . . . . . . . . . . . . . . . . 187
\acrfullfmt . . . . . . . . . . . . . . 188
\acrfullformat . . . . . . . . . . . 188
\ACRfullpl . . . . . . . . . . . . . . . 188
\Acrfullpl . . . . . . . . . . . . . . . 188
\acrfullpl . . . . . . . . . . . . . . . 188
\ACRlong . . . . . . . . . . . . . . . . . 187
\Acrlong . . . . . . . . . . . . . . . . . 187
\acrlong . . . . . . . . . . . . . . . . . 187
\ACRlongpl . . . . . . . . . . . . . . . 187
\Acrlongpl . . . . . . . . . . . . . . . 187
\acrlongpl . . . . . . . . . . . . . . . 187
acronym styles:

dua . . . . . . . . . . . . . 193, 194, 196
dua-desc . . . . . . . . . . . . . . . 194
footnote . . . . . . . . 193, 195, 196
footnote-desc . . . . . . . . . . 195
footnote-sc . . . . . . . . . . . . 195
footnote-sc-desc . . . . 29, 195
footnote-sm . . . . . . . . . . . . 195
footnote-sm-desc . . . . . . . 195
long-sc-short . . . 192–194, 197
long-sc-short-desc . . . . . 194
long-short 144, 193, 194, 196, 197
long-short-desc . . . . . 194, 197
long-sm-short . . . . . . . 192–194
long-sm-short-desc . . . . . 194
long-sp-short . . . . . . . 193, 194
long-sp-short-desc . . . . . 194

sc-short-long . . . . . . . . . . 193
sc-short-long-desc . . . . . 194
short-long . . . . . . . . . . . . . 193
short-long-desc . . . . . . . . 194
sm-short-long . . . . . . . . . . 193
sm-short-long-desc . . . . . 194

\acronymentry . . . . . . . . . . . . 191
\acronymfont . . . . . . . . . . . . . 192
\acronymsort . . . . . . . . . . . . . 191
\acronymtype . . . . . . . . . . . . . 181
\ACRshort . . . . . . . . . . . . . . . . 186
\Acrshort . . . . . . . . . . . . . . . . 186
\acrshort . . . . . . . . . . . . . . . . 186
\ACRshortpl . . . . . . . . . . . . . . 186
\Acrshortpl . . . . . . . . . . . . . . 186
\acrshortpl . . . . . . . . . . . . . . 186
\altnewglossary . . . . . . . . . . 180
amsgen package . . . . . . . . . . . 1, 206
amsmath package . . . . . . . . . . 130, 213
arara . . . . . . . . . . . . . . . . 14, 19, 50
array package . . . . . . . . . . . . 226, 230

B
babel package . . . . . . . . . . . . . 18,

41–45, 64, 65, 93, 111, 114, 182
beamer class . . . . . . . . . 130, 212, 213
beamer package . . . . . . . . . . . . . . . 44
bib2gls . . . 1, 2, 9, 22–24, 40, 41,

45, 50, 89, 111, 116–118, 122, 166
booktabs package . . . . . . 224, 226, 228

C
\cGls . . . . . . . . . . . . . . . . . . . . 215
\cgls . . . . . . . . . . . . . . . . . . . . 215
\cGlsformat . . . . . . . . . . . . . . 216
\cglsformat . . . . . . . . . . . . . . 216
\cGlspl . . . . . . . . . . . . . . . . . . 215
\cglspl . . . . . . . . . . . . . . . . . . 215
\cGlsplformat . . . . . . . . . . . . 217
\cglsplformat . . . . . . . . . . . . 216
classicthesis package . . 72, 73, 222, 224

264



Index

\currentglossary . . . . . . . . . 243

D
datatool package . . . . . . . . . . . 1, 166
datatool-base package . . . . . . . . . 1, 41
\DeclareAcronymList . . . . . . . 81
\defglsentryfmt . . . . . . . . . . 140
\DefineAcronymSynonyms . . . . 82
doc package . . . . . . . . . . . . . . . 3, 88

E
encap . . . . . . . . . . . . . . . . . . . . . 116
entry location . . . . . . . . . . . . . . . . . 9
environments:

theglossary . . . . . . . . . . . . 239
etoolbox package 1, 77, 141, 251, 253, 254
Extended Latin Alphabet . . . . . . . . . 9
extended Latin character 9, 9–12, 35, 93

F
file types

.alg . . . . . . . . . . . . . . . . . . . . 53

.aux . . . . . . . . 41, 53, 54, 125, 170

.glg . . . . . . . . . . . . . . . 53, 56, 57

.glg2 . . . . . . . . . . . . . . . . . . . . 3

.glo . . . . . . . . . . . . . . . 54, 56, 57

.gls . . . . . . . . . . . . . . . . . 56, 57

.glsdefs . . . . . . . . . . . . 111, 115

.ist . . . . . . . . . . 57, 58, 78, 89, 90

.tex . . . . . . . . . . . . 40, 41, 56, 57

.xdy . . . . . . 56, 58, 79, 89, 90, 169
glo2 . . . . . . . . . . . . . . . . . . . . . 3
gls2 . . . . . . . . . . . . . . . . . . . . . 3

first use . . . . . . . . . . . . . . . . . . . . 10
flag . . . . . . . . . . . . . . . . . . . . . 10
text . . . . . . . . . . . . . . . . . . . . . 10

\firstacronymfont . . . . . . . . 192
flowfram package . . . . . . . . . . . . . 229
fmtcount package . . . . . . . 35, 175, 176
fontspec package . . . . . . . . . . 98, 178
\forallacronyms . . . . . . . . . . 247
\forallglossaries . . . . . . . . 247
\forallglsentries . . . . . . . . 248
\forglsentries . . . . . . . . . . . 247

G
\Genacrfullformat . . . . . . . . 143
\genacrfullformat . . . . . . . . 143
\GenericAcronymFields . . . . 197
\Genplacrfullformat . . . . . . 144

\genplacrfullformat . . . . . . 143
glossaries package . . . . . . . . . . . 1,

38, 42, 88, 111, 118, 119, 126, 127
glossaries-accsupp package . . . . . .

. . . . . . . . . . . . . 37, 93, 261, 262
glossaries-babel package . . . . . . 64, 65
glossaries-extra package . . . . . . . .

. . . . 16, 18–21, 23, 25, 40, 50,
75, 92, 93, 156, 168, 183, 186, 222

glossaries-extra-stylemods package . 222
glossaries-polyglossia package . . . . . 64
glossaries-prefix package 37, 93, 256, 257
glossary counters:

glossaryentry . . . . . . . . . . . 71
glossarysubentry . . . . . . . . 72

glossary package . . . . . . 2, 14, 87, 209
glossary styles:

altlist . . . . . . 194, 195, 203, 223
altlistgroup . . . . . . . . . . . 223
altlisthypergroup . . . . . . 223
altlong4col . . . . . . . . . 221, 225
altlong4col-booktabs . . . 228
altlong4colborder . . . . . . 226
altlong4colheader . . . 226, 228
altlong4colheaderborder 226
altlongragged4col . . . . . . 227
altlongragged4col-booktabs

. . . . . . . . . . . . . . . . . . . . . 228
altlongragged4colborder 227
altlongragged4colheader

. . . . . . . . . . . . . . . . . . 227, 228
altlongragged4colheaderborder

. . . . . . . . . . . . . . . . . . . . . 227
altsuper4col . . . . 221, 229, 230
altsuper4colborder . . . . . 230
altsuper4colheader . . . . . 230
altsuper4colheaderborder

. . . . . . . . . . . . . . . . . . . . . 230
altsuperragged4col . . . . . 231
altsuperragged4colborder

. . . . . . . . . . . . . . . . . . . . . 231
altsuperragged4colheader

. . . . . . . . . . . . . . . . . . . . . 231
altsuperragged4colheaderborder

. . . . . . . . . . . . . . . . . . . . . 231
alttree . . . . . . 221, 232, 234–237
alttreegroup . . . . . . . . 236, 237
alttreehypergroup . . . 236, 237
index 73, 222–224, 233, 234, 236, 237

265



Index

indexgroup . . . . . . . . . . 234, 237
indexhypergroup . 232, 234, 237
inline . . . . . . . . . . . . . . 32, 237
list . . . . . . . . . . . . . . . . . 73,

222, 223, 239–242, 244, 245, 260
listdotted . . . . . . 221, 222, 224
listgroup . . . . . . . . 75, 220, 222
listhypergroup . . . . . . . . .

. . . . 222, 223, 232, 234, 236, 241
long . . . . . . . . . . . . 221, 224, 225
long-booktabs . . . . . . . . . . 228
long3col . . . . . . . . . . . . 220, 225
long3col-booktabs . . . . . . 228
long3colborder . . . . . . 220, 225
long3colheader . . 220, 225, 228
long3colheaderborder 220, 225
long4col . . . . . . . . . . . . 221, 225
long4col-booktabs . . . . . . 228
long4colborder . . . . . . 225, 226
long4colheader . . 225, 226, 228
long4colheaderborder 225, 226
longborder . . . . . . . . . . . . . 225
longheader . . . . . . 225, 228, 240
longheaderborder . . . . 167, 225
longragged . . . . . . . . . . 226, 227
longragged-booktabs . . . . 228
longragged3col . . . . . . . . . 227
longragged3col-booktabs 228
longragged3colborder . . . 227
longragged3colheader 227, 228
longragged3colheaderborder

. . . . . . . . . . . . . . . . . . . . . 227
longraggedborder . . . . . . . 226
longraggedheader . . . . 226, 228
longraggedheaderborder . 226
mcolalttree . . . . . . . . . . . . 237
mcolalttreegroup . . . . . . . 237
mcolalttreehypergroup . . 237
mcolalttreespannav . . . . . 237
mcolindex . . . . . . . . . . . 236, 237
mcolindexgroup . . . . . . . . . 237
mcolindexhypergroup . . . . 237
mcolindexspannav . . . . . . . 237
mcoltree . . . . . . . . . . . . . . . 237
mcoltreegroup . . . . . . . . . . 237
mcoltreehypergroup . . 236, 237
mcoltreenoname . . . . . . . . . 237
mcoltreenonamegroup . . . . 237

mcoltreenonamehypergroup
. . . . . . . . . . . . . . . . . . . . . 237

mcoltreenonamespannav . . 237
mcoltreespannav . . . . . . . . 237
super . . . . . . . . . . . . . . . . . . 229
super3col . . . . . . . . . . . . . . 229
super3colborder . . . . . . . . 229
super3colheader . . . . . . . . 229
super3colheaderborder . . 229
super4col . . . . . . . 221, 229, 230
super4colborder . . . . . . . . 230
super4colheader . . . . . . . . 230
super4colheaderborder . . 230
superborder . . . . . . . . . . . . 229
superheader . . . . . . . . . . . . 229
superheaderborder . . . 167, 229
superragged . . . . . . . . . 230, 231
superragged3col . . . . . . . . 231
superragged3colborder . . 231
superragged3colheader . . 231
superragged3colheaderborder

. . . . . . . . . . . . . . . . . . . . . 231
superraggedborder . . . . . . 231
superraggedheader . . . . . . 231
superraggedheaderborder 231
tree . . . . . . . . . 201, 233, 234, 237
treegroup . . . . . . . . . . . 234, 237
treehypergroup . . 223, 234, 237
treenoname . . . . . . 232, 234, 237
treenonamegroup . . . . . 234, 237
treenonamehypergroup 234, 237

glossary-bookindex package . . . . . . 219
glossary-inline package . . . . . . . . . 237
glossary-list package . . . . . 73, 168, 222
glossary-long package . . . . . . . . . .

. . . . . . . . 73, 168, 224, 226–228
glossary-longbooktabs package . . . . 227
glossary-longnoloc package . . . . . . 219
glossary-longragged package . . 226, 227
glossary-mcols package . . . 73, 235–237
glossary-ragged package . . . . . . . . 228
glossary-super package 73, 168, 228, 230
glossary-superragged package . . . . 230
glossary-tree package . . . . . . . . . .

. . . . . . . . 73, 168, 232, 235, 236
glossaryentry (counter) . . . 71, 72
\glossaryheader . . . . . . . . . . 239
\glossarypostamble . . . . . . . 167
\glossarypreamble . . . . . . . . 167

266



Index

glossarysubentry (counter) . . . 72
\glossentry . . . . . . . . . . . . . . 241
\Glossentrydesc . . . . . . . . . . 159
\glossentrydesc . . . . . . . . . . 159
\Glossentryname . . . . . . . . . . 157
\glossentryname . . . . . . . . . . 157
\Glossentrysymbol . . . . . . . . 160
\glossentrysymbol . . . . . . . . 160
\GLS . . . . . . . . . . . . . . . . . . . . . 131
\Gls . . . . . . . . . . . . . . . . . . . . . 130
\gls . . . . . . . . . . . . . . . . . . . . . 130
\glsacspace . . . . . . . . . . . . . . 193
\glsadd . . . . . . . . . . . . . . . . . . 150
\glsaddall . . . . . . . . . . . . . . . 150
\glsaddall options

types . . . . . . . . . . . . . . . . . . . 150
\glsaddallunused . . . . . . . . . 151
\glsaddkey . . . . . . . . . . . . . . . 101
\glsaddprotectedpagefmt . . 120
\glsaddstoragekey . . . . . . . . 103
\GlsAddXdyAttribute . . . . . . 171
\GlsAddXdyCounters . . . . . . . 171
\GlsAddXdyLocation . . . . . . . 172
\glsautoprefix . . . . . . . . . . . . 70
\glsbackslash . . . . . . . . . . . . 169
\glscapscase . . . . . . . . . . . . . 141
\glsclearpage . . . . . . . . . . . . . 69
\glsclosebrace . . . . . . . . . . . 169
\glscurrentfieldvalue . . . . 250
\glscustomtext . . . . . . . . . . . 141
\GLSdesc . . . . . . . . . . . . . . . . . 138
\Glsdesc . . . . . . . . . . . . . . . . . 138
\glsdesc . . . . . . . . . . . . . . . . . 138
\glsdescwidth . . . . . . . . . . . . 220
\glsdisablehyper . . . . . . . . . 146
\glsdisp . . . . . . . . . . . . . . . . . 134
\glsdisplaynumberlist . . . . 162
\glsdoifexists . . . . . . . . . . . 248
\glsdoifexistsordo . . . . . . . 249
\glsdoifexistsorwarn . . . . . 249
\glsdoifnoexists . . . . . . . . . 248
\glsdoifnoexistsordo . . . . . 249
\glsdosanitizesort . . . . . . . . 76
\glsenableentrycount . . . . . 214
\glsenablehyper . . . . . . . . . . 146
\glsentrycounterlabel . . . . 241
\GlsEntryCounterLabelPrefix

. . . . . . . . . . . . . . . . . . . . . . 71
\glsentrycurrcount . . . . . . . 214

\Glsentrydesc . . . . . . . . . . . . 158
\glsentrydesc . . . . . . . . . . . . 158
\Glsentrydescplural . . . . . . 159
\glsentrydescplural . . . . . . 159
\Glsentryfirst . . . . . . . . . . . 158
\glsentryfirst . . . . . . . . . . . 158
\Glsentryfirstplural . . . . . 158
\glsentryfirstplural . . . . . 158
\glsentryfmt . . . . . . . . . . . . . 140
\Glsentryfull . . . . . . . . . . . . 190
\glsentryfull . . . . . . . . . . . . 190
\Glsentryfullpl . . . . . . . . . . 190
\glsentryfullpl . . . . . . . . . . 190
\glsentryitem . . . . . . . . . . . . 241
\Glsentrylong . . . . . . . . . . . . 189
\glsentrylong . . . . . . . . . . . . 189
\Glsentrylongpl . . . . . . . . . . 190
\glsentrylongpl . . . . . . . . . . 189
\Glsentryname . . . . . . . . . . . . 156
\glsentryname . . . . . . . . . . . . 156
\glsentrynumberlist . . . . . . 162
\Glsentryplural . . . . . . . . . . 158
\glsentryplural . . . . . . . . . . 157
\Glsentryprefix . . . . . . . . . . 260
\glsentryprefix . . . . . . . . . . 259
\Glsentryprefixfirst . . . . . 260
\glsentryprefixfirst . . . . . 259
\Glsentryprefixfirstplural 260
\glsentryprefixfirstplural 259
\Glsentryprefixplural . . . . 260
\glsentryprefixplural . . . . 259
\glsentryprevcount . . . . . . . 214
\Glsentryshort . . . . . . . . . . . 190
\glsentryshort . . . . . . . . . . . 190
\Glsentryshortpl . . . . . . . . . 190
\glsentryshortpl . . . . . . . . . 190
\Glsentrysymbol . . . . . . . . . . 159
\glsentrysymbol . . . . . . . . . . 159
\Glsentrysymbolplural . . . . 160
\glsentrysymbolplural . . . . 160
\Glsentrytext . . . . . . . . . . . . 157
\glsentrytext . . . . . . . . . . . . 157
\glsentrytitlecase . . . . . . . 156
\Glsentryuseri . . . . . . . . . . . 160
\glsentryuseri . . . . . . . . . . . 160
\Glsentryuserii . . . . . . . . . . 161
\glsentryuserii . . . . . . . . . . 161
\Glsentryuseriii . . . . . . . . . 161
\glsentryuseriii . . . . . . . . . 161

267



Index

\Glsentryuseriv . . . . . . . . . . 161
\glsentryuseriv . . . . . . . . . . 161
\Glsentryuserv . . . . . . . . . . . 161
\glsentryuserv . . . . . . . . . . . 161
\Glsentryuservi . . . . . . . . . . 161
\glsentryuservi . . . . . . . . . . 161
\glsexpandfields . . . . . . . . . 108
\glsfielddef . . . . . . . . . . . . . 254
\glsfieldedef . . . . . . . . . . . . 254
\glsfieldfetch . . . . . . . . . . . 254
\glsfieldgdef . . . . . . . . . . . . 254
\glsfieldxdef . . . . . . . . . . . . 254
\glsfindwidesttoplevelname 235
\GLSfirst . . . . . . . . . . . . . . . . 136
\Glsfirst . . . . . . . . . . . . . . . . 136
\glsfirst . . . . . . . . . . . . . . . . 136
\GLSfirstplural . . . . . . . . . . 137
\Glsfirstplural . . . . . . . . . . 137
\glsfirstplural . . . . . . . . . . 137
\glsgenacfmt . . . . . . . . . . . . . 143
\glsgenentryfmt . . . . . . . . . . 143
\glsgetgrouptitle . . . . . . . . 240
\glsglossarymark . . . . . . 69, 167
\glsgroupheading . . . . . . . . . 240
\glsgroupskip . . . . . . . . . . . . 241
\glshyperlink . . . . . . . . . . . . 162
\glshypernavsep . . . . . . . . . . 223
\glsifhyperon . . . . . . . . . . . . 142
\glsIfListOfAcronyms . . . . . . 82
\glsifplural . . . . . . . . . . . . . 141
\glsinlinedescformat . . . . . 239
\glsinlineemptydescformat 238
\glsinlinenameformat . . . . . 238
\glsinlineparentchildseparator

. . . . . . . . . . . . . . . . . . . . . 238
\glsinlineseparator . . . . . . 237
\glsinlinesubdescformat . . 239
\glsinlinesubnameformat . . 238
\glsinlinesubseparator . . . 238
\glsinsert . . . . . . . . . . . . . . . 141
\glslabel . . . . . . . . . . . . . . . . 141
\glslabeltok . . . . . . . . . . . . . 197
\glsletentryfield . . . . . . . . 160
\glslink . . . . . . . . . . . . . . . . . 135
\glslink options

counter . . . . . . . . . . . . . . . 129, 171
format . 117, 127, 128, 163, 171, 172
hyper . . . . . . 66, 127, 142, 146, 150
local . . . . . . . . . . . . . . . . . . . . 129

\glslinkcheckfirsthyperhook
. . . . . . . . . . . . . . . . . . . . . . 66

\glslinkpostsetkeys . . . . . . 144
\glslinkvar . . . . . . . . . . . . . . 142
\glslistdottedwidth . . . . . . 224
\glslistnavigationitem . . . 223
\glslocalreset . . . . . . . . . . . 211
\glslocalresetall . . . . . . . . 211
\glslocalunset . . . . . . . . . . . 211
\glslocalunsetall . . . . . . . . 211
\glslongtok . . . . . . . . . . . . . . 197
\glsmcols . . . . . . . . . . . . . . . . 236
\glsmoveentry . . . . . . . . . . . . 113
\GLSname . . . . . . . . . . . . . . . . . 137
\Glsname . . . . . . . . . . . . . . . . . 137
\glsname . . . . . . . . . . . . . . . . . 137
\glsnamefont . . . . . . . . . . . . . 168
\glsnavhypertarget . . . . . . . 240
\glsnavigation . . . . . . . . . . . 240
\glsnoexpandfields . . . . . . . 108
\glsnoidxdisplayloc . . . . . . 123
\glsnumberlistloop . . . . . . . 123
\glsnumlistlastsep . . . . . . . 162
\glsnumlistsep . . . . . . . . . . . 162
\glsopenbrace . . . . . . . . . . . . 169
\glspagelistwidth . . . . . . . . 220
\glspar . . . . . . . . . . . . . . . . . . . 94
\glspatchtabularx . . . . . . . . 130
\glspercentchar . . . . . . . . . . 169
\GLSpl . . . . . . . . . . . . . . . . . . . 134
\Glspl . . . . . . . . . . . . . . . . . . . 134
\glspl . . . . . . . . . . . . . . . . . . . 134
\GLSplural . . . . . . . . . . . . . . . 136
\Glsplural . . . . . . . . . . . . . . . 136
\glsplural . . . . . . . . . . . . . . . 136
\glspluralsuffix . . . . . . . . . . 99
\glspostdescription . . . . . . 221
\glspostinline . . . . . . . . . . . 238
\glspostlinkhook . . . . . . . . . 144
\glsprestandardsort . . . . . . . 75
\glsquote . . . . . . . . . . . . . . . . 170
\glsrefentry . . . . . . . . . . . . . . 71
\glsreset . . . . . . . . . . . . . . . . 211
\glsresetall . . . . . . . . . . . . . 211
\glsresetentrycounter . . . . . 72
\glsrestoreLToutput . . . . . . 228
\glssee . . . . . . . . . . . . . . . . . . 153
\glsseeformat . . . . . . . . . . . . 154
\glsseeitemformat . . . . . . . . 155

268



Index

\glsseelastsep . . . . . . . . . . . 154
\glsseesep . . . . . . . . . . . . . . . 154
\glsSetAlphaCompositor . . . . 90
\glsSetCompositor . . . . . . . . . 90
\glssetexpandfield . . . . . . . 108
\glssetnoexpandfield . . . . . 108
\GlsSetQuote . . . . . . . . . . . . . . 41
\glsSetSuffixF . . . . . . . . . . . 122
\glsSetSuffixFF . . . . . . . . . . 122
\glssetwidest . . . . . . . . . . . . 234
\GlsSetWriteIstHook . . . . . . 124
\GlsSetXdyCodePage . . . . . . . 170
\GlsSetXdyFirstLetterAfterDigits

. . . . . . . . . . . . . . . . . . . . . 178
\GlsSetXdyLanguage . . . . . . . 170
\GlsSetXdyLocationClassOrder

. . . . . . . . . . . . . . . . . . . . . 177
\GlsSetXdyMinRangeLength . 178
\GlsSetXdyNumberGroupOrder 179
\glsshorttok . . . . . . . . . . . . . 197
\glsshowtarget . . . . . . . . . . . . 61
\glssortnumberfmt . . . . . . . . . 75
\glssubentrycounterlabel . 243
\glssubentryitem . . . . . . . . . 242
\GLSsymbol . . . . . . . . . . . . . . . 138
\Glssymbol . . . . . . . . . . . . . . . 137
\glssymbol . . . . . . . . . . . . . . . 137
\glstarget . . . . . . . . . . . . . . . 242
\GLStext . . . . . . . . . . . . . . . . . 135
\Glstext . . . . . . . . . . . . . . . . . 135
\glstext . . . . . . . . . . . . . . . . . 135
\glstextformat . . . . . . . . . . . 126
\glstextup . . . . . . . . . . . . . . . 198
\glstildechar . . . . . . . . . . . . 169
\glstocfalse . . . . . . . . . . . . . . 68
\glstoctrue . . . . . . . . . . . . . . . 68
\glstreechildpredesc . . . . . 232
\glstreegroupheaderfmt . . . 232
\glstreeindent . . . . . . . . . . . 234
\glstreeitem . . . . . . . . . . . . . 233
\glstreenamebox . . . . . . . . . . 235
\glstreenamefmt . . . . . . . . . . 232
\glstreenavigationfmt . . . . 232
\glstreepredesc . . . . . . . . . . 232
\glstreesubitem . . . . . . . . . . 233
\glstreesubsubitem . . . . . . . 233
\glstype . . . . . . . . . . . . . . . . . 141
\glsunset . . . . . . . . . . . . . . . . 211
\glsunsetall . . . . . . . . . . . . . 211

\GlsUseAcrEntryDispStyle . 197
\GlsUseAcrStyleDefs . . . . . . 197
\GLSuseri . . . . . . . . . . . . . . . . 138
\Glsuseri . . . . . . . . . . . . . . . . 138
\glsuseri . . . . . . . . . . . . . . . . 138
\GLSuserii . . . . . . . . . . . . . . . 139
\Glsuserii . . . . . . . . . . . . . . . 138
\glsuserii . . . . . . . . . . . . . . . 138
\GLSuseriii . . . . . . . . . . . . . . 139
\Glsuseriii . . . . . . . . . . . . . . 139
\glsuseriii . . . . . . . . . . . . . . 139
\GLSuseriv . . . . . . . . . . . . . . . 139
\Glsuseriv . . . . . . . . . . . . . . . 139
\glsuseriv . . . . . . . . . . . . . . . 139
\GLSuserv . . . . . . . . . . . . . . . . 140
\Glsuserv . . . . . . . . . . . . . . . . 139
\glsuserv . . . . . . . . . . . . . . . . 139
\GLSuservi . . . . . . . . . . . . . . . 140
\Glsuservi . . . . . . . . . . . . . . . 140
\glsuservi . . . . . . . . . . . . . . . 140
\glswrallowprimitivemodsfalse

. . . . . . . . . . . . . . . . . . . . . 121
\glswrite . . . . . . . . . . . . . . . . 124
\glswriteentry . . . . . . . . . . . . 67

H
html package . . . . . . . . . . . . . . . . 146
hyperref package . . . . . . . . . . . . .

3, 122, 123, 125–128, 134, 142,
146, 156, 162, 163, 173, 174, 242

I
\ifglossaryexists . . . . . . . . 248
\ifglsdescsuppressed . . . . . 250
\ifglsentryexists . . . . . . . . 248
\ifglsfieldcseq . . . . . . . . . . 253
\ifglsfielddefeq . . . . . . . . . 252
\ifglsfieldeq . . . . . . . . . . . . 251
\ifglshaschildren . . . . . . . . 249
\ifglshasdesc . . . . . . . . . . . . 250
\ifglshasfield . . . . . . . . . . . 250
\ifglshaslong . . . . . . . . . . . . 249
\ifglshasparent . . . . . . . . . . 249
\ifglshasprefix . . . . . . . . . . 258
\ifglshasprefixfirst . . . . . 259
\ifglshasprefixfirstplural 259
\ifglshasprefixplural . . . . 259
\ifglshasshort . . . . . . . . . . . 250
\ifglshassymbol . . . . . . . . . . 249

269



Index

\ifglsucmark . . . . . . . . . . . . . . 69
\ifglsused . . . . . . . . . . . . 212, 249
\ifignoredglossary . . . . . . . 181
imakeidx package . . . . . . . . . . . . . . 87
index package . . . . . . . . . . . . . . . . 87
inputenc package . . . . . . . . . . . . .

. . . . . 27, 33, 40, 96, 98, 170, 178
internal fields:

location . . . . . . . . . . . . . . . . . . . 16

L
latex . . . . . . . . . . . . . . . . . . 3, 126
latexmk . . . . . . . . . . . . . . . . 50, 51
Latin alphabet . . . . . . . . . . 10, 17, 40
Latin character . . . . . 9, 10, 10, 11, 180
link text . . . . . . 10, 125, 126, 129–

133, 135–140, 145, 186, 187, 257
\loadglsentries . . . . . . . . . . 111
location list . . . . . . . . . see number list
\longnewglossaryentry . . . . . 92
\longprovideglossaryentry . 93
longtable package . . . . . . . . . . 73, 224

M
makeglossaries . . . . . . . . . . .

. . . 11, 11, 19, 21, 22, 26, 31–
34, 36, 41, 50–58, 62, 71, 78–80,
117, 152, 162, 164, 170, 171, 180

-d . . . . . . . . . . . . . . . . . . . . . . 55
-k . . . . . . . . . . . . . . . . . . . . . . 54
-m . . . . . . . . . . . . . . . . . . . . . . 54
-Q . . . . . . . . . . . . . . . . . . . . . . 54
-q . . . . . . . . . . . . . . . . . . . . . . 54
-x . . . . . . . . . . . . . . . . . . . . . . 54

\makeglossaries . . . . . . . . . . . 89
makeglossaries-lite . . . . 11,

19, 28, 31–34, 36, 51, 52, 55, 164
makeglossariesgui . . . 11, 51, 263
makeidx package . . . . . . . . . . . . . . 87
makeindex . . . . . . . . . . . 10, 11,

11, 17–19, 26, 30–33, 35, 40–42,
45, 50–54, 57–59, 63, 64, 71, 74,
75, 78–80, 89, 90, 109, 116–118,
120–122, 124, 125, 127, 128,
154, 162, 164, 180, 220, 234, 240

-g . . . . . . . . . . . . . . . . . . . 18, 41
-l . . . . . . . . . . . . . . 19, 32, 53, 57

\makenoidxglossaries . . . . . . 89
memoir class . . . . . . . . . . . . . . 69, 70

mfirstuc package . . . 1, 41, 98, 132, 134
multicol package . . . . . . . . . . . . . . 236
mwe package . . . . . . . . . . . . . . . . . 38

N
nameref package . . . . . . . . . . . . . . 71
\newacronym . . . . . . . . . . . . . . 183
\newacronymstyle . . . . . . . . . 196
\newglossary . . . . . . . . . . . . . 180
\newglossary* . . . . . . . . . . . . 180
\newglossaryentry . . . . . . . . . 92
\newglossaryentry options

access . . . . . . . . . . . . . . . . . . 261
description 39, 93, 94, 98, 106, 108,

138, 184, 193–195, 197, 250, 261
descriptionaccess . . . . . . . . . . . 261
descriptionplural . . . . . . 94, 108, 261
descriptionpluralaccess . . . . . . . 261
entrycounter . . . . . . . . . . . . . . 166
first . . . . . . . . . . . . . 10, 94, 95,

98, 127, 130, 136, 137, 143, 157,
158, 185, 191, 211, 254, 256, 261

firstaccess . . . . . . . . . . . . . . . . 261
firstplural . 10, 94, 95, 99, 108, 134,

136, 137, 143, 158, 184, 256, 261
firstpluralaccess . . . . . . . . . . . . 261
format . . . . . . . . . . . . . . . . . . 129
long . . . . . . . . . 66, 98, 105, 127,

130, 143, 183, 187, 191, 250, 261
longaccess . . . . . . . . . . . . . . . 261
longplural . . . . . . . . . . . 47, 98,

108, 134, 143, 183, 184, 187, 261
longpluralaccess . . . . . . . . . . . . 261
name 38, 39, 50, 75, 77, 93–97, 108,

110, 133, 137, 155, 157, 162,
191, 194, 195, 201, 240, 254, 261

nonumberlist . . . . . . . . . . . . . . . 97
parent . . . . . . . . . . . . . 93, 94, 109
plural . . . . . 47, 95, 99, 110, 134,

136, 143, 158, 184, 254, 256, 261
pluralaccess . . . . . . . . . . . . . . 261
prefix . . . . . . . . . . . . . . . . 256–259
prefixfirst . . . . . . . . . . 256, 257, 259
prefixfirstplural . . . . . . 256, 258, 259
prefixplural . . . . . . . . 256, 258, 259
see 13, 61, 62, 74, 97, 98, 115, 152–154
short . . . . . . . . . . . . . . 98, 127,

130, 143, 183, 186, 191, 250, 261
shortaccess . . . . . . . . . . . . . . . 261

270



Index

shortplural . . . . . . . . . . . 47, 98,
108, 134, 143, 183, 184, 187, 261

shortpluralaccess . . . . . . . . . . . 261
sort . . . . . . . . . . . . . . . 11, 15,

20, 41, 50, 75, 94–98, 108, 110,
114, 132, 166, 191, 194, 195, 240

subentrycounter . . . . . . . . . . . . 166
symbol . . . . . . . . 38, 95, 98, 108,

127, 137, 144, 146, 201, 249, 261
symbolaccess . . . . . . . . . . . . . 261
symbolplural . . . . . . . . 95, 108, 261
symbolpluralaccess . . . . . . . . . . 261
text . . . . . . . . . . . . . . . 94, 95,

98, 127, 130, 133, 135–137, 143,
157, 185, 191, 211, 254, 256, 261

textaccess . . . . . . . . . . . . . . . . 261
type . . . . . . . . . . . . . . 97, 111, 183
user1 7, 38–40, 97, 108, 138, 245, 251
user2 . . . . . . . . . . 97, 108, 138, 245
user3 . . . . . . . . . . . . . 97, 108, 139
user4 . . . . . . . . . . . . . 97, 108, 139
user5 . . . . . . . . . . . . . 97, 108, 139
user6 . . . . . . . . 7, 97, 108, 140, 245

\newglossarystyle . . . . . . . . 239
\newignoredglossary . . . . . . 181
\newterm . . . . . . . . . . . . . . . . . . 86
ngerman package . . . . . . . . 41, 42, 170
\noist . . . . . . . . . . . . . . . . . . . . 90
Non-Latin Alphabet . . . . . . . . . . . 11
non-Latin character . . . . . . . . . . .

. . . 9, 11, 11, 35, 40, 45, 48, 93, 98
\nopostdesc . . . . . . . . . . . . . . . 94
number list . . . . . . . 11, 17, 18, 23,

24, 30, 31, 36, 50, 52, 64, 67, 74,
90, 91, 97, 109, 110, 116, 117,
121, 123, 125, 150, 154, 162,
164, 171, 177, 178, 180, 222,
224–227, 229–231, 237, 241, 243

O
\oldacronym . . . . . . . . . . . . . . 209

P
package options:

acronym . . . . . 43, 56, 57, 60, 62,
70, 80, 81, 88, 112, 151, 181, 208

true . . . . . . . . . . . . . . . . 60, 81
acronymlists 81, 82, 141, 181, 184, 247
acronyms . . . . . . . . . . . . . . 62, 81

automake . . . . . . . . . 18, 50, 79, 80
false . . . . . . . . . . . . . . . . . . . 80
immediate . . . . . . . . . . . . 79, 80
true . . . . . . . . . . . . . . . . . . . 79

compatible-2.07 . . . . . . . . 87, 88, 90
compatible-3.07 . . . . . . . 81, 87, 140
counter . . . . . . 74, 90, 116, 171, 174

page . . . . . . . . . . . . . . . . . . . 74
counterwithin . . 71, 72, 219, 241, 244
debug . . . . . . . . . . . . . . . . . 60, 62

false . . . . . . . . . . . . . . . . . . . 60
showtargets . . . . . . . . . . . . . . 60
true . . . . . . . . . . . . . . . . . . . 60

description . . . . . . . . . . . . . 82–84
dua . . . . . . . . . . . . . . . . . . 83, 84
entrycounter . . 71, 72, 219, 241, 244

false . . . . . . . . . . . . . . . . . . . 71
true . . . . . . . . . . . . . . . . . . . 71

esclocations . . . . . . . . . . . . . . . . 63
false . . . . . . . . . . . . . . . 63, 118
true . . . . . . . . . . . . . . . . . . . 63

footnote . . . . . . . . . . . . . . . 83, 84
hyperfirst . . . . . . . . . . . . 65, 66, 147

false . . . . . . . . . 66, 127, 146, 195
true . . . . . . . . . . . . . . . . . . . 65

index . . . . . . . . . . . 62, 86, 87, 182
indexonlyfirst . . . . . . . . . . . 67, 116

false . . . . . . . . . . . . . . . . . . . 67
kernelglossredefs . . . . . . . . . . . . 87

false . . . . . . . . . . . . . . . . . . . 87
makeindex . . . . . . . . . . . . 60, 78, 88
ngerman . . . . . . . . . . . . . . . . . . 41
noglossaryindex . . . . . . . . . . . . . 87
nogroupskip . . . . . . . . . . . . . 27,

74, 166, 220, 221, 228, 241, 245
false . . . . . . . . . . . . . . . . . . . 74

nohypertypes . . . . . . . . . . . . . .
. . . 65, 66, 126, 127, 142, 146, 181

index . . . . . . . . . . . . . . . . . . 87
nolangwarn . . . . . . . . . . . . . . 1, 60
nolist . . . . . . . . . . . . . . 73, 88, 222
nolong . . . . . . . . . . 73, 88, 221, 224
nomain . . . . . . . . 62, 81, 85–88, 181
nonumberlist . . . . . . . . . . . . . .

. . . 11, 74, 97, 116, 150, 224, 242
nopostdot . . . . . . . . . . . . . 74, 222

false . . . . . . . . . . . . . . . . . . . 74
noredefwarn . . . . . . . . . . . . . . . 60
nostyles 73, 88, 221, 222, 224, 228, 232

271



Index

nosuper . . . . . . . . . 73, 88, 221, 228
notranslate . . . . . . . . . . . 42, 65, 88
notree . . . . . . . . . . 73, 88, 232, 236
nowarn . . . . . . . . . . . . . . . . . . . 60
numberedsection . . . . . 70, 165, 167

autolabel . . . . . . . . . . . . . 70, 71
false . . . . . . . . . . . . . . . . . . . 70
nameref . . . . . . . . . . . . . . . . . 71
nolabel . . . . . . . . . . . . . . . . . 70

numberline . . . . . . . . . . . . . . . . 68
numbers . . . . . . . . . . . . 62, 85, 181
order . . . . . . . . . . . . . . . . 78, 166

letter . . . . . . . . . 19, 22, 32, 53, 78
word . . . . . . . . . . . . . . 32, 53, 78

record . . . . . . . . . . . . . . . . . . . 40
sanitizesort . . . . . . . . . . . 16, 63, 76

false . . . . . . . . . . . 15, 63, 76, 96
true . . . . . . . . 15, 63, 96–98, 166

savenumberlist . . . . . . . . . . 67, 162
false . . . . . . . . . . . . . . . . . . . 67

savewrites . . . . . . . . . . . . . . 63, 64
false . . . . . . . . . . . . . . . . . . . 63

section . . . . . . . . . . . . . . . 68, 166
seeautonumberlist . . . . . . 74, 97, 154
seenoindex . . . . . . . . . . . . . 62, 98

ignore . . . . . . . . . . . . . . . . . . 62
warn . . . . . . . . . . . . . . . . . . . 62

shortcuts . . . . . . . . . . . . . . 82, 188
smallcaps . . . . . . . . . . . . 82–84, 88
smaller . . . . . . . . . . . . . . . . 82–84
sort . . . . . . . . . . . . . . . . . . . . . 74

def . . . . . . 15, 74–76, 95, 110, 220
none . . . . . . . . . . . . . . 16, 24, 75
standard . . . . . . . . . . . . . 75, 76
use . . . . . . 15, 74–76, 95, 110, 220

style . . 72, 73, 165, 219, 226, 228, 230
index . . . . . . . . . . . . . . . . . . 72
list . . . . . . . . . . . . . . . . . . . . 72

subentrycounter . . . . . . . . . . . .
. . . . . 72, 109, 110, 219, 243, 244

false . . . . . . . . . . . . . . . . . . . 72
symbols . . . . . . . . . . . . 62, 84, 181
toc . . . . . . . . . . . . . . . . 19, 68, 165
translate . . . . . . . . . . . . . 64, 65, 88

babel . . . . . . . . . . . . . 42–45, 65
false . . . . . . . . . . . . . . 42, 64, 65
true . . . . . . . . . . . . . . . . 64, 65

ucfirst . . . . . . . . . . . . . . . . . . . . 70
ucmark . . . . . . . . . . . . . . . . . . . 69

false . . . . . . . . . . . . . . . . . . . 69
true . . . . . . . . . . . . . . . . . . . 69

xindy . . . . . . . . . . . . 21, 35, 40,
53, 56, 57, 78, 79, 88, 169, 171, 178

xindygloss . . . . . . . . . . . . . . 79, 88
xindynoglsnumbers . . . . . . . . 79, 88

page (counter) . . . . . . . . . . . 174, 175
page type precedence . . . . . . . . . 124
pdflatex . . . . . . . . . . . . . . . 3, 126
\PGLS . . . . . . . . . . . . . . . . . . . . 257
\Pgls . . . . . . . . . . . . . . . . . . . . 257
\pgls . . . . . . . . . . . . . . . . . . . . 257
\PGLSpl . . . . . . . . . . . . . . . . . . 258
\Pglspl . . . . . . . . . . . . . . . . . . 258
\pglspl . . . . . . . . . . . . . . . . . . 257
pod2man . . . . . . . . . . . . . . . . . . . 55
polyglossia package . . . . 42, 44, 64, 65
\printacronyms . . . . . . . . . . . . 80
\printglossaries . . . . . . . . . 164
\printglossary . . . . . . . . . . . 165
\printglossary options

entrycounter . . . . . . . . . . . . . . 166
nogroupskip . . . . . . . . . . . . . . . 166
nonumberlist . . . . . . . . . . . . . . 165
nopostdot . . . . . . . . . . . . . . . . 166
numberedsection . . . . . . . . . . . 165
style . . . . . . . 73, 165, 219, 221, 228
subentrycounter . . . . . . . . . . . . 166
title . . . . . . . . . . . . 1, 44, 165, 183
toctitle . . . . . . . . . . . . . . . . . . 165
type . . . . . . . . . . . . . . . . . . . . 165

\printindex . . . . . . . . . . . . . . . 86
\printnoidxglossaries . . . . 164
\printnoidxglossary . . . . . . 164
\printnoidxglossary options

sort . . . . . . . . . . . . 74, 76, 78, 166
\printnumbers . . . . . . . . . . . . . 85
\printsymbols . . . . . . . . . . . . . 85
\provideglossaryentry . . . . . 93

R
relsize package . . . . . . . . . . . 83, 192

S
sanitize . . . . . . . . 11, 63, 76, 155, 162
scrwfile package . . . . . . . . . . . . . . . 64
\SetAcronymLists . . . . . . . . . . 82
\setacronymstyle . . . . . . . . . 191
\setglossarypreamble . . . . . 167

272



Index

\setglossarysection . . . . . . . 68
\setglossarystyle . . . . . . . . 219
\setStyleFile . . . . . . . . . . . . . 90
\setupglossaries . . . . . . . . . . 88
standard LATEX extended Latin char-

acter . . . . . . . . . . . . . . . 12, 98
stix package . . . . . . . . . . . . . . . . 173
\subglossentry . . . . . . . . . . . 242
supertabular package . . . . 73, 229, 230

T
tabularx package . . . . . . . . . . 130, 213
textcase package . . . . . . . . . . . . 1, 69
theglossary (environment) . . . 239
tracklang package . . . . . . . . . . . . 1, 45
translator package 42–47, 49, 64, 65, 182

X
xfor package . . . . . . . . . . . . . . . . . . 1
xindy . . . . . . . 10, 11, 12, 14, 20–

23, 33–35, 40, 41, 45, 50–58, 63,
64, 71, 74, 75, 78–80, 89, 90, 97,
98, 116–119, 121, 122, 124, 125,
128, 129, 162, 164, 166, 169–
172, 174, 175, 178, 180, 234, 240

-C . . . . . . . . . . . . . 21, 41, 53, 171
-I . . . . . . . . . . . . . . . . . . . . . . 56
-L . . . . . . . . . . . . . . . . 21, 53, 171
-M . . . . . . . . . . . . . . . . . . . . . . 53

xkeyval package . . . . . . . . . . 1, 26, 148
xspace package . . . . . . . . . . . 209, 210

273


	Contents
	List of Examples
	List of Tables
	Glossary
	Introduction
	Indexing Options
	Option 1 (TeX)
	Option 2 (makeindex)
	Option 3 (xindy)
	Option 4 (bib2gls)
	Option 5 (no sorting)

	Sample Documents
	Dummy Entries for Testing
	Multi-Lingual Support
	Changing the Fixed Names

	Generating the Associated Glossary Files
	Using the makeglossaries Perl Script
	Using the makeglossaries-lite Lua Script
	Using xindy explicitly (Option 3)
	Using makeindex explicitly (Option 2)
	Note to Front-End and Script Developers


	Package Options
	General Options
	Sectioning, Headings and TOC Options
	Glossary Appearance Options
	Sorting Options
	Acronym Options
	Deprecated Acronym Style Options

	Other Options
	Setting Options After the Package is Loaded

	Setting Up
	Option 1
	Options 2 and 3

	Defining Glossary Entries
	Plurals
	Other Grammatical Constructs
	Additional Keys
	Document Keys
	Storage Keys

	Expansion
	Sub-Entries
	Hierarchical Categories
	Homographs

	Loading Entries From a File
	Moving Entries to Another Glossary
	Drawbacks With Defining Entries in the Document Environment
	Technical Issues
	Good Practice Issues


	Number lists
	Encap Values
	Locations
	Range Formations
	Style Hook

	Links to Glossary Entries
	The `gls-Like Commands (First Use Flag Queried)
	The `glstext-Like Commands (First Use Flag Not Queried)
	Changing the format of the link text
	Enabling and disabling hyperlinks to glossary entries

	Adding an Entry to the Glossary Without Generating Text
	Cross-Referencing Entries
	Customising Cross-reference Text

	Using Glossary Terms Without Links
	Displaying a glossary
	Xindy (Option 3)
	Language and Encodings
	Locations and Number lists
	Glossary Groups

	Defining New Glossaries
	Acronyms and Other Abbreviations
	Changing the Abbreviation Style
	Predefined Acronym Styles
	Defining A Custom Acronym Style

	Displaying the List of Acronyms
	Upgrading From the glossary Package

	Unsetting and Resetting Entry Flags
	Counting the Number of Times an Entry has been Used (First Use Flag Unset)

	Glossary Styles
	Predefined Styles
	List Styles
	Longtable Styles
	Longtable Styles (Ragged Right)
	Longtable Styles (booktabs)
	Supertabular Styles
	Supertabular Styles (Ragged Right)
	Tree-Like Styles
	Multicols Style
	In-Line Style

	Defining your own glossary style

	Utilities
	Loops
	Conditionals
	Fetching and Updating the Value of a Field

	Prefixes or Determiners
	Accessibility Support
	Troubleshooting
	Index

