The genealogytree package
Manual for version 0.10 (2015/01/12)

Thomas F. Sturm'

Abstract

Pedigree and genealogical tree diagrams are proven tools to visualize genetic and rela-
tional connections between individuals. The naming for mathematical tree structures
with parent nodes and child nodes is traded from historical family diagrams. How-
ever, even the smallest family entity consisting of two parents and several children is
no mathematical tree but a more general graph.

The genealogytree packages provides a set of tools to typeset such genealogical trees
or, more precisely, to typeset a set of special graphs for the description of family-like
structures. The package uses an autolayout algorithm which can be customized to
e.g. prioritize certain paths.

The current version is an alpha version of the package. It consists of a genealogy tree
parser and a debugger for the parser. This can be used to check a manually or au-
tomatically generated tree source code to be well-formed. Also, the debugger gives a
formal structured view of the given data. Note that the targeted visual diagram is not
implemented yet.

Prof. Dr. Dr. Thomas F. Sturm, Institut fir Mathematik und Informatik, Universitit der Bundeswehr
Miinchen, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de

mailto:thomas.sturm@unibw.de

Contents

1 Graph Grammar 5
1.1 Graph e e e 5
1.2 Subgraph 'parent’ 5
1.3 Subgraph ’child” L 7
1.4 Subgraph 'union’ L 8
1.5 Subgraph ’sandclock’ o 9
1.6 Data’input’ L e 11
1.7 Node g . . . o o e e 11
1.8 Node P’ e e e e 11
1.9 Node e’ . . . e 11

2 Debugging 13
2.1 Parser Debugging 13

Index 17

Chapter 1

Graph Grammar

1.1 Graph

The root of a parsable graph is one of the following;:
e a parent (for ancestor graphs), see Section 1.2,
e a child (for descendant graphs), see Section 1.3 on page 7,

e a sandclock (for mixed ancestor/descendant graphs), see Section 1.5 on page 9.

1.2 Subgraph ’parent’

A parent subgraph is a family where the g node acts as a child. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary parent subgraphs.

Syntax for a ’parent’ subgraph

parent [(subtree options)]{

g[(node options)]{{node content)?} mandatory; exactly once

c[(node options)1{{node content)} optional; zero or many times
pL(node options)]1{(node content)?} optional; zero or many times
parent [(subtree options)]{(subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times

}

g’y ’c’, 'p’) ‘parent’, ’input’ may appear in arbitrary order.

File «examples/parent_subgraph.graph»

parent{/
c[id=pB]{B\\(child)}/
glid=pA]{A\\ (proband)}%
c[id=pC]{C\\(child)}%
c[id=pD]{D\\(child)}%
plid=pEI{E\\(parent)}/
plid=pF1{F\\(parent)}/

\gtrparserdebuginput{examples/parent_subgraph.graph}

Genealogytree Parser Debugger

Start: Parent Family 1 (i), Level 1

Child: Individual i (1), Family i (1), Level 0
Options: id=pB
Content: B\\(child)

Child: Individual ii (2), Family i (1), Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual iii (3), Family i (1), Level 0
Options: id=pC
Content: C\\(child)

Child: Individual iv (4), Family i (1), Level 0
Options: id=pD
Content: D\\ (child)

Parent: Individual v (5), Family i (1), Level 1
Options: id=pE
Content: E\\ (parent)

Parent: Individual vi (6), Family i (1), Level 1
Options: id=pF
Content: F\\ (parent)

End: Parent Family 1 (i), Level 1

End of Genealogytree Parser Debugger

L N AN AW AW AW N

1.3 Subgraph ’child’

A child subgraph is a family where the g node acts as a parent. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary child and union subgraphs.

Syntax for a ’child’ subgraph

child[(subtree options)]{
g[(node options)]1{(node content)t
c[(node options)]1{({node content)}
p[(node options)1{(node content)}
child[(subtree options)]1{(subtree content)}
union [(subtree options)]{(subtree content)}
input{(file name)}

mandatory; exactly once

optional;
optional;
optional;
optional;
optional;

zero or many times
zero or many times
zero or many times
zero or many times
zero or many times

}

g’y ¢’ p’, Cchild’, union’, ‘input’ may appear in arbitrary order.

File «examples/child_subgraph.graph»

child{/
glid=pAT{A\\(proband)}%
plid=pBl{B\\(parent)}/
c[id=pCl{C\\(child)}%
c[id=pD]{D\\(child)}%
c[id=pE]{E\\(child) }/

\gtrparserdebuginput{examples/child_subgraph.graph}

Genealogytree Parser Debugger

Start: Child Family 1 (i), Level 0

Parent: Individual i (1), Family i (1), Level 0
Options: id=pA

Content: A\\ (proband)

Parent: Individual ii (2), Family i (1), Level 0
Options: id=pB

Content: B\\(parent)

Child: Individual iii (3), Family i (1), Level -1
Options: id=pC

Content: C\\(child)

Child: Individual iv (4), Family i (1), Level -1
Options: id=pD

Content: D\\(child)

Child: Individual v (5), Family i (1), Level -1
Options: id=pE

Content: E\\(child)

End: Child Family 1 (i), Level 0

End of Genealogytree Parser Debugger

AN A A

. .

1.4 Subgraph ’union’

A union subgraph is a family without a g node. The g node (parent) is inherited from an
embedding child family. A union family may have arbitrary child and parent leaves. Also, this
family may have arbitrary child subgraphs.

Syntax for a ’union’ subgraph

union [(subtree options)]{

c[(node options)1{(node content)} optional; zero or many times

p[(node options)1{(node content)} optional; zero or many times

child[(subtree options)]1{(subtree content)} optional; zero or many times

input{(file name)’ optional; zero or many times
}

o

c’, 'p’, child’, 'input’ may appear in arbitrary order.

File «examples/union_subgraph.graph»

child{%
plid=pBI1{B\\(parent)}/
g[id=pA]{A\\ (proband)}%
c[id=pCl{C\\(child)}%
union{
p[id=pD]{D\\ (parent)}%
c[id=pE]{E\\(child)}%
}
}

\gtrparserdebuginput{examples/union_subgraph.graph}

Genealogytree Parser Debugger
Start: Child Family 1 (i), Level 0
Parent: Individual i (1), Family i (1), Level 0
Options: id=pB
Content: B\\ (parent)
Parent: Individual ii (2), Family i (1), Level 0
(2| Options: id=pA

Content: A\\ (proband)

Child: Individual iii (3), Family i (1), Level -1
Options: id=pC
Content: C\\(child)
Start: Union Family 2 (ii), Level 0
Parent: Individual iv (4), Family ii (2), Level 0
Options: id=pD
Content: D\\ (parent)
Child: Individual v (5), Family ii (2), Level -1
Options: id=pE
Content: E\\(child)
End: Union Family 2 (ii), Level 0
End: Child Family 1 (i), Level 0

End of Genealogytree Parser Debugger

N AW A

[<]

[~]

1.5 Subgraph ’sandclock’

A sandclock subgraph is a family without a g node. The g node (child) is inherited from an
embedded child family. A sandclock family may have arbitrary child and parent leaves. Also,
this family must have at least one child subgraph and may have arbitrary parent subgraphs.

Syntax for a ’sandclock’ subgraph

sandclock [(subtree options)]{
c[(node options)1{(node content)} optional; zero or many times
p[(node options)1{{node content)} optional; zero or many times
child[(subtree options)]{(subtree content)} mandatory; one or many times
parent [(subtree options)]{(subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times

}

¢’y p’, child’, parent’, input’ may appear in arbitrary order.

File «examples/sandclock_subgraph.graph»

sandclock{/
c[id=pBl{B\\(child)}/
child
{
g[id=pA]l{A\\(proband)}%
c[id=pal{a\\(child)}/
c[id=pb]l{b\\(child)}/
plid=pX]1{X\\(partner)}
}
plid=pCI1{C\\(parent)}/
parent{
g[id=pD]1{D\\ (parent)}%
c[id=pE]{E\\(child)}/
plid=pF1{F\\(parent)}/
}
}

[\gtrparserdebuginput{examples/sandclock_subgraph.graph}

)

Genealogytree Parser Debugger

Start: Sandclock Family 1 (i), Level 1

B

Child: Individual i (1), Family i (1), Level 0
Options: id=pB
Content: B\\(child)

(-]

[~]

Start: Child Family 2 (ii), Level 0

Parent: Individual ii (2), Family ii (2), Level 0
Options: id=pA

Content: A\\ (proband)

Child: Individual iii (3), Family ii (2), Level -1
Options: id=pa

Content: a\\(child)

Child: Individual iv (4), Family ii (2), Level -1
Options: id=pb

Content: b\\ (child)

Parent: Individual v (5), Family ii (2), Level 0
Options: id=pX
Content: X\\ (partner)

End: Child Family 2 (ii), Level 0

Parent: Individual vi (6), Family i (1), Level 1
Options: id=pC
Content: C\\ (parent)

-l [

<]

Start: Parent Family 3 (iii), Level 2

Child: Individual vii (7), Family iii (3), Level 1
Options: id=pD

Content: D\\ (parent)

Child: Individual viii (8), Family iii (3), Level 1
Options: id=pE

Content: E\\(child)

Parent: Individual ix (9), Family iii (3), Level 2
Options: id=pF

Content: F\\ (parent)

End: Parent Family 3 (iii), Level 2

End: Sandclock Family 1 (i), Level 1

End of Genealogytree Parser Debugger

10

1.6 Data ’input’

Feasible subgraphs may be read from external files using the input command at places where
such subgraphs are expected.

Syntax for data ’input’

input{(file name)}

1.7 Node g’

The g (genealogical) node is an interconnecting individual which is member of at least two
families. For one family it is a child, for another one it is a parent.

Syntax for a ’g’ node

gl (node options)1{({node content)}

1.8 Node ’p’

The p (parent) node is a leaf node which is parent to a family.

Syntax for a ’p’ node

p[(node options)1{(node content)}

1.9 Node ¢’

The ¢ (child) node is a leaf node which is child to a family.

Syntax for a ’c’ node

c[(node options)1{(node content)}

11

12

Chapter 2

Debugging

2.1 Parser Debugging

The debugger for the parser can be used to check a manually or automatically generated tree
source code to be well-formed. In this context, well-formedness means correct (IATEX) grouping
and correct nesting with subgraph elements following the given graph grammar, see Chapter 1.
It is not checked, if all mandatory graph elements are present or if too many elements are given.

Also, the debugger gives a formal structured view of the given data which is useful to search for
input errors if the graphical representation fails.

\gtrparserdebug[(options)]{(graph content)}
Parses the given (graph content). If the content is well-formed, a structured list of the given
data is produced. The families are automatically colored in the list. Any (options) are
checked by setting them and they are logged in the produced list.

\gtrparserdebug{
parent{/

c[id=pB]l{B\\(child)}%
g[id=pA]{A\\ (proband) }7
c[id=pC1{C\\(child)}/
c[1d=pD]{D\\(child)}%
plid=pE]{E\\(parent)}/
plid=pF1{F\\ (parent)}/

Genealogytree Parser Debugger

Start: Parent Family 1 (i), Level 1

Child: Individual i (1), Family i (1), Level 0

Options: id=pB

Content: B\\(child)

Child: Individual ii (2), Family i (1), Level 0
Options: id=pA

Content: A\\ (proband)

Child: Individual iii (3), Family i (1), Level 0
Options: id=pC

Content: C\\(child)

N AN 4 4

13

Child: Individual iv (4), Family i (1), Level 0
Options: id=pD
Content: D\\ (child)

Parent: Individual v (5), Family i (1), Level 1
Options: id=pE
Content: E\\ (parent)

Parent: Individual vi (6), Family i (1), Level 1
Options: id=pF
Content: F\\ (parent)

End: Parent Family 1 (i), Level 1

End of Genealogytree Parser Debugger

N V. V. v

14

\gtrparserdebuginput [(options)]{(file name)}
Loads the file denoted by (file name) and parses its content. If the content is well-formed,
a structured list of the given data is produced. The families are automatically colored in
the list. Any (options) are checked by setting them and they are logged in the produced
list.

File «examples/smithdoe.graph»

parent [id=SmithDoe]{
g[id=Arth2008,male] {Arthur\\\gtrsymborn~2008}
c[1id=Bert2010,female] {Berta\\\gtrsymborn~2010}
c[id=Char2014,male] {Charles\\\gtrsymborn~2014}
parent [id=Smith]{
g[id=John1980,male] {John Smith\\\gtrsymborn~1980}
pl[id=GpSm1949,male] {Grandpa Smith\\\gtrsymborn~1949}
p[id=GmSm1952, female] {Grandma Smith\\\gtrsymborn~1952}
}
parent [id=Doe]{
glid=Jane1982,female]{Jane Doe\\\gtrsymborn~1982}
c[1id=Harr1987,male] {Uncle Harry\\\gtrsymborn~1987}
p[id=GpDo1955,male] {Grandpa Doe\\\gtrsymborn~1955}
p[id=GmDo1956,female] {Grandma Doe\\\gtrsymborn~1956}
}
}

\gtrparserdebuginput{examples/smithdoe.graph}

Genealogytree Parser Debugger

Start: Parent Family 1 (i), Level 1

Options: id=SmithDoe

Child: Individual i (1), Family i (1), Level 0
Options: id=Arth2008,male

Content: Arthur\\\gtrsymborn ~2008
Child: Individual ii (2), Family i (1), Level 0
Options: id=Bert2010,female

Content: Berta\\\gtrsymborn ~2010
Child: Individual iii (3), Family i (1), Level 0
Options: id=Char2014,male

Content: Charles\\\gtrsymborn ~2014

Start: Parent Family 2 (ii), Level 2

Options: id=Smith

Child: Individual iv (4), Family ii (2), Level 1
Options: id=John1980,male

Content: John Smith\\\gtrsymborn ~1980

Parent: Individual v (5), Family ii (2), Level 2
[P] Options: id=GpSm1949,male

Content: Grandpa Smith\\\gtrsymborn ~1949

Parent: Individual vi (6), Family ii (2), Level 2
[P| Options: id=GmSm1952,female

Content: Grandma Smith\\\gtrsymborn ~1952

End: Parent Family 2 (ii), Level 2

W\ I

15

Start: Parent Family 3 (iii), Level 2

Options: id=Doe

Child: Individual vii (7), Family iii (3), Level 1
Options: id=Jane1982,female

Content: Jane Doe\\\gtrsymborn ~1982
Child: Individual viii (8), Family iii (3), Level 1
Options: id=Harr1987,male

Content: Uncle Harry\\\gtrsymborn ~1987
Parent: Individual ix (9), Family iii (3), Level 2
Options: id=GpDo1955,male

Content: Grandpa Doe\\\gtrsymborn ~1955
Parent: Individual x (10), Family iii (3), Level 2
Options: id=GmDo1956,female

Content: Grandma Doe\\\gtrsymborn ~1956

End: Parent Family 3 (iii), Level 2

End: Parent Family 1 (i), Level 1

End of Genealogytree Parser Debugger

16

Index

c value, 11
child value, 5, 7-9

g value, 5, 7-9, 11
\gtrparserdebug, 13
\gtrparserdebuginput, 15

input value, 11

p value, 11
parent value, 5, 9

sandclock value, 5, 9
union value, 7, 8

Values
c, 11
child, 5, 7-9
g, 5, 79, 11
input, 11
p, 11
parent, 5, 9
sandclock, 5, 9
union, 7, 8

17

	Graph Grammar
	Graph
	Subgraph 'parent'
	Subgraph 'child'
	Subgraph 'union'
	Subgraph 'sandclock'
	Data 'input'
	Node 'g'
	Node 'p'
	Node 'c'

	Debugging
	Parser Debugging

	Index

