
frege.sty
A LATEX 2εPackage for Typesetting

Begriffsschrift

Quirin Pamp
Quirin.Pamp.2009@my.bristol.ac.uk

July 16, 2012

1 Background

1.1 begriff.sty

This package is based on begriff.sty released under the GNU General Public
License. Copyright (C) 2003 by Josh Parsons (josh@coombs.anu.edu.au)
with changes made in October 2004 by Richard Heck (heck@fas.harvard.edu)
and minor changes by Josh Parsons to fix a problem with linespacing made
in May 2005.

While I could not have done so without the aforementioned work, I have
reworked the package from the ground up, to the point where some of the
underlying approaches have changed. On the downside this means there is
no simple way of converting anything typeset using begriff.sty to use this
package instead. I felt this was necessary to achieve a end result I was happy
with.

1.2 GNU General Public License

This package and all accompanying documentation is released under the GNU
General Public License. It is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as published

1

by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111, USA. (or just search for it
online... Seriously.)

1.3 Changes as Compared to begriff.sty

• correct relative lengths of the content stroke with respect to other strokes
attached to it;
• content strokes point at the middle of the followint symbols, rather than

the bottom;
• greater width for the assertion stroke as compared to the content stroke;
• a more intuitive structure for the conditional (arguments are now given in

the same order as they appear on the left of a completed formula);
• the command for the conditional with empty arguments now results in a

vertical line (conditional stroke) on it’s own the other strokes are added as
the arguments;
• the linewidth is properly accounted for so that things remain properly

centered when scaled;

1.4 Changes in Version 1.1

• added a optional scale factor to all basic strokes;
• simplified the code for Fbracket in terms of that for Fbox;
• rearranged the code in the style file in a more logical way;

1.5 Changes in Version 1.2

• added a new command “Fargument” for typesetting arguments;
• added a new command “Fstrut” to be used in conjunction with Fargument;
• changed Fbaselength to be equal to the full length of a basi stroke (20pt);

2

• fixed a bug where the scale factor introduced in version 1.1 does not reset
after all uses;

1.6 Changes and Features yet to come

• incorporation of other frege related material such as fge.sty so as to put
all frege related material in a single package;
• a vertical shorthand stroke such as used by Frege for typesetting arguments

in “Begriffsschrift”;

3

2 Features and Usage

2.1 Commands

2.1.1 Basic Commands

The following is a list of the basic commands provided by this package along
with accompanying output. The conditional is treated sepperately.

\Fcontent[1]

\Fncontent[1]

\Fnncontent[1]

\Facontent[1]

\Fancontent[1]

\Fanncontent[1]

\Fquant[1]{a} a

\Fnquant[1]{a} a

\Fnnquant[1]{a} a

\Fquantn[1]{a} a

\Fquantnn[1]{a} a

\Fnquantn[1]{a} a

\Fnquantnn[1]{a} a

\Fnnquantn[1]{a} a

\Fnnquantnn[1]{a} a

\Faquant[1]{a} a

\Fanquant[1]{a} a

\Fannquant[1]{a} a

\Faquantn[1]{a} a

\Faquantnn[1]{a} a

\Fanquantn[1]{a} a

\Fanquantnn[1]{a} a

\Fannquantn[1]{a} a

\Fannquantnn[1]{a} a

4

This may seem like a daunting list, but there is an exceedingly simple way
to think about it. In a sense there are only two commands \Fcontent[1] and
\Fquant[1]{}. These two commands can be augmented with a combination
of as and ns so as to add assertion and negation strokes respectively. Any
stroke that is asserted (has a fat vertical line at the start) starts with ‘\Fa’.
This may be followed by either one or two or no ‘n’ to add one or two or no
negation strokes (the small vertical lines below the assertion stroke). Next
comes the name of the main command, either ‘quant’ or ‘content’. Finally
the quantifiers may be followed by either one or two ‘n’ to add one or two
negation strokes to the content stroke after the quantifier’s depression.

Consider also that many of these commands are only really present for
completeness sake. It is difficult to imagine a situation where a twice negated
quantifier with twice negated content would ever be needed.

Since version 1.1 all basic strokes also have an optional scaling factor. A
command followed by [.5], for example would produce a stroke exactly half
the default length while [2] produces a stroke twice the default length. (The
default length is given by \Fbaselength which is set to 20pt. Scaling allows for
greater control in the total length of formula as well as for a shorter syntax.
(We can replace expressions like \Facontent \Fcontent with \Facontent[2].)
Care must be taken not to set a length that is shorter than what is needed
to fit all the parts of some basic stroke. This will lead to negative lengths
and hence unpredictable output.

All quantifiers also have a mandatory argument that specifies the variable
associated with the quantifier. (Mandatory arguments are contained in a set
of curly brackets { and }). This argument should be a single small letter
and will be typeset above the semi circular depression in the assertion stroke
in mathfrak font which is provided by tha amssymb package. This font can
be used in maths mode by using the command ‘\mathfrak{}’. Note that all
the commands provided by this package may be used in both math and text
mode. (Though math mode usually results in better formatting.)

Finally one may combine the above commands in arbitrary combinations
which will result in gapless longer strokes. (Eg.: a b A) which may be
roughly translated into english as “for all a there exists a b such that A”. (The
commands I used for this expression are $\Faquant{a}\Fnquantn{b}A$).

5

2.1.2 Conditional

The conditional is the most important command in this package since it gives
Frege’s Begriffsschrift it’s two dimensional structure.
The syntax for the Fconditional command is as follows:
\Fconditional[<option>] {<consequent>}{<antecedent>}

The arguments may in principle be anything, but you will only get a be-
griffschrift formula if the arguments are themselves given by appropriate
commands from the list of basic commands given earlier. As an example, an
asserted conjunction between A and B would be given as follows:

$\Fconditional[\Fancontent]{\Fncontent A}{\Fcontent B}$
and produce the following output:

A

B

In addition Fconditional may be nested as it’s own argument to arbitrary
depth. Nesting in the option is not recommended.
A conditional with nested consequent may be given as follows:

$\Fconditional[\Facontent]{\Fcontent\Fconditional{\Fcontent A}{\Fcontent
B}}{\Fcontent\Fcontent C}$
and produces the following output:

A

B

C

A conditional with nested antecedent may be given as follows:
$\Fconditional[\Facontent]{\Fcontent \Fcontent A}{\Fcontent\Fconditional

{\Fcontent B}{\Fcontent C}}$
and produces the following output:

A

B

C

Each section of a content stroke may thus be replaced with any of the strokes
given by the list of basic commands. Note that it is up to the user to place the
appropriate number of strokes in each argument to ensure that the content
strokes all line up on the right hand side.

6

2.1.3 Brackets and Boxes

There are two more commands to be considered:
\Fbracket{<complex expression>}
\Fbox{<complex expression>}

Both Fbox and Fbracket take what I have called a ‘complex expression’ for
their argument. A ‘complex expression’ is any formula in begriffsschrift that
has at least one conditional in it. It is generally a good idea to put all complex
expressions into either a Fbox or a Fbracket. It is never necessary to place
a complex expressions into both an Fbox and an Fbracket since an Fbox
simply is a Fbracket without the actual brackets. Fbracket exists only for
convenience with the same effect being achieved by \left(\Fbox{} \right).

The reason why the Fbox is a good idea, is that the baseline is very near
the top of a complex expression of Begriffsschrift, which can make for some
odd formatting effects. In addition to placing the baseline at the middel of a
complex expression an Fbox ensures the expression is treated by LaTeX as
a single object and given enough space.

Finally a complex expression may not format correctly in some environ-
ments (like the align* environment for example) unless it is placed in an
Fbox. In short, always use an Fbox (or Fbracket).

2.2 Arguments and Struts

Since version 1.2 two arguments have been added that allow for the typeset-
ting of arguments. The syntax for the argument command is as follows:
\Fargument[<absent premise>]{<premise 1>}{<premise 2>}{<conclusion

>}
In the following esample the optional argument for the absent premise takes
the value ‘X’ the premises are the two formulas above the therfore line and
the conclusion is the formula below the therefore line. The Begriffschrift
expressions in the arguments of the Fargument command do not need to
be placed in an Fbox, since the Fargument command works by boxing it’s

7

arguments allready.

(X):

A

B

C

C

A

where X = B; (this is typeset seperately from the Fargument command);
The three begriffsschrift formulas above are in fact aligned leftbound. To

make them appear rightbound no matter what the relative lengths of A, B,
and C, the command “Fstrut” has been used in front of C and A.
The command \Fstrut[1] works exactly like an invisible content stroke, that
is it inserts space of length Fbaselength. Like all basic strokes it can be scaled
via an optional scale factor.

2.3 Lengths

In theory all the dimensions in this package can be changed with the com-
mand \setlength{<name of length>}{<new value>}, though I have not done
a great deal of testing and recommend sticking to the default values. The
following then is a table of all lengths:
name default value description
\Fbaselength 20pt the length of the basic strokes
\Flinewidth 0.5pt the line width
\Fspace 2pt seperation between lines and text/formula
\Fassertwidth 3\Flinewidth width of assert stroke
\Fraiseheight 1ex-\Flinewidth height of content lines above baseline
\Fnegsep 3\Flinewidth seperation between a double negation
\Fnegshort 2\Flinewidth space between negation stroke and baseline
\Fquantwidth 6pt width of the semi-circular quantifier depression

the height of the conditional stroke is determined by the size of the contents
of the conditionals argument, as well as the baselineskip of the surrounding
text. It cannot be changed manually.

8

2.4 Final Example

The Geach-Kaplan sentance (with thanks to Marcus Rossberg):

F
f

(
a C(a)

F(a)

)
b F(b)

c d c = d

F(d)

F(c)

A(c, d)

And that is all.
For comments, suggestions, identified errors, email me at
<Q.Pamp.2009@my.bristol.ac.uk>.

9

