Preliminary documentation for gb4e.sty*and cgloss4e.sty

hans-peter kolb kolb@sfs.nphil.uni-tuebingen.de Craig Thiersch thiersch@kub.nl

Contents

1 Linguistic examples in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} \quad 2$
1.1 Examples with running numbers 3
1.2 Examples with other identifiers 4

2 Glosses 6
3 Varia 8

Important note:

The file gb4e.sty ${ }^{1}$ allows _ (subscript) and ^ (superscript) to be used in ordinary text, which is handy, but because it changes their definitions it must be loaded after any file that uses them in their $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ meaning.

[^0]
1 Linguistic examples in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$

gb4e.sty is a style option to be used with LATEX's major document styles. To make its commands available, add it to your document's preamble like this:
(in LaTex2e:) .09:)\documentstyle[...gb4e]\{...\}Itscoreisanenvironmentfortheformattingoflinguisticexamples.Theformatissimple:(Batchesof)examplesareintroducedby\begin\{exe\}whichsetsupthetop}levelexampleenvironment.Obviously,thisenvironmenthastobeclosedaftertheexample(s)by\end\{exe\}.Youcancreatesub-andsubsubexamples}byembeddingseveralxlist-environments(uptothreelevelsdeep).undefined

Here is an elaborate example:

```
\begin{exe} % sets up the top-level example environment
\ex\label{here} Here is one. % example with running number
\ex[*]{Here another is.} % judged ex. with running number
\ex Here are some with judgements.
    \begin{xlist} % first embedding (alphabetical numbering)
    \ex[]{A grammatical sentence am I.}
    \ex[*]{An ungrammatical sentence is you.}
    \ex[??]{A dubious sentence is she.}
    \ex % just the number
        \begin{xlist} % second embedding (roman numbering)
        \ex[**]{Need one a second embedding?}
        \ex[\%]{sometime.}
        \end{xlist} % end second embedding
    \ex Dare to judge me!
    \end{xlist} % end first embedding
\ex This concludes our demonstration.
\end{exe} % end example environment
```

This produces:
(1) Here is one.
(2) * Here another is.
(3) Here are some with judgements.
a. A grammatical sentence am I.
b. * An ungrammatical sentence is you.
c. ?? A dubious sentence is she.
d. i. ** Need one a second embedding?
ii. $\%$ sometime.
e. Dare to judge me!
(4) This concludes our demonstration.

All example-list commands have an optional argument which allows you to set the labelwidth to, e.g., the widest label to come (in the style of \begin\{bibliography\}). So, \begin\{exe\}[(234)] will set the labelwidth } to the width of "(234)"-which is also the default. The other defaults are "m." for xlist, and "iii." for xlisti. The default labelwidth for the exeenvironment can also be changed globally by issuing a \exewidth\{<string>\} command in the preamble of your document (i.e. between the documentstyle and the \backslash begin\{document\} lines).

1.1 Examples with running numbers

As just shown, every example with a running number is introduced by \ex. Obviously, \ex is context-sensitive: at the top level the number produced is arabic and accumulative throughout the document; in embedded xlistenvironments it is alphabetic on the first level, roman on the second, and arabic on the third, starting with $a ., i$., and 1 ., repectively. For total control over the shape of your subexample-numbering there are some special forms listed below: ${ }^{2}$

Environment	Default numbering
\begin\{exe\} ... \end\{exe\} }	(1) arabic (Toplevel)
\begin\{xlist\}... \end\{xlist\} }	depends on level of embedding
\begin\{xlista\} ... \end\{xlista\} }	a. alphabetical
$\backslash \mathrm{begin}\{\mathrm{xlisti}\} \ldots . . \ e n d\{\mathrm{xlisti}\}$	ii. roman
\begin\{xlistn\} ... \end\{xlistn\} }	3. arabic
\begin\{xlistI\}... \end\{xlistI\} }	IV. Roman
\begin\{xlistA\}...\end\{xlistA\} }	E. Alphabetical

In all cases, \label/\ref commands will do The Right Thing.
The syntax of \ex is as follows:

[^1]$\backslash e x \Longrightarrow$ a label with running number (e.g., if a sublist of examples follows).
\ex <example> \Longrightarrow a numbered example.
\ex[<judgement>] \{<example>\} \Longrightarrow a numbered example with judgement.
The space reserved for judgements is governed by the \judgewidth\{<string>\} command which sets it to the width of <string> (Default: "??"). It can be issued in the preamble to change the default globally, or within an exeenvironment for a local change.

In short: Use \ex for all numbered examples; if they have no optional argument (judgement) they will be flush left; if they have [] 's then there will be a space reserved for judgements. (NB: In this case you have to indicate the scope of the example itself with $\{\ldots\}$'s.)

1.2 Examples with other identifiers

Sometimes it is necessary not to use running numbers but to specify the identifier of an example manually as in:
... let us now contemplate Chomsky (1981:264, ex.29f):

$$
\begin{align*}
& \alpha[\text { INFL } \mathrm{AGR}]\left[_{\mathrm{VP}} \mathrm{~V} \ldots\right] \tag{29}\\
& \text { (i) } \beta\left[_{\mathrm{VP}}\right. \text { V-AGR. ..] } \tag{30}\\
& \text { (ii) } \beta\left[_{\mathrm{VP}}[\mathrm{VP} \text { V-AGR...] NP] }\right.
\end{align*}
$$

For cases like this there is the command \backslash exi\{<identifier>\} which works exactly like \ex:
\exi\{<identifier>\} \Longrightarrow the identifier as label
\exi\{<identifier>\} <example> \Longrightarrow the example labelled with identifier
\exi\{<identifier>\}[<judgement>]\{<example>\} \Longrightarrow the judged example, labelled with identifier.

So the example above is produced by:
··· let us now contemplate Chomsky (1981:264, ex.29f):
\begin\{exe\} }
\exi\{(29)\} \al\lb\{INFL\} AGR]\lb\{VP\} V···]
\exi\{(30)\}

```
\begin{xlist}[(ii)]
    \exi{(i)} \be\lb{VP} V-AGR\ldots]
    \exi{(ii)} \be\lb{VP}\lb{VP} V-AGR\ldots] NP]
\end{xlist}
\end{exe}
```

\exi can be used to deal with many labelling problems. The three most commons ones are predefined:

- Crossreferences (\exr\{<label>\}):
.... a sentiment already expressed in (1) on page 2 , repeated here:
(1) Here is one.

```
\ldots a sentiment already expressed in (\ref{here})
on page \pageref{here}, repeated here:
\begin{exe}
\exr{here} Here is one.
\end{exe}
```

- Crossreferences with primes ($\backslash \exp \{<1$ abel $>\}$):
... which contrasts sharply with
(1^{\prime}) ?? Here is two
··· which contrasts sharply with
\backslash begin\{exe $\}$
\exp\{here\} [??] \{Here is two.\}
\end\{exe\} }
- Unnumbered examples (\sn):
...here we have an example
\% Colourless green ideas sleep furiously.
of a sentence too famous to be numbered...
··· here we have an example
\backslash begin\{exe $\}$
\sn[
%] \{Colourless green ideas sleep furiously.\}
\end\{exe\} }
of a sentence too famous to be numbered \backslash ldots

Again, these commands work exactly as \ex or \exi\{<identifier>\}.

2 Glosses

gb4e. sty offers a set of commands for typesetting glosses based on M. Covington's $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$-adaptation of M. deGroot's Midnight gloss $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-macros. ${ }^{3}$

A gloss basically contains two elements:
$\backslash g l l$ (obligatory): introduces the actual sentence/gloss pair; ${ }^{4}$
\glt or \trans (optional): introduces a free translation.
So the following

```
\begin{exe}
\ex
\gll Wenn jemand in die W\"uste zieht ... \\
If someone in the desert draws and lives ... \\
\trans 'if one retreats to the desert and ... '
\end{exe}
```

produces:
(5) Wenn jemand in die Wüste zieht und lebt dort von If someone in the desert draws and lives there from Heuschrecken oder sich im Wald verirrt hat und nährt grasshoppers or self in the woods errored has and nourisches sich von Wurzeln und Beeren, ... self from roots and berries ...
'if one retreats to the desert and lives there from grasshoppers or gets lost in the woods and lives off of roots and berries'

Since the macro counts words, to match one word with a multi-word gloss or vice versa, you either have to put the words in braces or use hyphens. For example, German zum could be glossed as either \{to the\} or to-the. And of course, if you have a word that is not glossed, like WH-trace e_{i} or a proper name, you have to tell the gloss line that there's something there, e.g. with $\}$.
(6) Den Fritz ${ }_{1}$ habe ich --1 zum Essen eingeladen. the fred have I to the eating invited.
I invited Fred for dinner.
is produced by

[^2]```
\begin{exe}
\ex
\gll Den Fritz_1 habe ich __{}_1 zum Essen eingeladen.\\
 the fred have I {} {to the} eating invited.\\
\glt I invited Fred for dinner.
\end{exe}
```

Although it is possible to treat an optional judgement just as the first word of the sentence with a null-translation as in (7), the standard way of using an optional argument with $\backslash e x$ as in (8) is simpler (and conceptually more consistent).

* Dit is een voorboeldje.

This is an example.
'Here's where the translation would be'
(8) $*$ Dit is een voorboeld. This is an example. 'and this would be the translation line'

This output is produced by
\ex
\gll * Dit is een voorboeldje. <br>
\{\} This is an example. <br>
\trans 'Here's where the translation would be'
and
\ex[*]\{
\gll Dit is een voorboeld.<br>
This is an example.<br>
\trans 'and this would be the translation line'\}
respectively.
By default the glosses appear in "Linguistic Inquiry style" with all lines in $\backslash r m$. To change a line (e.g. to \it if required for a particular journal), just put the appropriate lines in the preamble of your document, e.g., \let\eachwordone=\it. The same for \eachwordtwo and \eachwordthree (used by the three line glosses introduced by $\backslash \mathrm{glll}$ ). Note that it will not work to put \it before the line in your text, as the words are parsed separately. For example, \let\eachwordone=\it yields
(9) ? Und hier können wir sehen was für Unfug wird gemacht and hier can we see what for nonsense will-be made wenn er einen ganz langen Satz binnen kriegt if he a very long sentence inside gets. 'and here's what happens to a looooong sentence'
and \let\eachwordtwo=\sf gives
(10) * Cette phrase n'a pas une traduction. This sentence not has nought a translation.

As you can see by these examples, you can also re-define the eachword variables in your file for individual examples by using the \let command within the \begin\{exe\} environment, and then the style change is local. }

By default, the glosses will be single-spaced even in double-spaced environments. If you - or rather the journal you're submitting to - don't like that, just give the command \nosinglegloss in the preamble of your document.

## 3 Varia

gb4e.sty contains a few additional goodies (mostly abbreviations for frequently used constructions) which will be properly documented in a subsequent life. For now just some sample of uses:

- X-bar styles: Per default \obar\{X\} \ibar\{X\} \iibar\{X\} \mbar\{X\} yields $\mathrm{X}^{0} \overline{\mathrm{X}} \overline{\mathrm{X}} \mathrm{X}^{\text {max }}$. With $\backslash$ primebars in the preamble, the outcome is $\mathrm{X}^{0} \mathrm{X}^{\prime} \mathrm{XP} \mathrm{X}^{\max }$.
- Labelled bracketings: \lb\{NP\}[1]\lb\{D\}[1] the]\lb\{\ibar\{N\}\} example]] yields $\left[_{\mathrm{NP}_{1}}\left[\mathrm{D}_{1}\right.\right.$ the $][\overline{\mathrm{N}}$ example $]$. An analogous right-bracket $(\backslash \mathrm{rb})$ is also defined.
- Greek letters: the frequently used letters $\alpha \beta \gamma \delta$ and $\theta$ have abbreviations \al \be \ga \de \th which also work outside mathmode.
- Sub- \& superscripts (_ and ${ }^{\wedge}$ ) work outside mathmode, too.

At the very end of the style-file a couple of special accents for "exotic" languages are defined. Also, check out the \attop-, \atcenter-macros (by Lex Holt) for aligning naughty (picture-)examples to their numbers, as well as J. Frampton's movement-arrows:


```
\begin{exe}
\ex\atcenter{
 \arrowalign{\fillright\pd&\link3&\fillleft{\vrule\hfil}\cr
 Did&\ &John&\ &t_{\mathrm{Agr}}&\ appear &t&\ to be likely &t&\ to win.\cr
 &&\fillright\pu&\link3&\centr{\vrule\spacer\pu}&\lf&\fillleft\vrule\cr}
 }
\end{exe}
```


[^0]:    *Parts of "Government-Binding style" gb4e.sty are loosely based on ideas and code by M. Covington, M. deGroot, J. Frampton and L. Holt. In particular it automatically includes cgloss4e.sty, a (heavily adapted) version of M. Covington's $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-adaptation of M. de Groot's plainTEX Midnight gloss macros.
    ${ }^{1}$ This version of $\mathrm{gb} \boldsymbol{x}$. sty redesigns the entire series of $\backslash \mathrm{ex}$ commands. It also contains changes to the gloss-macros to make them work in footnotes etc. NB: The export version does not provide a soft-landing system of command-compatibility with earlier versions.

    NB: Make sure to get cgloss4e.sty together with gb4e.sty.
    As time permits, we'd like to revise the rest of gb4e.sty, so please experiment and let us know about bugs and/or suggestions.

[^1]:    ${ }^{2}$ Note that for all $\backslash$ begin $\{\langle e n v\rangle\} \ldots$. . $\operatorname{end}\{\langle e n v\rangle\}$ pairs the forms $\left.\backslash<e n v\right\rangle \ldots$ end<env> are also permissible in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. So if you like you can go on using $\backslash x l i s t \ldots \backslash$ endxlist for $\backslash$ begin $\{$ xlist $\} \ldots$. . end $\{x l i s t\}$ etc., but $I^{A} T_{E} X$-syntaxcheckers and utilities like AUC$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ won't recognize them as necessarily paired and won't report unmatched expressions. (Have you ever tried <Ctrl>-C <Ctrl>-C (= LaTeX-environment) or <Ctrl>-C <Ctrl>-F (= LaTeX-close-environment) in EMACS' AUC-TEX mode? You should-it saves a lot of typing.)

[^2]:    ${ }^{3}$ They are defined in the file cgloss4e.sty which is automatically read by gb4e.sty.
    ${ }^{4}$ There is also a three-line version of $\backslash g l l, \backslash g l l l$ for special morphological/phonological information (not for the free translation!).

