
[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

gitinfo2.sty
A package for accessing metadata

from the git dvcs

Brent Longborough

November 2015

Release: 2.0.6 (8b7f039)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

contents

Introduction 1
How gitinfo2 works . 1
Why a new package? . 2

Setup and tailoring 3
Migrating from version 1 . 3
Tailoring release tags . 4

Using the package 5
Package options . 5

General options . 5
Options for watermarking . 6
Options for memoir users . 6

The metadata . 7
Additional metadata (Version 1) 8
Additional metadata (Version 2) 9
Watermark tailoring commands 10

Handling TEX-hostile e-mail addresses 11
For memoir users . 11
For datetime2 users . 12
Notes on the sequence of events . 12

Etc 13
Release notes . 13
Acknowledgements . 14
Copyright & licence . 15
From the author . 15

Notes 16

ii

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

introduction

More and more, writers are using version control systems to manage the
progress of their works. One popular distributed version control system
commonly used today is git.

Among other blessings, gitprovides some useful metadata concerning
the history of the developers’ work, and, in particular, about the current state
of that work.

gitinfo2 allows writers to incorporate some of this metadata into their doc-
uments, to show from which point in their development a given formatted
copy was produced.

How gitinfo2 works
1. Whenever you commit work or check out a branch in git, git executes

a post-commit or post-checkout hook.
2. The gitinfo2 package includes a sample hook (placed in your git hooks

directory), which extracts metadata from git and writes it to a TEX file,
named gitHeadInfo.gin (‘gin’ for git info).

3. When you format your document, gitinfo2 reads gitHeadInfo.gin
and stores the metadada in a series of LATEX commands.

4. You may use these commands to insert the metadata you need at any
point in the document.

It is important to note that gitinfo2 reads the metadata with the equivalent
of \input{.git/gitHeadInfo.gin} in the repository (module or submod-
ule) root.

If you actually want to use gitinfo2, then please read on. But you may just
be reading this to see whether it will be useful; in this case, please skip the
next chapter and go on to ‘Using the package’ on page 5. Then, if you like
what you see, come back to read ‘Setup and tailoring’ later.

Release 2.0.6: 8b7f039 (2015-11-14) 1/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Introduction

Why a new package?
The improvements to gitinfo version 2 mean that existing repositories would
not work; so if I just dumped a new version of gitinfo on to CTAN, anyone
who updated gitinfo would need to migrate all their active repositories before
they could resume work.

So in order to avoid the rebukes that would follow, I have changed the
package name to gitinfo2, and the inner package name from gitsetinfo to git-
exinfo.

gitinfo is now informally deprecated, and the first reply to any bug reports
or feature requests will be ‘try gitinfo2’. Of course, I will support gitinfo2 itself
to the best of my somewhat limited ability.

For obvious reasons, do not try to use both packages in the same repos-
itory; for a new repository, use gitinfo2, and for an old one, either leave it
alone with gitinfo, or migrate it to gitinfo2.

To the administrators of CTAN, I’m sorry I caused you this clutter by not
getting it right the first time.

2/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

setup and tailoring

gitinfo2 will be installed by your favourite package or distribution manager,
but before you can start to use it, you need to configure each of your git
working copies by setting up hooks to capture the metadata.

If you’re familiar with tweaking git, you can probably work it out for
yourself. If not, I suggest you follow these steps:

1. First, you need a git repository and working tree. For this example,
let’s suppose that the root of the working tree is in ~/compsci

2. Copy the file post-xxx-sample.txt (which is in the same folder of
your TEX distribution as this pdf) into the git hooks directory in your
working copy. In our example case, you should end up with a file called
~/compsci/.git/hooks/post-checkout

3. If you’re using a unix-like system, don’t forget to make the file execut-
able. Just how you do this is outside the scope of this manual, but one
possible way is with commands such as this:

chmod g+x post-checkout.

4. Test your setup with “git checkout master” (or another suitable branch
name). This should generate copies of gitHeadInfo.gin in the dir-
ectories you intended.

5. Now make two more copies of this file in the same directory (hooks),
calling them post-commit and post-merge, and you’re done. As be-
fore, users of unix-like systems should ensure these files are marked as
executable.

If you don’t want to install gitinfo2 using a package manager, you can
instead just copy the two *.sty files into your document directory. However,
it may be simpler, for more complex project trees, to install the package as
part of your TEX distribution.

Migrating from version 1
Version 2 of gitinfo2 simplifies setup and brings additional convenience. But
this comes at a cost: existing repositories need to be upgraded to be compat-
ible. This decision wasn’t taken lightly; I really do think the incompatible
changes will give us a much firmer base for the future. The changes needed,
which should be applied to every repository, follow.

Update git hooks. Replace the hooks (post-checkout, post-commit, and
post-merge) with the contents of the file post-xxx-sample.txt. Since git-
info2 now uses only a single gitHeadInfo.gin file for the whole repository,
you do not need to tailor these hooks to map your document folders.

Release 2.0.6: 8b7f039 (2015-11-14) 3/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Setup and tailoring

If you are fortunate enough to be using a unix-like system, don’t forget
to ensure the hooks are executable.

Recreate the new gitHeadInfo.gin file. After you’ve replaced the hooks,
the simplest way is to re-check-out the current branch, using a command
such as git checkout.

Delete the old gitHeadInfo.gin files, when you’re ready.

If you’re a memoir user, and you use the footinfo package option, you will
need to adjust your page styles.

From gitinfo2 version 2, we no longer override the standard memoir page
styles. Instead, gitinfo2 provides three new page styles: giplain, giruled, and
giheadings, which you should now use to provide gitinfo2-tailored pages.

Tailoring release tags
As shipped, the git hook code uses a certain convention for identifying ‘re-
lease’ tags: the tag must begin with a numeric digit, and contain at least one
decimal point.1

Here is the line in the hook where this convention is established:

RELTAG=$(git describe … --match '[0-9]*.*' …)

By changing the --match parameter, you can decide exactly which tags
qualify as ‘release’ tags for your needs. Thus

RELTAG=$(git describe … --match 'R.*' …)

would allow you to find tags like ‘R.2.0.1’ and ‘R.L.Stevenson’, or

RELTAG=$(git describe … --match '*' …)

would allow you to find any tag whatsoever.
You can change the hooks without needing to alter gitinfo2, since any tag

found is used ‘as-is’.
Important note: The --match parameter is a unix glob, not a regular ex-

pression. This has tripped up a number of users.

4/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

using the package

Once you’ve set up your githooks, and done your first commit, merge, or
checkout to drive them, you can start incorporating the metadata into your
document, by loading the gitinfo2 package in the usual way:

\usepackage[< options >]{gitinfo2}

Package options
The following options are available:

General options
grumpy By default, If gitinfo2 can’t find gitHeadInfo.gin (the metadata

file), it will set all the metadata to a common value, “(None)”,
issue a package warning, and carry on. If the grumpy option is
used, this warning becomes an error, and processing stops.

missing=text, notags=text, dirty=text
These three options allow you to tailor the default text used by
gitinfo2 when metadata is missing ‘(None)’, the branch head has
no tags ‘(None)’, and the working copy has uncommitted changes
‘(*)’. For example:

[missing=Help!,notags={No tags?},dirty=Eww!]

If you have complex needs, as in the second example, don’t forget
to enclose your text in {}s.

maxdepth=n
In order to locate .git/gitHeadInfo.gin in the repository root,
gitinfo2 starts in the directory containing the master document,
and searches up the directory tree until it finds it. This search is
limited to n levels — 4 by default. If have to deal with documents
deeper in your repository tree, you can extend this limit with, say,
maxdepth=8.

Release 2.0.6: 8b7f039 (2015-11-14) 5/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Using the package

Options for watermarking
These options allow you to place a watermark of git metadata, at the bottom
of the paper, conditionally or unconditionally

mark This option causes gitinfo2 to generate a watermark, centred at
the bottom of each sheet, containing ‘useful’ git metadata. The
watermark is always added.

markifdraft
This option is like mark, but only activates the watermark if the
document is being processed with the draft option.

markifdirty
This option is like mark, but only activates the watermark if the
last commit or checkout left uncommitted changes in the repos-
itory.

marknotags
If gitinfo2 can’t find any tags in the git references, it suppresses
the second line of the watermark. If, however, you would like
the second line always to appear, add this option to the package
options.

raisemark=vertical space
By default, gitinfo2 sets the bottom line of the watermark at 1.5
baseline skips2 above the bottom of the paper. If you prefer some-
thing different, you can specify it here. For example:

[raisemark=0.95\paperheight]

draft This option should not be used; it only exists to ‘capture’ the draft
option from the document class definition.

Options for memoir users
For more about these options, please read ‘For memoir users’ on page 11.

footinfo This option is no longer used, and if present is silently ignored.
For memoir users, gitinfo2 now creates, automatically, three new
page styles.

pcount For memoir users, this option will replace the folio in the new
page styles with one of the form x/y, where x is the folio and y is
the page count.

No warning is given, and no action taken, if this parameter is
used with another document class.

6/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

The metadata

The metadata
The git metadata, for the current HEAD commit, is made available in the
document as a series of parameter-less LATEXcommands. Here they are:

gitReferences
A list of any git references (tags, branches) associated with this
commit. This string is not for the faint-hearted; its format and
order may vary between versions of git.
Example:
(HEAD -> CTAN, tag: 2.0.6, origin/CTAN)

gitBranch
The name of the current branch. Depending on how you use git,3
this information may not be available, and will then be shown as
the default or specified value of the missing package option. For
git versions before 2.0.0, where the current HEAD commit refers
to more than one branch head, this value may be different from
the currectly checked-out branch.
Example: CTAN

gitDirty If the last commit or checkout left uncommitted changes in the
working tree, the default or specified value of the dirty package
option; otherwise empty.

gitAbbrevHash
The seven-hex-char abbreviated commit hash
Example: 8b7f039

gitHash The full 40-hex-character commit hash
Example: 8b7f039fe973cd99a90aecf01df3b18d193f9534

gitAuthorName
The name of the author of this commit
Example: Brent Longborough

gitAuthorEmail
The email address of the author of this commit
Example: myemail@evilspam.net

gitAuthorDate
The date this change was committed by the author, in the format
yyyy-mm-dd
Example: 2015-11-14

gitAuthorIsoDate
The date and time this change was committed by the author, in
ISO format
Example: 2015-11-14 16:31:15 +0000

Release 2.0.6: 8b7f039 (2015-11-14) 7/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Using the package

gitAuthorUnixDate
The date and time this change was committed by the author, as
a Unix timestamp
Example: 1447518675

gitCommitterName
The name of the committer of this commit
Example: Brent Longborough

gitCommitterEmail
The email address of the committer of this commit
Example: watcher@gchq.gov.uk

gitCommitterDate
The date this change was committed by the committer, in the
format yyyy-mm-dd
Example: 2015-11-14

gitCommitterIsoDate
The date and time this change was committed by the committer,
in ISO format
Example: 2015-11-14 16:31:15 +0000

gitCommitterUnixDate
The date and time this change was committed by the committer,
as a Unix timestamp
Example: 1447518675

Additional metadata (Version 1)
Three more commands are available, but their use should be considered ex-
perimental. gitinfo2 searches the git references metadata for anything (prob-
ably a git tag) that looks like a number with a decimal point. The first such
number it finds is taken as a “Version Number” and made available in three
different formats, explained here:

gitVtag The version number, without decorations. If no version number
is found, empty (i.e. zero width).

gitVtags The version number, with a leading space. If no version number
is found, empty.

gitVtagn The version number, with a leading space. If no version number
is found, a space, followed by the default or specified value of
the missing package option.
Example: (None)

These versioning tags have been superseded by release tags in Version 2,
although they should continue to work as before.

8/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

The metadata

Additional metadata (Version 2)
From Version 2 onwards, additional git metadata is available, in general
improving or extending the facilities available in Version 1. The Version 1
metadata is retained for backward compatibility.

Included is a new set of gitRel commands, designed to replace gitVtag
and its cousins. gitinfo2 searches the git metadata for tags on the current head
commit or its ancestors, and makes the first tag found available. It also looks
for the latest such tag whose name begins with a digit, and which contains a
full stop (period), and makes the tag, and the number of commits following
it, available as a ‘release number’.4 Here are the new commands in Version 2:

gitFirstTagDescribe
The last tag reachable from the current head. Please see git-
describe for more information. If the working copy is dirty (has
uncommitted changes), the string has ’-*’ appended.
Example: 2.0.6

gitRel The release number, without any decorations. If no release num-
ber is found, empty (i.e. zero width).

gitRels The release number, with a leading space. If no release number
is found, empty.

gitReln The release number, with a leading space. If no release number
is found, a space, followed by the default or specified value of
the missing package option.

gitRoff The number of commits between the current head and the tag
holding the release number. If the tag refers to the current head,
zero.

gitTags A comma-separated list of tags associated with the current head.
Example: 2.0.6

gitDescribe
The raw output from the git-describe command for the last re-
lease tag reachable from the current head, including tag name,
commit offset, short hash, and a dirty flag. Please see git-describe
for more information. Example: 2.0.6-0-g8b7f039

Release 2.0.6: 8b7f039 (2015-11-14) 9/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Using the package

Watermark tailoring commands
If you use the Version 2 options to place a watermark, you can tailor the
format of the watermark to suit your needs, by redefining one or more of
the following commands.

gitMark Contains the text of the watermark. Output from the default
definition can be seen below the footer at the bottom of this page.
The definition (here split onto four lines to fit) is:

Branch: \gitBranch\,@\,\gitAbbrevHash{}
\textbullet{}
Release:\gitReln{} (\gitAuthorDate)\\
Head tags: \gitTags

You can tailor this by redefining \gitMark. For example:

\renewcommand{\gitMark}{\gitHash\hfill\gitRel}

gitMarkFormat
Defines typesetting parameters for the whole watermark. The
default definition is:

\color{gray}\small\sffamily

if the xcolor package is loaded; if not, is simply omitted. You can
tailor this by redefining \gitMarkFormat. For example:

\renewcommand{\gitMarkFormat}{\color(red)\ttfamily}

gitMarkPref
Contains the text of the watermark prefix, which depends on
the reason the document is being watermarked. The default val-
ues are [Dirty], [Draft], or [git]. You can tailor this by redefining
\gitMarkPref. For example:

\renewcommand{\gitMarkPref}{[Pending review]}

10/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Handling TEX-hostile e-mail addresses

Handling TEX-hostile e-mail addresses
Occasionally, a repository will contain ‘TEX-hostile’ e-mail addresses such
as my_name@somewhere.net. As a result, using the gitAuthorEmail or git-
CommitterEmail commands can cause errors.

gitinfo2 provides an e-mail wrapping command, \gitWrapEmail, to al-
low you to tailor your use of email addresses. Its default definition does
nothing:

\newcommand{\gitWrapEmail}[1]{#1}

You can tailor this by redefining \gitWrapEmail. For example, a number
of packages (hyperref is one) provide a \url command which provides the
necessary protection. Using such a package (independently of gitinfo2), you
can redefine the gitinfo2 wrapper in this way:

\renewcommand{\gitWrapEmail}[1]{\url{#1}}

Please note that from Release 2.0.6 this precaution is optional, since git-
info2 now detokenises Author and Committer names and email addresses,
and all git reference names.

For memoir users
If you use memoir, gitinfo2 provides you with three new pagestyles, based on
plain, ruled, and headings. The new pagestyles are called giplain, giruled, and
giheadings.

For the giplain and giruled pagestyles, the folio is moved from the centre
to the outer margin of the footer, and a revision stamp is placed in the inner
margin.

For the giheadings pagestyle, the folio is moved from the outer margin of
the header to the outer margin of the footer, and a revision stamp is placed
in the inner margin of the footer.

If you use the pcount option, a solidus, and the page count, are appended
to the folio.

The revision stamp is generated by this fragment:

Release\gitRels: \gitAbbrevHash{} (\gitAuthorDate)

which is set at tiny in the sans-serif font.
Note that, in contrast to version 1 of gitinfo2, version 2 no longer modifies

the existing page styles. If you wish to use this facility, you must now select
the appropriate gi… page style explicitly.

You can see an example in the footer of this page, above the gitinfo2 wa-
termark.

Release 2.0.6: 8b7f039 (2015-11-14) 11/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Using the package

For datetime2 users
If you use Nicola Talbot’s excellent datetime2 package, gitinfo2 copies the
value of the tag gitAuthorDate as a new date object named gitdate, which
you can then refer to with other datetime2 functions.

Please refer to the datetime2 manual for further details, especially in the
section entitled ‘Saving Dates’.

If you use it, you must load datetime2 before you load gitinfo2.
The datetime package is also supported, though deprecated.

Notes on the sequence of events
Users of gitinfo2 (including me) are frequently surprised by what appear to
be incorrect results in their output,5 but are determined in fact by the precise
sequence of operations on a working copy.

As it’s impossible to foresee every possible workflow, what follows is a
sequence of steps of a simple workflow which will serve as an example to
help users to understand what is happening, and to avoid it.

The example repository manages two main files: abc.tex and its output
file, abc.pdf.6 Intuitively, the overall sequence of one update & release cycle
might be like this:

1. Edit abc.tex, (perhaps) commit intermediate changes, format the output
into abc.pdf, and check and repeat until ready for release;

2. Commit the release version of abc.tex;
3. Tag the release;
4. (Missing step);
5. Format the release version of abc.pdf ; and
6. Commit the release version of abc.pdf.

For reasons that I hope will become obvious, that doesn’t work. The git
metadata is extracted and stored at step (2). At that point, the release tag
doesn’t yet exist, and the working copy is dirty, since abc.pdf has been re-
generated, and has changed since the last recorded version.

It’s simple to fix; all we have to do is ensure the working copy is clean and
regenerate the saved metadata (now with correct tag information). Here’s
the missing step, kept, perhaps, somewhere in a makefile:

4. git checkout abc.pdf

This will revert the .pdf file to its repository version, and then regenerate the
stored metadata, including the release tag. Step (5) will now produce output
showing the release tag and a clean working copy.

12/16 Release 2.0.6: 8b7f039 (2015-11-14)

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

etc

Release notes
R2.0.6: 2015-11-14 – Detokenise the metadata

• Detokenise names, emails, branches, and tags. This means you should
be able to use branch names like yes@top_dol$larwithout TEX chew-
ing you out. I’d welcome feedback on this, as I have an uneasy feeling
there may be unintended consequences.

R2.0.5: 2015-11-09 – Bug fixes and general improvements
• Support for the datetime2 package
• Provide correct committer metadata in hook sample
• Change Warning to Info when gitHeadinfo.gin is found
• Move all package dependencies from gitexinfo.sty to gitinfo2.sty
• Support for git Version 2 log output, with more accurate branch name

analysis
• Only use colours if the xcolor package is loaded

R2.0.4: 2014-10-03 – Fixes and documentation improvements
• More robust git hooks, for improved detection of dirty working copies
• A new section, Notes on the sequence of events, to help with doing things

in the right order
• Other minor improvements to the manual

R2.0.3: 2014-09-05 – Handle hostile e-mail addresses
• Provide an e-mail address wrapper command, to allow users to tailor

protection against ‘_’ and other characters in email addresses.
• This release was not shipped to Ctan

R2.0.2: 2014-09-04 – Mostly cosmetic
• Fix packaging problems for Ctan and TEX Live
• Improve appearance of watermark
• Improve documentation: correct file references. remove gibberish, ex-

tend acknowledgments

Release 2.0.6: 8b7f039 (2015-11-14) 13/16

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Etc

Acknowledgements
The TEX.SE community has been a constant source of help, inspiration, and
amazement. In particular, I’d like to thank Joseph Wright, who rescued me
from the jaws of the TeX parser by explaining \expandafter.

I’d also like to register my thanks to the owners of the packages on which
gitinfo2 depends: datetime2, eso-pic, etoolbox, kvoptions, and xstring.

Many people have written to me kindly to point out some of the defects
in gitinfo, and to offer code. I owe you all an apology for the amount of time
that elapsed from your suggestions to the making of gitinfo2.

In some cases, I have not taken up suggestions other than as food for
thought, in others used the code or suggestions directly, and, in yet others,
adapted. I thank you all, especially for stimulating my thought processes,
and thus, hopefully, helping to make gitinfo2 a whole lot better than gitinfo.

I think I owe a special mention, both for ideas and code, to Clea Rees, Jörg
Weber, and Kai Mindermann for improving the handling of git references;
to Jörg Weber for watermarking; to Michael Rans and Ross Vandegrift for
the deduplication of gitHeadInfo.gin; and to ivokabadshow on GitHub for
a welcome example of how to detokenise the metadata.

My sincere thanks, too, to Adrian Burd, cedb12 (GitHub), Maximilian
Held, Johannes Hoetzer, Mikko Korpela, Martin W Leidig, Enrico Malizia,
Ken Mankoff, Ryan Matlock, Robbie Morrison, Nik (gwdg nokta de), Omid
(gmail nokta com), Sasaki Suguru, Torbjørn T (GitHub and TeX.SE), and Fe-
lix Wenger.

Special thanks to Karl Berry for helping me to reduce my incompetence
with ctanify. And, of course, for TEX Live and everything else.

Finally, but by no means least, my thanks to the Ctan elves, and their dæ-
mons, particularly, in my case, Ina Dau, Manfred Lotz, Petra Rübe-Pugliese,
and Robin Fairbairns, for their infinite patience and unstinting dedication to
the TEX community.

The failings, of course, I claim for myself.

14/16 Release 2.0.6: 8b7f039 (2015-11-14)

http://tex.stackexchange.com
http://tex.stackexchange.com/users/73/joseph-wright

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

Copyright & licence

Copyright & licence
Copyright © 2015, Brent Longborough, who has asserted his moral right to
be identified as the author of this work.

This work — gitinfo2 — may be distributed and/or modified under the
conditions of the LaTeX Project Public License: either version 1.3 of this li-
cense, or (at your option) any later version.

The latest version of this license can be found at the LATEX Project website,7
and version 1.3 or later is part of all recent distributions of LATEX.

This work has the LPPL maintenance status ‘maintained’; the Current
Maintainer of this work is Brent Longborough.

This work consists of the files gitinfo2.sty, gitexinfo.sty, gitinfo2.tex, git-
info2.pdf, gitinfotest.tex, post-xxx-sample.txt, and gitPseudoHeadInfo.gin.

From the author
Although my limitations as a TEXnician mean that I’ve implemented gitinfo2
in a rather simplistic way that needs some setup that is more complicated
than I wanted, I hope you find the package useful. I’ll be very happy to
receive your comments by email.

Brent Longborough

brent+ctancontrib (bei) longborough (punkt) org
and at TEX.SE

Release 2.0.6: 8b7f039 (2015-11-14) 15/16

http://tex.stackexchange.com/users/344/brent-longborough

[git] • Branch: CTAN @ 8b7f039 • Release: 2.0.6 (2015-11-14)
Head tags: 2.0.6

notes

Chapter: Setup and tailoring

1. (p.4) I.e. full stop or period, depending on which variant of English you
use.

Chapter: Using the package

2. (p.6) 1.5\baselineskip, an admittedly arbitrary value, chosen for my
Canon printer.
3. (p.7) For example, checking out unnamed branches
4. (p.9) gitinfo2 doesn’t check for numerics, so you can use a tag like
‘1.5-beta’ if you wish.
5. (p.12) Most frequent are ‘wrong tag’ and ‘falsely flagged as dirty’
6. (p.12) Although derived files are often excluded from version control,
the .pdf file in this case might need to be archived — think of versions of a
proposal, for example.

Chapter: Etc

7. (p.15) (http://www.latex-project.org/lppl.txt)

16/16 Release 2.0.6: 8b7f039 (2015-11-14)

http://www.latex-project.org/lppl.txt

	Introduction
	How gitinfo2 works
	Why a new package?

	Setup and tailoring
	Migrating from version 1
	Tailoring release tags

	Using the package
	Package options
	General options
	Options for watermarking
	Options for memoir users

	The metadata
	Additional metadata (Version 1)
	Additional metadata (Version 2)
	Watermark tailoring commands

	Handling TeX-hostile e-mail addresses
	For memoir users
	For datetime2 users
	Notes on the sequence of events

	Etc
	Release notes
	Acknowledgements
	Copyright & licence
	From the author

	Notes

