
User Manual for glossaries.sty v3.04

Nicola L.C. Talbot
http://www.dickimaw-books.com/

2012-11-18

http://www.dickimaw-books.com/

The glossaries bundle comes with the following documentation:

glossariesbegin.pdf If you are a complete beginner, start with
“The glossaries package: a guide for beginners”.

glossary2glossaries.pdf If you are moving over from the ob-
solete glossary package, read “Upgrading from the glossary
package to the glossaries package”.

glossaries-user.pdf This document is the main user guide for the glos-
saries package.

mfirstuc-manual.pdf The commands provided by the mfirstuc
package are briefly described in “mfirstuc.sty: uppercasing first
letter”.

glossaries.pdf Advanced users wishing to know more about the
inner workings of all the packages provided in the glossaries
bundle should read “Documented Code for glossaries v3.04”.
This includes the documented code for the mfirstuc package.

INSTALL Installation instructions.

CHANGES Change log.

README Package summary.

If you use hyperref and glossaries, you must load hyperref first. Sim-
ilarly the doc package must also be loaded before glossaries. (If
doc is loaded, the file extensions for the default main glossary are
changed to gls2, glo2 and .glg2 to avoid conflict with doc’s
changes glossary.)

2

glossariesbegin.pdf
glossary2glossaries.pdf
mfirstuc-manual.pdf
glossaries.pdf

Contents

Glossary 5

1 Introduction 8
1.1 Sample Documents . 9
1.2 Multi-Lingual Support 18

1.2.1 Changing the Fixed Names 18
1.3 Generating the Associated Glossary Files 22

1.3.1 Using the makeglossaries Perl Script 24
1.3.2 Using xindy explicitly 25
1.3.3 Using makeindex explicitly 27
1.3.4 Note to Front-End and Script Developers 28

2 Package Options 30
2.1 General Options . 30
2.2 Sectioning, Headings and TOC Options 32
2.3 Glossary Appearance Options 35
2.4 Sorting Options . 38
2.5 Acronym Options . 39

3 Setting Up 41

4 Defining Glossary Entries 43
4.1 Plurals . 46
4.2 Other Grammatical Constructs 47
4.3 Sub-Entries . 48

4.3.1 Hierarchical Categories 48
4.3.2 Homographs . 49

4.4 Loading Entries From a File 50
4.5 Moving Entries to Another Glossary 51

5 Number lists 53

6 Links to Glossary Entries 55
6.1 Changing the format of the link text 65
6.2 Enabling and disabling hyperlinks to glossary entries . 68

7 Adding an Entry to the Glossary Without Generating Text 69

3

Contents

8 Cross-Referencing Entries 71
8.1 Customising Cross-reference Text 72

9 Using Glossary Terms Without Links 75

10 Displaying a glossary 80

11 Xindy 83
11.1 Language and Encodings 84
11.2 Locations and Number lists 85
11.3 Glossary Groups . 89

12 Defining New Glossaries 90

13 Acronyms 91
13.1 Predefined Acronym Styles 96
13.2 Displaying the List of Acronyms 99
13.3 Defining A Custom Acronym Style 99
13.4 Upgrading From the glossary Package 103

14 Unsetting and Resetting Entry Flags 105

15 Glossary Styles 107
15.1 List Styles . 109
15.2 Longtable Styles . 111
15.3 Longtable Styles (Ragged Right) 112
15.4 Supertabular Styles . 114
15.5 Supertabular Styles (Ragged Right) 116
15.6 Tree-Like Styles . 117
15.7 Multicols Style . 119
15.8 In-Line Style . 120

16 Defining your own glossary style 122
16.1 Example: creating a completely new style 125
16.2 Example: creating a new glossary style based on an ex-

isting style . 126
16.3 Example: creating a glossary style that uses the user1,

. . . , user6 keys . 127

17 Utilities 128

18 Accessibility Support 130

19 Troubleshooting 132

Index 137

4

Glossary

This glossary style was setup using:

\usepackage[xindy,
nonumberlist,
seeautonumberlist,
toc,
style=altlist]{glossaries}

\renewcommand*{\glsgroupskip}{}
\renewcommand*{\glsseeformat}[3][\seename]{%
(\xmakefirstuc{#1} \glsseelist{#2}.)}

Command Line Interface (CLI)

an application that doesn’t have a graphical user interface.
That is, an application that doesn’t have any windows, but-
tons or menus and can be run in a command prompt or
terminal (see http://www.dickimaw-books.com/latex/
novices/html/terminal.html).

Entry location

The location of the entry in the document. This defaults to the
page number on which the entry appears. An entry may have
multiple locations.

First use

The first time a glossary entry is used (from the start of the doc-
ument or after a reset) with one of the following commands:
\gls, \Gls, \GLS, \glspl, \Glspl, \GLSpl or \glsdisp.
(See first use flag & first use text.)

First use flag

A conditional that determines whether or not the entry has been
used according to the rules of first use. Commands to unset or
reset this conditional are described in Section 14.

First use text

The text that is displayed on first use, which is governed by
the first and firstplural keys of \newglossaryentry. (May be
overridden by \glsdisp.)

5

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://www.dickimaw-books.com/latex/novices/html/terminal.html

Glossary

Indexing application

an application (piece of software) separate from TEX/LATEX that
collates and sorts information that has an associated page ref-
erence. Generally the information is an index entry but in this
case the information is a glossary entry. There are two main
indexing applications that are used with TEX: makeindex and
xindy. These are both command line interface (CLI) applica-
tions.

Link text

The text produced by commands such as \gls. It may or may
not be a hyperlink to the glossary.

Location list

A list of entry locations. 22, (See number list.)

makeglossaries

A glossaries custom designed Perl script interface to xindy and
makeindex.

makeglossariesgui

A Java GUI alternative to makeglossaries that also provides
diagnostic tools. Home page: http://www.dickimaw-books.
com/apps/makeglossariesgui/. Also available on CTAN.

makeindex

An indexing application.

Number list

A list of entry locations (also called a location list). The number
list can be suppressed using the nonumberlist package option.

Sanitize

Converts command names into character sequences. That is, a
command called, say, \foo, is converted into the sequence of
characters: \, f, o, o. Depending on the font, the backslash
character may appear as a dash when used in the main docu-
ment text, so \foo will appear as: —foo.

When TEX writes information to a file, fragile commands must
be protected. The name, description, symbol and sort keys all have
their values written to a file, which means that care must be
taken if those values contain fragile commands. There are two
approaches: 1) the fragile commands must be protected using

6

http://www.dickimaw-books.com/apps/makeglossariesgui/
http://www.dickimaw-books.com/apps/makeglossariesgui/

Glossary

\protect; 2) the values are sanitized. Sanitizing the values
gets rid of the inconvenience of having to protect fragile com-
mands, but at the expense of no longer being able to use those
values in the document. Sanitization is governed by the pack-
age option sanitize described in Section 2.1.

xindy

A flexible indexing application with multilingual support writ-
ten in Perl.

7

1 Introduction

The glossaries package is provided to assist generating glossaries. It
has a certain amount of flexibility, allowing the user to customize the
format of the glossary and define multiple glossaries. It also sup-
ports acronyms and glossary styles that include symbols (in addition
to a name and description) for glossary entries. There is provision for
loading a database of glossary terms. Only those terms used1 in the
document will be added to the glossary.

This package replaces the glossary package which is now obso-
lete. Please see the document “Upgrading from the glossary package
to the glossaries package” (glossary2glossaries.pdf) for assistance in
upgrading.

One of the strengths of this package is its flexibility, however the
drawback of this is the necessity of having a large manual that can
cover all the various settings. If you are daunted by the size of the
manual, try starting off with the much shorter guide for beginners
(glossariesbegin.pdf).

The glossaries package comes with a Perl script called
makeglossaries. This provides a convenient interface to
the indexing applications makeindex or xindy. It is strongly
recommended that you use this script, but it is not essential. If you
are reluctant to install Perl, or for any other reason you don’t want
to use makeglossaries, you can call makeindex or xindy
explicitly. See Section 1.3 for further details.

This document uses the glossaries package. For example, when view-
ing the PDF version of this document in a hyperlinked-enabled PDF
viewer (such as Adobe Reader) if you click on the word “xindy”
you’ll be taken to the entry in the glossary where there’s a brief de-
scription of what “xindy” is.

The remainder of this introductory section covers the following:

• Section 1.1 lists the sample documents provided with this pack-
age.

1That is, if the term has been referenced using any of the commands described in
Section 6 and Section 7 or via \glssee (or the see key) or commands such as
\acrshort.

8

http://www.perl.org/about.html

1 Introduction

• Section 1.2 provides information for users who wish to write in
a language other than English.

• Section 1.3 describes how to use a post-processor to create the
sorted glossaries for your document.

1.1 Sample Documents

The glossaries package is provided with some sample documents
that illustrate the various functions. These should be located in the
samples subdirectory (folder) of the glossaries documentation direc-
tory. This location varies according to your operating system and TEX
distribution. You can use texdoc to locate the main glossaries docu-
mentation. For example, in a terminal or command prompt, type:

texdoc -l glossaries

This should display the full pathname of the file glossaries.pdf.
View the contents of that directory and see if it contains the samples
subdirectory.

If you can’t find the sample files, they are available in the subdirec-
tory doc/latex/glossaries/samples/ in the glossaries.tds.zip
archive which can be downloaded from CTAN.

The sample documents are as follows:

minimalgls.tex This document is a minimal working example. You
can test your installation using this file. To create the complete
document you will need to do the following steps:

1. Run minimalgls.tex through LATEX either by typing

latex minimalgls

in a terminal or by using the relevant button or menu item
in your text editor or front-end. This will create the re-
quired associated files but you will not see the glossary. If
you use PDFLATEX you will also get warnings about non-
existent references. These warnings may be ignored on the
first run.

If you get a Missing \begin{document} error, then
it’s most likely that your version of xkeyval is out of date.
Check the log file for a warning of that nature. If this is the
case, you will need to update the xkeyval package.

9

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://tug.ctan.org/tex-archive/macros/latex/contrib/glossaries/

1 Introduction

2. Run makeglossaries on the document (Section 1.3).
This can be done on a terminal either by typing

makeglossaries minimalgls

or by typing

perl makeglossaries minimalgls

If your system doesn’t recognise the command perl then
it’s likely you don’t have Perl installed. In which case you
will need to use makeindex directly. You can do this in a
terminal by typing (all on one line):

makeindex -s minimalgls.ist -t minimalgls.glg
-o minimalgls.gls minimalgls.glo

(See Section 1.3.3 for further details on using makeindex
explicitly.)

Note that if you need to specify the full path and the path
contains spaces, you will need to delimit the file names
with the double-quote character.

3. Run minimalgls.tex through LATEX again (as step 1)

You should now have a complete document. The number fol-
lowing each entry in the glossary is the location number. By de-
fault, this is the page number where the entry was referenced.

sample4col.tex This document illustrates a four column glossary where
the entries have a symbol in addition to the name and descrip-
tion. To create the complete document, you need to do:

latex sample4col

makeglossaries sample4col

latex sample4col

As before, if you don’t have Perl installed, you will need to use
makeindex directly instead of using makeglossaries. The
vertical gap between entries is the gap created at the start of

10

1 Introduction

each group. This can be suppressed using the nogroupskip pack-
age option.

sampleAcr.tex This document has some sample acronyms. It also
adds the glossary to the table of contents, so an extra run
through LATEX is required to ensure the document is up to date:

latex sampleAcr

makeglossaries sampleAcr

latex sampleAcr

latex sampleAcr

sampleAcrDesc.tex This is similar to the previous example, except
that the acronyms have an associated description. As with the
previous example, the glossary is added to the table of contents,
so an extra run through LATEX is required:

latex sampleAcrDesc

makeglossaries sampleAcrDesc

latex sampleAcrDesc

latex sampleAcrDesc

sampleDesc.tex This is similar to the previous example, except that
it defines the acronyms using \newglossaryentry instead of
\newacronym. As with the previous example, the glossary is
added to the table of contents, so an extra run through LATEX is
required:

latex sampleDesc

makeglossaries sampleDesc

latex sampleDesc

latex sampleDesc

sample-custom-acronym.tex This document illustrates how to define
your own acronym style if the predefined styles don’t suit your
requirements.

11

1 Introduction

latex sample-custom-acronym

makeglossaries sample-custom-acronym

latex sample-custom-acronym

sample-crossref.tex This document illustrates how to cross-reference
entries in the glossary.

latex sample-crossref

makeglossaries sample-crossref

latex sample-crossref

sampleDB.tex This document illustrates how to load external files
containing the glossary definitions. It also illustrates how to
define a new glossary type. This document has the number list
suppressed and uses \glsaddall to add all the entries to the
glossaries without referencing each one explicitly. To create the
document do:

latex sampleDB

makeglossaries sampleDB

latex sampleDB

The glossary definitions are stored in the accompanying files
database1.tex and database2.tex. Note that if you don’t
have Perl installed, you will need to use makeindex twice in-
stead of a single call to makeglossaries:

1. Create the main glossary:

makeindex -s sampleDB.ist -t sampleDB.glg -o
sampleDB.gls sampleDB.glo

2. Create the secondary glossary:

makeindex -s sampleDB.ist -t sampleDB.nlg -o
sampleDB.not sampleDB.ntn

12

1 Introduction

sampleEq.tex This document illustrates how to change the location
to something other than the page number. In this case, the
equation counter is used since all glossary entries appear in-
side an equation environment. To create the document do:

latex sampleEq

makeglossaries sampleEq

latex sampleEq

sampleEqPg.tex This is similar to the previous example, but the num-
ber lists are a mixture of page numbers and equation numbers.
This example adds the glossary to the table of contents, so an
extra LATEX run is required:

latex sampleEqPg

makeglossaries sampleEqPg

latex sampleEqPg

latex sampleEqPg

sampleSec.tex This document also illustrates how to change the lo-
cation to something other than the page number. In this case,
the section counter is used. This example adds the glossary
to the table of contents, so an extra LATEX run is required:

latex sampleSec

makeglossaries sampleSec

latex sampleSec

latex sampleSec

sampleNtn.tex This document illustrates how to create an additional
glossary type. This example adds the glossary to the table of
contents, so an extra LATEX run is required:

latex sampleNtn

makeglossaries sampleNtn

latex sampleNtn

13

1 Introduction

latex sampleNtn

Note that if you don’t have Perl installed, you will need to use
makeindex twice instead of a single call to makeglossaries:

1. Create the main glossary:

makeindex -s sampleNtn.ist -t sampleNtn.glg
-o sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary:

makeindex -s sampleNtn.ist -t sampleNtn.nlg
-o sampleNtn.not sampleNtn.ntn

sample.tex This document illustrates some of the basics, including
how to create child entries that use the same name as the par-
ent entry. This example adds the glossary to the table of con-
tents and it also uses \glsrefentry, so an extra LATEX run is
required:

latex sample

makeglossaries sample

latex sample

latex sample

You can see the difference between word and letter ordering if
you substitute order=word with order=letter. (Note that this will
only have an effect if you use makeglossaries. If you use
makeindex explicitly, you will need to use the -l switch to
indicate letter ordering.)

sample-inline.tex This document is like sample.tex, above, but uses
the inline glossary style to put the glossary in a footnote.

sampletree.tex This document illustrates a hierarchical glossary struc-
ture where child entries have different names to their corre-
sponding parent entry. To create the document do:

latex sampletree

14

1 Introduction

makeglossaries sampletree

latex sampletree

sample-dual.tex This document illustrates how to define an entry that
both appears in the list of acronyms and in the main glossary.
To create the document do:

latex sample-dual

makeglossaries sample-dual

latex sample-dual

sample-langdict This document illustrates how to use the glossaries
package to create English to French and French to English dic-
tionaries. To create the document do:

latex sample-langdict

makeglossaries sample-langdict

latex sample-langdict

samplexdy.tex This document illustrates how to use the glossaries
package with xindy instead of makeindex. The document
uses UTF8 encoding (with the inputenc package). The encoding
is picked up by makeglossaries. By default, this document
will create a xindy style file called samplexdy.xdy, but if you
uncomment the lines

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

it will set the style file to samplexdy-mc.xdy instead. This
provides an additional letter group for entries starting with
“Mc” or “Mac”. If you use makeglossaries, you don’t
need to supply any additional information. If you don’t use
makeglossaries, you will need to specify the required infor-
mation. Note that if you set the style file to samplexdy-mc.xdy
you must also specify \noist, otherwise the glossaries package
will overwrite samplexdy-mc.xdy and you will lose the “Mc”
letter group.

15

1 Introduction

To create the document do:

latex samplexdy

makeglossaries samplexdy

latex samplexdy

If you don’t have Perl installed, you will have to call xindy
explicitly instead of using makeglossaries. If you are using
the default style file samplexdy.xdy, then do (no line breaks):

xindy -L english -C utf8 -I xindy -M samplexdy -t
samplexdy.glg -o samplexdy.gls samplexdy.glo

otherwise, if you are using samplexdy-mc.xdy, then do (no
line breaks):

xindy -I xindy -M samplexdy-mc -t samplexdy.glg
-o samplexdy.gls samplexdy.glo

samplexdy2.tex This document illustrates how to use the glossaries
package where the location numbers don’t follow a standard
format. This example will only work with xindy. To create the
document do:

pdflatex samplexdy2

makeglossaries samplexdy2

pdflatex samplexdy2

If you can’t use makeglossaries then you need to do:

xindy -L english -C utf8 -I xindy -M samplexdy2
-t samplexdy2.glg -o samplexdy2.gls samplexdy2.glo

See Section 11.2 for further details.

16

1 Introduction

sampleutf8.tex This is another example that uses xindy. Unlike
makeindex, xindy can cope with accented or non-Latin char-
acters. This document uses UTF8 encoding. To create the docu-
ment do:

latex sampleutf8

makeglossaries sampleutf8

latex sampleutf8

If you don’t have Perl installed, you will have to call xindy
explicitly instead of using makeglossaries (no line breaks):

xindy -L english -C utf8 -I xindy -M sampleutf8
-t sampleutf8.glg -o sampleutf8.gls sampleutf8.glo

If you remove the xindy option from sampleutf8.tex and do:

latex sampleutf8

makeglossaries sampleutf8

latex sampleutf8

you will see that the entries that start with a non-Latin character
now appear in the symbols group, and the word “manœuvre”
is now after “manor” instead of before it. If you are unable to
use makeglossaries, the call to makeindex is as follows (no
line breaks):

makeindex -s sampleutf8.ist -t sampleutf8.glg -o
sampleutf8.gls sampleutf8.glo

sampleaccsupp.tex This document uses the experimental glossaries-
accsupp package. The symbol is set to the replacement text.
Note that some PDF viewers don’t use the accessibility support.
Information about the glossaries-accsupp package can be found
in Section 18.

17

1 Introduction

1.2 Multi-Lingual Support

As from version 1.17, the glossaries package can now be used with
xindy as well as makeindex. If you are writing in a language that
uses accented characters or non-Latin characters it is recommended
that you use xindy as makeindex is hard-coded for Latin languages.
This means that you are not restricted to the A, . . . , Z letter groups.
If you want to use xindy, remember to use the xindy package option.
For example:

\documentclass[frenchb]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{babel}
\usepackage[xindy]{glossaries}

Note that although an accented character, such as é, looks like a
plain character in your tex file, it’s actually a macro and can there-
fore cause problems.

1. If you use an accented (or other expandable) character at the
start of an entry name, you must place it in a group, or it will
cause a problem for commands that convert the first letter to
uppercase (e.g. \Gls) due to expansion issues. For example:

\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

2. If you use an accented (or other expandable) character in an
entry name and you haven’t switched off the name key san-
itization, you must use commands like \glsentrytext or
\glstext instead of \glsentryname or \glsname or you
will end up with strange looking characters in your docu-
ment.

If you use the inputenc package, makeglossaries will pick up the
encoding from the auxiliary file. If you use xindy explicitly instead
of via makeglossaries, you may need to specify the encoding us-
ing the -C option. Read the xindy manual for further details.

1.2.1 Changing the Fixed Names

As from version 1.08, the glossaries package now has limited multi-
lingual support, thanks to all the people who have sent me the rele-
vant translations either via email or via comp.text.tex. However

18

1 Introduction

you must load babel or polyglossia before glossaries to enable this. Note
that if babel is loaded and the translator package is detected on TEX’s
path, then the translator package will be loaded automatically. How-
ever, it may not pick up on the required languages so, if the prede-
fined text is not translated, you may need to explicitly load the trans-
lator package with the required languages. For example:

\usepackage[spanish]{babel}
\usepackage[spanish]{translator}
\usepackage{glossaries}

Alternatively, specify the language as a class option rather than a
package option. For example:

\documentclass[spanish]{report}

\usepackage{babel}
\usepackage{glossaries}

If you want to use ngerman or german instead of babel, you will need
to include the translator package to provide the translations. For ex-
ample:

\documentclass[ngerman]{article}
\usepackage{ngerman}
\usepackage{translator}
\usepackage{glossaries}

The languages are currently supported by the glossaries package
are listed in table 1.1. Please note that (apart from spelling mistakes)
I don’t intend to change the default translations as it will cause com-
patibility problems.

The language dependent commands and translator keys used by the
glossaries package are listed in table 1.2.

Due to the varied nature of glossaries, it’s likely that the prede-
fined translations may not be appropriate. If you are using the babel
package and do not have the translator package installed, you need
to be familiar with the advice given in http://www.tex.ac.uk/
cgi-bin/texfaq2html?label=latexwords. If you have the
translator package installed, then you can provide your own dictio-
nary with the necessary modifications (using \deftranslation)
and load it using \usedictionary.

Note that the dictionaries are loaded at the beginning of the doc-
ument, so it won’t have any effect if you put \deftranslation
in the preamble. It should be put in your personal dictionary in-
stead (as in the example below). See the translator documentation
for further details. (Now with beamer documentation.)

19

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords

1 Introduction

Table 1.1: Supported Languages

Language As from version
Brazilian Portuguese 1.17
Danish 1.08
Dutch 1.08
English 1.08
French 1.08
German 1.08
Irish 1.08
Italian 1.08
Hungarian 1.08
Polish 1.13
Serbian 2.06
Spanish 1.08

Your custom dictionary doesn’t have to be just a translation from
English to another language. You may prefer to have a dictionary for
a particular type of document. For example, suppose your institu-
tion’s in-house reports have to have the glossary labelled as “Nomen-
clature” and the page list should be labelled “Location”, then you can
create a file called, say,

myinstitute-glossaries-dictionary-English.dict

that contains the following:

\ProvidesDictionary{myinstitute-glossaries-dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries)}{Location}

You can now load it using:

\usedictionary{myinstitute-glossaries-dictionary}

(Make sure that myinstitute-glossaries-dictionary-English.dict
can be found by TEX.) If you want to share your custom dictionary,
you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface,
you can suppress it using the package option translate=false, and either
load glossaries-babel after glossaries or specify you’re own translations.
For example:

\documentclass[british]{article}

20

http://www.ctan.org/

1 Introduction

Table 1.2: Customised Text

Command Name Translator Key
Word

Purpose

\glossaryname Glossary Title of the main glossary.
\acronymname Acronyms Title of the list of acronyms

(when used with package
option acronym).

\entryname Notation
(glossaries)

Header for first column in
the glossary (for 2, 3 or 4
column glossaries that
support headers).

\descriptionname Description
(glossaries)

Header for second column
in the glossary (for 2, 3 or 4
column glossaries that
support headers).

\symbolname Symbol
(glossaries)

Header for symbol column
in the glossary for glossary
styles that support this
option.

\pagelistname Page List
(glossaries)

Header for page list
column in the glossary for
glossaries that support this
option.

\glssymbolsgroupname Symbols
(glossaries)

Header for symbols section
of the glossary for glossary
styles that support this
option.

\glsnumbersgroupname Numbers
(glossaries)

Header for numbers
section of the glossary for
glossary styles that support
this option.

21

1 Introduction

\usepackage{babel}
\usepackage[translate=false]{glossaries}
\usepackage{glossaries-babel}

or:

\documentclass[british]{article}

\usepackage{babel}
\usepackage[translate=false]{glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname}{List of Terms}%
\renewcommand*{\acronymname}{List of Acronyms}%
\renewcommand*{\entryname}{Notation}%
\renewcommand*{\descriptionname}{Description}%
\renewcommand*{\symbolname}{Symbol}%
\renewcommand*{\pagelistname}{Page List}%
\renewcommand*{\glssymbolsgroupname}{Symbols}%
\renewcommand*{\glsnumbersgroupname}{Numbers}%

}

If you are using polyglossia instead of babel, glossaries-polyglossia will
automatically be loaded unless you specify the package option trans-
late=false.

Note that xindy provides much better multi-lingual support than
makeindex, so it’s recommended that you use xindy if you have
glossary entries that contain diacritics or non-Roman letters. See Sec-
tion 11 for further details.

1.3 Generating the Associated Glossary Files

In order to generate a sorted glossary with compact location lists, it is
necessary to use an external indexing application as an intermediate
step. It is this application that creates the file containing the code
that typesets the glossary. If this step is omitted, the glossaries will
not appear in your document. The two indexing applications that
are most commonly used with LATEX are makeindex and xindy. As
from version 1.17, the glossaries package can be used with either of
these applications. Previous versions were designed to be used with
makeindex only. Note that xindy has much better multi-lingual
support than makeindex, so xindy is recommended if you’re not
writing in English. Commands that only have an effect when xindy
is used are described in Section 11.

The glossaries package comes with the Perl script makeglossaries
which will run makeindex or xindy on all the glossary files us-
ing a customized style file (which is created by \makeglossaries).

22

1 Introduction

See Section 1.3.1 for further details. Perl is stable, cross-platform,
open source software that is used by a number of TEX-related applica-
tions. Further information is available at http://www.perl.org/
about.html. The advantages of using makeglossaries:

• It automatically detects whether to use makeindex or xindy
and sets the relevant application switches.

• One call of makeglossaries will run makeindex/xindy for
each glossary type.

• If things go wrong, makeglossaries will scan the messages
from makeindex or xindy and attempt to diagnose the prob-
lem in relation to the glossaries package. This will hopefully pro-
vide more helpful messages in some cases. If it can’t diagnose
the problem, you will have to read the relevant transcript file
and see if you can work it out from the makeindex or xindy
messages.

There is also a Java GUI alternative called makeglossariesgui,
distributed separately, that has diagnostic tools.

Whilst it is strongly recommended that you use the makeglossaries
script or makeglossariesgui, it is possible to use the glossaries
package without using either application. However, note that some
commands and package options have no effect if you don’t use
makeglossaries or makeglossariesgui. These are listed in ta-
ble 1.3.

If you are choosing not to use makeglossaries because you
don’t want to install Perl, you will only be able to use makeindex
as xindy also requires Perl.

Note that if any of your entries use an entry that is not ref-
erenced outside the glossary, you will need to do an additional
makeglossaries, makeindex or xindy run, as appropriate. For
example, suppose you have defined the following entries:2

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange})}}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

2As from v3.01 \gls is no longer fragile and doesn’t need protecting.

23

http://www.perl.org/about.html
http://www.perl.org/about.html

1 Introduction

and suppose you have \gls{citrusfruit} in your document but
don’t reference the orange entry, then the orange entry won’t ap-
pear in your glossary until you first create the glossary and then do
another run of makeglossaries, makeindex or xindy. For exam-
ple, if the document is called myDoc.tex, then you must do:

latex myDoc
makeglossaries myDoc
latex myDoc
makeglossaries myDoc
latex myDoc

Likewise, an additional makeglossaries and LATEX run may be
required if the document pages shift with re-runs. For example, if the
page numbering is not reset after the table of contents, the insertion
of the table of contents on the second LATEX run may push glossary
entries across page boundaries, which means that the number lists in
the glossary may need updating.

The examples in this document assume that you are accessing
makeglossaries, xindy or makeindex via a terminal. Windows
users can use the MSDOS Prompt which is usually accessed via the
Start→ All Programs menu or Start→ All Programs→ Accessories menu.

Alternatively, your text editor may have the facility to create a func-
tion that will call the required application. The article “Glossaries,
Nomenclature, List of Symbols and Acronyms” in the LATEX Commu-
nity’s3 Know How section describes how to do this for TeXnicCen-
ter, and the thread “Executing Glossaries’ makeindex from a WinEdt
macro” on the comp.text.tex newsgroup describes how to do it
for WinEdt. For other editors see the editor’s user manual for further
details.

If any problems occur, remember to check the transcript files (e.g.
.glg or .alg) for messages.

1.3.1 Using the makeglossaries Perl Script

The makeglossaries script picks up the relevant information from
the auxiliary (.aux) file and will either call xindy or makeindex,
depending on the supplied information. Therefore, you only need to
pass the document’s name without the extension to makeglossaries.
For example, if your document is called myDoc.tex, type the follow-
ing in your terminal:

3http://www.latex-community.org/

24

http://www.latex-community.org/index.php?option=com_content&view=article&id=263:glossaries-nomenclature-lists-of-symbols-and-acronyms&catid=55:latex-general&Itemid=114
http://www.latex-community.org/index.php?option=com_content&view=article&id=263:glossaries-nomenclature-lists-of-symbols-and-acronyms&catid=55:latex-general&Itemid=114
http://groups.google.com/group/comp.text.tex/browse_thread/thread/edd83831b81b0759?hl=en
http://groups.google.com/group/comp.text.tex/browse_thread/thread/edd83831b81b0759?hl=en
http://www.latex-community.org/

1 Introduction

Table 1.3: Commands and package options that have no effect when
using xindy or makeindex explicitly

Command or Package Option makeindex xindy
order=letter use -l use -M ord/letorder
order=word default default
xindy={language=〈lang〉,codename=〈code〉} N/A use -L 〈lang〉 -C 〈code〉
\GlsSetXdyLanguage{〈lang〉} N/A use -L 〈lang〉
\GlsSetXdyCodePage{〈code〉} N/A use -C 〈code〉

latex myDoc
makeglossaries myDoc
latex myDoc

You may need to explicitly load makeglossaries into Perl:

perl makeglossaries myDoc

There is a batch file called makeglossaries.bat which does this
for Windows users, but you must have Perl installed to be able to use
it. You can specify in which directory the .aux, .glo etc files are
located using the -d switch. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries -d myTmpDir myDoc

The makeglossaries script contains POD (Plain Old Documen-
tation). If you want, you can create a man page for makeglossaries
using pod2man and move the resulting file onto the man path. Al-
ternatively do makeglossaries --help for a list of all options or
makeglossaries --version for the version number.

When upgrading the glossaries package, make sure you also up-
grade your version of makeglossaries. The current version is
2.04.

1.3.2 Using xindy explicitly

Xindy comes with TeXLive, but not with MiKTeX. However MikTeX
users can install it. There is a thread in the Makeindex section of the

25

http://www.latex-community.org/forum/viewtopic.php?f=51&t=5383

1 Introduction

LATEX Community4 that describes how to do this.
If you want to use xindy to process the glossary files, you must

make sure you have used the xindy package option:

\usepackage[xindy]{glossaries}

This is required regardless of whether you use xindy explicitly or
whether it’s called implicitly via makeglossaries or makeglossariesgui.
This causes the glossary entries to be written in raw xindy format, so
you need to use -I xindy not -I tex.

To run xindy type the following in your terminal (all on one line):

xindy -L 〈language〉 -C 〈encoding〉 -I xindy -M 〈style〉 -t 〈base〉.glg
-o 〈base〉.gls 〈base〉.glo

where 〈language〉 is the required language name, 〈encoding〉 is the en-
coding, 〈base〉 is the name of the document without the .tex exten-
sion and 〈style〉 is the name of the xindy style file without the .xdy
extension. The default name for this style file is 〈base〉.xdy but can
be changed via \setStyleFile{〈style〉}. You may need to specify
the full path name depending on the current working directory. If
any of the file names contain spaces, you must delimit them using
double-quotes.

For example, if your document is called myDoc.tex and you are
using UTF8 encoding in English, then type the following in your ter-
minal:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg
-o myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the
same for each of the other glossaries (including the list of acronyms if
you have used the acronym package option), substituting .glg, .gls
and .glowith the relevant extensions. For example, if you have used
the acronym package option, then you would need to do:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.alg
-o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you
created the glossary with \newglossary.

Note that if you use makeglossaries instead, you can replace all
those calls to xindy with just one call to makeglossaries:

4http://www.latex-community.org/

26

http://www.latex-community.org/

1 Introduction

makeglossaries myDoc

Note also that some commands and package options have no effect if
you use xindy explicitly instead of using makeglossaries. These
are listed in table 1.3.

1.3.3 Using makeindex explicitly

If you want to use makeindex explicitly, you must make sure that
you haven’t used the xindy package option or the glossary entries will
be written in the wrong format. To run makeindex, type the follow-
ing in your terminal:

makeindex -s 〈style〉.ist -t 〈base〉.glg -o 〈base〉.gls 〈base〉.glo

where 〈base〉 is the name of your document without the .tex exten-
sion and 〈style〉.ist is the name of the makeindex style file. By de-
fault, this is 〈base〉.ist, but may be changed via \setStyleFile{〈style〉}.
Note that there are other options, such as -l (letter ordering). See the
makeindex manual for further details.

For example, if your document is called myDoc.tex, then type the
following at the terminal:

makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls myDoc.glo

Note that this only creates the main glossary. If you have additional
glossaries (for example, if you have used the acronym package option)
then you must call makeindex for each glossary, substituting .glg,
.gls and .glo with the relevant extensions. For example, if you
have used the acronym package option, then you need to type the fol-
lowing in your terminal:

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you
created the glossary with \newglossary.

Note that if you use makeglossaries instead, you can replace all
those calls to makeindex with just one call to makeglossaries:

makeglossaries myDoc

Note also that some commands and package options have no effect
if you use makeindex explicitly instead of using makeglossaries.

27

1 Introduction

These are listed in table 1.3.

1.3.4 Note to Front-End and Script Developers

The information needed to determine whether to use xindy or
makeindex and the information needed to call those applications is
stored in the auxiliary file. This information can be gathered by a
front-end, editor or script to make the glossaries where appropriate.
This section describes how the information is stored in the auxiliary
file.

The file extensions used by each defined glossary are given by

\@newglossary{〈label〉}{〈log〉}{〈out-ext〉}{〈in-ext〉}\@newglossary

where 〈in-ext〉 is the extension of the indexing application’s input file
(the output file from the glossaries package’s point of view), 〈out-ext〉
is the extension of the indexing application’s output file (the input file
from the glossaries package’s point of view) and 〈log〉 is the extension
of the indexing application’s transcript file. The label for the glossary
is also given for information purposes only, but is not required by the
indexing applications. For example, the information for the default
main glossary is written as:

\@newglossary{main}{glg}{gls}{glo}

The indexing application’s style file is specified by

\@istfilename{〈filename〉}\@istfilename

The file extension indicates whether to use makeindex (.ist) or
xindy (.xdy). Note that the glossary information is formatted dif-
ferently depending on which indexing application is supposed to be
used, so it’s important to call the correct one.

Word or letter ordering is specified by:

\@glsorder{〈order〉}\@glsorder

where 〈order〉 can be either word or letter.
If xindy should be used, the language and code page for each glos-

sary is specified by

\@xdylanguage{〈label〉}{〈language〉}
\@gls@codepage{〈label〉}{〈code〉}\@xdylanguage

\@gls@codepage

28

1 Introduction

where 〈label〉 identifies the glossary, 〈language〉 is the root language
(e.g. english) and 〈code〉 is the encoding (e.g. utf8). These com-
mands are omitted if makeindex should be used.

29

2 Package Options

This section describes the available glossaries package options.

2.1 General Options

nowarn This suppresses all warnings generated by the glossaries
package.

nomain This suppresses the creation of the main glossary. Note that if
you use this option, you must create another glossary in which
to put all your entries (either via the acronym package option
described in Section 2.5 or via \newglossary described in Sec-
tion 12).

sanitize This is a 〈key〉=〈value〉 option whose value is also a 〈key〉=〈value〉
list. By default, the glossaries package sanitizes the values of the
name, description, symbol and sort keys used when defining a new
glossary entry. This means that you can use fragile commands
in those keys, but it may lead to unexpected results if you try to
display these values within the document text. This sanitization
can be switched off using the sanitize package option. For exam-
ple, to switch off the sanitization for the description and name
keys, but not for the symbol key, do:

\usepackage[sanitize={name=false,description=false,%
symbol=true}]{glossaries}

You can use sanitize=none as a shortcut for
sanitize={name=false,description=false,symbol=false}. Note that this
shortcut doesn’t change the sort sanitization. That one needs to
be switched off explicitly:

\usepackage{sanitize=none,sanitize={sort=false}}

30

2 Package Options

Note: this sanitization only applies to the name, description,
symbol and sort keys. It doesn’t apply to any of the other
keys so fragile commands contained in the value of the other
keys must always be protected using \protect. Since the
value of the text key is obtained from the name key, you will
still need to protect fragile commands in the name key if you
don’t use the text key.

savewrites This is a boolean option to minimises the number of
write registers used by the glossaries package. (Default is
savewrites=false.) There are only a limited number of write reg-
isters, and if you have a large number of glossaries or if you are
using a class or other packages that create a lot of external files,
you may exceed the maximum number of available registers. If
savewrites is set, the glossary information will be stored in token
registers until the end of the document when they will be writ-
ten to the external files. If you run out of token registers, you
can use etex.

If you want to use TEX’s \write18 mechanism to
call makeindex or xindy from your document and
use savewrites, you must create the external files with
\glswritefiles before you call makeindex/xindy.
Also set \glswritefiles to nothing or \relax before the
end of the document to avoid rewriting the files. For exam-
ple:

\glswritefiles
\write18{makeindex -s \istfilename\space
-t \jobname.glg -o \jobname.gls \jobname}
\let\glswritefiles\relax

translate This is a boolean option. The default is true if babel, polyglos-
sia or translator have been loaded, otherwise the default value is
false.

translate=true If babel has been loaded and the translator pack-
age is installed, translator will be loaded and the trans-
lations will be provided by the translator package inter-
face. You can modify the translations by providing your
own dictionary. If the translator package isn’t installed
and babel is loaded, the glossaries-babel package will be
loaded and the translations will be provided using babel’s

31

2 Package Options

\addto\caption〈language〉 mechanism. If polyglossia has
been loaded, glossaries-polyglossia will be loaded.

translate=false Don’t provide translations, even if babel or poly-
glossia has been loaded. You can then provide you’re own
translations or explicitly load glossaries-babel or glossaries-
polyglossia.

See Section 1.2.1 for further details.

hyperfirst This is a boolean option that specifies whether each term
has a hyperlink on first use. The default is hyperfirst=true (terms
on first use have a hyperlink, unless explicitly suppressed using
starred versions of commands such as \gls*).

nohypertypes Use this option if you have multiple glossaries and you
want to suppress the entry hyperlinks for a particular glossary
or glossaries. The value of this option should be a comma-
separated list of glossary types where \gls etc shouldn’t have
hyperlinks by default. Make sure you enclose the value in
braces if it contains any commas. Example:

\usepackage[acronym,nohypertypes={acronym,notation}]{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

See Section 6 for further details.

savenumberlist This is a boolean option that specifies whether or not
to gather and store the number list for each entry. The de-
fault is savenumberlist=false. (See \glsentrynumberlist and
\glsdisplaynumberlist in Section 9.)

2.2 Sectioning, Headings and TOC Options

toc Add the glossaries to the table of contents. Note that an extra
LATEX run is required with this option. Alternatively, you can
switch this function on and off using

\glstoctrue\glstoctrue

and

\glstocfalse\glstocfalse

32

2 Package Options

numberline When used with toc, this will add \numberline{} in
the final argument of \addcontentsline. This will align the
table of contents entry with the numbered section titles. Note
that this option has no effect if the toc option is omitted. If toc is
used without numberline, the title will be aligned with the section
numbers rather than the section titles.

section This is a 〈key〉=〈value〉 option. Its value should be the name of
a sectional unit (e.g. chapter). This will make the glossaries ap-
pear in the named sectional unit, otherwise each glossary will
appear in a chapter, if chapters exist, otherwise in a section. Un-
numbered sectional units will be used by default. Example:

\usepackage[section=subsection]{glossaries}

You can omit the value if you want to use sections, i.e.

\usepackage[section]{glossaries}

is equivalent to

\usepackage[section=section]{glossaries}

You can change this value later in the document using

\setglossarysection{〈name〉}\setglossarysection

where 〈name〉 is the sectional unit.

The start of each glossary adds information to the page header
via

\glossarymark{〈glossary title〉}\glossarymark

This defaults to \@mkboth unless memoir is loaded, but you
may need to redefine it. For example, to only change the right
header:

\renewcommand{\glossarymark}[1]{\markright{#1}}

or to prevent it from changing the headers:

\renewcommand{\glossarymark}[1]{}

33

2 Package Options

If you want \glossarymark to use \MakeUppercase in the
header, use the ucmark option described below.

Occasionally you may find that another package defines
\cleardoublepage when it is not required. This may cause
an unwanted blank page to appear before each glossary. This
can be fixed by redefining \glsclearpage:

\renewcommand*{\glsclearpage}{\clearpage}

ucmark This is a boolean option (default: ucmark=false). If set,
\glossarymark is defined to use \MakeUppercase.

numberedsection The glossaries are placed in unnumbered sectional
units by default, but this can be changed using numberedsection.
This option can take three possible values: false (no number, i.e.
use starred form), nolabel (numbered, i.e. unstarred form, but
not labelled) and autolabel (numbered with automatic labelling).
If numberedsection=autolabel is used, each glossary is given a label
that matches the glossary type, so the main (default) glossary is
labelled main, the list of acronyms is labelled acronym1 and
additional glossaries are labelled using the value specified in
the first mandatory argument to \newglossary. For example,
if you load glossaries using:

\usepackage[section,numberedsection=autolabel]{glossaries}

then each glossary will appear in a numbered section, and can
be referenced using something like:

The main glossary is in section~\ref{main} and the list of
acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main
glossary or a separate list of acronyms, you can use \acronymtype
which is set to main if the acronym option is not used and is set
to acronym if the acronym option is used. For example:

The list of acronyms is in section~\ref{\acronymtype}.

As from version 1.14, you can add a prefix to the label by re-
defining

\glsautoprefix\glsautoprefix

1if the acronym option is used, otherwise the list of acronyms is the main glossary

34

2 Package Options

For example:

\renewcommand*{\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can
then, for example, refer to the list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

2.3 Glossary Appearance Options

entrycounter This is a boolean option. (Default is entrycounter=false.)
If set, each main (level 0) glossary entry will be numbered
when using the standard glossary styles. This option creates
the counter glossaryentry.glossaryentry

If you use this option, you can reference the entry number
within the document using

\glsrefentry{〈label〉}\glsrefentry

where 〈label〉 is the label associated with that glossary entry.

If you use \glsrefentry, you must run LATEX twice
after creating the glossary files using makeglossaries,
makeindex or xindy to ensure the cross-references are up-
to-date.

counterwithin This is a 〈key〉=〈value〉 option where 〈value〉 is the name
of a counter. If used, this option will automatically set en-
trycounter=true and the glossaryentry counter will be reset every
time 〈value〉 is incremented.

\glsresetentrycounter

35

2 Package Options

The glossaryentry counter isn’t automatically reset at the
start of each glossary, except when glossary section num-
bering is on and the counter used by counterwithin is the
same as the counter used in the glossary’s sectioning com-
mand. If you want the counter reset at the start of each
glossary, you can redefine \glossarypreamble to use
\glsresetentrycounter, which sets glossaryentry to zero:

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

subentrycounter This is a boolean option. (Default is subentrycounter=false.)
If set, each level 1 glossary entry will be numbered when using
the standard glossary styles. This option creates the counter
glossarysubentry. The counter is reset with each main (level 0)glossarysubentry

entry. Note that this package option is independent of en-
trycounter. You can reference the number within the document
using \glsrefentry{〈label〉} where 〈label〉 is the label associ-
ated with the sub-entry.

style This is a 〈key〉=〈value〉 option. (Default is style=list.) Its value
should be the name of the glossary style to use. This key
may only be used for styles defined in glossary-list, glossary-long,
glossary-super or glossary-tree. (See Section 15.)

nolong This prevents the glossaries package from automatically load-
ing glossary-long (which means that the longtable package also
won’t be loaded). This reduces overhead by not defining un-
wanted styles and commands. Note that if you use this option,
you won’t be able to use any of the glossary styles defined in
the glossary-long package.

nosuper This prevents the glossaries package from automatically load-
ing glossary-super (which means that the supertabular package
also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this op-
tion, you won’t be able to use any of the glossary styles defined
in the glossary-super package.

nolist This prevents the glossaries package from automatically load-
ing glossary-list. This reduces overhead by not defining un-
wanted styles. Note that if you use this option, you won’t be
able to use any of the glossary styles defined in the glossary-list

36

2 Package Options

package. Note that since the default style is list, you will also
need to use the style option to set the style to something else.

notree This prevents the glossaries package from automatically load-
ing glossary-tree. This reduces overhead by not defining un-
wanted styles. Note that if you use this option, you won’t be
able to use any of the glossary styles defined in the glossary-tree
package.

nostyles This prevents all the predefined styles from being loaded.
If you use this option, you need to load a glossary style pack-
age (such as glossary-mcols). Also if you use this option, you
can’t use the style package option. Instead you must either use
\glossarystyle{〈style〉} or the style key in the optional ar-
gument to \printglossary. Example:

\usepackage[nostyles]{glossaries}
\usepackage{glossary-mcols}
\glossarystyle{mcoltree}

nonumberlist This option will suppress the associated number lists in
the glossaries (see also Section 5).

seeautonumberlist If you suppress the number lists with nonumberlist,
described above, this will also suppress any cross-referencing
information supplied by the see key in \newglossaryentry
or \glssee. If you use seeautonumberlist, the see key will auto-
matically implement nonumberlist=false for that entry. (Note this
doesn’t affect \glssee.) For further details see Section 8.

counter This is a 〈key〉=〈value〉 option. (Default is counter=page.) The
value should be the name of the default counter to use in the
number lists (see Section 5).

nopostdot This is a boolean option. If no value is specified, true is
assumed. When set to true, this option suppresses the default
post description dot used by some of the predefined styles. The
default setting is nopostdot=false.

nogroupskip This is a boolean option. If no value is specified, true is
assumed. When set to true, this option suppresses the default
vertical gap between groups used by some of the predefined
styles. The default setting is nogroupskip=false.

37

2 Package Options

2.4 Sorting Options

sort This is a 〈key〉=〈value〉 option where the option can only have
one of the following values:

• standard : entries are sorted according to the value of the
sort key used in \newglossaryentry (if present) or the
name key (if sort key is missing);

• def : entries are sorted in the order in which they were de-
fined (the sort key in \newglossaryentry is ignored);

• use : entries are sorted according to the order in which they
are used in the document (the sort key in \newglossaryentry
is ignored).

The default is sort=standard.

order This may take two values: word or letter. The default is word
ordering.

Note that the order option has no effect if you don’t use
makeglossaries.

makeindex (Default) The glossary information and indexing style file
will be written in makeindex format. If you use makeglossaries,
it will automatically detect that it needs to call makeindex. If
you don’t use makeglossaries, you need to remember to use
makeindex not xindy. The indexing style file will been given
a .ist extension.

xindy The glossary information and indexing style file will be writ-
ten in xindy format. If you use makeglossaries, it will au-
tomatically detect that it needs to call xindy. If you don’t use
makeglossaries, you need to remember to use xindy not
makeindex. The indexing style file will been given a .xdy ex-
tension.

The xindy package option may additionally have a value that is
a 〈key〉=〈value〉 comma-separated list to override the language
and codepage. For example:

\usepackage[xindy={language=english,codepage=utf8}]{glossaries}

You can also specify whether you want a number group in the
glossary. This defaults to true, but can be suppressed. For ex-
ample:

38

2 Package Options

\usepackage[xindy={glsnumbers=false}]{glossaries}

See Section 11 for further details on using xindy with the glos-
saries package.

2.5 Acronym Options

acronym This creates a new glossary with the label acronym. This is
equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

If the acronym package option is used, \acronymtype is set to
acronym otherwise it is set to main.2 Entries that are defined
using \newacronym are placed in the glossary whose label is
given by \acronymtype, unless another glossary is explicitly
specified.

acronymlists By default, only the \acronymtype glossary is consid-
ered to be a list of acronyms. If you have other lists of acronyms,
you can specify them as a comma-separated list in the value of
acronymlists. For example, if you use the acronym package op-
tion but you also want the main glossary to also contain a list
of acronyms, you can do:

\usepackage[acronym,acronymlists={main}]{glossaries}

No check is performed to determine if the listed glossaries exist,
so you can add glossaries you haven’t defined yet. For example:

\usepackage[acronym,acronymlists={main,acronym2}]{glossaries}
\newglossary[alg2]{acronym2}{acr2}{acn2}{Statistical Acronyms}

description This option changes the definition of \newacronym to al-
low a description. This option has no effect if you defined your
own custom acronym style. See Section 13 for further details.

footnote This option changes the definition of \newacronym and the
way that acronyms are displayed. This option has no effect if
you defined your own custom acronym style. See Section 13 for
further details.

2Actually it sets \acronymtype to \glsdefaulttype if the acronym package op-
tion is not used, but \glsdefaulttype usually has the value main.

39

2 Package Options

smallcaps This option changes the definition of \newacronym and
the way that acronyms are displayed. This option may have
no effect if you defined your own custom acronym style. See
Section 13 for further details.

smaller This option changes the definition of \newacronym and the
way that acronyms are displayed. If you use this option, you
will need to include the relsize package or otherwise define
\textsmaller or redefine \acronymfont. This option may
have no effect if you defined your own custom acronym style.
See Section 13 for further details.

dua This option changes the definition of \newacronym so that
acronyms are always expanded. This option has no effect if you
defined your own custom acronym style. See Section 13 for fur-
ther details.

shortcuts This option provides shortcut commands for acronyms.
See Section 13 for further details.

40

3 Setting Up

The command

\makeglossaries\makeglossaries

must be placed in the preamble in order to create the customised
makeindex (.ist) or xindy (.xdy) style file and to ensure that
glossary entries are written to the appropriate output files. If you
omit \makeglossaries none of the glossaries will be created.

Note that some of the commands provided by the glossaries pack-
age must be placed before \makeglossaries as they are re-
quired when creating the customised style file. If you attempt to
use those commands after \makeglossaries you will generate
an error.

You can suppress the creation of the customised xindy or makeindex
style file using

\noist\noist

Note that this command must be used before \makeglossaries.

Note that if you have a custom .xdy file created when using glos-
saries version 2.07 or below, you will need to use the compatible-2.07
package option with it.

The default name for the customised style file is given by \jobname.ist
(for makeindex) or \jobname.xdy (for xindy). This name may be
changed using:

\setStyleFile{〈name〉}\setStyleFile

where 〈name〉 is the name of the style file without the extension. Note
that this command must be used before \makeglossaries.

Each glossary entry is assigned a number list that lists all the lo-
cations in the document where that entry was used. By default, the
location refers to the page number but this may be overridden using

41

3 Setting Up

the counter package option. The default form of the location number
assumes a full stop compositor (e.g. 1.2), but if your location numbers
use a different compositor (e.g. 1-2) you need to set this using

\glsSetCompositor{〈symbol〉}\glsSetCompositor

For example:

\glsSetCompositor{-}

Note that this command must be used before \makeglossaries.
If you use xindy, you can have a different compositor for page

numbers starting with an uppercase alphabetical character using:

\glsSetAlphaCompositor{〈symbol〉}\glsSetAlphaCompositor

Note that this command has no effect if you haven’t used the xindy
package option. For example, if you want number lists containing a
mixture of A-1 and 2.3 style formats, then do:

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See Section 5 for further information about number lists.

42

4 Defining Glossary Entries

All glossary entries must be defined before they are used, so it is bet-
ter to define them in the preamble to ensure this.1 However only
those entries that occur in the document (using any of the commands
described in Section 6, Section 7 or Section 8) will appear in the glos-
sary. Each time an entry is used in this way, a line is added to an as-
sociated glossary file (.glo), which then needs to be converted into a
corresponding .gls file which contains the typeset glossary which is
input by \printglossary or \printglossaries. The Perl script
makeglossaries can be used to call makeindex or xindy, using a
customised indexing style file, for each of the glossaries that are de-
fined in the document. Note that there should be no need for you to
explicitly edit or input any of these external files.2 See Section 1.3
for further details.

New glossary entries are defined using the command:

\newglossaryentry{〈label〉}{〈key-val list〉}\newglossaryentry

The first argument, 〈label〉, must be a unique label with which to iden-
tify this entry. The second argument, 〈key-val list〉, is a 〈key〉=〈value〉
list that supplies the relevant information about this entry. There are
two required fields: description and either name or parent. Available
fields are listed below:

name The name of the entry (as it will appear in the glossary). If this
key is omitted and the parent key is supplied, this value will be
the same as the parent’s name.

description A brief description of this term (to appear in the glossary).
Within this value, you can use

\nopostdesc\nopostdesc

1The only preamble restriction on \newglossaryentry and \newacronym was
removed in version 1.13, but the restriction remains for \loadglsentries.

2Except possibly the style file but then you’ll need to use \noist to prevent your
changes from being overwritten.

43

4 Defining Glossary Entries

to suppress the description terminator for this entry. For exam-
ple, if this entry is a parent entry that doesn’t require a descrip-
tion, you can do description={\nopostdesc}. If you want
a paragraph break in the description use

\glspar\glspar

However, note that not all glossary styles support multi-line
descriptions. If you are using one of the tabular-like glossary
styles that permit multi-line descriptions, use \newline not \\
if you want to force a line break.

parent The label of the parent entry. Note that the parent entry must
be defined before its sub-entries. See Section 4.3 for further de-
tails.

descriptionplural The plural form of the description (as passed to
\glsdisplay and \glsdisplayfirst by \glspl, \Glspl
and \GLSpl). If omitted, the value is set to the same as the
description key. (Note that if you want the description to ap-
pear in the main body of the document, you must switch off
the description sanitization using the sanitize package option de-
scribed in Section 2.1.)

text How this entry will appear in the document text when using
\gls (or one of its uppercase variants). If this field is omitted,
the value of the name key is used.

first How the entry will appear in the document text on first use with
\gls (or one of its uppercase variants). If this field is omitted,
the value of the text key is used. Note that if you use \glspl,
\Glspl, \GLSpl, \glsdisp before using \gls, the firstplural
value won’t be used with \gls.

plural How the entry will appear in the document text when using
\glspl (or one of its uppercase variants). If this field is omit-
ted, the value is obtained by appending \glspluralsuffix
to the value of the text field. The default value of \glspluralsuffix
is the letter “s”.

firstplural How the entry will appear in the document text on first
use with \glspl (or one of its uppercase variants). If this field
is omitted, the value is obtained from the plural key, if the first
key is omitted, or by appending \glspluralsuffix to the
value of the first field, if the first field is present. Note that if you

44

4 Defining Glossary Entries

use \gls, \Gls, \GLS, \glsdisp before using \glspl, the
firstplural value won’t be used with \glspl.

Note: prior to version 1.13, the default value of firstplural was
always taken by appending “s” to the first key, which meant that
you had to specify both plural and firstplural, even if you hadn’t
used the first key.

symbol This field is provided to allow the user to specify an asso-
ciated symbol. If omitted, the value is set to \relax. Note
that not all glossary styles display the symbol. (If you want the
symbol to appear in the main body of the document, you must
switch off the symbol sanitization using the sanitize package op-
tion described in Section 2.1.)

symbolplural This is the plural form of the symbol (as passed to
\glsdisplay and \glsdisplayfirst by \glspl, \Glspl
and \GLSpl). If omitted, the value is set to the same as the
symbol key.

sort This value indicates how makeindex or xindy should sort this
entry. If omitted, the value is given by the name field. In gen-
eral, it’s best to use the sort key if the name contains commands
(e.g. \ensuremath{\alpha}). Note that the package options
sort=def and sort=use override the sort key in \newglossaryentry
(see Section 2.4).

type This specifies the label of the glossary in which this entry
belongs. If omitted, the default glossary is assumed unless
\newacronym is used (see Section 13).

user1, . . . , user6 Six keys provided for any additional information the
user may want to specify. (For example an associated dimen-
sion or an alternative plural or some other grammatical con-
struct.)

nonumberlist A boolean key. If the value is missing or is true, this
will suppress the number list just for this entry. Conversely, if
you have used the package option nonumberlist, you can activate
the number list just for this entry with nonumberlist=false. (See
Section 5.)

see Cross-reference another entry. Using the see key will automati-
cally add this entry to the glossary, but will not automatically
add the cross-referenced entry. The referenced entry should be
supplied as the value to this key. If you want to override the
“see” tag, you can supply the new tag in square brackets before

45

4 Defining Glossary Entries

the label. For example see=[see also]{anotherlabel}.
Note that if you have suppressed the number list, the cross-
referencing information won’t appear in the glossary. You
can override this for individual glossary entries using nonum-
berlist=false (see above). Alternatively, you can use the seeauton-
umberlist package option. For further details, see Section 8.

The following keys are reserved for \newacronym (see Section 13):
long, longplural, short and shortplural.

Note that if the name starts with an accented letter or non-Roman
character, you must group the character, otherwise it will cause a
problem for commands like \Gls and \Glspl. For example:

\newglossaryentry{elite}{name={{\’e}lite},
description={select group or class}}

Note that the same applies if you are using the inputenc package:

\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

Note that in both of the above examples, you will also need to supply
the sort key if you are using makeindex whereas xindy is usually
able to sort accented letters correctly.

4.1 Plurals

You may have noticed from above that you can specify the plural
form when you define a term. If you omit this, the plural will be
obtained by appending

\glspluralsuffix\glspluralsuffix

to the singular form. This command defaults to the letter “s”. For
example:

\newglossaryentry{cow}{name=cow,description={a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form
is “cows”. However, if you are writing in archaic English, you may
want to use “kine” as the plural form, in which case you would have
to do:

\newglossaryentry{cow}{name=cow,plural=kine,
description={a fully grown female of any bovine animal}}

46

4 Defining Glossary Entries

If you are writing in a language that supports multiple plurals (for
a given term) then use the plural key for one of them and one of the
user keys to specify the other plural form. For example:

\newglossaryentry{cow}{name=cow,description={a fully grown
female of any bovine animal (plural cows, archaic plural kine)},
user1={kine}}

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow}
to produce “kine”. You can, of course, define an easy to remember
synonym. For example:

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the
alternative plural.

If you are using a language that usually forms plurals by ap-
pending a different letter, or sequence of letters, you can redefine
\glspluralsuffix as required. However, this must be done before
the entries are defined. For languages that don’t form plurals by sim-
ply appending a suffix, all the plural forms must be specified using
the plural key (and the firstplural key where necessary).

4.2 Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as partici-
ples. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}{user1}
\newcommand*{\edkey}{user2}

\newcommand*{\newterm}[3][]{%
\newglossaryentry{#2}{%
name={#2},%
description={#3},%
\edkey={#2ed},%
\ingkey={#2ing},#1%

}%
}

With the above definitions, I can now define terms like this:

\newterm{play}{to take part in activities for enjoyment}
\newterm[\edkey={ran},\ingkey={running}]{run}{to move fast using
the legs}

47

4 Defining Glossary Entries

and use them in the text:

Peter is \glsing{play} in the park today.

Jane \glsd{play} in the park yesterday.

Peter and Jane \glsd{run} in the park last week.

4.3 Sub-Entries

As from version 1.17, it is possible to specify sub-entries. These may
be used to order the glossary into categories, in which case the sub-
entry will have a different name to its parent entry, or it may be used
to distinguish different definitions for the same word, in which case
the sub-entries will have the same name as the parent entry. Note that
not all glossary styles support hierarchical entries and may display
all the entries in a flat format. Of the styles that support sub-entries,
some display the sub-entry’s name whilst others don’t. Therefore you
need to ensure that you use a suitable style. (See Section 15 for a list
of predefined styles.) As from version 3.0, level 1 sub-entries are au-
tomatically numbered in the predefined styles if you use the suben-
trycounter package option (see Section 2.3 for further details).

Note that the parent entry will automatically be added to the glos-
sary if any of its child entries are used in the document. If the parent
entry is not referenced in the document, it will not have a number
list. Note also that makeindex has a restriction on the maximum
sub-entry depth.

4.3.1 Hierarchical Categories

To arrange a glossary with hierarchical categories, you need to first
define the category and then define the sub-entries using the relevant
category entry as the value of the parent key. For example, suppose I
want a glossary of mathematical symbols that are divided into Greek
letters and Roman letters. Then I can define the categories as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentry{romanletter}{name={Roman letters},
description={\nopostdesc}}

Note that in this example, the category entries don’t need a de-
scription so I have set the descriptions to \nopostdesc. This gives
a blank description and suppresses the description terminator.

48

4 Defining Glossary Entries

I can now define my sub-entries as follows:

\newglossaryentry{pi}{name={\ensuremath{\pi}},sort={pi},
description={ratio of the circumference of a circle to
the diameter},
parent=greekletter}

\newglossaryentry{C}{name={\ensuremath{C}},sort={C},
description={Euler’s constant},
parent=romanletter}

4.3.2 Homographs

Sub-entries that have the same name as the parent entry, don’t need
to have the name key. For example, the word “glossary” can mean
a list of technical words or a collection of glosses. In both cases the
plural is “glossaries”. So first define the parent entry:

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},
plural={glossaries}}

Again, the parent entry has no description, so the description termi-
nator needs to be suppressed using \nopostdesc.

Now define the two different meanings of the word:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},
parent={glossary}}

Note that if I reference the parent entry, the location will be added to
the parent’s number list, whereas if I reference any of the child entries,
the location will be added to the child entry’s number list. Note also
that since the sub-entries have the same name, the sort key is required
unless you are using the sort=use or sort=def package options. You can
use the subentrycounter package option to automatically number the
first-level child entries. See Section 2.3 for further details.

In the above example, the plural form for both of the child entries
is the same as the parent entry, so the plural key was not required for
the child entries. However, if the sub-entries have different plurals,
they will need to be specified. For example:

49

4 Defining Glossary Entries

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description={cry of approval
(pl.\ bravos)},
sort={1},
plural={bravos},
parent=bravo}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl.\ bravoes)},
sort={2},
plural={bravoes},
parent=bravo}

4.4 Loading Entries From a File

You can store all your glossary entry definitions in another file and
use:

\loadglsentries[〈type〉]{〈filename〉}\loadglsentries

where 〈filename〉 is the name of the file containing all the \newglossaryentry
commands. The optional argument 〈type〉 is the name of the glos-
sary to which those entries should belong, for those entries where
the type key has been omitted (or, more specifically, for those entries
whose type has been specified by \glsdefaulttype, which is what
\newglossaryentry uses by default). For example, suppose I have
a file called myentries.tex which contains:

\newglossaryentry{perl}{type=main,
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language},sort={TeX}}

\newglossaryentry{html}{type=\glsdefaulttype,
name={html},
description={A mark up language}}

and suppose in my document preamble I use the command:

\loadglsentries[languages]{myentries}

then this will add the entries tex and html to the glossary whose
type is given by languages, but the entry perl will be added to the
main glossary, since it explicitly sets the type to main.

50

4 Defining Glossary Entries

Note: if you use \newacronym (see Section 13) the type is set as
type=\acronymtype unless you explicitly override it. For example,
if my file myacronyms.tex contains:

\newacronym{aca}{aca}{a contrived acronym}

then (supposing I have defined a new glossary type called altacronym)

\loadglsentries[altacronym]{myacronyms}

will add aca to the glossary type acronym, if the package option
acronym has been specified, or will add aca to the glossary type
altacronym, if the package option acronym is not specified.3

If you have used the acronym package option, there are two possible
solutions to this problem:

1. Change myacronyms.tex so that entries are defined in the
form:

\newacronym[type=\glsdefaulttype]{aca}{aca}{a
contrived acronym}

and do:

\loadglsentries[altacronym]{myacronyms}

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\def\acronymtype{altacronym}
\loadglsentries{myacronyms}
\let\acronymtype\orgacronymtype

Note that only those entries that have been used in the text will
appear in the relevant glossaries. Note also that \loadglsentries
may only be used in the preamble.

4.5 Moving Entries to Another Glossary

As from version 3.02, you can move an entry from one glossary to
another using:

\glsmoveentry{〈label〉}{〈target glossary label〉}\glsmoveentry

3This is because \acronymtype is set to \glsdefaulttype if the acronym pack-
age option is not used.

51

4 Defining Glossary Entries

where 〈label〉 is the unique label identifying the required entry and
〈target glossary label〉 is the unique label identifying the glossary in
which to put the entry.

Note that no check is performed to determine the existence of the
target glossary. This means that you can, for example, move an entry
to an undefined glossary so you can use the entry in the document
text but not have it listed in any of the glossaries. (Maybe you have
an acronym so common it doesn’t need listing.)

If you move an entry to an undefined glossary and you have
hyperlinked entries, the link will point to an undefined tar-
get. (Unless you identify that glossary using nohypertypes or
\GlsDeclareNoHyperList, as described in Section 6.) Also,
you will get warnings about no file defined for that glossary (un-
less you use the nowarn package option). Unpredictable results
may occur if you move an entry to a different glossary from its
parent or children.

52

5 Number lists

Each entry in the glossary has an associated number list. By default,
these numbers refer to the pages on which that entry has been used
(using any of the commands described in Section 6 and Section 7).
The number list can be suppressed using the nonumberlist package
option, or an alternative counter can be set as the default using the
counter package option. The number list is also referred to as the loca-
tion list.

Both makeindex and xindy concatenate a sequence of 3 or more
consecutive pages into a range. With xindy you can vary the min-
imum sequence length using \GlsSetXdyMinRangeLength{〈n〉}
where 〈n〉 is either an integer or the keyword none which indicates
that there should be no range formation.

Note that \GlsSetXdyMinRangeLength must be used before
\makeglossaries and has no effect if \noist is used.

With both makeindex and xindy, you can replace the separator
and the closing number in the range using:

\glsSetSuffixF{〈suffix〉}\glsSetSuffixF

\glsSetSuffixFF{〈suffix〉}\glsSetSuffixFF

where the former command specifies the suffix to use for a 2 page list
and the latter specifies the suffix to use for longer lists. For example:

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

Note that if you use xindy, you will also need to set the minimum
range length to 1 if you want to change these suffixes:

\GlsSetXdyMinRangeLength{1}

Note that if you use the hyperref package, you will need to use
\nohyperpage in the suffix to ensure that the hyperlinks work cor-
rectly. For example:

53

5 Number lists

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

Note that \glsSetSuffixF and \glsSetSuffixFF must be
used before \makeglossaries and have no effect if \noist is
used.

54

6 Links to Glossary Entries

Once you have defined a glossary entry using \newglossaryentry,
you can refer to that entry in the document using one of the com-
mands listed in this section. The text which appears at that point in
the document when using one of these commands is referred to as
the link text (even if there are no hyperlinks). The commands in this
section also add a line to an external file that is used by makeindex
or xindy to generate the relevant entry in the glossary. This informa-
tion includes an associated location that is added to the number list
for that entry. By default, the location refers to the page number. For
further information on number lists, see Section 5.

It is strongly recommended that you don’t use the commands de-
fined in this section in the arguments of sectioning or caption com-
mands or any other command that has a moving argument.

The above warning is particularly important if you are using the
glossaries package in conjunction with the hyperref package. Instead,
use one of the commands listed in Section 9 (such as \glsentrytext)
or provide an alternative via the optional argument to the section-
ing/caption command. Examples:

\chapter{An overview of \glsentrytext{perl}}
\chapter[An overview of Perl]{An overview of \gls{perl}}

If you want the link text to produce a hyperlink to the correspond-
ing entry details in the glossary, you should load the hyperref package
before the glossaries package. That’s what I’ve done in this document,
so if you see a hyperlinked term, such as link text, you can click on
the word or phrase and it will take you to a brief description in this
document’s glossary.

It may be that you only want terms in a certain glossary to have
links, but not for another glossary. In which case, you can use
the package option nohypertypes to identify the glossary lists that
shouldn’t have hyperlinked link text. For example, suppose your
document contains lots of technical acronyms that the reader might
not know, but it also contains some very common acronyms that most
readers will recognise. So you might want two acronym lists, but only

55

6 Links to Glossary Entries

the technical list will get displayed in your document. The techni-
cal acronyms can be hyperlinked to that list, but common acronyms
shouldn’t have hyperlinks as there’s no target for them. In this case,
identify the common acronym list as having non-hyperlinked entries
using nohypertypes. Example:

\usepackage[acronym,nohypertypes={common}]{glossaries}
\newglossary{common}{cacr}{cacn}{Common Acronyms}

Alternatively, you can use

\GlsDeclareNoHyperList{〈type〉}\GlsDeclareNoHyperList

For example:

\usepackage[acronym]{glossaries}
\newglossary{common}{cacr}{cacn}{Common Acronyms}
\GlsDeclareNoHyperList{common}

Note that no check is performed to see if the glossary types listed in
nohypertypes or \GlsDeclareNoHyperList have been defined.

The way the link text is displayed depends on

\glstextformat{〈text〉}\glstextformat

For example, to make all link text appear in a sans-serif font, do:

\renewcommand*{\glstextformat}[1]{\textsf{#1}}

Each entry has an associated conditional referred to as the first use
flag. This determines whether \gls, \glspl (and their uppercase
variants) should use the value of the first or text keys. Note that an
entry can be used without affecting the first use flag (for example,
when used with \glslink). See Section 14 for commands that unset
or reset this conditional.

The command:

\glslink[〈options〉]{〈label〉}{〈text〉}\glslink

will place \glstextformat{〈text〉} in the document at that point
and add a line into the associated glossary file for the glossary entry
given by 〈label〉. If hyperlinks are supported, 〈text〉 will be a hyperlink
to the relevant line in the glossary. (Note that this command doesn’t
affect the first use flag: use \glsdisp instead.) The optional argu-
ment 〈options〉 must be a 〈key〉=〈value〉 list which can take any of the
following keys:

56

6 Links to Glossary Entries

format This specifies how to format the associated location number
for this entry in the glossary. This value is equivalent to the
makeindex encap value, and (as with \index) the value needs
to be the name of a command without the initial backslash. As
with \index, the characters (and) can also be used to spec-
ify the beginning and ending of a number range. Again as
with \index, the command should be the name of a command
which takes an argument (which will be the associated loca-
tion). Be careful not to use a declaration (such as bfseries)
instead of a text block command (such as textbf) as the effect
is not guaranteed to be localised. If you want to apply more
than one style to a given entry (e.g. bold and italic) you will
need to create a command that applies both formats, e.g.

\newcommand*{\textbfem}[1]{\textbf{\emph{#1}}}

and use that command.

In this document, the standard formats refer to the standard text
block commands such as \textbf or \emph or any of the com-
mands listed in table 6.1.

If you use xindy instead of makeindex, you must specify
any non-standard formats that you want to use with the for-
mat key using \GlsAddXdyAttribute{〈name〉}. So if you
use xindy with the above example, you would need to add:

\GlsAddXdyAttribute{textbfem}

See Section 11 for further details.

Note that unlike \index, you can’t have anything following the
command name, such as an asterisk or arguments. If you want
to cross-reference another entry, either use the see key when you
define the entry or use \glssee (described in Section 8).

If you are using hyperlinks and you want to change the font of
the hyperlinked location, don’t use \hyperpage (provided by
the hyperref package) as the locations may not refer to a page
number. Instead, the glossaries package provides number for-
mats listed in table 6.1.

Note that if the \hyperlink command hasn’t been defined, the
hyper〈xx〉 formats are equivalent to the analogous text〈xx〉
font commands (and hyperemph is equivalent to emph). If you
want to make a new format, you will need to define a command

57

6 Links to Glossary Entries

Table 6.1: Predefined Hyperlinked Location Formats

hyperrm serif hyperlink
hypersf sans-serif hyperlink
hypertt monospaced hyperlink
hyperbf bold hyperlink
hypermd medium weight hyperlink
hyperit italic hyperlink
hypersl slanted hyperlink
hyperup upright hyperlink
hypersc small caps hyperlink
hyperemph emphasized hyperlink

which takes one argument and use that. For example, if you
want the location number to be in a bold sans-serif font, you
can define a command called, say, \hyperbsf:

\newcommand{\hyperbsf}[1]{\textbf{\hypersf{#1}}}

and then use hyperbsf as the value for the format key. (See also
section 1.15 “Displaying the glossary” in the documented code,
glossaries.pdf.) Remember that if you use xindy, you will
need to add this to the list of location attributes:

\GlsAddXdyAttribute{hyperbsf}

counter This specifies which counter to use for this location. This
overrides the default counter used by this entry. (See also Sec-
tion 5.)

hyper This is a boolean key which can be used to enable/disable
the hyperlink to the relevant entry in the glossary. (Note that
setting hyper=true will have no effect if \hyperlink has
not been defined.) The default value is hyper=true, un-
less the entry belongs to a glossary that either has been listed
in the package option nohypertypes or has been identified us-
ing \GlsDeclareNoHyperList in which case the default is
hyper=false.

glslinklocal This is a boolean key that only makes a different when
used with commands that change the entry’s first use flag (such
as \gls). If local=true, the change to the first use flag will
be localised to the current scope. The default is local=false.

58

6 Links to Glossary Entries

There is also a starred version:

\glslink*[〈options〉]{〈label〉}{〈text〉}\glslink*

which is equivalent to \glslink, except it sets hyper=false. Sim-
ilarly, all the following commands described in this section also have
a starred version that disables the hyperlink.

Don’t use commands like \glslink or \gls in the 〈text〉 argu-
ment of \glslink.

The command:

\gls[〈options〉]{〈label〉}[〈insert〉]\gls

is the same as \glslink, except that the link text is determined from
the values of the text and first keys supplied when the entry was de-
fined using \newglossaryentry. If the entry has been marked as
having been used, the value of the text key will be used, otherwise the
value of the first key will be used. On completion, \gls will mark the
entry’s first use flag as used.

There are two uppercase variants:

\Gls[〈options〉]{〈label〉}[〈insert〉]\Gls

and

\GLS[〈options〉]{〈label〉}[〈insert〉]\GLS

which make the first letter of the link text or all the link text upper-
case, respectively.

The final optional argument 〈insert〉, allows you to insert some ad-
ditional text into the link text. By default, this will append 〈insert〉 at
the end of the link text, but this can be changed (see Section 6.1).

The first optional argument 〈options〉 is the same as the optional
argument to \glslink. As with \glslink, these commands also
have a starred version that disable the hyperlink.

Don’t use commands like \glslink or \gls in the 〈insert〉 argu-
ment of \gls and its variants.

There are also analogous plural forms:

59

6 Links to Glossary Entries

\glspl[〈options〉]{〈label〉}[〈insert〉]\glspl

\Glspl[〈options〉]{〈label〉}[〈insert〉]\Glspl

\GLSpl[〈options〉]{〈label〉}[〈insert〉]\GLSpl

These determine the link text from the plural and firstplural keys sup-
plied when the entry was first defined. As before, these commands
also have a starred version that disable the hyperlink.

Be careful when you use glossary entries in math mode especially
if you are using hyperref as it can affect the spacing of subscripts
and superscripts. For example, suppose you have defined the fol-
lowing entry:

\newglossaryentry{Falpha}{name={F_\alpha},
description=sample}

and later you use it in math mode:

\gls{Falpha}^2

This will result in Fα
2 instead of F2

α . In this situation it’s best to
bring the superscript into the hyperlink using the final 〈insert〉 op-
tional argument:

$\gls{Falpha}[^2]$

Note that \glslink doesn’t use or affect the first use flag, nor does
it use \glsdisplay or \glsdisplayfirst (see Section 6.1). In-
stead, you can use:

\glsdisp[〈options〉]{〈label〉}{〈link text〉}\glsdisp

This behaves in the same way as \gls, except that it uses 〈link text〉
instead of the value of the first or text key. (Note that this command
always sets 〈insert〉 to nothing.) This command affects the first use
flag, and uses \glsdisplay or \glsdisplayfirst.

The command:

\glstext[〈options〉]{〈label〉}[〈insert〉]\glstext

is similar to \gls except that it always uses the value of the text key

60

6 Links to Glossary Entries

and does not affect the first use flag. Unlike \gls, the inserted text
〈insert〉 is always appended to the link text since \glstext doesn’t
use \glsdisplay or \glsdisplayfirst. (The same is true for all
the following commands described in this section.)

There are also analogous commands:

\Glstext[〈options〉]{〈text〉}[〈insert〉]\Glstext

\GLStext[〈options〉]{〈text〉}[〈insert〉]\GLStext

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsfirst[〈options〉]{〈label〉}[〈insert〉]\glsfirst

is similar to \glstext except that it always uses the value of the first
key. Again, 〈insert〉 is always appended to the end of the link text and
does not affect the first use flag.

There are also analogous commands:

\Glsfirst[〈options〉]{〈text〉}[〈insert〉]\Glsfirst

\GLSfirst[〈options〉]{〈text〉}[〈insert〉]\GLSfirst

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsplural[〈options〉]{〈label〉}[〈insert〉]\glsplural

is similar to \glstext except that it always uses the value of the
plural key. Again, 〈insert〉 is always appended to the end of the link
text and does not mark the entry as having been used.

There are also analogous commands:

\Glsplural[〈options〉]{〈text〉}[〈insert〉]\Glsplural

\GLSplural[〈options〉]{〈text〉}[〈insert〉]\GLSplural

61

6 Links to Glossary Entries

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsfirstplural[〈options〉]{〈label〉}[〈insert〉]\glsfirstplural

is similar to \glstext except that it always uses the value of the
firstplural key. Again, 〈insert〉 is always appended to the end of the link
text and does not mark the entry as having been used.

There are also analogous commands:

\Glsfirstplural[〈options〉]{〈text〉}[〈insert〉]\Glsfirstplural

\GLSfirstplural[〈options〉]{〈text〉}[〈insert〉]\GLSfirstplural

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsname[〈options〉]{〈label〉}[〈insert〉]\glsname

is similar to \glstext except that it always uses the value of the
name key. Again, 〈insert〉 is always appended to the end of the link
text and does not mark the entry as having been used. Note: if you
want to use this command and the name key contains commands, you
will have to disable the sanitization of the name key and protect fragile
commands.

There are also analogous commands:

\Glsname[〈options〉]{〈text〉}[〈insert〉]\Glsname

\GLSname[〈options〉]{〈text〉}[〈insert〉]\GLSname

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glssymbol[〈options〉]{〈label〉}[〈insert〉]\glssymbol

is similar to \glstext except that it always uses the value of the
symbol key. Again, 〈insert〉 is always appended to the end of the link

62

6 Links to Glossary Entries

text and does not mark the entry as having been used. Note: if you
want to use this command and the symbol key contains commands,
you will have to disable the sanitization of the symbol key and protect
fragile commands.

There are also analogous commands:

\Glssymbol[〈options〉]{〈text〉}[〈insert〉]\Glssymbol

\GLSsymbol[〈options〉]{〈text〉}[〈insert〉]\GLSsymbol

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsdesc[〈options〉]{〈label〉}[〈insert〉]\glsdesc

is similar to \glstext except that it always uses the value of the
description key. Again, 〈insert〉 is always appended to the end of the
link text and does not mark the entry as having been used. Note: if
you want to use this command and the description key contains com-
mands, you will have to disable the sanitization of the description key
and protect fragile commands.

There are also analogous commands:

\Glsdesc[〈options〉]{〈text〉}[〈insert〉]\Glsdesc

\GLSdesc[〈options〉]{〈text〉}[〈insert〉]\GLSdesc

As before, these commands also have a starred version that disable
the hyperlink.

The command:

\glsuseri[〈options〉]{〈label〉}[〈insert〉]\glsuseri

is similar to \glstext except that it always uses the value of the
user1 key. Again, 〈insert〉 is always appended to the end of the link
text and does not mark the entry as having been used.

There are also analogous commands:

\Glsuseri[〈options〉]{〈text〉}[〈insert〉]\Glsuseri

63

6 Links to Glossary Entries

\GLSuseri[〈options〉]{〈text〉}[〈insert〉]\GLSuseri

As before, these commands also have a starred version that disable
the hyperlink. Similarly for the other user keys:

\glsuserii[〈options〉]{〈text〉}[〈insert〉]\glsuserii

\Glsuserii[〈options〉]{〈text〉}[〈insert〉]\Glsuserii

\GLSuserii[〈options〉]{〈text〉}[〈insert〉]\GLSuserii

\glsuseriii[〈options〉]{〈text〉}[〈insert〉]\glsuseriii

\Glsuseriii[〈options〉]{〈text〉}[〈insert〉]\Glsuseriii

\GLSuseriii[〈options〉]{〈text〉}[〈insert〉]\GLSuseriii

\glsuseriv[〈options〉]{〈text〉}[〈insert〉]\glsuseriv

\Glsuseriv[〈options〉]{〈text〉}[〈insert〉]\Glsuseriv

\GLSuseriv[〈options〉]{〈text〉}[〈insert〉]\GLSuseriv

\glsuserv[〈options〉]{〈text〉}[〈insert〉]\glsuserv

\Glsuserv[〈options〉]{〈text〉}[〈insert〉]\Glsuserv

\GLSuserv[〈options〉]{〈text〉}[〈insert〉]\GLSuserv

64

6 Links to Glossary Entries

\glsuservi[〈options〉]{〈text〉}[〈insert〉]\glsuservi

\Glsuservi[〈options〉]{〈text〉}[〈insert〉]\Glsuservi

\GLSuservi[〈options〉]{〈text〉}[〈insert〉]\GLSuservi

6.1 Changing the format of the link text

The format of the link text for \gls, \glspl and their uppercase
variants is governed by two commands:

\glsdisplayfirst{〈first/first
plural〉}{〈description〉}{〈symbol〉}{〈insert〉}\glsdisplayfirst

which is used the first time a glossary entry is used in the text and

\glsdisplay{〈text/plural〉}{〈description〉}{〈symbol〉}{〈insert〉}\glsdisplay

which is used subsequently. Both commands take four arguments:
the first is either the singular or plural form given by the text, plu-
ral, first or firstplural keys (set when the term was defined) depending
on context; the second argument is the term’s description (as sup-
plied by the description or descriptionplural keys); the third argument
is the symbol associated with the term (as supplied by the symbol
or symbolplural keys) and the fourth argument is the additional text
supplied in the final optional argument to \gls or \glspl (or their
uppercase variants). The default definitions of \glsdisplay and
\glsdisplayfirst simply print the first argument immediately
followed by the fourth argument. The remaining arguments are ig-
nored.

65

6 Links to Glossary Entries

Care needs to be taken when redefining \glsdisplay and
\glsdisplayfirst as commands like \Glswill expand the dis-
played text before applying \makefirstuc. If you want to use
formatting commands, it’s best to define a robust version that
deals with all the formatting. For example, suppose you want the
text to appear in bold italic, it’s best to do something like:

\DeclareRobustCommand{\textbfit}[1]{\emph{\bfseries
#1}}
\renewcommand{\glsdisplay}[4]{\textbfit{#1#4}}

See the mfirstuc documentation for further details on the limitations
of \makefirstuc.

If required, you can access the label for the given entry via

\glslabel\glslabel

so it is possible to use this label in the definition of \glsdisplay or
\glsdisplayfirst to supply additional information using any of
the commands described in Section 9, if required.

Note that \glsdisplay and \glsdisplayfirst are not used
by \glslink. If you want to supply your own link text, you need to
use \glsdisp instead.

For example, suppose you want a glossary of measurements and
units, you can use the symbol key to store the unit:

\newglossaryentry{distance}{name=distance,
description={The length between two points},
symbol={km}}

and now suppose you want \gls{distance} to produce “distance
(km)” on first use, then you can redefine \glsdisplayfirst as fol-
lows:

\renewcommand{\glsdisplayfirst}[4]{#1#4 (#3)}

Note that the additional text is placed after #1, so \gls{distance}[’s]
will produce “distance’s (km)” rather than “distance (km)’s” which
looks a bit odd (even though it may be in the context of “the distance
(km) is measured between the two points” — but in this instance it
would be better not to use a contraction).

Note also that all of the link text will be formatted according to
\glstextformat (described earlier). So if you do, say:

\renewcommand{\glstextformat}[1]{\textbf{#1}}
\renewcommand{\glsdisplayfirst}[4]{#1#4 (#3)}

66

6 Links to Glossary Entries

then \gls{distance} will produce “distance (km)”.
If you have multiple glossaries, changing \glsdisplayfirst

and \glsdisplay will change the way entries for all of the glos-
saries appear when using the commands \gls, \glspl, their upper-
case variants and \glsdisp. If you only want the change to affect
entries for a given glossary, then you need to use

\defglsdisplay[〈type〉]{〈definition〉}\defglsdisplay

and

\defglsdisplayfirst[〈type〉]{〈definition〉}\defglsdisplayfirst

instead of redefining \glsdisplay and \glsdisplayfirst.
Both \defglsdisplay and \defglsdisplayfirst take two

arguments: the first (which is optional) is the glossary’s label1 and the
second is how the term should be displayed when it is invoked using
commands \gls, \glspl, their uppercase variants and \glsdisp.
This is similar to the way \glsdisplayfirst was redefined above.

For example, suppose you have created a new glossary called
notation and you want to change the way the entry is displayed
on first use so that it includes the symbol, you can do:

\defglsdisplayfirst[notation]{#1#4 (denoted #3)}

Now suppose you have defined an entry as follows:

\newglossaryentry{set}{type=notation,
name=set,
description={A collection of objects},
symbol={S}

}

The first time you reference this entry it will be displayed as: “set
(denoted S)” (assuming \gls was used).

Remember that if you use the symbol key, you need to use a glossary
style that displays the symbol, as many of the styles ignore it. In
addition, if you want either the description or symbol to appear in
the link text, you will have to disable the sanitization of these keys
and protect fragile commands.

1main for the main (default) glossary, \acronymtype for the list of acronyms,
or the name supplied in the first mandatory argument to \newglossary for
additional glossaries.

67

6 Links to Glossary Entries

6.2 Enabling and disabling hyperlinks to glossary
entries

If you load the hyperref or html packages prior to loading the glossaries
package, commands such as \glslink and \gls, described above,
will automatically have hyperlinks to the relevant glossary entry, un-
less the hyper option has been set to false. You can disable or enable
links using:

\glsdisablehyper\glsdisablehyper

and

\glsenablehyper\glsenablehyper

respectively. The effect can be localised by placing the commands
within a group. Note that you should only use \glsenablehyper if
the commands \hyperlink and \hypertarget have been defined
(for example, by the hyperref package).

You can disable just the first use links using the package option hy-
perfirst=false. Note that this option only affects commands that recog-
nise the first use flag, for example \gls, \glspl and \glsdisp but
not \glslink.

68

7 Adding an Entry to the Glossary
Without Generating Text

It is possible to add a line in the glossary file without generating any
text at that point in the document using:

\glsadd[〈options〉]{〈label〉}\glsadd

This is similar to \glslink, only it doesn’t produce any text (so
therefore, there is no hyper key available in 〈options〉 but all the other
options that can be used with \glslink can be passed to \glsadd).
For example, to add a page range to the glossary number list for the
entry whose label is given by set:

\glsadd[format=(]{set}
Lots of text about sets spanning many pages.
\glsadd[format=)]{set}

To add all entries that have been defined, use:

\glsaddall[〈options〉]\glsaddall

The optional argument is the same as for \glsadd, except there is
also a key types which can be used to specify which glossaries to use.
This should be a comma separated list. For example, if you only want
to add all the entries belonging to the list of acronyms (specified by
the glossary type \acronymtype) and a list of notation (specified by
the glossary type notation) then you can do:

\glsaddall[types={\acronymtype,notation}]

Note that \glsadd and \glsaddall add the current location to
the number list. In the case of \glsaddall, all entries in the glos-
sary will have the same location in the number list. If you want
to use \glsaddall, it’s best to suppress the number list with the
nonumberlist package option. (See sections 2.3 and 5.)

The sample file sample-dual.tex makes use of \glsadd to al-
low for an entry that should appear both in the main glossary and in

69

7 Adding an Entry to the Glossary Without Generating Text

the list of acronyms. This example sets up the list of acronyms using
the acronym package option:

\usepackage[acronym]{glossaries}

A new command is then defined to make it easier to define dual en-
tries:

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%
text={#3\protect\glsadd{#2}},%
description={#5},%
#1
}%
\newacronym{#2}{#3\protect\glsadd{main-#2}}{#4}

}

This has the following syntax:

\newdualentry[〈options〉]{〈label〉}{〈abbrv〉}{〈long〉}{〈description〉}

You can then define a new dual entry:

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}% description

Now you can reference the acronym with \gls{svm} or you can ref-
erence the entry in the main glossary with \gls{main-svm}.

70

8 Cross-Referencing Entries

There are several ways of cross-referencing entries in the glossary:

1. You can use commands such as \gls in the entries description.
For example:

\newglossaryentry{apple}{name=apple,
description={firm, round fruit. See also \gls{pear}}}

Note that with this method, if you don’t use the cross-referenced
term in the main part of the document, you will need two runs
of makeglossaries:

latex filename
makeglossaries filename
latex filename
makeglossaries filename
latex filename

If you switch off the description sanitization, you must pro-
tect fragile commands:a

\newglossaryentry{apple}{name=apple,
description={firm, round fruit. See also
\protect\gls{pear}}}

aAs from v3.01, \gls is no longer fragile.

2. As described in Section 4, you can use the see key when you
define the entry. For example:

\newglossaryentry{MaclaurinSeries}{name={Maclaurin
series},
description={Series expansion},
see={TaylorsTheorem}}

Note that in this case, the entry with the see key will automat-
ically be added to the glossary, but the cross-referenced entry

71

8 Cross-Referencing Entries

won’t. You therefore need to ensure that you use the cross-
referenced term with the commands described in Section 6 or
Section 7.

The “see” tag is produce using \seename, but can be overrid-
den in specific instances using square brackets at the start of the
see value. For example:

\newglossaryentry{MaclaurinSeries}{name={Maclaurin
series},
description={Series expansion},
see=[see also]{TaylorsTheorem}}

3. After you have defined the entry, use

\glssee[〈tag〉]{〈label〉}{〈xr label list〉}\glssee

where 〈xr label list〉 is a comma-separated list of entry labels to
be cross-referenced, 〈label〉 is the label of the entry doing the
cross-referencing and 〈tag〉 is the “see” tag. (The default value
of 〈tag〉 is \seename.) For example:

\glssee[see also]{series}{FourierSeries,TaylorsTheorem}

Note that this automatically adds the entry given by 〈label〉 to
the glossary but doesn’t add the cross-referenced entries (speci-
fied by 〈xr label list〉) to the glossary.

In both cases 2 and 3 above, the cross-referenced information ap-
pears in the number list, whereas in case 1, the cross-referenced infor-
mation appears in the description. (See the sample-crossref.tex
example file that comes with this package.) This means that in cases 2
and 3, the cross-referencing information won’t appear if you have
suppressed the number list. In this case, you will need to activate
the number list for the given entries using nonumberlist=false. Alterna-
tively, if you just use the see key instead of \glssee, you can auto-
matically activate the number list using the seeautonumberlist package
option.

8.1 Customising Cross-reference Text

When you use either the see key or the command \glssee, the cross-
referencing information will be typeset in the glossary according to:

72

8 Cross-Referencing Entries

\glsseeformat[〈tag〉]{〈label-list〉}{〈location〉}\glsseeformat

The default definition of \glsseeformat is:

\emph{〈tag〉} \glsseelist{〈label-list〉}

Note that the location is always ignored.1 For example, if you want
the tag to appear in bold, you can do:2

\renewcommand*{\glsseeformat}[3][\seename]{\textbf{#1}
\glsseelist{#2}}

The list of labels is dealt with by \glsseelist, which iterates
through the list and typesets each entry in the label. The entries are
separated by

\glsseesep\glsseesep

or (for the last pair)

\glsseelastsep\glsseelastsep

These default to “,\space” and “\space\andname\space” re-
spectively. The list entry text is displayed using:

\glsseeitemformat{〈label〉}\glsseeitemformat

This defaults to \glsentrytext{〈label〉}.3 For example, to make
the cross-referenced list use small caps:

\renewcommand{\glsseeitemformat}[1]{%
\textsc{\glsentrytext{#1}}}

1makeindex will always assign a location number, even if it’s not needed, so it
needs to be discarded.

2If you redefine \glsseeformat, keep the default value of the optional argument
as \seename as both see and \glssee explicitly write [\seename] in the out-
put file if no optional argument is given.

3In versions before 3.0, \glsentryname was used, but this can cause problems
when the name key is sanitized.

73

8 Cross-Referencing Entries

You can use \glsseeformat and \glsseelist in the main
body of the text, but they won’t automatically add the cross-
referenced entries to the glossary. If you want them added with
that location, you can do:

Some information (see also
\glsseelist{FourierSeries,TaylorsTheorem}%
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}).

74

9 Using Glossary Terms Without
Links

The commands described in this section display entry details without
adding any information to the glossary. They don’t use \glstextformat,
they don’t have any optional arguments, they don’t affect the first
use flag and, apart from \glshyperlink, they don’t produce hy-
perlinks.

\glsentryname{〈label〉}\glsentryname

\Glsentryname{〈label〉}\Glsentryname

These commands display the name of the glossary entry given by
〈label〉, as specified by the name key. \Glsentryname makes the first
letter uppercase.

\glsentrytext{〈label〉}\glsentrytext

\Glsentrytext{〈label〉}\Glsentrytext

These commands display the subsequent use text for the glossary en-
try given by 〈label〉, as specified by the text key. \Glsentrytext
makes the first letter uppercase.

\glsentryplural{〈label〉}\glsentryplural

\Glsentryplural{〈label〉}\Glsentryplural

These commands display the subsequent use plural text for the glos-
sary entry given by 〈label〉, as specified by the plural key. \Glsentryplural
makes the first letter uppercase.

\glsentryfirst{〈label〉}\glsentryfirst

75

9 Using Glossary Terms Without Links

\Glsentryfirst{〈label〉}\Glsentryfirst

These commands display the first use text for the glossary entry given
by 〈label〉, as specified by the first key. \Glsentryfirst makes the
first letter uppercase.

\glsentryfirstplural{〈label〉}\glsentryfirstplural

\Glsentryfirstplural{〈label〉}\Glsentryfirstplural

These commands display the plural form of the first use text for
the glossary entry given by 〈label〉, as specified by the firstplural key.
\Glsentryfirstplural makes the first letter uppercase.

\glsentrydesc{〈label〉}\glsentrydesc

\Glsentrydesc{〈label〉}\Glsentrydesc

These commands display the description for the glossary entry given
by 〈label〉. \Glsentrydesc makes the first letter uppercase.

\glsentrydescplural{〈label〉}\glsentrydescplural

\Glsentrydescplural{〈label〉}\Glsentrydescplural

These commands display the plural description for the glossary en-
try given by 〈label〉. \Glsentrydescplural makes the first letter
uppercase.

\glsentrysymbol{〈label〉}\glsentrysymbol

\Glsentrysymbol{〈label〉}\Glsentrysymbol

These commands display the symbol for the glossary entry given by
〈label〉. \Glsentrysymbol makes the first letter uppercase.

\glsentrysymbolplural{〈label〉}\glsentrysymbolplural

76

9 Using Glossary Terms Without Links

\Glsentrysymbolplural{〈label〉}\Glsentrysymbolplural

These commands display the plural symbol for the glossary entry
given by 〈label〉. \Glsentrysymbolplural makes the first letter
uppercase.

\glsentryuseri{〈label〉}\glsentryuseri

\Glsentryuseri{〈label〉}\Glsentryuseri

\glsentryuserii{〈label〉}\glsentryuserii

\Glsentryuserii{〈label〉}\Glsentryuserii

\glsentryuseriii{〈label〉}\glsentryuseriii

\Glsentryuseriii{〈label〉}\Glsentryuseriii

\glsentryuseriv{〈label〉}\glsentryuseriv

\Glsentryuseriv{〈label〉}\Glsentryuseriv

\glsentryuserv{〈label〉}\glsentryuserv

\Glsentryuserv{〈label〉}\Glsentryuserv

\glsentryuservi{〈label〉}\glsentryuservi

\Glsentryuservi{〈label〉}\Glsentryuservi

77

9 Using Glossary Terms Without Links

These commands display the value of the user keys for the glossary
entry given by 〈label〉.

\glshyperlink[〈link text〉]{〈label〉}\glshyperlink

This command provides a hyperlink to the glossary entry given by
〈label〉 but does not add any information to the glossary file. The
link text is given by \glsentrytext{〈label〉} by default1, but can
be overridden using the optional argument.

If you use \glshyperlink, you need to ensure that the relevant
entry has been added to the glossary using any of the commands
described in Section 6 or Section 7 otherwise you will end up with
an undefined link.

The next two commands are only available with the savenumberlist
package option:

\glsentrynumberlist{〈label〉}\glsentrynumberlist

\glsdisplaynumberlist{〈label〉}\glsdisplaynumberlist

Both display the number list for the entry given by 〈label〉 and require
a run of makeglossaries (or xindy or makeindex) followed by
one or two runs of LATEX. The first command, \glsentrynumberlist,
simply displays the number list as is. The second command,
\glsdisplaynumberlist, formats the list using:

\glsnumlistsep\glsnumlistsep

as the separator between all but the last two elements and

\glsnumlistlastsep\glsnumlistlastsep

between the final two elements. The defaults are , and \& , re-
spectively.

1versions before 3.0 used \glsentryname as the default, but this can cause prob-
lems when name has been sanitized.

78

9 Using Glossary Terms Without Links

\glsdisplaynumberlist is fairly experimental. It only works
when the default counter format is used (that is, when the for-
mat key is set to glsnumberformat). This command also
doesn’t work with hyperref. If you try using it with that package,
\glsentrynumberlist will be used instead.

For further information see section 1.10.2 “Displaying entry details
without adding information to the glossary” in the documented code
(glossaries.pdf).

79

10 Displaying a glossary

The command

\printglossaries\printglossaries

will display all the glossaries in the order in which they were defined.
Note that no glossaries will appear until you have either used the Perl
script makeglossaries or have directly used makeindex or xindy
(as described in Section 1.3). If the glossary still does not appear af-
ter you re-LATEX your document, check the makeindex/xindy log
files to see if there is a problem. Remember that you also need to
use the command \makeglossaries in the preamble to enable the
glossaries.

An individual glossary can be displayed using:

\printglossary[〈options〉]\printglossary

where 〈options〉 is a 〈key〉=〈value〉 list of options. The following keys
are available:

type The value of this key specifies which glossary to print. If omit-
ted, the default glossary is assumed. For example, to print the
list of acronyms:

\printglossary[type=\acronymtype]

title This is the glossary’s title (overriding the title specified when the
glossary was defined).

toctitle This is the title to use for the table of contents (if the toc pack-
age option has been used). It may also be used for the page
header, depending on the page style. If omitted, the value of
title is used.

style This specifies which glossary style to use for this glossary, over-
riding the effect of the style package option or \glossarystyle.

numberedsection This specifies whether to use a numbered section
for this glossary, overriding the effect of the numberedsection
package option. This key has the same syntax as the numbered-
section package option, described in Section 2.2.

80

10 Displaying a glossary

nonumberlist This is a boolean key. If true (nonumberlist=true)
the numberlist is suppressed for this glossary. If false
(nonumberlist=false) the numberlist is displayed for this
glossary. If no value is supplied, true is assumed.

By default, the glossary is started either by \chapter* or by
\section*, depending on whether or not \chapter is defined.
This can be overridden by the section package option or the
\setglossarysection command. Numbered sectional units can
be obtained using the numberedsection package option. Each glos-
sary sets the page header via the command \glossarymark. If this
mechanism is unsuitable for your chosen class file or page style pack-
age, you will need to redefine \glossarymark. Further information
about these options and commands is given in Section 2.2.

Information can be added to the start of the glossary (after the title
and before the main body of the glossary) by redefining

\glossarypreamble\glossarypreamble

For example:

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}

This needs to be done before the glossary is displayed using
\printglossaries or \printglossary. Note that if you want
a different preamble for each glossary, you will need to use a sepa-
rate \printglossary for each glossary and change the definition
of \glossarypreamble between each glossary. For example:

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}
\printglossary
\renewcommand{\glossarypreamble}{}
\printglossary[type=acronym]

Alternatively, you can do something like:

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.\gdef\glossarypreamble{}}
\printglossaries

which will print the preamble text for the first glossary and change
the preamble to do nothing for subsequent glossaries. (Note that
\gdef is required as the glossary is placed within a group.)

There is an analogous command called

\glossarypostamble\glossarypostamble

81

10 Displaying a glossary

which is placed at the end of each glossary.
For example: suppose you are using the superheaderborder style1,

and you want the glossary to be in two columns, but after the glossary
you want to switch back to one column mode, you could do:

\renewcommand*{\glossarysection}[2][]{%
\twocolumn[{\chapter*{#2}}]%
\setlength\glsdescwidth{0.6\linewidth}%
\glossarymark{\glossarytoctitle}%

}

\renewcommand*{\glossarypostamble}{\onecolumn}

Within each glossary, each entry name is formatted according to

\glsnamefont{〈name〉}\glsnamefont

which takes one argument: the entry name. This command is always
used regardless of the glossary style. By default, \glsnamefont
simply displays its argument in whatever the surrounding font hap-
pens to be. This means that in the list-like glossary styles (defined in
the glossary-list style file) the name will appear in bold, since the name
is placed in the optional argument of \item, whereas in the tabu-
lar styles (defined in the glossary-long and glossary-super style files) the
name will appear in the normal font. The hierarchical glossary styles
(defined in the glossary-tree style file) also set the name in bold.

For example, suppose you want all the entry names to appear in
medium weight small caps, then you can do:

\renewcommand{\glsnamefont}[1]{\textsc{\mdseries #1}}

1you can’t use the longheaderborder style for this example as you can’t use the
longtable environment in two column mode.

82

11 Xindy

If you want to use xindy to sort the glossary, you must use the pack-
age option xindy:

\usepackage[xindy]{glossaries}

This ensures that the glossary information is written in xindy syntax.
Section 1.3 covers how to use the external indexing application.

This section covers the commands provided by the glossaries package
that allow you to adjust the xindy style file (.xdy) and parameters.

To assist writing information to the xindy style file, the glossaries
package provides the following commands:

\glsopenbrace\glsopenbrace

\glsclosebrace\glsclosebrace

which produce an open and closing brace. (This is needed because
\{ and \} don’t expand to a simple brace character when written to
a file.)

In addition, if you are using a package that makes the double quote
character active (e.g. ngerman) you can use:

\glsquote{〈text〉}\glsquote

which will produce "〈text〉". Alternatively, you can use \string"
to write the double-quote character. This document assumes that the
double quote character has not been made active, so the examples just
use " for clarity.

If you want greater control over the xindy style file than is avail-
able through the LATEX commands provided by the glossaries package,
you will need to edit the xindy style file. In which case, you must
use \noist to prevent the style file from being overwritten by the
glossaries package. For additional information about xindy, read the
xindy documentation.

83

11 Xindy

11.1 Language and Encodings

When you use xindy, you need to specify the language and encod-
ing used (unless you have written your own custom xindy style
file that defines the relevant alphabet and sort rules). If you use
makeglossaries, this information is obtained from the document’s
auxiliary (.aux) file. The glossaries package attempts to find the root
language, but in the event that it gets it wrong or if xindy doesn’t
support that language, then you can specify the language using:

\GlsSetXdyLanguage[〈glossary type〉]{〈language〉}\GlsSetXdyLanguage

where 〈language〉 is the name of the language. The optional argument
can be used if you have multiple glossaries in different languages. If
〈glossary type〉 is omitted, it will be applied to all glossaries, otherwise
the language setting will only be applied to the glossary given by
〈glossary type〉.

If the inputenc package is used, the encoding will be obtained from
the value of \inputencodingname. Alternatively, you can specify
the encoding using:

\GlsSetXdyCodePage{〈code〉}\GlsSetXdyCodePage

where 〈code〉 is the name of the encoding. For example:

\GlsSetXdyCodePage{utf8}

Note that you can also specify the language and encoding using
the package option xindy={language=〈lang〉,codepage=〈code〉}.
For example:

\usepackage[xindy={language=english,codepage=utf8}]{glossaries}

If you write your own custom xindy style file that includes the
language settings, you need to set the language to nothing:

\GlsSetXdyLanguage{}

(and remember to use \noist to prevent the style file from being
overwritten).

The commands \GlsSetXdyLanguage and
\GlsSetXdyCodePage have no effect if you don’t use
makeglossaries. If you call xindy without makeglossaries
you need to remember to set the language and encoding using the
-L and -C switches.

84

11 Xindy

11.2 Locations and Number lists

If you use xindy, the glossaries package needs to know which coun-
ters you will be using in the number list in order to correctly format
the xindy style file. Counters specified using the counter package
option or the 〈counter〉 option of \newglossary are automatically
taken care of, but if you plan to use a different counter in the counter
key for commands like \glslink, then you need to identify these
counters before \makeglossaries using:

\GlsAddXdyCounters{〈counter list〉}\GlsAddXdyCounters

where 〈counter list〉 is a comma-separated list of counter names.
The most likely attributes used in the format key (textrm, hyperrm

etc) are automatically added to the xindy style file, but if you want
to use another attribute, you need to add it using:

\GlsAddXdyAttribute{〈name〉}\GlsAddXdyAttribute

where 〈name〉 is the name of the attribute, as used in the format key.
For example, suppose I want a bold, italic, hyperlinked location. I
first need to define a command that will do this:

\newcommand*{\hyperbfit}[1]{\textit{\hyperbf{#1}}}

but with xindy, I also need to add this as an allowed attribute:

\GlsAddXdyAttribute{hyperbfit}

Note that \GlsAddXdyAttribute has no effect if
\noist is used or if \makeglossaries is omit-
ted. \GlsAddXdyAttribute must be used before
\makeglossaries. Additionally, \GlsAddXdyCounters
must come before \GlsAddXdyAttribute.

If the location numbers don’t get expanded to a simple Arabic or
Roman number or a letter from a, . . . , z or A, . . . , Z, then you need to
add a location style in the appropriate format using

\GlsAddXdyLocation[〈prefix-location〉]{〈name〉}{〈definition〉}\GlsAddXdyLocation

where 〈name〉 is the name of the format and 〈definition〉 is the xindy
definition. The optional argument 〈prefix-location〉 is needed if
\theH〈counter〉 either isn’t defined or is different from \the〈counter〉.

85

11 Xindy

Note that \GlsAddXdyLocation has no effect if \noist is used
or if \makeglossaries is omitted. \GlsAddXdyLocation
must be used before \makeglossaries.

For example, suppose I decide to use a somewhat eccentric num-
bering system for sections that redefines \thesection as follows:

\renewcommand*{\thesection}{[\thechapter]\arabic{section}}

If I haven’t done counter=section in the package option, I need to
specify that the counter will be used as a location number:

\GlsAddXdyCounters{section}

Next I need to add the location style (\thechapter is assumed to be
the standard \arabic{chapter}):

\GlsAddXdyLocation{section}{:sep "[" "arabic-numbers" :sep "]"
"arabic-numbers"

}

Note that if I have further decided to use the hyperref package and
want to redefine \theHsection as:

\renewcommand*{\theHsection}{\thepart.\thesection}
\renewcommand*{\thepart}{\Roman{part}}

then I need to modify the \GlsAddXdyLocation code above to:

\GlsAddXdyLocation["roman-numbers-uppercase"]{section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

Since \Roman will result in an empty string if the counter is zero, it’s
a good idea to add an extra location to catch this:

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

The above example is illustrated in the accompanying sample file
samplexdy2.tex.

Another example: suppose you want the page numbers written as
words rather than digits and you use the fmtcount package to do this.
You can redefine \thepage as follows:

\renewcommand*{\thepage}{\Numberstring{page}}

86

11 Xindy

This gets expanded to \protect \Numberstringnum {〈n〉}where
〈n〉 is the Arabic page number. This means that you need to define a
new location that has that form:

\GlsAddXdyLocation{Numberstring}{:sep "\string\protect\space
\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

Note that it’s necessary to use \space to indicate that spaces also
appear in the format, since, unlike TEX, xindy doesn’t ignore spaces
after control sequences.
\GlsAddXdyLocation{〈name〉}{〈definition〉}will define commands

\glsX〈counter〉X〈name〉{〈Hprefix〉}{〈location〉}

for each counter that has been identified either by the counter package
option, the 〈counter〉 option for \newglossary or in the argument of
\GlsAddXdyCounters.

The first argument 〈Hprefix〉 is only relevant when used with
the hyperref package and indicates that \the〈Hcounter〉 is given by
\Hprefix.\the〈counter〉. The sample file samplexdy.tex, which
comes with the glossaries package, uses the default page counter for
locations, and it uses the default \glsnumberformat and a custom
\hyperbfit format. A new xindy location called Numberstring,
as illustrated above, is defined to make the page numbers ap-
pear as “One”, “Two”, etc. In order for the location numbers to
hyperlink to the relevant pages, I need to redefine the necessary
\glsX〈counter〉X〈format〉 commands:

\renewcommand{\glsXpageXglsnumberformat}[2]{%
\linkpagenumber#2%

}

\renewcommand{\glsXpageXhyperbfit}[2]{%
\textbf{\em\linkpagenumber#2}%

}

\newcommand{\linkpagenumber}[3]{\hyperlink{page.#3}{#1#2{#3}}}

In the number list, the locations are sorted according to type. The
default ordering is: roman-page-numbers (e.g. i), arabic-page-numbers
(e.g. 1), arabic-section-numbers (e.g. 1.1 if the compositor is a
full stop or 1-1 if the compositor is a hyphen1), alpha-page-numbers
(e.g. a), Roman-page-numbers (e.g. I), Alpha-page-numbers (e.g.
A), Appendix-page-numbers (e.g. A.1 if the Alpha compositor is

1see \setCompositor described in Section 3

87

11 Xindy

a full stop or A-1 if the Alpha compositor is a hyphen2), user defined
location names (as specified by \GlsAddXdyLocation in the order
in which they were defined), see (cross-referenced entries). This or-
dering can be changed using:

\GlsSetXdyLocationClassOrder

\GlsSetXdyLocationClassOrder{〈location names〉}

where each location name is delimited by double quote marks and
separated by white space. For example:
\GlsSetXdyLocationClassOrder{

"arabic-page-numbers"
"arabic-section-numbers"
"roman-page-numbers"
"Roman-page-numbers"
"alpha-page-numbers"
"Alpha-page-numbers"
"Appendix-page-numbers"
"see"

}

Note that \GlsSetXdyLocationClassOrder has no effect if
\noist is used or if \makeglossaries is omitted.
\GlsSetXdyLocationClassOrder must be used before
\makeglossaries.

If a number list consists of a sequence of consecutive numbers, the
range will be concatenated. The number of consecutive locations that
causes a range formation defaults to 2, but can be changed using:

\GlsSetXdyMinRangeLength{〈n〉}\GlsSetXdyMinRangeLength

For example:
\GlsSetXdyMinRangeLength{3}

The argument may also be the keyword none, to indicate that there
should be no range formations. See the xindy manual for further
details on range formations.

Note that \GlsSetXdyMinRangeLength has no ef-
fect if \noist is used or if \makeglossaries is omit-
ted. \GlsSetXdyMinRangeLength must be used before
\makeglossaries.

2see \setAlphaCompositor described in Section 3

88

11 Xindy

See Section 5 for further details.

11.3 Glossary Groups

The glossary is divided into groups according to the first letter of the
sort key. The glossaries package also adds a number group by default,
unless you suppress it in the xindy package option. For example:

\usepackage[xindy={glsnumbers=false}]{glossaries}

Any entry that doesn’t go in one of the letter groups or the number
group is placed in the default group.

If you have a number group, the default behaviour is to locate it
before the “A” letter group. If you are not using a Roman alphabet,
you can change this using:

\GlsSetXdyFirstLetterAfterDigits

\GlsSetXdyFirstLetterAfterDigits{〈letter〉}

Note that \GlsSetXdyFirstLetterAfterDigits has no
effect if \noist is used or if \makeglossaries is omitted.
\GlsSetXdyFirstLetterAfterDigits must be used before
\makeglossaries.

89

12 Defining New Glossaries

A new glossary can be defined using:

\newglossary[〈log-ext〉]{〈name〉}{〈in-ext〉}{〈out-ext〉}{〈title〉}
[〈counter〉]\newglossary

where 〈name〉 is the label to assign to this glossary. The argu-
ments 〈in-ext〉 and 〈out-ext〉 specify the extensions to give to the in-
put and output files for that glossary, 〈title〉 is the default title for
this new glossary and the final optional argument 〈counter〉 specifies
which counter to use for the associated number lists (see also Sec-
tion 5). The first optional argument specifies the extension for the
makeindex or xindy transcript file (this information is only used by
makeglossarieswhich picks up the information from the auxiliary
file).

Note that the main (default) glossary is automatically created as:

\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label main (unless the nomain package
option is used). Using the acronym package option is equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

so it can be identified by the label acronym. If you are not sure
whether the acronym option has been used, you can identify the list of
acronyms by the command \acronymtype which is set to acronym,\acronymtype

if the acronym option has been used, otherwise it is set to main. Note
that if you are using the main glossary as your list of acronyms, you
need to declare it as a list of acronyms using the package option
acronymlists.

All glossaries must be defined before \makeglossaries to en-
sure that the relevant output files are opened.
See Section 1.2.1 if you want to redefine \glossaryname, espe-
cially if you are using babel or translator.

90

13 Acronyms

You may have noticed in Section 4 that when you specify a new entry,
you can specify alternate text to use when the term is first used in the
document. This provides a useful means to define acronyms. For
convenience, the glossaries package defines the command:

\newacronym[〈key-val list〉]{〈label〉}{〈abbrv〉}{〈long〉}\newacronym

This uses \newglossaryentry to create an entry with the given
label in the glossary given by \acronymtype. Amongst other things,
it sets up the first and text keys and, depending on the acronym
style, may also use \defdisplayfirst and \defdisplay (see
Section 6.1).

The optional argument {〈key-val list〉} allows you to specify keys
such as description (when used with the description package option, de-
scribed below) or you can override plural forms of 〈abbrv〉 or 〈long〉
using the shortplural or longplural keys. For example:

\newacronym[longplural={diagonal matrices}]{dm}{DM}{diagonal
matrix}

If the first use uses the plural form, \glspl{dm} will display: diag-
onal matrices (DMs).

The following package options are available to change the acronym
style:

description With this package option, the description key needs to be
set in the optional argument 〈key-val list〉 of \newacronym. (If
this package option isn’t used, the long form 〈long〉 is put in the
description key.)

footnote With this package option, on first use the long form 〈long〉
is placed in a footnote. By default the long form in the footnote
will link to the relevant entry in the glossary or list of acronyms.
You can prevent this link by doing:

\let\acrfootnote\acrnolinkfootnote

smallcaps With this package option, the short form 〈abbrv〉 is type-
set using \textsc. (Recall that \textsc converts lower case

91

13 Acronyms

characters into small capitals and leaves upper case characters
as they are. Therefore, you need to have lower case characters
in 〈abbrv〉 for this option to have an effect.)

smaller This is similar to smallcaps, except that \textsmaller is
used instead of \textsc. Note that the glossaries package
doesn’t define \textsmaller nor does it load any package
that does so. If you use this option, you must make sure
\textsmaller is defined (for example by loading relsize).

dua This option will set both the first and text keys to the long form
〈long〉.

If you want to define your own custom acronym style, see Sec-
tion 13.3.

If you try using \newglossaryentry for entries in a designated
list of acronyms in combination with any of the above named pack-
age options you are likely to get unexpected results such as empty
brackets or empty footnotes.
If you don’t intend to use \newacronym you should skip this sec-
tion] and not use the above package options.

As mentioned in Section 2.2, the command \acronymtype is the
name of the glossary in which the acronyms should appear. If the
acronym package option has been used, this will be acronym, other-
wise it will be main. The acronyms can then be used in exactly the
same way as any other glossary entry. If you want more than one list
of acronyms, you must identify the others using the package options
acronymlists. This ensures that options such as footnote and smallcaps
work for the additional lists of acronyms.

Since \newacronym sets type=\acronymtype, if you want to
load a file containing acronym definitions using
\loadglsentries[〈type〉]{〈filename〉}, the optional argument
〈type〉 will not have an effect unless you explicitly set the type as
type=\glsdefaulttype in the optional argument to
\newacronym. See Section 4.4.

Since \newacronym uses \newglossaryentry, you can use
commands like \gls and \glsreset as with any other glossary en-
try.

For example, the following defines the acronym IDN:

\newacronym{idn}{IDN}{identification number}

92

13 Acronyms

\gls{idn} will produce “identification number (IDN)” on first use
and “IDN” on subsequent uses. If you want to use the smallcaps pack-
age option, you need to use lower case characters for the shortened
form:

\newacronym{idn}{idn}{identification number}

Now \gls{idn} will produce “identification number (IDN)” on first
use and “IDN” on subsequent uses.

If you use any of the package options smallcaps, smaller, description
or footnote, the short form 〈abbrv〉 will be displayed in the document
using:

\acronymfont{〈text〉}\acronymfont

and

\firstacronymfont{〈text〉}\firstacronymfont

where \firstacronymfont is applied on first use and \acronymfont
is applied on subsequent use. Note that if you don’t use any of the
above package options, changing the definition of \acronymfont
or \firstacronymfont will have no effect. In this case, the rec-
ommended route is to use either the smaller or the smallcaps package
option and redefine \acronymfont and \firstacronymfont as
required. (The smallcaps option sets the default plural suffix in an up-
right font to cancel the effect of \textsc, whereas smaller sets the
suffix in the surrounding font.) For example, if you want acronyms
in a normal font on first use and emphasized on subsequent use, do:

\usepackage[smaller]{glossaries}
\renewcommand*{\firstacronymfont}[1]{#1}
\renewcommand*{\acronymfont}[1]{\emph{#1}}

(Note that it is for this reason that the relsize package is not automati-
cally loaded when selecting the smaller package option.)

There are commands analogous to \glstext (described in Sec-
tion 6) that allow you to access just the short form, just the long form
or the full form, without affecting the first use flag. (Note that the full
form isn’t necessarily the same as the text produced on first use.)

\acrshort[〈options〉]{〈label〉}[〈insert〉]\acrshort

This displays the short form for the entry given by 〈label〉. The op-
tional arguments are the same as those for \glstext. There is also

93

13 Acronyms

a starred version to suppress the hyperlink. There are also analogous
upper case variants:

\Acrshort[〈options〉]{〈label〉}[〈insert〉]\Acrshort

\ACRshort[〈options〉]{〈label〉}[〈insert〉]\ACRshort

\acrlong[〈options〉]{〈label〉}[〈insert〉]\acrlong

This displays the long form for the entry given by 〈label〉. The op-
tional arguments are the same as before. There is also a starred ver-
sion to suppress the hyperlink. There are also analogous upper case
variants:

\Acrlong[〈options〉]{〈label〉}[〈insert〉]\Acrlong

\ACRlong[〈options〉]{〈label〉}[〈insert〉]\ACRlong

\acrfull[〈options〉]{〈label〉}[〈insert〉]\acrfull

This is equivalent to: \acrfullformat{\acrlong}{\acrshort}.\acrfullformat

This defaults to 〈long〉 (\acronymfont{〈short〉}) regardless of the
package options. There are also analogous upper case variants:

\Acrfull[〈options〉]{〈label〉}[〈insert〉]\Acrfull

\ACRfull[〈options〉]{〈label〉}[〈insert〉]\ACRfull

If you find the above commands too cumbersome to write, you
can use the shortcuts package option to activate the shorter command
names listed in table 13.1.

It is also possible to access the long and short forms without
adding information to the glossary using commands analogous to
\glsentrytext (described in Section 9).

The long form can be accessed using:

\glsentrylong{〈label〉}\glsentrylong

94

13 Acronyms

Table 13.1: Synonyms provided by the package option shortcuts

Shortcut Command Equivalent Command
\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\acf \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls
\Ac \Gls
\acp \glspl
\Acp \Glspl

or, with the first letter converted to upper case:

\Glsentrylong{〈label〉}\Glsentrylong

Plural forms:

\glsentrylongpl{〈label〉}\glsentrylongpl

\Glsentrylongpl{〈label〉}\Glsentrylongpl

Similarly, to access the short form:

\glsentryshort{〈label〉}\glsentryshort

or, with the first letter converted to upper case:

\Glsentryshort{〈label〉}\Glsentryshort

Plural forms:

\glsentryshortpl{〈label〉}\glsentryshortpl

95

13 Acronyms

\Glsentryshortpl{〈label〉}\Glsentryshortpl

And the full form, 〈long〉 (〈short〉), can be obtained using:

\glsentryfull{〈label〉}\glsentryfull

\Glsentryfull{〈label〉}\Glsentryfull

\glsentryfullpl{〈label〉}\glsentryfullpl

\Glsentryfullpl{〈label〉}\Glsentryfullpl

13.1 Predefined Acronym Styles

Some of the acronym-related package options may be combined.
Listed below are the effects of different combinations. If you use an
invalid combination, you’ll get an error message.

description,footnote

When these two package options are used together, the first use
displays the entry as:

\firstacronymfont{〈abbrv〉}〈insert〉\footnote{〈long〉}

while subsequent use displays the entry as:

\acronymfont{〈abbrv〉}〈insert〉

where 〈insert〉 indicates the text supplied in the final optional
argument to \gls, \glspl or their uppercase variants.

dua

The dua package option always makes \gls display the ex-
panded form and so may not be used with footnote, smaller or
smallcaps. Both first use and subsequent use displays the entry
in the form:

96

13 Acronyms

〈long〉〈insert〉

You can, however, access the short form using \acrshort and
its variants.

description

This package option displays the entry on first use as:

〈long〉〈insert〉 (\firstacronymfont{〈abbrv〉})

while subsequent use displays the entry as:

\acronymfont{〈abbrv〉}〈insert〉

Note that with this option, you need to specify the description
using the description key in the optional argument of \newacronym.

footnote

This package option displays the entry on first use as:

\firstacronymfont{〈abbrv〉}〈insert〉\footnote{〈long〉}

while subsequent use displays the entry as:

\acronymfont{〈abbrv〉}〈insert〉

Acronyms will be sorted according to the short form.

Note that on first use, it is the long form in the footnote that links
to the relevant glossary entry (where hyperlinks are enabled),
whereas on subsequent use, the acronym links to the relevant
glossary entry. You can suppress the long form link by setting:

\let\acrfootnote\acrnolinkfootnote

smallcaps

If neither the footnote nor description options have been set, this
option displays the entry on first use as:

97

13 Acronyms

〈long〉〈insert〉 (\firstacronymfont{〈abbrv〉})

while subsequent use displays the entry as:

\acronymfont{〈abbrv〉}〈insert〉

where \acronymfont is set to \textsc{#1}.

Note that since the acronym is displayed using \textsc,
the short form, 〈abbrv〉, should be specified in lower
case. (Recall that \textsc{abc} produces ABC whereas
\textsc{ABC} produces ABC.)

smaller

If neither the footnote nor description options have been set, this
option displays the entry on first use as:

〈long〉〈insert〉 (\firstacronymfont{〈abbrv〉})

while subsequent use displays the entry as:

\acronymfont{〈abbrv〉}〈insert〉

where \acronymfont is set to \textsmaller{#1}.1 The en-
tries will be sorted according to the short form.

Remember to load a package that defines \textsmaller
(such as relsize) if you want to use this option, unless you
want to redefine \acronymfont to use some other format-
ting command.

None of the above

If none of the package options smallcaps, smaller, footnote, dua or
description are used, then on first use the entry is displayed as:

1not that this was change from using \smaller to \textsmaller as declarations
cause a problem for \makefirstuc.

98

13 Acronyms

〈long〉 (〈abbrv〉)〈insert〉

while subsequent use displays the entry as:

〈abbrv〉〈insert〉

Entries will be sorted according to the short form.

13.2 Displaying the List of Acronyms

The list of acronyms is just like any other type of glossary and can be
displayed on its own using \printglossary[type=\acronymtype]
or with all the other glossaries using \printglossaries. However,
care must be taken to choose a glossary style that’s appropriate to
your acronym style. The different acronym-related package options
store different information in the name, description and symbol keys.

Table 13.2 lists the package options that govern the acronym styles
and how the information is stored in the keys used when displaying
the glossary. Note that the description package option uses the follow-
ing command in the name:

\acrnameformat{〈abbrv〉}{〈long〉}\acrnameformat

This defaults to just \acronymfont{〈abbrv〉}.
For example, if I use the package options description and footnote,

then the name field will contain the abbreviation and the symbol field
will contain the long form. If I then use the long4col style, each entry
in the list of acronyms will appear in the form:

\acronymfont{〈abbrv〉} 〈description〉 〈long〉
〈location list〉

Alternatively, you can define your own custom style (see Section 16
for further details).

13.3 Defining A Custom Acronym Style

You may find that the predefined acronyms styles that come with the
glossaries package don’t suit your requirements. In this case you can
define your own style. This is done by redefining the following com-
mands:

99

13 Acronyms

Table 13.2: Package options governing \newacronym and how the
information is stored

Package Option name description symbol
description,footnote \acronymfont{〈abbrv〉} user supplied 〈long〉
description,dua 〈long〉 user supplied 〈abbrv〉
description \acrnameformat{〈abbrv〉}{〈long〉} user supplied 〈abbrv〉
footnote \acronymfont{〈abbrv〉} 〈long〉
smallcaps \acronymfont{〈abbrv〉} 〈long〉 〈abbrv〉
smaller \acronymfont{〈abbrv〉} 〈long〉 〈abbrv〉
dua 〈abbrv〉 〈long〉 〈abbrv〉
None of the above 〈abbrv〉 〈long〉

\CustomAcronymFields\CustomAcronymFields

This command sets up the keys for \newglossaryentry when you
define an acronym using \newacronym. Within the definition of
\CustomAcronymFields, you may use \the\glslongtok to ac-
cess the long form, \the\glsshorttok to access the short form and
\the\glslabeltok to access the label. This command is typically
used to set the name, first, firstplural, text and plural keys. It may also be
used to set the symbol or description keys depending on your require-
ments.

\SetCustomDisplayStyle{〈type〉}\SetCustomDisplayStyle

This is used to set up the display style for the glossary given by
〈type〉. This should typically just use \defglsdisplayfirst and
\defglsdisplay.

Once you have redefined \CustomAcronymFields and
\SetCustomDisplayStyle, you must then switch to this style us-
ing

\SetCustomStyle\SetCustomStyle

Note that you may still use the shortcuts package option with your
custom style.

100

13 Acronyms

If you omit \SetCustomStyle, or use it before you redefine
\CustomAcronymFields and \SetCustomDisplayStyle,
your new style won’t be correctly implemented. You must set up
the custom style before defining new acronyms. The acronyms
must be defined using \newacronym not \newglossaryentry.

As an example, suppose I want my acronym on first use to have the
short form in the text and the long form with the description in a foot-
note. Suppose also that I want the short form to be put in small caps
in the main body of the document, but I want it in normal capitals in
the list of acronyms. In my list of acronyms, I want the long form as
the name with the short form in brackets followed by the description.
That is, in the text I want \gls on first use to display:

\textsc{〈abbrv〉}\footnote{〈long〉: 〈description〉}

on subsequent use:

\textsc{〈abbrv〉}

and in the list of acronyms, each entry will be displayed in the form:

〈long〉 (〈short〉) 〈description〉

First, I need to redefine \CustomAcronymFields so that \newacronym
will correctly set the name, text and plural keys. I want the long form
to be stored in the name and the short form to be stored in text. In
addition, I’m going to set the symbol to the short form in upper case
so that it will appear in the list of acronyms.

\renewcommand*{\CustomAcronymFields}{%
name={\the\glslongtok},%
symbol={\MakeUppercase{\the\glsshorttok}},%
text={\textsc{\the\glsshorttok}},%
plural={\textsc{\the\glsshorttok}\noexpand\acrpluralsuffix}%

}

When using \newacronym, the short and long forms are stored
in the short and long keys, and the plural forms are stored in short-
plural and longplural. So when I use \defglsdisplayfirst and
\defglsdisplay, I can use \glsentrylong to access the long
form. Recall from Section 6.1, that the optional argument to \defglsdisplayfirst
and \defglsdisplay indicates the glossary type. This is passed to
\SetCustomDisplayStyle. The mandatory argument sets up the

101

13 Acronyms

definition of \glsdisplayfirst and \glsdisplay for the given
glossary, where the first argument corresponds to the first, firstplural,
text or plural, as appropriate, the second argument corresponds to the
description, the third corresponds to the symbol and the fourth argu-
ment is the inserted text.

\renewcommand*{\SetCustomDisplayStyle}[1]{%
\defglsdisplayfirst[#1]{##1##4\protect\footnote{%

\glsentrylong{\glslabel}: ##2%
}}
\defglsdisplay[#1]{##1##4}%

}

Since we have a definition inside a definition, #1 refers to the argu-
ment of \SetCustomDisplayStyle, and ##1, . . . , ##4, refer to the
arguments of \glsdisplayfirst and \glsdisplay.

Now that I’ve redefined \CustomAcronymFields and
\SetCustomDisplayStyle, I can set this style using

\SetCustomStyle

and now I can define my acronyms:

\newacronym[description={set of tags for use in
developing hypertext documents}]{html}{html}{Hyper
Text Markup Language}

\newacronym[description={language used to describe the
layout of a document written in a markup language}]{css}
{css}{Cascading Style Sheet}

Note that since I’ve used the description in the main body of the
text, I need to switch off the sanitization otherwise any commands
within the description won’t get interpreted. Also I want to use the
hyperref package, but this will cause a problem on first use as I’ll get
nested hyperlinks, so I need to switch off the hyperlinks on first use.
In addition, I want to use a glossary style that displays the symbol.
Therefore, in my preamble I have:

\usepackage[colorlinks]{hyperref}
\usepackage
[acronym, % create list of acronyms
nomain, % don’t need main glossary for this example
style=tree, % need a style that displays the symbol
hyperfirst=false,% don’t hyperlink first use
sanitize=none % switch off sanitization as description

% will be used in the main text
]{glossaries}

Note that I haven’t used the description or footnote package options.

102

13 Acronyms

13.4 Upgrading From the glossary Package

Users of the obsolete glossary package may recall that the syntax used
to define new acronyms has changed with the replacement glossaries
package. In addition, the old glossary package created the command
\〈acr-name〉 when defining the acronym 〈acr-name〉.

In order to facilitate migrating from the old package to the new one,
the glossaries package2 provides the command:

\oldacronym[〈label〉]{〈abbrv〉}{〈long〉}{〈key-val list〉}\oldacronym

This uses the same syntax as the glossary package’s method of defin-
ing acronyms. It is equivalent to:

\newacronym[〈key-val list〉]{〈label〉}{〈abbrv〉}{〈long〉}

In addition, \oldacronym also defines the commands \〈label〉, which
is equivalent to \gls{〈label〉}, and \〈label〉*, which is equivalent to
\Gls{〈label〉}. If 〈label〉 is omitted, 〈abbrv〉 is used. Since commands
names must consist only of alphabetical characters, 〈label〉 must also
only consist of alphabetical characters. Note that \〈label〉 doesn’t al-
low you to use the first optional argument of \gls or \Gls — you
will need to explicitly use \gls or \Gls to change the settings.

Recall that, in general, LATEX ignores spaces following command
names consisting of alphabetical characters. This is also true for
\〈label〉 unless you additionally load the xspace package.

The glossaries package doesn’t load the xspace package since there
are both advantages and disadvantages to using \xspace in \〈label〉.
If you don’t use the xspace package you need to explicitly force a
space using \ (backslash space) however you can follow \〈label〉
with additional text in square brackets (the final optional argument
to \gls). If you use the xspace package you don’t need to escape the
spaces but you can’t use the optional argument to insert text (you will
have to explicitly use \gls).

To illustrate this, suppose I define the acronym “abc” as follows:

\oldacronym{abc}{example acronym}{}

This will create the command \abc and its starred version \abc*.
Table 13.3 illustrates the effect of \abc (on subsequent use) according
to whether or not the xspace package has been loaded. As can be

2as from version 1.18

103

13 Acronyms

seen from the final row in the table, the xspace package prevents the
optional argument from being recognised.

Table 13.3: The effect of using xspace with \oldacronym

Code With xspace Without xspace
\abc. abc. abc.
\abc xyz abc xyz abcxyz
\abc\ xyz abc xyz abc xyz
\abc* xyz Abc xyz Abc xyz
\abc[’s] xyz abc [’s] xyz abc’s xyz

104

14 Unsetting and Resetting Entry
Flags

When using \gls, \glspl and their uppercase variants it is possible
that you may want to use the value given by the first key, even though
you have already used the glossary entry. Conversely, you may want
to use the value given by the text key, even though you haven’t used
the glossary entry. The former can be achieved by one of the following
commands:

\glsreset{〈label〉}\glsreset

\glslocalreset{〈label〉}\glslocalreset

while the latter can be achieved by one of the following commands:

\glsunset{〈label〉}\glsunset

\glslocalunset{〈label〉}\glslocalunset

You can also reset or unset all entries for a given glossary or list of
glossaries using:

\glsresetall[〈glossary list〉]\glsresetall

\glslocalresetall[〈glossary list〉]\glslocalresetall

\glsunsetall[〈glossary list〉]\glsunsetall

\glslocalunsetall[〈glossary list〉]\glslocalunsetall

105

14 Unsetting and Resetting Entry Flags

where 〈glossary list〉 is a comma-separated list of glossary labels. If
omitted, all defined glossaries are assumed. For example, to reset all
entries in the main glossary and the list of acronyms:

\glsresetall[main,acronym]

You can determine whether an entry’s first use flag is set using:

\ifglsused{〈label〉}{〈true part〉}{〈false part〉}\ifglsused

where 〈label〉 is the label of the required entry. If the entry has been
used, 〈true part〉 will be done, otherwise 〈false part〉 will be done.

106

15 Glossary Styles

The glossaries package comes with some pre-defined glossary styles.
Note that the styles are suited to different types of glossaries: some
styles ignore the associated symbol; some styles are not designed for
hierarchical entries, so they display sub-entries in the same way as
they display top level entries; some styles are designed for homo-
graphs, so they ignore the name for sub-entries. You should therefore
pick a style that suits your type of glossary. See table 15.1 for a sum-
mary of the available styles. The predefined styles can accommodate
numbered level 0 (main) and level 1 entries. See the package options
entrycounter, counterwithin and subentrycounter described in Section 2.3.

The glossary style can be set using the style key in the optional ar-
gument to \printglossary or using the command:

\glossarystyle{〈style-name〉}\glossarystyle

Some of the glossary styles may also be set using the style package
option, it depends if the package in which they are defined is auto-
matically loaded by the glossaries package.

The tabular-like styles that allow multi-line descriptions and page
lists use the length \glsdescwidth to set the width of the de-\glsdescwidth

scription column and the length \glspagelistwidth to set the\glspagelistwidth

width of the page list column.1 These will need to be changed us-
ing \setlength if the glossary is too wide. Note that the long4col
and super4col styles (and their header and border variations) don’t
use these lengths as they are designed for single line entries. Instead
you should use the analogous altlong4col and altsuper4col styles. If you
want to explicitly create a line-break within a multi-line description
in a tabular-like style you should use \newline instead of \\.

Note that if you use the style key in the optional argument to
\printglossary, it will override any previous style settings for the
given glossary, so if, for example, you do

\renewcommand*{\glsgroupskip}{}
\printglossary[style=long]

1these lengths will not be available if you use both the nolong and nosuper package
options or if you use the nostyles package option unless you explicitly load the
relevant package.

107

15 Glossary Styles

Table 15.1: Glossary Styles. An asterisk in the style name indi-
cates anything that matches that doesn’t match any pre-
viously listed style (e.g. long3col* matches long3col,
long3colheader, long3colborder and long3colheaderborder). A
maximum level of 0 indicates a flat glossary (sub-entries
are displayed in the same way as main entries). Where the
maximum level is given as — there is no limit, but note
that makeindex imposes a limit of 2 sub-levels. If the
homograph column is checked, then the name is not dis-
played for sub-entries. If the symbol column is checked,
then the symbol will be displayed.

Style Maximum Level Homograph Symbol
listdotted 0
sublistdotted 1
list* 1 3

altlist* 1 3

long*3col* 1 3

long4col* 1 3 3

altlong*4col* 1 3 3

long* 1 3

super*3col* 1 3

super4col* 1 3 3

altsuper*4col* 1 3 3

super* 1 3

index 2 3

treenoname* — 3 3

tree — 3

alttree — 3

inline 1 3

108

15 Glossary Styles

then the new definition of \glsgroupskip will not have an affect
for this glossary, as \glsgroupskip is redefined by style=long.
Likewise, \glossarystyle will also override any previous style
definitions, so, again

\renewcommand*{\glsgroupskip}{}
\glossarystyle{long}

will reset \glsgroupskip back to its default definition for the
named glossary style (long in this case). If you want to modify the
styles, either use \newglossarystyle (described in the next sec-
tion) or make the modifications after \glossarystyle, e.g.:

\glossarystyle{long}
\renewcommand*{\glsgroupskip}{}

As from version 3.03, you can now use the package option nogroupskip
to suppress the gap between groups for the default styles.

All the styles except for the three- and four-column styles and the
listdotted style use the command

\glspostdescription\glspostdescription

after the description. This simply displays a full stop by default.
To eliminate this full stop (or replace it with something else, say, a
comma) you will need to redefine \glspostdescription before
the glossary is displayed. Alternatively, you can suppress it for a
given entry by placing \nopostdesc in the entry’s description.

As from version 3.03 you can now use the package option nopostdot
to suppress this full stop.

15.1 List Styles

The styles described in this section are all defined in the package
glossary-list. Since they all use the description environment, they are
governed by the same parameters as that environment. These styles
all ignore the entry’s symbol. Note that these styles will automatically
be available unless you use the nolist or nostyles package options.

list The list style uses the description environment. The entry name is
placed in the optional argument of the \item command (so it
will appear in bold by default). The description follows, and
then the associated number list for that entry. The symbol is ig-
nored. If the entry has child entries, the description and number
list follows (but not the name) for each child entry. Groups are
separated using \indexspace.

109

15 Glossary Styles

listgroup The listgroup style is like list but the glossary groups have
headings.

listhypergroup The listhypergroup style is like listgroup but has a navi-
gation line at the start of the glossary with links to each group
that is present in the glossary. This requires an additional run
through LATEX to ensure the group information is up to date. In
the navigation line, each group is separated by

\glshypernavsep\glshypernavsep

which defaults to a vertical bar with a space on either side. For
example, to simply have a space separating each group, do:

\renewcommand*{\glshypernavsep}{\space}

Note that the hyper-navigation line is now (as from version
1.14) set inside the optional argument to \item instead of after
it to prevent a spurious space at the start. This can be changed
by redefining \glossaryheader, but note that this needs to
be done after the glossary style has been set.

altlist The altlist style is like list but the description starts on the line fol-
lowing the name. (As with the list style, the symbol is ignored.)
Each child entry starts a new line, but as with the list style, the
name associated with each child entry is ignored.

altlistgroup The altlistgroup style is like altlist but the glossary groups
have headings.

altlisthypergroup The altlisthypergroup style is like altlistgroup but has a
set of links to the glossary groups. The navigation line is the
same as that for listhypergroup, described above.

listdotted This style uses the description environment.2 Each entry
starts with \item[], followed by the name followed by a dot-
ted line, followed by the description. Note that this style ignores
both the number list and the symbol. The length

\glslistdottedwidth\glslistdottedwidth

governs where the description should start. This is a flat style,
so child entries are formatted in the same way as the parent
entries.

2This style was supplied by Axel Menzel.

110

15 Glossary Styles

sublistdotted This is a variation on the listdotted style designed for hi-
erarchical glossaries. The main entries have just the name dis-
played. The sub entries are displayed in the same manner as
listdotted.

15.2 Longtable Styles

The styles described in this section are all defined in the package
glossary-long. Since they all use the longtable environment, they are
governed by the same parameters as that environment. Note that
these styles will automatically be available unless you use the nolong
or nostyles package options. These styles fully justify the description
and page list columns. If you want ragged right formatting instead,
use the analogous styles described in Section 15.3.

long The long style uses the longtable environment (defined by the
longtable package). It has two columns: the first column con-
tains the entry’s name and the second column contains the de-
scription followed by the number list. The entry’s symbol is
ignored. Sub groups are separated with a blank row. The width
of the first column is governed by the widest entry in that col-
umn. The width of the second column is governed by the length
\glsdescwidth. Child entries have a similar format to the
parent entries except that their name is suppressed.

longborder The longborder style is like long but has horizontal and ver-
tical lines around it.

longheader The longheader style is like long but has a header row.

longheaderborder The longheaderborder style is like longheader but has
horizontal and vertical lines around it.

long3col The long3col style is like long but has three columns. The first
column contains the entry’s name, the second column contains
the description and the third column contains the number list.
The entry’s symbol is ignored. The width of the first column
is governed by the widest entry in that column, the width of
the second column is governed by the length \glsdescwidth,
and the width of the third column is governed by the length
\glspagelistwidth.

long3colborder The long3colborder style is like the long3col style but has
horizontal and vertical lines around it.

111

15 Glossary Styles

long3colheader The long3colheader style is like long3col but has a
header row.

long3colheaderborder The long3colheaderborder style is like long3colheader
but has horizontal and vertical lines around it.

long4col The long4col style is like long3col but has an additional col-
umn in which the entry’s associated symbol appears. This style
is used for brief single line descriptions. The column widths
are governed by the widest entry in the given column. Use alt-
long4col for multi-line descriptions.

long4colborder The long4colborder style is like the long4col style but has
horizontal and vertical lines around it.

long4colheader The long4colheader style is like long4col but has a
header row.

long4colheaderborder The long4colheaderborder style is like long4colheader
but has horizontal and vertical lines around it.

altlong4col The altlong4col style is like long4col but allows multi-line
descriptions and page lists. The width of the description col-
umn is governed by the length \glsdescwidth and the width
of the page list column is governed by the length
\glspagelistwidth. The widths of the name and symbol
columns are governed by the widest entry in the given column.

altlong4colborder The altlong4colborder style is like the long4colborder
but allows multi-line descriptions and page lists.

altlong4colheader The altlong4colheader style is like long4colheader but
allows multi-line descriptions and page lists.

altlong4colheaderborder The altlong4colheaderborder style is like
long4colheaderborder but allows multi-line descriptions and page
lists.

15.3 Longtable Styles (Ragged Right)

The styles described in this section are all defined in the package
glossary-longragged. These styles are analogous to those defined in
glossary-long but the multiline columns are left justified instead of
fully justified. Since these styles all use the longtable environment,
they are governed by the same parameters as that environment. The
glossary-longragged package additionally requires the array package.

112

15 Glossary Styles

Note that these styles will only be available if you explicitly load
glossary-longragged:

\usepackage{glossaries}
\usepackage{glossary-longragged}

Note that you can’t set these styles using the style package option
since the styles aren’t defined until after the glossaries package has
been loaded.

longragged The longragged style has two columns: the first column
contains the entry’s name and the second column contains the
(left-justified) description followed by the number list. The en-
try’s symbol is ignored. Sub groups are separated with a blank
row. The width of the first column is governed by the widest
entry in that column. The width of the second column is gov-
erned by the length \glsdescwidth. Child entries have a sim-
ilar format to the parent entries except that their name is sup-
pressed.

longraggedborder The longraggedborder style is like longragged but has
horizontal and vertical lines around it.

longraggedheader The longraggedheader style is like longragged but has
a header row.

longraggedheaderborder The longraggedheaderborder style is like lon-
graggedheader but has horizontal and vertical lines around it.

longragged3col The longragged3col style is like longragged but has three
columns. The first column contains the entry’s name, the sec-
ond column contains the (left justified) description and the third
column contains the (left justified) number list. The entry’s sym-
bol is ignored. The width of the first column is governed by the
widest entry in that column, the width of the second column is
governed by the length \glsdescwidth, and the width of the
third column is governed by the length \glspagelistwidth.

longragged3colborder The longragged3colborder style is like the lon-
gragged3col style but has horizontal and vertical lines around
it.

longragged3colheader The longragged3colheader style is like longragged3col
but has a header row.

longragged3colheaderborder The longragged3colheaderborder style is like
longragged3colheader but has horizontal and vertical lines around
it.

113

15 Glossary Styles

altlongragged4col The altlongragged4col style is like longragged3col but
has an additional column in which the entry’s associated sym-
bol appears. The width of the description column is governed
by the length \glsdescwidth and the width of the page list
column is governed by the length \glspagelistwidth. The
widths of the name and symbol columns are governed by the
widest entry in the given column.

altlongragged4colborder The altlongragged4colborder style is like the al-
tlongragged4col but has horizontal and vertical lines around it.

altlongragged4colheader The altlongragged4colheader style is like altlon-
gragged4col but has a header row.

altlongragged4colheaderborder The altlongragged4colheaderborder style
is like altlongragged4colheader but has horizontal and vertical
lines around it.

15.4 Supertabular Styles

The styles described in this section are all defined in the package
glossary-super. Since they all use the supertabular environment, they
are governed by the same parameters as that environment. Note that
these styles will automatically be available unless you use the nosu-
per or nostyles package options. In general, the longtable environment
is better, but there are some circumstances where it is better to use
supertabular.3 These styles fully justify the description and page list
columns. If you want ragged right formatting instead, use the analo-
gous styles described in Section 15.5.

super The super style uses the supertabular environment (defined by
the supertabular package). It has two columns: the first column
contains the entry’s name and the second column contains the
description followed by the number list. The entry’s symbol
is ignored. Sub groups are separated with a blank row. The
width of the first column is governed by the widest entry in that
column. The width of the second column is governed by the
length \glsdescwidth. Child entries have a similar format to
the parent entries except that their name is suppressed.

superborder The superborder style is like super but has horizontal and
vertical lines around it.

superheader The superheader style is like super but has a header row.

3e.g. with the flowfram package.

114

15 Glossary Styles

superheaderborder The superheaderborder style is like superheader but
has horizontal and vertical lines around it.

super3col The super3col style is like super but has three columns. The
first column contains the entry’s name, the second column con-
tains the description and the third column contains the num-
ber list. The entry’s symbol is ignored. The width of the
first column is governed by the widest entry in that column.
The width of the second column is governed by the length
\glsdescwidth. The width of the third column is governed
by the length \glspagelistwidth.

super3colborder The super3colborder style is like the super3col style but
has horizontal and vertical lines around it.

super3colheader The super3colheader style is like super3col but has a
header row.

super3colheaderborder The super3colheaderborder style is like the
super3colheader style but has horizontal and vertical lines around
it.

super4col The super4col style is like super3col but has an additional
column in which the entry’s associated symbol appears. This
style is designed for entries with brief single line descriptions.
The column widths are governed by the widest entry in the
given column. Use altsuper4col for multi-line descriptions.

super4colborder The super4colborder style is like the super4col style but
has horizontal and vertical lines around it.

super4colheader The super4colheader style is like super4col but has a
header row.

super4colheaderborder The super4colheaderborder style is like the
super4colheader style but has horizontal and vertical lines around
it.

altsuper4col The altsuper4col style is like super4col but allows multi-
line descriptions and page lists. The width of the descrip-
tion column is governed by the length \glsdescwidth and
the width of the page list column is governed by the length
\glspagelistwidth. The width of the name and symbol
columns is governed by the widest entry in the given column.

altsuper4colborder The altsuper4colborder style is like the super4colborder
style but allows multi-line descriptions and page lists.

115

15 Glossary Styles

altsuper4colheader The altsuper4colheader style is like super4colheader
but allows multi-line descriptions and page lists.

altsuper4colheaderborder The altsuper4colheaderborder style is like su-
per4colheaderborder but allows multi-line descriptions and page
lists.

15.5 Supertabular Styles (Ragged Right)

The styles described in this section are all defined in the package
glossary-superragged. These styles are analogous to those defined in
glossary-super but the multiline columns are left justified instead of
fully justified. Since these styles all use the supertabular environment,
they are governed by the same parameters as that environment. The
glossary-superragged package additionally requires the array package.
Note that these styles will only be available if you explicitly load
glossary-superragged:

\usepackage{glossaries}
\usepackage{glossary-superragged}

Note that you can’t set these styles using the style package option
since the styles aren’t defined until after the glossaries package has
been loaded.

superragged The superragged style uses the supertabular environment
(defined by the supertabular package). It has two columns: the
first column contains the entry’s name and the second column
contains the (left justified) description followed by the number
list. The entry’s symbol is ignored. Sub groups are separated
with a blank row. The width of the first column is governed
by the widest entry in that column. The width of the second
column is governed by the length \glsdescwidth. Child en-
tries have a similar format to the parent entries except that their
name is suppressed.

superraggedborder The superraggedborder style is like superragged but
has horizontal and vertical lines around it.

superraggedheader The superraggedheader style is like superragged but
has a header row.

superraggedheaderborder The superraggedheaderborder style is like su-
perraggedheader but has horizontal and vertical lines around it.

116

15 Glossary Styles

superragged3col The superragged3col style is like superragged but has
three columns. The first column contains the entry’s name, the
second column contains the (left justified) description and the
third column contains the (left justified) number list. The en-
try’s symbol is ignored. The width of the first column is gov-
erned by the widest entry in that column. The width of the
second column is governed by the length \glsdescwidth.
The width of the third column is governed by the length
\glspagelistwidth.

superragged3colborder The superragged3colborder style is like the su-
perragged3col style but has horizontal and vertical lines around
it.

superragged3colheader The superragged3colheader style is like super-
ragged3col but has a header row.

superragged3colheaderborder The superragged3colheaderborder style is
like superragged3colheader but has horizontal and vertical lines
around it.

altsuperragged4col The altsuperragged4col style is like superragged3col
but has an additional column in which the entry’s associated
symbol appears. The column widths for the name and symbol
column are governed by the widest entry in the given column.

altsuperragged4colborder The altsuperragged4colborder style is like the
altsuperragged4col style but has horizontal and vertical lines
around it.

altsuperragged4colheader The altsuperragged4colheader style is like alt-
superragged4col but has a header row.

altsuperragged4colheaderborder The altsuperragged4colheaderborder style
is like altsuperragged4colheader but has horizontal and vertical
lines around it.

15.6 Tree-Like Styles

The styles described in this section are all defined in the package
glossary-tree. These styles are designed for hierarchical glossaries but
can also be used with glossaries that don’t have sub-entries. These
styles will display the entry’s symbol if it exists. Note that these styles
will automatically be available unless you use the notree or nostyles
package options.

117

15 Glossary Styles

index The index style is similar to the way indices are usually format-
ted in that it has a hierarchical structure up to three levels (the
main level plus two sub-levels). The name is typeset in bold,
and if the symbol is present it is set in parentheses after the
name and before the description. Sub-entries are indented and
also include the name, the symbol in brackets (if present) and
the description. Groups are separated using \indexspace.

indexgroup The indexgroup style is similar to the index style except that
each group has a heading.

indexhypergroup The indexhypergroup style is like indexgroup but has a
set of links to the glossary groups. The navigation line is the
same as that for listhypergroup, described above.

tree The tree style is similar to the index style except that it can have
arbitrary levels. (Note that makeindex is limited to three lev-
els, so you will need to use xindy if you want more than three
levels.) Each sub-level is indented by \glstreeindent. Note\glstreeindent

that the name, symbol (if present) and description are placed in
the same paragraph block. If you want the name to be apart
from the description, use the alttree style instead. (See below.)

treegroup The treegroup style is similar to the tree style except that
each group has a heading.

treehypergroup The treehypergroup style is like treegroup but has a set
of links to the glossary groups. The navigation line is the same
as that for listhypergroup, described above.

treenoname The treenoname style is like the tree style except that the
name for each sub-entry is ignored.

treenonamegroup The treenonamegroup style is similar to the treenon-
ame style except that each group has a heading.

treenonamehypergroup The treenonamehypergroup style is like treenon-
amegroup but has a set of links to the glossary groups. The navi-
gation line is the same as that for listhypergroup, described above.

alttree The alttree style is similar to the tree style except that the in-
dentation for each level is determined by the width of the text
specified by

\glssetwidest[〈level〉]{〈text〉}\glssetwidest

118

15 Glossary Styles

The optional argument 〈level〉 indicates the level, where 0 indi-
cates the top-most level, 1 indicates the first level sub-entries,
etc. If \glssetwidest hasn’t been used for a given sub-level,
the level 0 widest text is used instead. If 〈level〉 is omitted, 0 is
assumed.

For each level, the name is placed to the left of the paragraph
block containing the symbol (optional) and the description. If
the symbol is present, it is placed in parentheses before the de-
scription.

alttreegroup The alttreegroup is like the alttree style except that each
group has a heading.

alttreehypergroup The alttreehypergroup style is like alttreegroup but has
a set of links to the glossary groups. The navigation line is the
same as that for listhypergroup, described above.

15.7 Multicols Style

The glossary-mcols package provides tree-like styles that are in the mul-
ticols environment (defined by the multicol package). The style names
are as their analogous tree styles (as defined in Section 15.6) but are
prefixed with “mcol”. For example, the mcolindex style is essentially
the index style but put in a multicols environment. For the complete list,
see table 15.2.

Note that glossary-mcols is not loaded by glossaries. If you want to
use any of the multicol styles in that package you need to load it
explicitly with \usepackage and set the required glossary style
using \glossarystyle.

The default number of columns is 2, but can be changed by redefin-
ing

\glsmcols\glsmcols

to the required number. For example, for a three column glossary:

\usepackage{glossary-mcols}
\renewcommand*{\glsmcols}{3}
\glossarystyle{mcolindex}

119

15 Glossary Styles

Table 15.2: Multicolumn Styles

glossary-mcols Style Analogous Tree Style
mcolindex index
mcolindexgroup indexgroup
mcolindexhypergroup indexhypergroup
mcoltree tree
mcoltreegroup treegroup
mcoltreehypergroup treehypergroup
mcoltreenoname treenoname
mcoltreenonamegroup treenonamegroup
mcoltreenonamehypergroup treenonamehypergroup
mcolalttree alttree
mcolalttreegroup alttreegroup
mcolalttreehypergroup alttreehypergroup

15.8 In-Line Style

This section covers the glossary-inline package that supplies the inline
style. This is a style that is designed for in-line use (as opposed to
block styles, such as lists or tables). This style doesn’t display the
number list.

You will most likely need to redefine \glossarysection with
this style. For example, suppose you are required to have your glos-
saries and list of acronyms in a footnote, you can do:

\usepackage{glossary-inline}

\renewcommand*{\glossarysection}[2][]{\textbf{#1}: }
\glossarystyle{inline}

Note that you need to include glossary-inline with \usepackage as
it’s not automatically included by the glossaries package and then
set the style using \glossarystyle.

Where you need to include your glossaries as a footnote you can
do:

\footnote{\printglossaries}

The inline style is governed by the following:

\glsinlineseparator\glsinlineseparator

This defaults to “; ” and is used between main (i.e. level 0) entries.

120

15 Glossary Styles

\glsinlinesubseparator\glsinlinesubseparator

This defaults to “, ” and is used between sub-entries.

\glsinlineparentchildseparator\glsinlineparentchildseparator

This defaults to “: ” and is used between a parent main entry and
its first sub-entry.

\glspostinline\glspostinline

This defaults to “; ” and is used at the end of the glossary.

121

16 Defining your own glossary style

If the predefined styles don’t fit your requirements, you can define
your own style using:

\newglossarystyle{〈name〉}{〈definitions〉}\newglossarystyle

where 〈name〉 is the name of the new glossary style (to be used in
\glossarystyle). The second argument 〈definitions〉 needs to re-
define all of the following:

theglossarytheglossary

This environment defines how the main body of the glossary should
be typeset. Note that this does not include the section heading, the
glossary preamble (defined by \glossarypreamble) or the glos-
sary postamble (defined by \glossarypostamble). For example,
the list style uses the description environment, so the theglossary envi-
ronment is simply redefined to begin and end the description environ-
ment.

\glossaryheader\glossaryheader

This macro indicates what to do at the start of the main body of the
glossary. Note that this is not the same as \glossarypreamble,
which should not be affected by changes in the glossary style. The list
glossary style redefines \glossaryheader to do nothing, whereas
the longheader glossary style redefines \glossaryheader to do a
header row.

\glsgroupheading{〈label〉}\glsgroupheading

This macro indicates what to do at the start of each logical block
within the main body of the glossary. If you use makeindex the glos-
sary is sub-divided into a maximum of twenty-eight logical blocks
that are determined by the first character of the sort key (or name key
if the sort key is omitted). The sub-divisions are in the following or-
der: symbols, numbers, A, . . . , Z. If you use xindy, the sub-divisions
depend on the language settings.

122

16 Defining your own glossary style

Note that the argument to \glsgroupheading is a label not the
group title. The group title can be obtained via

\glsgetgrouptitle{〈label〉}\glsgetgrouptitle

This obtains the title as follows: if \〈label〉groupname exists, this is
taken to be the title, otherwise the title is just 〈label〉.

A navigation hypertarget can be created using

\glsnavhypertarget{〈label〉}{〈text〉}\glsnavhypertarget

For further details about \glsnavhypertarget, see section 3.1 in
the documented code (glossaries.pdf).

Most of the predefined glossary styles redefine \glsgroupheading
to simply ignore its argument. The listhypergroup style redefines
\glsgroupheading as follows:

\renewcommand*{\glsgroupheading}[1]{%
\item[\glsnavhypertarget{##1}{\glsgetgrouptitle{##1}}]}

See also \glsgroupskip below. (Note that command definitions
within \newglossarystyle must use ##1 instead of #1 etc.)

\glsgroupskip\glsgroupskip

This macro determines what to do after one logical group but before
the header for the next logical group. The list glossary style simply re-
defines \glsgroupskip to be \indexspace, whereas the tabular-
like styles redefine \glsgroupskip to produce a blank row.

As from version 3.03, the package option nogroupskip can be used to
suppress this default gap for the predefined styles.

\glossaryentryfield{〈label〉}{〈formatted
name〉}{〈description〉} {〈symbol〉}{〈number list〉}\glossaryentryfield

This macro indicates what to do for a given glossary entry. Note that
〈formatted name〉 will always be in the form \glsnamefont{〈name〉}.
This allows the user to set a given font for the entry name, regardless
of the glossary style used. Note that 〈label〉 is the label used when
the glossary entry was defined via either \newglossaryentry or
\newacronym.

\glsentryitem{〈label〉}\glsentryitem

123

16 Defining your own glossary style

This macro will increment and display the associated counter for
the main (level 0) entries if the entrycounter or counterwithin pack-
age options have been used. This macro is typically called by
\glossaryentryfield before \glstarget. The format of the
counter is controlled by the macro

\glsentrycounterlabel\glsentrycounterlabel

Each time you use a glossary entry it creates a hyperlink (if hyper-
links are enabled) to the relevant line in the glossary. Your new glos-
sary style must therefore redefine \glossaryentryfield to set the
appropriate target. This is done using

\glstarget{〈label〉}{〈text〉}\glstarget

where 〈label〉 is the entry’s label. Note that you don’t need to worry
about whether the hyperref package has been loaded, as \glstarget
won’t create a target if \hypertarget hasn’t been defined.

For example, the list style defines \glossaryentryfield as fol-
lows:

\renewcommand*{\glossaryentryfield}[5]{%
\item[\glsentryitem{##1}\glstarget{##1}{##2}]

##3\glspostdescription \space ##5}

Note also that 〈number list〉 will always be of the form

\glossaryentrynumbers{\relax
\setentrycounter[〈Hprefix〉]{〈counter name〉}〈format
cmd〉{〈number(s)〉}}

where 〈number(s)〉 may contain \delimN (to delimit individual num-
bers) and/or \delimR (to indicate a range of numbers). There may
be multiple occurrences of \setentrycounter[〈Hprefix〉]{〈counter
name〉}〈format cmd〉{〈number(s)〉}, but note that the entire number list
is enclosed within the argument of
\glossaryentrynumbers. The user can redefine this to change
the way the entire number list is formatted, regardless of the glossary
style. However the most common use of \glossaryentrynumbers
is to provide a means of suppressing the number list altogether. (In
fact, the nonumberlist option redefines \glossaryentrynumbers to
ignore its argument.) Therefore, when you define a new glossary
style, you don’t need to worry about whether the user has specified
the nonumberlist package option.

124

16 Defining your own glossary style

\glossarysubentryfield{〈level〉}{〈label〉}{〈formatted name〉}
{〈description〉}{〈symbol〉}{〈number list〉}\glossarysubentryfield

This is new to version 1.17, and is used to display sub-entries. The
first argument, 〈level〉, indicates the sub-entry level. This must be an
integer from 1 (first sub-level) onwards. The remaining arguments
are analogous to those for \glossaryentryfield described above.

\glssubentryitem{〈label〉}\glssubentryitem

This macro will increment and display the associated counter for the
level 1 entries if the subentrycounter package options have been used.
This macro is typically called by \glossarysubentryfield before
\glstarget. The format of the counter is controlled by the macro

\glssubentrycounterlabel\glssubentrycounterlabel

Note that \printglossary (which \printglossaries calls)
sets

\currentglossary\currentglossary

to the current glossary label, so it’s possible to create a glossary style
that varies according to the glossary type.

For further details of these commands, see section 1.15 “Displaying
the glossary” in the documented code (glossaries.pdf).

16.1 Example: creating a completely new style

If you want a completely new style, you will need to redefine all of
the commands and the environment listed above.

For example, suppose you want each entry to start with a bullet
point. This means that the glossary should be placed in the itemize
environment, so theglossary should start and end that environment.
Let’s also suppose that you don’t want anything between the glos-
sary groups (so \glsgroupheading and \glsgroupskip should
do nothing) and suppose you don’t want anything to appear immedi-
ately after \begin{theglossary} (so \glossaryheader should
do nothing). In addition, let’s suppose the symbol should appear in
brackets after the name, followed by the description and last of all the
number list should appear within square brackets at the end. Then
you can create this new glossary style, called, say, mylist, as fol-
lows:

125

16 Defining your own glossary style

\newglossarystyle{mylist}{%
% put the glossary in the itemize environment:
\renewenvironment{theglossary}%

{\begin{itemize}}{\end{itemize}}%
% have nothing after \begin{theglossary}:
\renewcommand*{\glossaryheader}{}%
% have nothing between glossary groups:
\renewcommand*{\glsgroupheading}[1]{}%
\renewcommand*{\glsgroupskip}{}%
% set how each entry should appear:
\renewcommand*{\glossaryentryfield}[5]{%
\item % bullet point
\glstarget{##1}{##2}% the entry name
\space (##4)% the symbol in brackets
\space ##3% the description
\space [##5]% the number list in square brackets
}%
% set how sub-entries appear:
\renewcommand*{\glossarysubentryfield}[6]{%

\glossaryentryfield{##2}{##3}{##4}{##5}{##6}}%
}

Note that this style creates a flat glossary, where sub-entries are dis-
played in exactly the same way as the top level entries. It also hasn’t
used \glsentryitem or \glssubentryitem so it won’t be af-
fected by the entrycounter, counterwithin or subentrycounter package op-
tions.

16.2 Example: creating a new glossary style based on
an existing style

If you want to define a new style that is a slightly modified version
of an existing style, you can use \glossarystyle within the second
argument of \newglossarystyle followed by whatever alterations
you require. For example, suppose you want a style like the list style
but you don’t want the extra vertical space created by \indexspace
between groups, then you can create a new glossary style called, say,
mylist as follows:

\newglossarystyle{mylist}{%
\glossarystyle{list}% base this style on the list style
\renewcommand{\glsgroupskip}{}% make nothing happen

% between groups
}

126

16 Defining your own glossary style

16.3 Example: creating a glossary style that uses the
user1, . . . , user6 keys

Since \glossaryentryfield and \glossarysubentryfield pro-
vide the label for the entry, it’s also possible to access the values of the
generic user keys, such as user1. For example, suppose each entry not
only has an associated symbol, but also units (stored in user1) and di-
mension (stored in user2). Then you can define a glossary style that
displays each entry in a longtable as follows:

\newglossarystyle{long6col}{%
% put the glossary in a longtable environment:
\renewenvironment{theglossary}%
{\begin{longtable}{lp{\glsdescwidth}cccp{\glspagelistwidth}}}%
{\end{longtable}}%
% Set the table’s header:
\renewcommand*{\glossaryheader}{%
\bfseries Term & \bfseries Description & \bfseries Symbol &
\bfseries Units & \bfseries Dimensions & \bfseries Page List
\\\endhead}%
% No heading between groups:
\renewcommand*{\glsgroupheading}[1]{}%
% Main (level 0) entries displayed in a row optionally numbered:
\renewcommand*{\glossaryentryfield}[5]{%

\glsentryitem{##1}% Entry number if required
\glstarget{##1}{##2}% Name
& ##3% Description
& ##4% Symbol
& \glsentryuseri{##1}% Units
& \glsentryuserii{##1}% Dimensions
& ##5% Page list
\\% end of row

}%
% Similarly for sub-entries (no sub-entry numbers):
\renewcommand*{\glossarysubentryfield}[6]{%

% ignoring first argument (sub-level)
\glstarget{##2}{##3}% Name
& ##4% Description
& ##5% Symbol
& \glsentryuseri{##2}% Units
& \glsentryuserii{##2}% Dimensions
& ##6% Page list
\\% end of row

}%
% Nothing between groups:
\renewcommand*{\glsgroupskip}{}%

}

127

17 Utilities

This section describes some utility commands. Additional commands
can be found in the documented code (glossaries.pdf).

\forallglossaries[〈glossary list〉]{〈cs〉}{〈body〉}\forallglossaries

This iterates through 〈glossary list〉, a comma-separated list of glos-
sary labels (as supplied when the glossary was defined). At each it-
eration 〈cs〉 (which must be a control sequence) is set to the glossary
label for the current iteration and 〈body〉 is performed. If 〈glossary list〉
is omitted, the default is to iterate over all glossaries.

\forglsentries[〈glossary label〉]{〈cs〉}{〈body〉}\forglsentries

This iterates through all entries in the glossary given by 〈glossary
label〉. At each iteration 〈cs〉 (which must be a control sequence) is
set to the entry label for the current iteration and 〈body〉 is performed.
If 〈glossary label〉 is omitted, \glsdefaulttype (usually the main
glossary) is used.

\forallglsentries[〈glossary list〉]{〈cs〉}{〈body〉}\forallglsentries

This is like \forglsentries but for each glossary in 〈glossary list〉
(a comma-separated list of glossary labels). If 〈glossary list〉 is omitted,
the default is the list of all defined glossaries. At each iteration 〈cs〉 is
set to the entry label and 〈body〉 is performed. (The current glossary
label can be obtained using \glsentrytype{〈cs〉} within 〈body〉.)

\ifglossaryexists〈label〉〈true part〉〈false part〉\ifglossaryexists

This checks if the glossary given by 〈label〉 exists. If it does 〈true part〉
is performed, otherwise 〈false part〉.

\ifglsentryexists〈label〉〈true part〉〈false part〉\ifglsentryexists

This checks if the glossary entry given by 〈label〉 exists. If it does 〈true
part〉 is performed, otherwise 〈false part〉.

128

17 Utilities

\ifglsentryexists〈label〉〈true part〉〈false part〉\ifglsused

See Section 14.

\ifglshaschildren〈label〉〈true part〉〈false part〉\ifglshaschildren

This checks if the glossary entry given by 〈label〉 has any sub-entries.
If it does, 〈true part〉 is performed, otherwise 〈false part〉.

\ifglshasparent〈label〉〈true part〉〈false part〉\ifglshasparent

This checks if the glossary entry given by 〈label〉 has a parent entry. If
it does, 〈true part〉 is performed, otherwise 〈false part〉.

129

18 Accessibility Support

Limited accessibility support is provided by the accompanying glossaries-
accsupp package, but note that this package is experimental and it
requires the accsupp package which is also listed as experimental.
This package defines additional keys that may be used when defining
glossary entries. The keys are as follows:

access The replacement text corresponding to the name key.

textaccess The replacement text corresponding to the text key.

firstaccess The replacement text corresponding to the first key.

pluralaccess The replacement text corresponding to the plural key.

firstpluralaccess The replacement text corresponding to the firstplural
key.

symbolaccess The replacement text corresponding to the symbol key.

symbolpluralaccess The replacement text corresponding to the sym-
bolplural key.

descriptionaccess The replacement text corresponding to the descrip-
tion key.

descriptionpluralaccess The replacement text corresponding to the
descriptionplural key.

longaccess The replacement text corresponding to the long key (used
by \newacronym).

shortaccess The replacement text corresponding to the short key
(used by \newacronym).

longpluralaccess The replacement text corresponding to the longplural
key (used by \newacronym).

shortpluralaccess The replacement text corresponding to the shortplu-
ral key (used by \newacronym).

130

18 Accessibility Support

For example:

\newglossaryentry{tex}{name={\TeX},description={Document
preparation language},access={TeX}}

Now \gls{tex} will be equivalent to

\BeginAccSupp{ActualText=TeX}\TeX\EndAccSupp{}

The sample file sampleaccsupp.tex illustrates the glossaries-accsupp
package.

See section 5 in the documented code (glossaries.pdf) for fur-
ther details. It is recommended that you also read the accsupp docu-
mentation.

131

19 Troubleshooting

The glossaries package comes with a minimal file called minimalgls.tex
which can be used for testing. This should be located in the samples
subdirectory (folder) of the glossaries documentation directory. The
location varies according to your operating system and TEX instal-
lation. For example, on my Linux partition it can be found in
/usr/local/texlive/2008/texmf-dist
/doc/latex/glossaries/. Further information on debugging
LATEX code is available at http://theoval.cmp.uea.ac.uk/~nlct/
latex/minexample/.

Below is a list of the most frequently asked questions. For other
queries, consult the glossaries FAQ at http://www.dickimaw-books.
com/faqs/glossariesfaq.html. If that doesn’t help, try post-
ing your query to somewhere like the comp.text.tex newsgroup,
the LATEX Community Forum (http://www.latex-community.
org/) or Stack Exchange (http://tex.stackexchange.com/). I
read all those three places and respond to queries there far quicker
than to email messages (my inbox is always very cluttered). Bug
reports can be submitted at http://www.dickimaw-books.com/
bug-report.html.

1. Q. I get the error message:

Missing \begin{document}

A. Check you are using an up to date version of the xkeyval pack-
age.

2. Q. When I use xindy, I get the following error message:

ERROR: CHAR: index 0 should be less than the length of
the string

A. xindy discards all commands and braces from the sort
string. If your sort string (either specified by the sort key or the
name key) only consists of commands, this will be treated by
xindy as an empty sort string, which produces an error mes-
sage in newer versions of xindy. For example, the following
will cause a problem:

132

http://theoval.cmp.uea.ac.uk/~nlct/latex/minexample/
http://theoval.cmp.uea.ac.uk/~nlct/latex/minexample/
http://www.dickimaw-books.com/faqs/glossariesfaq.html
http://www.dickimaw-books.com/faqs/glossariesfaq.html
http://www.latex-community.org/
http://www.latex-community.org/
http://tex.stackexchange.com/
http://www.dickimaw-books.com/bug-report.html
http://www.dickimaw-books.com/bug-report.html

19 Troubleshooting

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
description=alpha}

Either use a different sort key for the entry, for example:

\newglossaryentry{alpha}{sort=alpha,
name={\ensuremath{\alpha}},
description=alpha}

or, if all entries are like this, you may prefer to use the sort=use
or sort=def package options. See Section 2.4 for further details of
the sort option.

3. Q. I’ve used the smallcaps option, but the acronyms are dis-
played in normal sized upper case letters.

A. The smallcaps package option uses \textsc to typeset the
acronyms. This command converts lower case letters to small
capitals, while upper case letters remain their usual size. There-
fore you need to specify the acronym in lower case letters.

4. Q. My acronyms won’t break across a line when they’re ex-
panded.

A. PDFLATEX can break hyperlinks across a line, but LATEX can’t.
If you can’t use PDFLATEX then disable the first use links using
the package option hyperfirst=false.

5. Q. How do I change the font that the acronyms are displayed
in?

A. The easiest way to do this is to specify the smaller package
option and redefine \acronymfont to use the required type-
setting command. For example, suppose you would like the
acronyms displayed in a sans-serif font, then you can do:

\usepackage[smaller]{glossaries}
\renewcommand*{\acronymfont}[1]{\textsf{#1}}

6. Q. How do I change the font that the acronyms are displayed in
on first use?

A. The easiest way to do this is to specify the smaller package
option and redefine \firstacronymfont to use the required
command. Note that if you don’t want the acronym on subse-
quent use to use \textsmaller, you will also need to redefine
\acronymfont, as above. For example to make the acronym

133

19 Troubleshooting

emphasized on first use, but use the surrounding font for sub-
sequent use, you can do:

\usepackage[smaller]{glossaries}
\renewcommand*{\firstacronymfont}[1]{\emph{#1}}
\renewcommand*{\acronymfont}[1]{#1}

7. Q. I don’t have Perl installed, do I have to use makeglossaries?

A. No. Although it is strongly recommended, you don’t have
to use makeglossaries. If you prefer a GUI application
and have Java installed, you can use makeglossariesgui in-
stead. Otherwise you can just call makeindex explicitly (see
Section 1.3.3). Note that you can’t use xindy if you don’t have
Perl installed.

8. Q. I’m used to using the glossary package: are there any instruc-
tions on migrating from the glossary package to the glossaries
package?

A. Read “Upgrading from the glossary package to the glossaries
package” (glossary2glossaries.pdf) which should be available
from the same location as this document.

9. Q. I’m using babel but the fixed names haven’t been translated.

A. The glossaries package currently only supports the follow-
ing languages: Brazilian Portuguese, Danish, Dutch, English,
French, German, Irish, Italian, Hungarian, Polish, Serbian and
Spanish. If you want to add another language, send me the
translations, and I’ll add them to the next version.

If you are using one of the above languages, but the text hasn’t
been translated, try adding the translator package with the re-
quired languages explicitly (before you load the glossaries pack-
age). For example:

\usepackage[ngerman]{babel}
\usepackage[ngerman]{translator}
\usepackage{glossaries}

Alternatively, you can add the language as a global option to
the class file. Check the translator package documentation for
further details.

10. Q. My acronyms contain strange characters when I use com-
mands like \acrlong.

A. Switch off the sanitization:

\usepackage[sanitize=none]{glossaries}

134

19 Troubleshooting

and protect fragile commands.

11. Q. Weird characters appear when I use \glsentryname or
\glsname.

A. Either use \glsentrytext or \glstext, respectively, or
switch off the sanitization for the name key:

\usepackage[sanitize={name=false}]{glossaries}

and protect fragile commands.

12. Q. Weird characters appear when I try to display an entry’s de-
scription.

A. Switch off the sanitization for the description key:

\usepackage[sanitize={description=false}]{glossaries}

and protect fragile commands.

13. Q. My glossaries haven’t appeared.

A. Remember to do the following:

• Add \makeglossaries to the document preamble.

• Use either \printglossary for each glossary that has
been defined or \printglossaries.

• Use the commands listed in Section 6, Section 7 or Section 8
for each entry that you want to appear in the glossary.

• Run LATEX on your document, then run makeglossaries,
then run LATEX on your document again. If you want the
glossaries to appear in the table of contents, you will need
an extra LATEX run. If any of your entries cross-reference
an entry that’s not referenced in the main body of the doc-
ument, you will need to run makeglossaries (see Sec-
tion 1.3) after the second LATEX run, followed by another
LATEX run.

Check the log files (.log, .glg etc) for any warnings.

14. Q. It is possible to change the rules used to sort the glossary
entries?

A. If it’s for an individual entry, then you can use the entry’s
sort key to sort it according to a different term. If it’s for the
entire alphabet, then you will need to use xindy (instead of
makeindex) and use an appropriate xindy language module.

135

19 Troubleshooting

Writing xindy modules or styles is beyond the scope of this
manual. Further information about xindy can be found at the
Xindy Web Site1. There is also a link to the xindy mailing list
from that site.

If you want to sort according to order of definition or order of
use, use the sort package option described in Section 2.4.

15. Q. I get an error when using TeX4HT with glossaries.

A. TeX4HT seems to have a problem with the glossary styles
that use \indexspace. I don’t know enough about TeX4HT to
find out why. Either use a different glossary style or redefine
the style command that uses \indexspace. For example, if
you are using the list style, try:

\renewcommand*{\glsgroupskip}{}

or

\renewcommand*{\glsgroupskip}{\item[]}

1http://xindy.sourceforge.net/

136

http://xindy.sourceforge.net/

Index

Symbols
\@gls@codepage 28
\@glsorder 28
\@istfilename 28
\@newglossary 28
\@xdylanguage 28
Xindy 25

A
\Ac . 95
\ac . 95
accsupp package 130, 131
\Acf 95
\acf 95
\Acfp 95
\acfp 95
\Acl 95
\acl 95
\Aclp 95
\aclp 95
\Acp 95
\acp 95
\ACRfull 94
\Acrfull 94, 95
\acrfull 94, 95
\acrfullformat 94
\Acrfullpl 95
\acrfullpl 95
\ACRlong 94
\Acrlong 94, 95
\acrlong 94, 94, 95, 134
\Acrlongpl 95
\acrlongpl 95
\acrnameformat 99, 100
\acronymfont

. 40, 93, 94, 98–100, 133
\acronymname 21
\acronymtype

. . . . 34, 39, 51, 69, 90, 91, 92
\ACRshort 94

\Acrshort 94, 95
\acrshort 8, 93, 94, 95, 97
\Acrshortpl 95
\acrshortpl 95
\Acs 95
\acs 95
\Acsp 95
\acsp 95
\addcontentsline 33
\andname 73
array package 112, 116

B
babel package

. . . 19, 20, 22, 31, 32, 90, 134
beamer package 19

C
\chapter 81
\chapter* 81
\currentglossary 125
\CustomAcronymFields . . .

. 100, 101, 102

D
\defdisplay 91
\defdisplayfirst 91
\defglsdisplay . . . 67, 100, 101
\defglsdisplayfirst

. 67, 100, 101
\delimN 124
\delimR 124
description (environment) .

. 109, 110, 122
\descriptionname 21
doc package 2

E
\emph 57
entry location 5
\entryname 21

137

Index

environments:
description . . . 109, 110, 122
equation 13
itemize 125
longtable 82, 111, 112, 114, 127
multicols 119
supertabular 114, 116
theglossary . . . 122, 122, 125

equation (environment) 13
etex package 31

F
file types

.alg 24

.aux 24, 25, 84

.glg 24, 26, 27, 135

.glg2 2

.glo 25–27, 43

.gls 26, 27, 43

.ist 27, 28, 38, 41

.log 135

.tex 26, 27

.xdy 26, 28, 38, 41, 83
glo2 2
gls2 2

first use 5
flag 5, 59
text 5

\firstacronymfont
. 93, 97, 98, 133

flowfram package 114
fmtcount package 86
\forallglossaries 128
\forallglsentries 128
\forglsentries 128

G
german package 19
glossaries-accsupp package

. 17, 130, 131
glossaries-babel package . 20, 31, 32
glossaries-polyglossia package 22, 32
glossary counters:

glossaryentry 35
glossarysubentry 36

glossary package 2, 8, 103, 134
glossary styles:

altlist 110
altlistgroup 110

altlisthypergroup . . . 110
altlong4col 107, 112
altlong4colborder . . . 112
altlong4colheader . . . 112
altlong4colheaderborder

. 112
altlongragged4col . . . 114
altlongragged4colborder

. 114
altlongragged4colheader

. 114
altlongragged4colheaderborder

. 114
altsuper4col 107, 115
altsuper4colborder . . 115
altsuper4colheader . . 116
altsuper4colheaderborder

. 116
altsuperragged4col . . 117
altsuperragged4colborder

. 117
altsuperragged4colheader

. 117
altsuperragged4colheaderborder

. 117
alttree 118–120
alttreegroup 119, 120
alttreehypergroup 119, 120
index 118–120
indexgroup 118, 120
indexhypergroup . . 118, 120
inline 14, 120
list

37, 109, 110, 122–124, 126, 136
listdotted 109, 111
listgroup 110
listhypergroup

. 110, 118, 119, 123
long 109, 111
long3col 108, 111, 112
long3colborder . . . 108, 111
long3colheader . . . 108, 112
long3colheaderborder .

. 108, 112
long4col 99, 107, 112
long4colborder 112
long4colheader 112
long4colheaderborder 112
longborder 111

138

Index

longheader 111, 122
longheaderborder . . 82, 111
longragged 113
longragged3col . . . 113, 114
longragged3colborder 113
longragged3colheader 113
longragged3colheaderborder

. 113
longraggedborder 113
longraggedheader 113
longraggedheaderborder

. 113
mcolalttree 120
mcolalttreegroup 120
mcolalttreehypergroup 120
mcolindex 119, 120
mcolindexgroup 120
mcolindexhypergroup . 120
mcoltree 120
mcoltreegroup 120
mcoltreehypergroup . . 120
mcoltreenoname 120
mcoltreenonamegroup . 120
mcoltreenonamehypergroup

. 120
super 114, 115
super3col 115
super3colborder 115
super3colheader 115
super3colheaderborder 115
super4col 107, 115
super4colborder 115
super4colheader . . 115, 116
super4colheaderborder

. 115, 116
superborder 114
superheader 114, 115
superheaderborder . 82, 115
superragged 116, 117
superragged3col 117
superragged3colborder 117
superragged3colheader 117
superragged3colheaderborder

. 117
superraggedborder . . . 116
superraggedheader . . . 116
superraggedheaderborder

. 116
tree 118, 120

treegroup 118, 120
treehypergroup . . . 118, 120
treenoname 118, 120
treenonamegroup . . 118, 120
treenonamehypergroup .

. 118, 120
glossary-inline package 120
glossary-list package . . . 36, 82, 109
glossary-long package 36, 82, 111, 112
glossary-longragged package 112, 113
glossary-mcols package . 37, 119, 120
glossary-super package

. 36, 82, 114, 116
glossary-superragged package . 116
glossary-tree package 36, 37, 82, 117
glossaryentry (counter) . . . 35
glossaryentry counter 35, 36
\glossaryentryfield

. 123, 125, 127
\glossaryentrynumbers . 124
\glossaryheader

. 110, 122, 122, 125
\glossarymark 33, 34, 81
\glossaryname 21
\glossarypostamble . . 81, 122
\glossarypreamble 36, 81, 122
\glossarysection 120
\glossarystyle

37, 80, 107, 109, 119, 120, 126
glossarysubentry (counter) 36
\glossarysubentryfield .

. 125, 127
\GLS 5, 45, 59
\Gls . . 5, 18, 45, 46, 59, 66, 95, 103
\gls 5, 6, 23, 32,

44, 45, 56, 58, 59, 60, 65, 67,
68, 71, 92, 95, 96, 101, 103, 105

\gls* 32
\glsadd 69
\glsaddall 12, 69
\glsaddall options

types 69
\GlsAddXdyAttribute . . 57, 85
\GlsAddXdyCounters . . . 85, 87
\GlsAddXdyLocation . . . 85, 88
\glsautoprefix 34
\glsclearpage 34
\glsclosebrace 83

139

Index

\GlsDeclareNoHyperList .
. 52, 56, 58

\glsdefaulttype 39, 50, 51, 128
\GLSdesc 63
\Glsdesc 63
\glsdesc 63
\glsdescwidth . . . 107, 111–117
\glsdisablehyper 68
\glsdisp 5, 44, 56, 60, 66–68
\glsdisplay 44, 45, 60, 61, 65, 102
\glsdisplayfirst

. 44, 45, 60, 61, 65, 102
\glsdisplaynumberlist 32, 78
\glsenablehyper 68
\glsentrycounterlabel . 124
\Glsentrydesc 76
\glsentrydesc 76
\Glsentrydescplural 76
\glsentrydescplural 76
\Glsentryfirst 76
\glsentryfirst 75
\Glsentryfirstplural . . . 76
\glsentryfirstplural . . . 76
\Glsentryfull 96
\glsentryfull 96
\Glsentryfullpl 96
\glsentryfullpl 96
\glsentryitem 123, 126
\Glsentrylong 95
\glsentrylong 94, 101
\Glsentrylongpl 95
\glsentrylongpl 95
\Glsentryname 75
\glsentryname . . 18, 75, 78, 135
\glsentrynumberlist . . 32, 78
\Glsentryplural 75
\glsentryplural 75
\Glsentryshort 95
\glsentryshort 95
\Glsentryshortpl 96
\glsentryshortpl 95
\Glsentrysymbol 76
\glsentrysymbol 76
\Glsentrysymbolplural . . 77
\glsentrysymbolplural . . 76
\Glsentrytext 75
\glsentrytext

. . . 18, 55, 73, 75, 78, 94, 135
\Glsentryuseri 77

\glsentryuseri 77
\Glsentryuserii 77
\glsentryuserii 77
\Glsentryuseriii 77
\glsentryuseriii 77
\Glsentryuseriv 77
\glsentryuseriv 77
\Glsentryuserv 77
\glsentryuserv 77
\Glsentryuservi 77
\glsentryuservi 77
\GLSfirst 61
\Glsfirst 61
\glsfirst 61
\GLSfirstplural 62
\Glsfirstplural 62
\glsfirstplural 62
\glsgetgrouptitle 123
\glsgroupheading . . . 122, 125
\glsgroupskip . 5, 109, 123, 125
\glshyperlink 75, 78
\glshypernavsep 110
\glsinlineparentchildseparator

. 121, 121
\glsinlineseparator 120, 120
\glsinlinesubseparator .

. 121, 121
\glslabel 66
\glslabeltok 100
\glslink 56, 59, 60, 66, 68, 69, 85
\glslink options

counter 58, 85
format 57, 79, 85
hyper 58, 68, 69

\glslink* 59
\glslistdottedwidth . . . 110
\glslocalreset 105
\glslocalresetall 105
\glslocalunset 105
\glslocalunsetall 105
\glslongtok 100
\glsmcols 119
\glsmoveentry 51
\GLSname 62
\Glsname 62
\glsname 18, 62, 135
\glsnamefont 82, 123
\glsnavhypertarget 123
\glsnumberformat 87

140

Index

\glsnumbersgroupname . . . 21
\glsnumlistlastsep 78
\glsnumlistsep 78
\glsopenbrace 83
\glspagelistwidth

. 107, 111–115, 117
\glspar 44
\GLSpl 5, 44, 45, 60
\Glspl 5, 44–46, 60, 95
\glspl 5, 44, 45,

56, 60, 65, 67, 68, 95, 96, 105
\GLSplural 61
\Glsplural 61
\glsplural 61
\glspluralsuffix 44, 46
\glspostdescription . . . 109
\glspostinline 121, 121
\glsquote 83
\glsrefentry 14, 35, 36
\glsreset 92, 105
\glsresetall 105
\glsresetentrycounter . . 35
\glssee 8, 37, 57, 72, 72
\glsseeformat 5, 73, 74
\glsseeitemformat 73
\glsseelastsep 73
\glsseelist 5, 74
\glsseesep 73
\glsSetAlphaCompositor . 42
\glsSetCompositor 42
\glsSetSuffixF 53
\glsSetSuffixFF 53
\glssetwidest 118
\GlsSetXdyCodePage . . . 25, 84
\GlsSetXdyFirstLetterAfterDigits

. 89
\GlsSetXdyLanguage . . . 25, 84
\GlsSetXdyLocationClassOrder

. 88
\GlsSetXdyMinRangeLength

. 53, 88
\glsshorttok 100
\glssubentrycounterlabel

. 125
\glssubentryitem . . . 125, 126
\GLSsymbol 63
\Glssymbol 63
\glssymbol 62
\glssymbolsgroupname . . . 21

\glstarget 124, 125
\GLStext 61
\Glstext 61
\glstext . . 18, 60, 61–63, 93, 135
\glstextformat 56, 66, 75
\glstocfalse 32
\glstoctrue 32
\glstreeindent 118
\glsunset 105
\glsunsetall 105
\GLSuseri 64
\Glsuseri 63
\glsuseri 63
\GLSuserii 64
\Glsuserii 64
\glsuserii 64
\GLSuseriii 64
\Glsuseriii 64
\glsuseriii 64
\GLSuseriv 64
\Glsuseriv 64
\glsuseriv 64
\GLSuserv 64
\Glsuserv 64
\glsuserv 64
\GLSuservi 65
\Glsuservi 65
\glsuservi 65

H
html package 68
\hyperbf 58
\hyperbsf 58
\hyperemph 58
\hyperit 58
\hyperlink 57, 58, 68
\hypermd 58
\hyperpage 57
hyperref package 2, 53, 55,

57, 60, 68, 79, 86, 87, 102, 124
\hyperrm 58, 85
\hypersc 58
\hypersf 58
\hypersl 58
\hypertarget 68
\hypertt 58
\hyperup 58

I
\ifglossaryexists 128

141

Index

\ifglsentryexists 128
\ifglshaschildren 129
\ifglshasparent 129
\ifglsused 106, 129
\index 57
\indexspace

. 109, 118, 123, 126, 136
inputenc package 15, 18, 46, 84
\inputencodingname 84
\item 109, 110
itemize (environment) 125

J
\jobname 41

L
link text 6, 55, 56, 59, 65–67
\loadglsentries . . . 43, 50, 92
location list see number list
longtable (environment) . . .

. 82, 111, 112, 114, 127
longtable package 36, 111

M
\makefirstuc 66, 98
makeglossaries 6
makeglossaries 6, 8,

10, 12, 14–18, 22–27, 35, 38,
43, 71, 78, 80, 84, 90, 134, 135

\makeglossaries . . . 22, 41,
53, 54, 80, 85, 86, 88–90, 135

makeglossariesgui 6
makeglossariesgui 23, 26, 134
makeindex 6
makeindex 6,

8, 10, 12, 14, 15, 17, 18, 22–
25, 27–29, 31, 35, 38, 41, 43,
45, 46, 48, 53, 55, 57, 73, 78,
80, 90, 108, 118, 122, 134, 135

\MakeUppercase 34
memoir class 33
mfirstuc package 2, 66
multicol package 119
multicols (environment) . . 119

N
\newacronym 11,

39, 40, 43, 45, 46, 51, 91,
92, 97, 100, 101, 103, 123, 130

\newdualentry 70

\newglossary 26, 27, 30, 85, 87, 90
\newglossaryentry 5,

11, 37, 38, 43, 43, 45, 50,
55, 59, 91, 92, 100, 101, 123

\newglossaryentry options
access 130
description

. . 6, 30, 31, 43, 44, 63, 65,
91, 97, 99, 100, 102, 130, 135

descriptionaccess 130
descriptionplural 44, 65, 130
descriptionpluralaccess 130
first . 5, 44, 45, 56, 59–61, 65,

76, 91, 92, 100, 102, 105, 130
firstaccess 130
firstplural 5, 44, 45,

47, 60, 62, 65, 76, 100, 102, 130
firstpluralaccess 130
format 58
glslink 58
long 46, 101, 130
longaccess 130
longplural 46, 91, 101, 130
longpluralaccess 130
name 6, 18, 30,

31, 38, 43–45, 49, 62, 73, 75,
78, 99–101, 122, 130, 132, 135

nonumberlist 45
parent 43, 44, 48
plural 44, 45, 47,

49, 60, 61, 65, 75, 100–102, 130
pluralaccess 130
see 8, 37, 45, 57, 71–73
short 46, 101, 130
shortaccess 130
shortplural 46, 91, 101, 130
shortpluralaccess 130
sort 6, 30,

31, 38, 45, 46, 49, 122, 132, 135
symbol 6, 30, 31,

45, 62, 63, 65–67, 99–102, 130
symbolaccess 130
symbolplural 45, 65, 130
symbolpluralaccess 130
text . . . 31, 44, 56, 59, 60, 65,

75, 91, 92, 100–102, 105, 130
textaccess 130
type 45, 50
user1 4, 45, 63, 127

142

Index

user2 45, 127
user3 45
user4 45
user5 45
user6 4, 45, 127

\newglossarystyle
. 109, 122, 123, 126

\newline 44, 107
ngerman package 19, 83
\nohyperpage 53
\noist 15,

41, 43, 53, 54, 83–86, 88, 89
\nopostdesc 43, 48, 49, 109
number list 6, 6, 12, 13,

24, 32, 37, 41, 42, 45, 46, 48,
49, 53, 55, 72, 78, 85, 87, 88,
90, 109–111, 113–117, 120, 125

\numberline 33

O
\oldacronym 103, 103

P
package options:

acronym 21,
26, 27, 30, 34, 39, 51, 70, 90, 92

acronymlists 39, 90, 92
compatible-2.07 41
counter 37, 42, 53, 85, 87

page 37
counterwithin 35, 36, 107, 124, 126
description 39, 91, 93, 96–100, 102
dua 40, 92, 96, 98, 100
entrycounter 35, 36, 107, 124, 126

false 35
true 35

footnote . 39, 91–93, 96–100, 102
hyperfirst 32

false 68, 133
true 32

makeindex 38
nogroupskip 11, 37, 109, 123

false 37
nohypertypes . . 32, 52, 55, 56, 58
nolist 36, 109
nolong 36, 107, 111
nomain 30, 90
nonumberlist 6, 37, 45, 53, 69, 124
nopostdot 37, 109

false 37
nostyles 37, 107, 109, 111, 114, 117
nosuper 36, 107, 114
notree 37, 117
nowarn 30, 52
numberedsection 34, 80, 81

autolabel 34
false 34
nolabel 34

numberline 33
order 38

letter 14, 25, 38
word 14, 25, 38

sanitize 7, 30, 44, 45
none 30

savenumberlist 32, 78
false 32

savewrites 31
false 31

section 33, 81
seeautonumberlist 37, 46, 72
shortcuts 40, 94, 95, 100
smallcaps

. . . 40, 91–93, 96–98, 100, 133
smaller 40, 92, 93, 96, 98, 100, 133
sort 38, 133, 136

def 38, 45, 49, 133
standard 38
use 38, 45, 49, 133

style . . . 36, 37, 80, 107, 113, 116
list 36

subentrycounter
. . . . 36, 48, 49, 107, 125, 126

false 36
toc 32, 33, 80
translate 31

false 20, 22, 31, 32
true 31

ucmark 34
false 34

xindy 17,
18, 25–27, 38, 42, 83, 85, 89

page counter 87
\pagelistname 21
pod2man 25
polyglossia package . . 19, 22, 31, 32
\printglossaries

. 43, 80, 99, 125, 135

143

Index

\printglossary
. . 37, 43, 80, 99, 107, 125, 135

\printglossary options
nonumberlist 81
numberedsection 80
style 37, 80, 107
title 80
toctitle 80
type 80

\protect 7

R
relsize package 40, 92, 93, 98
\Roman 86

S
sanitize 6, 18,

30, 44, 45, 62, 63, 67, 71, 73, 78
\section* 81
\seename 5, 72, 73
\setAlphaCompositor 88
\setCompositor 87
\SetCustomDisplayStyle .

. 100, 101, 102
\SetCustomStyle 100
\setentrycounter 124
\setglossarysection . . 33, 81
\setStyleFile 26, 27, 41
\smaller 98

supertabular (environment)
. 114, 116

supertabular package . . 36, 114, 116
\symbolname 21

T
TeX4HT 136
\textbf 57
\textrm 85
\textsc 91–93, 98, 101, 133
\textsmaller . . . 40, 92, 98, 133
theglossary (environment) .

. 122, 122, 125
\thepage 86
translator package 19, 20, 31, 90, 134

W
\write18 31

X
xindy . 7
xindy . . 6, 8, 15–18, 22–28, 31,

35, 38, 39, 41–43, 45, 46, 53,
55, 57, 58, 78, 80, 83–85, 87,
88, 90, 118, 122, 132, 134–136

xkeyval package 9, 132
\xmakefirstuc 5
\xspace 103
xspace package 103, 104

144

	Glossary
	Introduction
	Sample Documents
	Multi-Lingual Support
	Changing the Fixed Names

	Generating the Associated Glossary Files
	Using the makeglossaries Perl Script
	Using xindy explicitly
	Using makeindex explicitly
	Note to Front-End and Script Developers

	Package Options
	General Options
	Sectioning, Headings and TOC Options
	Glossary Appearance Options
	Sorting Options
	Acronym Options

	Setting Up
	Defining Glossary Entries
	Plurals
	Other Grammatical Constructs
	Sub-Entries
	Hierarchical Categories
	Homographs

	Loading Entries From a File
	Moving Entries to Another Glossary

	Number lists
	Links to Glossary Entries
	Changing the format of the link text
	Enabling and disabling hyperlinks to glossary entries

	Adding an Entry to the Glossary Without Generating Text
	Cross-Referencing Entries
	Customising Cross-reference Text

	Using Glossary Terms Without Links
	Displaying a glossary
	Xindy
	Language and Encodings
	Locations and Number lists
	Glossary Groups

	Defining New Glossaries
	Acronyms
	Predefined Acronym Styles
	Displaying the List of Acronyms
	Defining A Custom Acronym Style
	Upgrading From the glossary Package

	Unsetting and Resetting Entry Flags
	Glossary Styles
	List Styles
	Longtable Styles
	Longtable Styles (Ragged Right)
	Supertabular Styles
	Supertabular Styles (Ragged Right)
	Tree-Like Styles
	Multicols Style
	In-Line Style

	Defining your own glossary style
	Example: creating a completely new style
	Example: creating a new glossary style based on an existing style
	Example: creating a glossary style that uses the user1, …, user6 keys

	Utilities
	Accessibility Support
	Troubleshooting
	Index

