
The fontspec package
Font selection for X ELATEX and LuaLATEX

Will Robertson
With contributions by Khaled Hosny,

Philipp Gesang, Joseph Wright, and others.
http://wspr.io/fontspec/

2019/01/25 v2.7a

Contents

I Getting started 5

1 History 5

2 Introduction 5
2.1 Acknowledgements . 5

3 Package loading and options 6
3.1 Font encodings . 6
3.2 Maths fonts adjustments . 6
3.3 Configuration . 6
3.4 Warnings . 7

4 Interaction with LATEX2ε and other packages 7
4.1 Verbatim . 7
4.2 Commands for old-style and lining numbers 7
4.3 Italic small caps . 7
4.4 Emphasis and nested emphasis . 8
4.5 Strong emphasis . 8

II General font selection 9

1 Main commands 9

2 Font selection 10
2.1 By font name . 10
2.2 By file name . 11
2.3 By custom file name using a .fontspec file 12

1

http://wspr.io/fontspec/

2.4 Querying whether a font ‘exists’ . 13

3 Commands to select font families 14
3.1 More control over font shape selection . 15
3.2 Specifically choosing the nfss family . 16
3.3 Choosing additional nfss font faces . 17
3.4 Math(s) fonts . 18

4 Miscellaneous font selecting details 19

III Selecting font features 21

1 Default settings 21

2 Working with the currently selected features 22
2.1 Priority of feature selection . 23

3 Different features for different font shapes 23

4 Selecting fonts from TrueType Collections (TTC files) 25

5 Different features for different font sizes 25

6 Font independent options 26
6.1 Colour . 27
6.2 Scale . 27
6.3 Interword space . 28
6.4 Post-punctuation space . 29
6.5 The hyphenation character . 29
6.6 Optical font sizes . 30
6.7 Font transformations . 30
6.8 Letter spacing . 32

IV OpenType 33

1 Introduction 33
1.1 How to select font features . 33
1.2 How do I know what font features are supported by my fonts? 34

2 OpenType scripts and languages 35
2.1 Script and Language examples . 35

3 OpenType font features 35
3.1 Tag-based features . 38
3.2 CJK features . 48

2

V Commands for accents and symbols (‘encodings’) 52

1 A new Unicode-based encoding from scratch 52

2 Adjusting a pre-existing encoding 53

3 Summary of commands 55

VI LuaTEX-only font features 56

1 Custom font features 56

VII Fonts and features with X ETEX 58

1 X ETEX-only font features 58
1.1 Mapping . 58
1.2 Different font technologies: aat, OpenType, and Graphite 58
1.3 Optical font sizes . 59

2 The Graphite renderer 59

3 macOS’s aat fonts 59
3.1 Ligatures . 60
3.2 Letters . 60
3.3 Numbers . 60
3.4 Contextuals . 60
3.5 Vertical position . 60
3.6 Fractions . 61
3.7 Variants . 62
3.8 Alternates . 62
3.9 Style . 62
3.10 CJK shape . 62
3.11 Character width . 63
3.12 Vertical typesetting . 63
3.13 Diacritics . 63
3.14 Annotation . 64

VIII Customisation and programming interface 65

1 Defining new features 65

2 Defining new scripts and languages 66

3 Going behind fontspec’s back 66

4 Renaming existing features & options 67

3

5 Programming interface 67
5.1 Variables . 67
5.2 Functions for loading new fonts and families 67
5.3 Conditionals . 68

4

Part I

Getting started

1 History

This package began life as a LATEX interface to select system-installedmacOS fonts in Jonathan
Kew’s X ETEX, the first widely-used Unicode extension to TEX. Over time, X ETEX was extended
to support OpenType fonts and then was ported into a cross-platform program to run also on
Windows and Linux.

More recently, LuaTEX is fast becoming the TEX engine of the day; it supports Unicode
encodings and OpenType fonts and opens up the internals of TEX via the Lua programming
language. Hans Hagen’s ConTEXt Mk. IV is a re-write of his powerful typesetting system, tak-
ing full advantage of LuaTEX’s features including font support; a kernel of his work in this area
has been extracted to be useful for other TEX macro systems as well, and this has enabled
fontspec to be adapted for LATEX when run with the LuaTEX engine.

2 Introduction

The fontspec package allows users of either X ETEX or LuaTEX to load OpenType fonts in a
LATEX document. No font installation is necessary, and font features can be selected and used
as desired throughout the document.

Without fontspec, it is necessary towrite cumbersome font definition files for LATEX, since
LATEX’s font selection scheme (known as the ‘nfss’) has a lot going on behind the scenes to
allow easy commands like \emph or \bfseries. With an uncountable number of fonts now
available for use, however, it becomes less desirable to have towrite these font definition (.fd)
files for every font one wishes to use.

Because fontspec is designed to work in a variety of modes, this user documentation is
split into separate sections that are designed to be relatively independent. Nonetheless, the
basic functionality all behaves in the same way, so previous users of fontspec under X ETEX
should have little or no difficulty switching over to LuaTEX.

This manual can get rather in-depth, as there are a lot of details to cover. See the docu-
ments fontspec-example.tex for a complete minimal example to get started quickly.

2.1 Acknowledgements

This package could not have been possible without the early and continued support the author
of X ETEX, Jonathan Kew. When I started this package, he steered me many times in the right
direction.

I’ve had great feedback over the years on feature requests, documentation queries, bug
reports, font suggestions, and so on from lots of people all around the world. Many thanks to
you all.

Thanks toDavid Perry andMarkus Böhning for numerous documentation improvements
and David Perry again for contributing the text for one of the sections of this manual.

Special thanks to Khaled Hosny, who was the driving force behind the support for
LuaLATEX, ultimately leading to version 2.0 of the package.

5

3 Package loading and options

For basic use, no package options are required:

\usepackage{fontspec}

Package options will be introduced below; some preliminary details are discussed first.

3.1 Font encodings

The 2016 release of fontspec initiated some changes for font encodings and the loading of
xunicode. The 2017 release rolls out those changes as default.

The now-default tuenc package option switches the nfss font encoding to TU. TU is a
new Unicode font encoding, intended for both X ETEX and LuaTEX engines, and automatically
contains support for symbols covered by LATEX’s traditional T1 and TS1 font encodings (for ex-
ample, \%, \textbullet, \"u, and so on). As a result, with this package option, RossMoore’s
xunicode package is not loaded. Some new, experimental, features are now provided to cus-
tomise some encoding details; see Part V on page 52 for further details.

Pre-2017 behaviour can be achieved with the euenc package option. This selects the EU1
or EU2 encoding (X ETEX/LuaTEX, resp.) and loads the xunicode package. Package authors and
users who have referred explicitly to the encoding names EU1 or EU2 should update their code
or documents. (See internal variable names described in Section 5 on page 67 for how to do
this properly.)

3.2 Maths fonts adjustments

By default, fontspec adjusts LATEX’s default maths setup in order to maintain the correct Com-
puterModern symbols when the roman font changes. However, it will attempt to avoid doing
this if another maths font package is loaded (such asmathpazo or the unicode-math package).

If you find that fontspec is incorrectly changing the maths font when it shouldn’t be,
apply the no-math package option to manually suppress its behaviour here.

3.3 Configuration

If you wish to customise any part of the fontspec interface, this should be done by creating
your own fontspec.cfg file, which will be automatically loaded if it is found by X ETEX or
LuaTEX. A fontspec.cfg file is distributed with fontspecwith a small number of defaults set
up within it.

To customise fontspec to your liking, use the standard .cfg file as a starting point or
write your own from scratch, then either place it in the same folder as the main document
for isolated cases, or in a location that X ETEX or LuaTEX searches by default; e.g. in MacTEX:
~/Library/texmf/tex/latex/.

The package option no-configwill suppress the loading of the fontspec.cfg file under
all circumstances.

6

3.4 Warnings

This package can give some warnings that can be harmless if you know what you’re doing.
Use the quiet package option to write these warnings to the transcript (.log) file instead.

Use the silent package option to completely suppress these warnings if you don’t even
want the .log file cluttered up.

4 Interaction with LATEX2ε and other packages

This section documents some areas of adjustment that fontspec makes to improve default
behaviour with LATEX2ε and third-party packages.

4.1 Verbatim

Many verbatim mechanisms assume the existence of a ‘visible space’ character that exists in
the ascii space slot of the typewriter font. This character is known in Unicode as u+2423: box
open, which looks like this: ‘ ’.

When a Unicode typewriter font is used, LATEX no longer prints visible spaces for the
verbatim* environment and \verb* command. This problem is fixed by using the correct
Unicode glyph, and the following packages are patched to do the same: listings, fancyvrb,more-
verb, and verbatim.

In the case that the typewriter font does not contain ‘ ’, the Latin Modern Mono font is
used as a fallback.

In 2019, LATEXwill use a new command \verbvisiblespace for internal commands and
for third party packages. If this new command is defined, fontspec’s patching code here will be
entirely disabled and the packages listed above should no longer rely on fontspec to redefine
their internals.

4.2 Commands for old-style and lining numbers

LATEX’s definition of \oldstylenums relies on strange font encodings. We provide a fontspec-\oldstylenums
\liningnums compatible alternative and while we’re at it also throw in the reverse option as well. Use

\oldstylenums{⟨text⟩} to explicitly use old-style (or lowercase) numbers in ⟨text⟩, and the
reverse for \liningnums{⟨text⟩}.

4.3 Italic small caps

Note that this package redefines the \itshape, \slshape, and \scshape commands in or-\itshape
\slshape
\scshape

der to allow them to select italic small caps in conjunction. With these changes, writing
\itshape\scshape will lead to italic small caps, and \upshape subsequently then moves
back to small caps only. \upshape again returns from small caps to upright regular. (And
similarly for for \slshape. In addition, once italic small caps are selected then \slshapewill
switch to slanted small caps, and vice versa.)

7

4.4 Emphasis and nested emphasis

LATEX2ε allows you to specify the behaviour of \emph nested within \emph by setting the\eminnershape
\eminnershape command. For example,

\renewcommand\eminnershape{\upshape\scshape}

will produce small caps within \emph{\emph{...}}.
The fontspec package takes this idea one step further to allow arbitrary font shape\emfontdeclare

changes and arbitrary levels of nestingwithin emphasis. This is performedusing the \emfontdeclare
command, which takes a comma-separated list of font switches corresponding to increasing
levels of emphasis. An example:

1. \emfontdeclare{\itshape,\upshape\scshape,\itshape}will lead to ‘italics’, ‘small
caps’, then ‘italic small caps’ as the level of emphasis increases, as long as italic small caps
are defined for the font. Note that \upshape is required because the font changes are
cascading.

The implementation of this feature tries to be ‘smart’ and guess what level of emphasis to use
in the case ofmanual font changing. This is reliable only if you use shape-changing commands
in \emfontdeclare. For example:

\emfontdeclare{\itshape,\upshape\scshape,\itshape}
...
\scshape small caps \emph{hello}

Here, the emphasised text ‘hello’ will be printed in italic small caps since \emph can detect that
the current font shape is already in the second ‘mode’ of emphasis.

Finally, if you have so much nested emphasis that \emfontdeclare runs out of options,\emreset
it will insert \emreset (by default just \upshape) and start again from the beginning.

4.5 Strong emphasis

The \strong macro is used analogously to \emph but produces variations in weight. If you\strong
\strongenv need it in environment form, use \begin{strongenv}...\end{strongenv}.

As with emphasis, this font-switching command is intended to move through a range
of font weights. For example, if the fonts are set up correctly it allows usage such as
\strong{...\strong{...}} in which each nested \strong macro increases the weight of
the font.

Currently this feature set is somewhat experimental and there is no syntactic sugar to\strongfontdeclare
easily define a range of font weights using fontspec commands. Use, say, the following to
define first bold and then black (k) font faces for \strong:

\strongfontdeclare{\bfseries,\fontseries{k}\selectfont}

If too many levels of \strong are reached, \strongreset is inserted. By default this is a\strongreset
no-op and the fontwill simply remain the same.Use \renewcommand\strongreset{\mdseries}
to start again from the beginning if desired.

An example for setting up a font family for use with \strong is discussed in 3.3.1 on
page 18.

8

Part II

General font selection

1 Main commands

This section concerns the variety of commands that can be used to select fonts.

\setmainfont{⟨font⟩}[⟨font features⟩]
\setsansfont{⟨font⟩}[⟨font features⟩]
\setmonofont{⟨font⟩}[⟨font features⟩]

These are the main font-selecting commands of this package which select the standard
fonts used in a document, as shown in Example 1. Here, the scales of the fonts have been
chosen to equalise their lowercase letter heights. The Scale font feature will be discussed
further in Section 6 on page 26, including methods for automatic scaling. Note that further
options may need to be added to select appropriate bold/italic fonts, but this shows the main
idea.

Note that while these commands all look and behave largely identically, the default setup
for font loading automatically adds the Ligatures=TeX feature for the \setmainfont and
\setsansfont commands. These defaults (and further customisations possible) are discussed
in Section 1 on page 21.

\newfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\setfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\renewfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]

These commands define new font family commands (like \rmfamily). The new com-
mand checks if ⟨cmd⟩ has been defined, and issues an error if so. The renew command checks
if ⟨cmd⟩ has been defined, and issues an error if not. The set command never checks; use at
your own risk.

NEW: In previous versions of fontspec, only \newfontfamily was provided, but it be-
haved like \setfontfamily. You’ll have to update your code slightly if this now causes prob-
lems; apologies.

\fontspec{⟨font⟩}[⟨font features⟩]

The plain \fontspec command is not generally recommended for document use. It is an
ad hoc commands best suited for testing and loading fonts on a one-off basis.

All of the commands listed above accept comma-separated ⟨font feature⟩=⟨option⟩ lists;
these are described later:

• For general font features, see Section 6 on page 26
• For OpenType fonts, see Part IV on page 33
• For X ETEX-only general font features, see Part VII on page 58
• For LuaTEX-only general font features, see Part VI on page 56
• For features for aat fonts in X ETEX, see Section 3 on page 59

9

Example : Loading the default, sans serif, and monospaced fonts.

Pack my box with five dozen liquor jugs
Pack my box with five dozen liquor jugs
Pack my box with five dozen liquor jugs

\setmainfont{texgyrebonum-regular.otf}
\setsansfont{lmsans10-regular.otf}[Scale=MatchLowercase]
\setmonofont{Inconsolatazi4-Regular.otf}[Scale=MatchLowercase]

\rmfamily Pack my box with five dozen liquor jugs\par
\sffamily Pack my box with five dozen liquor jugs\par
\ttfamily Pack my box with five dozen liquor jugs

2 Font selection

In both LuaTEX andX ETEX, fonts can be selected (using the ⟨font⟩ argument in Section 1) either
by ‘font name’ or by ‘file name’, but there are some differences in how each engine finds and
selects fonts — don’t be too surprised if a font invocation in one engine needs correction to
work in the other.

2.1 By font name

Fonts known to LuaTEX or X ETEX may be loaded by their standard names as you’d speak
them out loud, such as Times New Roman or Adobe Garamond. ‘Known to’ in this case gen-
erally means ‘exists in a standard fonts location’ such as ~/Library/Fonts on macOS, or
C:\Windows\Fonts onWindows. In LuaTEX, fonts found in the texmf tree can also be loaded
by name. In X ETEX, fonts found in the texmf tree can be loaded in Windows and Linux, but
not on macOS.

The simplest example might be something like

\setmainfont{Cambria}[...]

in which the bold and italic fonts will be found automatically (if they exist) and are immedi-
ately accessible with the usual \textit and \textbf commands.

The ‘font name’ can be found in various ways, such as by looking in the name listed
in a application like Font Book on Mac OS X. Alternatively, TEXLive contains the otfinfo
command line program, which can query this information; for example:

otfinfo -i `kpsewhich lmroman10-regular.otf`

results in a line that reads:

Preferred family: Latin Modern Roman

(The ‘preferred family’ name is usually better than the ‘family’ name.)

LuaTEX users only In order to load fonts by their name rather than by their filename (e.g.,
‘LatinModernRoman’ instead of ‘ec-lmr10’), youmayneed to run the script luaotfload-tool,
which is distributed with the luaotfload package. Note that if you do not execute this script
beforehand, the first time you attempt to typeset the process will pause for (up to) several
minutes. (But only the first time.) Please see the luaotfload documentation for more informa-
tion.

10

2.2 By file name

X ETEX and LuaTEX also allow fonts to be loaded by file name instead of font name. When
you have a very large collection of fonts, you will sometimes not wish to have them all in-
stalled in your system’s font directories. In this case, it is more convenient to load them from
a different location on your disk. This technique is also necessary in X ETEX when loading
OpenType fonts that are present within your TEX distribution, such as /usr/local/texlive/
2013/texmf-dist/fonts/opentype/public. Fonts in such locations are visible to X ETEX
but cannot be loaded by font name, only file name; LuaTEX does not have this restriction.

When selecting fonts by file name, any font that can be found in the default search paths
may be used directly (including in the current directory) without having to explicitly define
the location of the font file on disk.

Fonts selected by filename must include bold and italic variants explicitly, unless a
.fontspec file is supplied for the font family (see section Section 2.3). We’ll give some first
examples specifying everything explicitly:

\setmainfont{texgyrepagella-regular.otf}[
BoldFont = texgyrepagella-bold.otf ,
ItalicFont = texgyrepagella-italic.otf ,
BoldItalicFont = texgyrepagella-bolditalic.otf]

fontspec knows that the font is to be selected by file name by the presence of the ‘.otf’ exten-
sion. An alternative is to specify the extension separately, as shown following:

\setmainfont{texgyrepagella-regular}[
Extension = .otf ,
BoldFont = texgyrepagella-bold ,
...]

If desired, an abbreviation can be applied to the font names based on the mandatory ‘font
name’ argument:

\setmainfont{texgyrepagella}[
Extension = .otf ,
UprightFont = *-regular ,
BoldFont = *-bold ,
...]

In this case ‘texgyrepagella’ is no longer the name of an actual font, but is used to construct
the font names for each shape; the * is replaced by ‘texgyrepagella’. Note in this case that
UprightFont is required for constructing the font name of the normal font to use.

To load a font that is not in one of the default search paths, its location in the filesystem
must be specified with the Path feature:

\setmainfont{texgyrepagella}[
Path = /Users/will/Fonts/ ,
UprightFont = *-regular ,
BoldFont = *-bold ,
...]

11

Note that X ETEX and LuaTEX are able to load the font without giving an extension, but fontspec
must know to search for the file; this can can be indicated by using the Path feature without
an argument:

\setmainfont{texgyrepagella-regular}[
Path, BoldFont = texgyrepagella-bold,
...]

My preference is to always be explicit and include the extension; this also allows fontspec to
automatically identify that the font should be loaded by filename.

In previous versions of the package, the Path feature was also provided under the alias
ExternalLocation, but this latter name is now deprecated and should not be used for new
documents.

2.3 By custom file name using a .fontspec file

When fontspec is first asked to load a font, a font settings file is searched for with the
name ‘⟨fontname⟩.fontspec’.1 If you want to disable this feature on a per-font basis, use the
IgnoreFontspecFile font option.

The contents of this file can be used to specify font shapes and font features without
having to have this information present within each document. Therefore, it can be more
flexible than the alternatives listed above.

When searching for this .fontspec file, ⟨fontname⟩ is stripped of spaces and file exten-
sions are omitted. For example, given \setmainfont{TeX Gyre Adventor}, the .fontspec
file would be called TeXGyreAdventor.fontspec. If you wanted to transparently load op-
tions for \setmainfont{texgyreadventor-regular.otf}, the configuration file would be
texgyreadventor-regular.fontspec.

N.B. that while spaces are stripped, the lettercase of the names should match.
This mechanism can be used to define custom names or aliases for your font collections.

The syntax within this file follows from the \defaultfontfeatures, defined in more de-
tail later but mirroring the standard fontspec font loading syntax. As an example, suppose
we’re defining a font family to be loaded with \setmainfont{My Charis}. The correspond-
ing MyCharis.fontspec file would contain, say,

\defaultfontfeatures[My Charis]
{
Extension = .ttf ,
UprightFont = CharisSILR,
BoldFont = CharisSILB,
ItalicFont = CharisSILI,
BoldItalicFont = CharisSILBI,
% <any other desired options>

}

The optional argument to \defaultfontfeaturesmust exactly match that requested by the
font loading command (\setmainfont, etc.) — in particular note that spaces are significant
here, so \setmainfont{MyCharis} will not ‘see’ the default font feature setting within the
.fontspec file.

1Located in the current folder or within a standard texmf location.

12

Finally, note that options for individual font faces can also be defined in this way. To
continue the example above, here we colour the different faces:

\defaultfontfeatures[CharisSILR]{Color=blue}
\defaultfontfeatures[CharisSILB]{Color=red}

Such configuration lines could be stored either inline inside My Charis.fontspec or within
their own .fontspec files; in this way, fontspec is designed to handle ‘nested’ configuration
options.

Where \defaultfontfeatures is being used to specify font faces by a custom name,
the Font feature is used to set the filename of the font face. For example:

\defaultfontfeatures[charis]
{
UprightFont = charis-regular,
% <other desired options for all font faces in the family>

}

\defaultfontfeatures[charis-regular]
{
Font = CharisSILR
% <other desired options just for the `upright' font>

}

The fontspec interface here is designed to be flexible to accomodate a variety of use cases; there
is more than one way to achieve the same outcome when font faces are collected together into
a larger font family.

2.4 Querying whether a font ‘exists’

\IfFontExistsTF{⟨font name⟩}{⟨true branch⟩}{⟨false branch⟩}

The conditional \IfFontExistsTF is provided to test whether the ⟨font name⟩ exists or
is loadable. If it is, the ⟨true branch⟩ code is executed; otherwise, the ⟨false branch⟩ code is.

This command can be slow since the engine may resort to scanning the filesystem for a
missing font. Nonetheless, it has been a popular request for users who wish to define ‘fallback
fonts’ for their documents for greater portability.

In this command, the syntax for the ⟨font name⟩ is a restricted/simplified version of the
font loading syntax used for \fontspec and so on. Fonts to be loaded by filename are detected
by the presence of an appropriate extension (.otf, etc.), and paths should be included inline.
E.g.:

\IfFontExistsTF{cmr10}{T}{F}
\IfFontExistsTF{Times New Roman}{T}{F}
\IfFontExistsTF{texgyrepagella-regular.otf}{T}{F}
\IfFontExistsTF{/Users/will/Library/Fonts/CODE2000.TTF}{T}{F}

The \IfFontExistsTF command is a synonym for the programming interface function
\fontspec_font_if_exist:nTF (Section 5 on page 67).

13

3 Commands to select font families

\newfontfamily\⟨font-switch⟩{⟨font name⟩}[⟨font features⟩]
\newfontface\⟨font-switch⟩{⟨font name⟩}[⟨font features⟩]

For cases when a specific font with a specific feature set is going to be re-used many times in
a document, it is inefficient to keep calling \fontspec for every use. While the \fontspec
command does not define a new font instance after the first call, the feature options must still
be parsed and processed.

For this reason, new commands can be created for loading a particular font family with\newfontfamily
the \newfontfamily command, demonstrated in Example 2. This macro should be used to
create commands that would be used in the same way as \rmfamily, for example. If you
would like to create a command that only changes the font inside its argument (i.e., the same
behaviour as \emph) define it using regular LATEX commands:

\newcommand\textnote[1]{{\notefont #1}}
\textnote{This is a note.}

Note that the double braces are intentional; the inner pair are used to to delimit the scope of
the font change.

Sometimes only a specific font face is desired, without accompanying italic or bold vari-\newfontface
ants being automatically selected. This is common when selecting a fancy italic font, say, that
has swash features unavailable in the upright forms. \newfontface is used for this purpose,
shown in Example 3, which is repeated in Section 3.4 on page 60.

Comment for advanced users: The commands defined by \newfontface and \newfontfamily
include their encoding information, so even if the document is set to use a legacy TEX encoding,
such commands will still work correctly. For example,

\documentclass{article}
\usepackage{fontspec}
\newfontfamily\unicodefont{Lucida Grande}
\usepackage{mathpazo}
\usepackage[T1]{fontenc}
\begin{document}
A legacy \TeX\ font. {\unicodefont A unicode font.}
\end{document}

Example : Defining new font families.

This is a note.
\newfontfamily\notefont{Kurier}
\notefont This is a \emph{note}.

14

Example : Defining a single font face.

where is all the vegemite

\newfontface\fancy{Hoefler Text Italic}%
[Contextuals={WordInitial,WordFinal}]

\fancy where is all the vegemite
% \emph, \textbf, etc., all don't work

3.1 More control over font shape selection

BoldFont = ⟨font name⟩
ItalicFont = ⟨font name⟩
BoldItalicFont = ⟨font name⟩
SlantedFont = ⟨font name⟩
BoldSlantedFont = ⟨font name⟩
SmallCapsFont = ⟨font name⟩
UprightFont = ⟨font name⟩

The automatic bold, italic, and bold italic font selections will not be adequate for the
needs of every font: while some fonts mayn’t even have bold or italic shapes, in which case a
skilled (or lucky) designer may be able to chose well-matching accompanying shapes from a
different font altogether, others can have a range of bold and italic fonts to chose among. The
BoldFont and ItalicFont features are provided for these situations. If only one of these is
used, the bold italic font is requested as the default from the new font. See Example 4.

If a bold italic shape is not defined, or you want to specify both custom bold and italic
shapes, the BoldItalicFont feature is provided.

3.1.1 Small caps and slanted font shapes

When a font family has both slanted and italic shapes, these may be specified separately using
the analogous features SlantedFont and BoldSlantedFont. Without these, however, the
LATEX font switches for slanted (\textsl, \slshape) will default to the italic shape.

Pre-OpenType, it was common for font families to be distributed with small caps glyphs
in separate fonts, due to the limitations on the number of glyphs allowed in the PostScript
Type 1 format. Such fonts may be used by declaring the SmallCapsFont of the family you are
specifying:

\setmainfont{Minion MM Roman}[
SmallCapsFont={Minion MM Small Caps & Oldstyle Figures}

Example : Explicit selection of the bold font.

Helvetica Neue UltraLight
Helvetica Neue UltraLight Italic
Helvetica Neue
Helvetica Neue Italic

\fontspec{Helvetica Neue UltraLight}%
[BoldFont={Helvetica Neue}]

Helvetica Neue UltraLight \\
{\itshape Helvetica Neue UltraLight Italic} \\
{\bfseries Helvetica Neue } \\
{\bfseries\itshape Helvetica Neue Italic} \\

15

]
Roman 123 \\ \textsc{Small caps 456}

In fact, you should specify the small caps font for each individual bold and italic shape as in

\setmainfont{ <upright> }[
UprightFeatures = { SmallCapsFont={ <sc> } } ,
BoldFeatures = { SmallCapsFont={ <bf sc> } } ,
ItalicFeatures = { SmallCapsFont={ <it sc> } } ,
BoldItalicFeatures = { SmallCapsFont={ <bf it sc> } } ,

]
Roman 123 \\ \textsc{Small caps 456}

Formostmodern fonts that have small caps as a font feature, this level of control isn’t generally
necessary.

All of the bold, italic, and small caps fonts can be loaded with different font features
from the main font. See Section 3 for details. When an OpenType font is selected for
SmallCapsFont, the small caps font feature is not automatically enabled. In this case, users
should write instead, if necessary,

\setmainfont{...}[
SmallCapsFont={...},
SmallCapsFeatures={Letters=SmallCaps},

]

3.2 Specifically choosing the nfss family

In LATEX’s nfss, font families are defined with names such as ‘ppl’ (Palatino), ‘lmr’ (Latin Mod-
ern Roman), and so on, which are selected with the \fontfamily command:

\fontfamily{ppl}\selectfont

In fontspec, the family names are auto-generated based on the fontname of the font; for ex-
ample, writing \fontspec{Times New Roman} for the first time would generate an internal
font family name of ‘TimesNewRoman(1)’. Please note that should not rely on the name that
is generated.

In certain cases it is desirable to be able to choose this internal font family name so it
can be re-used elsewhere for interacting with other packages that use the LATEX’s font selection
interface; an example might be

\usepackage{fancyvrb}
\fvset{fontfamily=myverbatimfont}

To select a font for use in this way in fontspec use the NFSSFamily feature:2

\newfontfamily\verbatimfont[NFSSFamily=myverbatimfont]{Inconsolata}

It is then possible to write commands such as:

\fontfamily{myverbatimfont}\selectfont
2Thanks to Luca Fascione for the example and motivation for finally implementing this feature.

16

which is essentially the same as writing \verbatimfont, or to go back to the orginal example:

\fvset{fontfamily=myverbatimfont}

Only use this feature when necessary; the in-built font switching commands that fontspec
generates (such as \verbatimfont in the example above) are recommended in all other cases.

If you don’t wish to explicitly set the nfss family but youwould like to knowwhat it is, an
alternative mechanism for package writers is introduced as part of the fontspec programming
interface; see the function \fontspec_set_family:Nnn for details (Section 5 on page 67).

3.3 Choosing additional nfss font faces

LATEX’s font selection scheme (nfss) is more flexible than the fontspec interface discussed up
until this point. It assigns to each font face a family (discussed above), a series such as bold or
light or condensed, and a shape such as italic or slanted or small caps. The fontspec features
such as BoldFont and so on all assign faces for the default series and shapes of the nfss, but
it’s not uncommon to have font families that have multiple weights and shapes and so on.

If you set up a regular font family with the ‘standard four’ (upright, bold, italic, and
bold italic) shapes and then want to use, say, a light font for a certain document element,
many users will be perfectly happy to use \newfontface\⟨switch⟩ and use the resulting
font \⟨switch⟩. In other cases, however, it is more convenient or even necessary to load ad-
ditional fonts using additional nfss specifiers.

FontFace = {⟨series⟩}{⟨shape⟩} { Font = ⟨font name⟩ , ⟨features⟩ }
FontFace = {⟨series⟩}{⟨shape⟩}{⟨font name⟩}

The font thus specified will inherit the font features of the main font, with optional ad-
ditional ⟨features⟩ as requested. (Note that the optional {⟨features⟩} argument is still sur-
roundedwith curly braces.)Multiple FontFace commandsmay be used in a single declaration
to specify multiple fonts. As an example:

\setmainfont{font1.otf}[
FontFace = {c}{\updefault}{ font2.otf } ,
FontFace = {c}{m}{ Font = font3.otf , Color = red }
]

Writing \fontseries{c}\selectfont will result in font2 being selected, which then fol-
lowed by \fontshape{m}\selectfont will result in font3 being selected (in red). A font
face that is defined in terms of a different series but an upright shape (\updefault, as shown
above) will attempt to find a matching small caps feature and define that face as well. Con-
versely, a font face defined in terms of a non-standard font shape will not.

There are some standards for choosing shape and series codes; the LATEX2ε font selection
guide3 lists series m for medium, b for bold, bx for bold extended, sb for semi-bold, and c for
condensed. A far more comprehensive listing is included in Appendix A of Philipp Lehman’s
‘The Font Installation Guide’4 covering 14 separate weights and 12 separate widths.

The FontFace command also interacts properly with the SizeFeatures command as
follows: (nonsense set of font selection choices)

3texdoc fntguide
4texdoc fontinstallationguide

17

FontFace = {c}{n}{
Font = Times ,
SizeFeatures = {
{ Size = -10 , Font = Georgia } ,
{ Size = 10-15} , % default "Font = Times"
{ Size = 15- , Font = Cochin } ,

},
},

Note that if the first Font feature is omitted then each size needs its own inner Font declara-
tion.

3.3.1 An example for \strong

If youwanted to set up a font family to allow nesting of the \strong to easily access increasing
font weights, you might use a declaration along the following lines:

\setmonofont{SourceCodePro}[
Extension = .otf ,
UprightFont = *-Light ,
BoldFont = *-Regular ,
FontFace = {k}{n}{*-Black} ,

]
\strongfontdeclare{\bfseries,\fontseries{k}\selectfont}

Further ‘syntactic sugar’ is planned to make this process somewhat easier.

3.4 Math(s) fonts

When \setmainfont, \setsansfont and \setmonofont are used in the preamble, they also
define the fonts to be used in maths mode inside the \mathrm-type commands. This only
occurs in the preamble because LATEX freezes the maths fonts after this stage of the processing.
The fontspec package must also be loaded after any maths font packages (e.g., euler) to be
successful. (Actually, it is only euler that is the problem.5)

Note that fontspec will not change the font for general mathematics; only the upright
and bold shapes will be affected. To change the font used for the mathematical symbols, see
either themathspec package or the unicode-math package.

Note that you may find that loading some maths packages won’t be as smooth as you
expect since fontspec (and X ETEX in general) breaks many of the assumptions of TEX as to
where maths characters and accents can be found. Contact me if you have troubles, but I can’t
guarantee to be able to fix any incompatibilities. The Lucida and Euler maths fonts should be
fine; for all others keep an eye out for problems.

\setmathrm{⟨font name⟩}[⟨font features⟩]
\setmathsf{⟨font name⟩}[⟨font features⟩]
\setmathtt{⟨font name⟩}[⟨font features⟩]
\setboldmathrm{⟨font name⟩}[⟨font features⟩]

5Speaking of euler, if you want to use its [mathbf] option, it won’t work, and you’ll need to put this after fontspec
is loaded instead: \AtBeginDocument{\DeclareMathAlphabet\mathbf{U}{eur}{b}{n}

18

However, the default text fonts may not necessarily be the ones you wish to use when
typesetting maths (especially with the use of fancy ligatures and so on). For this reason, you
may optionally use the commands above (in the same way as our other \fontspec-like com-
mands) to explicitly state which fonts to use inside such commands as \mathrm. Additionally,
the \setboldmathrm command allows you define the font used for \mathrm when in bold
maths mode (which is activated with, among others, \boldmath).

For example, if you were using Optima with the Euler maths font, you might have this
in your preamble:

\usepackage{mathpazo}
\usepackage{fontspec}
\setmainfont{Optima}
\setmathrm{Optima}
\setboldmathrm[BoldFont={Optima ExtraBlack}]{Optima Bold}

These commands are compatible with the unicode-math package. Having said that, unicode-
math also defines a more general way of defining fonts to use in maths mode, so you can
ignore this subsection if you’re already using that package.

4 Miscellaneous font selecting details

The optional argument — from v2.4 For the first decade of fontspec’s life, optional font
features were selected with a bracketed argument before the font name, as in:

\setmainfont[
lots and lots ,
and more and more ,
an excessive number really ,
of font features could go here

]{myfont.otf}

This always looked like ugly syntax to me, because the most important detail — the name of
the font — was tucked away at the end. The order of these arguments has now been reversed:

\setmainfont{myfont.otf}[
lots and lots ,
and more and more ,
an excessive number really ,
of font features could go here

]

I hope this doesn’t cause any problems.

1. Backwards compatibility has been preserved, so either input method works.

2. In fact, you can write

\fontspec[Ligatures=Rare]{myfont.otf}[Color=red]

if you really felt like it and both sets of features would be applied.

19

3. Following standard xparse behaviour, theremust be no space before the opening bracket;
writing

\fontspec{myfont.otf} [Color=red]

will result in [Color=red] not being recognised an argument and therefore it will be
typeset as text. When breaking over lines, write either of:

\fontspec{myfont.otf}% \fontspec{myfont.otf}[
[Color=red] Color=Red]

Spaces \fontspec and \addfontfeatures ignore trailing spaces as if it were a ‘naked’ con-
trol sequence; e.g., ‘M. \fontspec{...} N’ and ‘M. \fontspec{...}N’ are the same.

20

Part III

Selecting font features
The commands discussed so far such as \fontspec each take an optional argument for access-
ing the font features of the requested font. Commands are provided to set default features to
be applied for all fonts, and even to change the features that a font is presently loaded with.
Different font shapes can be loaded with separate features, and different features can even be
selected for different sizes that the font appears in. This part discusses these options.

1 Default settings

\defaultfontfeatures{⟨font features⟩}

It is sometimes useful to define font features that are applied to every subsequent font
selection command. Thismay be definedwith the \defaultfontfeatures command, shown
in Example 5. New calls of \defaultfontfeatures overwrite previous ones, and defaults can
be reset by calling the command with an empty argument.

\defaultfontfeatures[⟨font name⟩]{⟨font features⟩}

Default font features can be specified on a per-font and per-face basis by using the op-
tional argument to \defaultfontfeatures as shown.

\defaultfontfeatures[texgyreadventor-regular.otf]{Color=blue}
\setmainfont{texgyreadventor-regular.otf}% will be blue

Multiple fonts may be affected by using a comma separated list of font names.

\defaultfontfeatures[⟨\font-switch⟩]{⟨font features⟩}

New in v2.4. Defaults can also be applied to symbolic families such as those created with
the \newfontfamily command and for \rmfamily, \sffamily, and \ttfamily:

\defaultfontfeatures[\rmfamily,\sffamily]{Ligatures=TeX}
\setmainfont{texgyreadventor-regular.otf}% will use standard TeX ligatures

Example : A demonstration of the \defaultfontfeatures command.

Some default text 0123456789
Now grey, with old-style figures: 0123456789

\fontspec{texgyreadventor-regular.otf}
Some default text 0123456789 \\
\defaultfontfeatures{

Numbers=OldStyle, Color=888888
}
\fontspec{texgyreadventor-regular.otf}
Now grey, with old-style figures:
0123456789

21

The line above to set TEX-like ligatures is now activated by default in fontspec.cfg. To reset
default font features, simply call the command with an empty argument:

\defaultfontfeatures[\rmfamily,\sffamily]{}
\setmainfont{texgyreadventor-regular.otf}% will no longer use standard TeX ligatures

\defaultfontfeatures+{⟨font features⟩}
\defaultfontfeatures+[⟨font name⟩]{⟨font features⟩}

New in v2.4. Using the + form of the command appends the ⟨font features⟩ to any
already-selected defaults.

2 Working with the currently selected features

\IfFontFeatureActiveTF{⟨font feature⟩}{⟨true code⟩}{⟨false code⟩}

This command queries the currently selected font face and executes the appropriate
branch based on whether the ⟨font feature⟩ as specified by fontspec is currently active.

For example, the following will print ‘True’:

\setmainfont{texgyrepagella-regular.otf}[Numbers=OldStyle]
\IfFontFeatureActiveTF{Numbers=OldStyle}{True}{False}

Note that there is no way for fontspec to know what the default features of a font will
be. For example, by default the texgyrepagella fonts use lining numbers. But in the follow-
ing example, querying for lining numbers returns false since they have not been explicitly
requested:

\setmainfont{texgyrepagella-regular.otf}
\IfFontFeatureActiveTF{Numbers=Lining}{True}{False}

Please note:At time ofwriting this function only supportsOpenType fonts; AAT/Graphite
fonts under the X ETEX engine are not supported.

\addfontfeatures{⟨font features⟩}

This command allows font features to be changed without knowing what features are
currently selected or even what font is being used. A good example of this could be to add
a hook to all tabular material to use monospaced numbers, as shown in Example 6. If you
attempt to change an already-selected feature, fontspec will try to de-activate any features
that clash with the new ones. E.g., the following two invocations are mutually exclusive:

\addfontfeature{Numbers=OldStyle}...
\addfontfeature{Numbers=Lining}...
123

Since Numbers=Lining comes last, it takes precedence and deactivates the call Numbers=OldStyle.
This command may also be executed under the alias \addfontfeature.\addfontfeature

22

Example : A demonstration of the \addfontfeatures command.

‘In 1842, 999 people sailed 97 miles in 13 boats. In
1923, 111 people sailed 54 miles in 56 boats.’

Year People Miles Boats
1842 999 75 13
1923 111 54 56

\fontspec{texgyreadventor-regular.otf}%
[Numbers={Proportional,OldStyle}]

`In 1842, 999 people sailed 97 miles in
13 boats. In 1923, 111 people sailed 54
miles in 56 boats.' \bigskip

{\addfontfeatures{Numbers={Monospaced,Lining}}
\begin{tabular}{@{} cccc @{}}

Year & People & Miles & Boats \\
\hline 1842 & 999 & 75 & 13 \\

1923 & 111 & 54 & 56
\end{tabular}}

2.1 Priority of feature selection

Features defined with \addfontfeatures override features specified by \fontspec, which
in turn override features specified by \defaultfontfeatures. If in doubt, whenever a new
font is chosen for the first time, an entry is made in the transcript (.log) file displaying the
font name and the features requested.

3 Different features for different font shapes

BoldFeatures={⟨features⟩}
ItalicFeatures={⟨features⟩}
BoldItalicFeatures={⟨features⟩}
SlantedFeatures={⟨features⟩}
BoldSlantedFeatures={⟨features⟩}
SmallCapsFeatures={⟨features⟩}
UprightFeatures={⟨features⟩}

It is entirely possible that separate fonts in a family will require separate options; e.g.,
Hoefler Text Italic contains various swash feature options that are completely unavailable in
the upright shapes.

The font features defined at the top level of the optional \fontspec argument are
applied to all shapes of the family. Using Upright-, SmallCaps-, Bold-, Italic-, and
BoldItalicFeatures, separate font features may be defined to their respective shapes in
addition to, and with precedence over, the ‘global’ font features. See Example 7.

Note that because most fonts include their small caps glyphs within the main font,
features specified with SmallCapsFeatures are applied in addition to any other shape-
specific features as defined above, and hence SmallCapsFeatures can be nested within
ItalicFeatures and friends. Every combination of upright, italic, bold and small caps can
thus be assigned individual features, as shown in the somewhat ludicrous Example 8.

23

Example : Features for, say, just italics.

Don’t Ask Victoria!
Don’t Ask Victoria!

\fontspec{EBGaramond-Regular.otf}%
[ItalicFont=EBGaramond-Italic.otf]

\itshape Don’t Ask Victoria! \\
\addfontfeature{ItalicFeatures={Style=Swash}}
Don’t Ask Victoria! \\

Example : An example of setting the SmallCapsFeatures separately for each font shape.

Upright Small Caps
Italic Italic Small Caps
Bold Bold Small Caps
Bold Italic Bold Italic Small Caps

\fontspec{texgyretermes}[
Extension = {.otf},
UprightFont = {*-regular}, ItalicFont = {*-italic},
BoldFont = {*-bold}, BoldItalicFont = {*-bolditalic},
UprightFeatures={Color = 220022,

SmallCapsFeatures = {Color=115511}},
ItalicFeatures={Color = 2244FF,

SmallCapsFeatures = {Color=112299}},
BoldFeatures={Color = FF4422,
SmallCapsFeatures = {Color=992211}},

BoldItalicFeatures={Color = 888844,
SmallCapsFeatures = {Color=444422}},
]

Upright {\scshape Small Caps}\\
\itshape Italic {\scshape Italic Small Caps}\\
\upshape\bfseries Bold {\scshape Bold Small Caps}\\
\itshape Bold Italic {\scshape Bold Italic Small Caps}

24

4 Selecting fonts from TrueType Collections (TTC files)

TrueType Collections are multiple fonts contained within a single file. Each font within a col-
lection must be explicitly chosen using the FontIndex command. Since TrueType Collections
are often used to contain the italic/bold shapes in a family, fontspec automatically selects
the italic, bold, and bold italic fontfaces from the same file. For example, to load the macOS
system font Optima:

\setmainfont{Optima.ttc}[
Path = /System/Library/Fonts/ ,
UprightFeatures = {FontIndex=0} ,
BoldFeatures = {FontIndex=1} ,
ItalicFeatures = {FontIndex=2} ,
BoldItalicFeatures = {FontIndex=3} ,

]

Support for TrueType Collections has only been tested in X ETEX, but should also work with an
up-to-date version of LuaTEX and the luaotfload package.

5 Different features for different font sizes

SizeFeatures = {
...
{ Size = ⟨size range⟩, ⟨font features⟩ },
{ Size = ⟨size range⟩, Font = ⟨font name⟩, ⟨font features⟩ },
...

}
The SizeFeature feature is a little more complicated than the previous features dis-

cussed. It allows different fonts and different font features to be selected for a given font family
as the point size varies.

It takes a comma separated list of braced, comma separated lists of features for each size
range. Each sub-list must contain the Size option to declare the size range, and optionally
Font to change the font based on size. Other (regular) fontspec features that are added are
used on top of the font features that would be used anyway. A demonstration to clarify these
details is shown in Example 9. A less trivial example is shown in the context of optical font
sizes in Section 6.6 on page 30.

To be precise, the Size sub-feature accepts arguments in the form shown in Table 1 on
the following page. Braces around the size range are optional. For an exact font size (Size=X)
font sizes chosen near that size will ‘snap’. For example, for size definitions at exactly 11pt and
14pt, if a 12pt font is requested actually the 11pt font will be selected. This is a remnant of
the past when fonts were designed in metal (at obviously rigid sizes) and later when bitmap
fonts were similarly designed for fixed sizes.

If additional features are only required for a single size, the other sizes must still be
specified. As in:

SizeFeatures={
{Size=-10,Numbers=Uppercase},
{Size=10-}}

25

Example :An example of specifying different font features for different sizes of font with
SizeFeatures.

Small

Normal size

Large

\fontspec{texgyrechorus-mediumitalic.otf}[
SizeFeatures={
{Size={-8}, Font=texgyrebonum-italic.otf, Color=AA0000},
{Size={8-14}, Color=00AA00},
{Size={14-}, Color=0000AA}}]

{\scriptsize Small\par} Normal size\par {\Large Large\par}

Otherwise, the font sizes greater than 10 won’t be defined at all!

Interactionwith other features For SizeFeatures toworkwith ItalicFeatures, BoldFeatures,
etc., and SmallCapsFeatures, a strict heirarchy is required:

UprightFeatures =
{
SizeFeatures =
{
{
Size = -10,
Font = ..., % if necessary
SmallCapsFeatures = {...},
... % other features for this size range

},
... % other size ranges
}

}

Suggestions on simplifying this interface welcome.

6 Font independent options

Features introduced in this section may be used with any font.

Table 1: Syntax for specifying the size to apply custom font features.

Input Font size, s

Size = X- s ≥ X
Size = -Y s < Y
Size = X-Y X ≤ s < Y
Size = X s = X

26

6.1 Colour

Color (or Colour) uses font specifications to set the colour of the text. You should think of
this as the literal glyphs of the font being coloured in a certain way. Notably, this mechanism
is different to that of the color/xcolor/hyperref/etc. packages, and in fact using fontspec com-
mands to set colour will prevent your text from changing colour using those packages at all!
For example, if you set the colour in a \setmainfont command, \color{...} and related
commands, including hyperlink colouring, will no longer have any effect on text in this font.)
Therefore, fontspec’s colour commands are best used to set explicit colours in specific situa-
tions, and the xcolor package is recommended for more general colour functionality.

The colour is defined as a triplet of two-digit Hex RGB values, with optionally another
value for the transparency (where 00 is completely transparent and FF is opaque.) Trans-
parency is supported by LuaLATEX; X ELATEX with the xdvipdfmx driver does not support this
feature.

If you load the xcolor package, you may use any named colour instead of writing the
colours in hexadecimal.

\usepackage{xcolor}
...
\fontspec[Color=red]{Verdana} ...
\definecolor{Foo}{rgb}{0.3,0.4,0.5}
\fontspec[Color=Foo]{Verdana} ...

The color package is not supported; use xcolor instead.
You may specify the transparency with a named colour using the Opacity feature which

takes an decimal from zero to one corresponding to transparent to opaque respectively:

\fontspec[Color=red,Opacity=0.7]{Verdana} ...

It is still possible to specify a colour in six-char hexadecimal form while defining opacity in
this way, if you like.

6.2 Scale

Scale = ⟨number⟩
Scale = MatchLowercase
Scale = MatchUppercase

In its explicit form, Scale takes a single numeric argument for linearly scaling the font,
as demonstrated in Example 1.

Example : Selecting colour with transparency.

WSPR
\fontsize{48}{48}
\fontspec{texgyrebonum-bold.otf}
{\addfontfeature{Color=FF000099}W}\kern-0.4ex
{\addfontfeature{Color=0000FF99}S}\kern-0.4ex
{\addfontfeature{Color=DDBB2299}P}\kern-0.5ex
{\addfontfeature{Color=00BB3399}R}

27

Aswell as a numerical argument, the Scale feature also accepts options MatchLowercase
and MatchUppercase, which will scale the font being selected to match the current default ro-
man font to either the height of the lowercase or uppercase letters, respectively; these features
are shown in Example 11. The amount of scaling used in each instance is reported in the .log
file.

Additional calls to the Scale feature overwrite the settings of the former. If you want to
accumulate scale factors (useful perhaps to fine-tune the settings of MatchLowercase), the
ScaleAgain feature can be used as many times as necessary. For example:

[Scale = 1.1 , Scale = 1.2] % -> scale of 1.2
[Scale = 1.1 , ScaleAgain = 1.2] % -> scale of 1.32

Note that when Scale=MatchLowercase is used with \setmainfont, the new ‘main’
font of the document will be scaled to match the old default. If you wish to automatically scale
all fonts except have the main font use ‘natural’ scaling, you may write

\defaultfontfeatures{ Scale = MatchLowercase }
\defaultfontfeatures[\rmfamily]{ Scale = 1}

One or both of these lines may be placed into a local fontspec.cfg file (see Section 3.3 on
page 6) for this behaviour to be effected in your own documents automatically. (Also see Sec-
tion 1 on page 21 for more information on setting font defaults.)

6.3 Interword space

While the space between words can be varied on an individual basis with the TEX primitive
\spaceskip command, it is more convenient to specify this information when the font is first
defined.

The space in between words in a paragraph will be chosen automatically, and gener-
ally will not need to be adjusted. For those times when the precise details are important,
the WordSpace feature is provided, which takes either a single scaling factor to scale the de-
fault value, or a triplet of comma-separated values to scale the nominal value, the stretch,
and the shrink of the interword space by, respectively. (WordSpace={x} is the same as
WordSpace={x,x,x}.)

Note that TEX’s optimisations in how it loads fontsmeans that you cannot use this feature
in \addfontfeatures.

Example : Automatically calculated scale values.

The perfect match is hard to find.
L O G O F O N T

\setmainfont{Georgia}
\newfontfamily\lc[Scale=MatchLowercase]{Verdana}
The perfect match {\lc is hard to find.}\\

\newfontfamily\uc[Scale=MatchUppercase]{Arial}
L O G O \uc F O N T

28

Example : Scaling the default interword space. An exaggerated value has been chosen to emphasise
the effects here.

Some text for our example to take up some space, and to
demonstrate the default interword space.

Sometextforourexampletotakeupsomespace,andtodemon-
stratethedefaultinterwordspace.

\fontspec{texgyretermes-regular.otf}
Some text for our example to take
up some space, and to demonstrate
the default interword space.
\bigskip

\fontspec{texgyretermes-regular.otf}%
[WordSpace = 0.3]

Some text for our example to take
up some space, and to demonstrate
the default interword space.

6.4 Post-punctuation space

If \frenchspacing is not in effect, TEX will allow extra space after some punctuation in its
goal of justifying the lines of text. Generally, this is considered old-fashioned, but occasionally
in small amounts the effect can be justified, pardon the pun.

The PunctuationSpace feature takes a scaling factor by which to adjust the nominal
value chosen for the font; this is demonstrated in Example 13.Note that PunctuationSpace=0
is not equivalent to \frenchspacing, although the difference will only be apparent when a
line of text is under-full.

Note that TEX’s optimisations in how it loads fontsmeans that you cannot use this feature
in \addfontfeatures.

6.5 The hyphenation character

The letter used for hyphenationmay be chosen with the HyphenChar feature.With one excep-
tion (HyphenChar = None), this is a X ETEX-only feature since LuaTEX cannot set the hyphen-
ation character on a per-font basis; see its \prehyphenchar primitive for further details.

HyphenChar takes three types of input, which are chosen according to some simple rules.
If the input is the string None, then hyphenation is suppressed for this font. If the input is a

Example : Scaling the default post-punctuation space.

Letters, Words. Sentences.
Letters, Words. Sentences.
Letters, Words. Sentences.

\nonfrenchspacing
\fontspec{texgyreschola-regular.otf}
Letters, Words. Sentences. \par

\fontspec{texgyreschola-regular.otf}[PunctuationSpace=2]
Letters, Words. Sentences. \par

\fontspec{texgyreschola-regular.otf}[PunctuationSpace=0]
Letters, Words. Sentences.

29

single character, then this character is used. Finally, if the input is longer than a single character
it must be the UTF-8 slot number of the hyphen character you desire.

This package redefines LATEX’s \-macro such that it adjusts along with the above changes.
Note that TEX’s optimisations in how it loads fontsmeans that you cannot use this feature

in \addfontfeatures.

6.6 Optical font sizes

Optically scaled fonts thicken out as the font size decreases in order to make the glyph shapes
more robust (less prone to losing detail), which improves legibility. Conversely, at large optical
sizes the serifs and other small details may be more delicately rendered.

OpenType fonts with optical scaling can exist in several discrete sizes (in separate font
files). When loading fonts by name, X ETEX and LuaTEX engines will attempt to automatically
load the appropriate font as determined by the current font size. An example of this behaviour
is shown in Example 15, in which some larger text is mechanically scaled down to compare
the difference for equivalent font sizes.

The OpticalSize featuremay be used to specify a different optical size.With OpticalSize
set (Example 16) to zero, no optical size font substitution is performed.

The SizeFeatures feature (Section 5 on page 25) can be used to specify exactly which
optical sizes will be used for ranges of font size. For example, something like:

\fontspec{Latin Modern Roman}[
UprightFeatures = { SizeFeatures = {
{Size=-10, OpticalSize=8 },
{Size= 10-14, OpticalSize=10},
{Size= 14-18, OpticalSize=14},
{Size= 18-, OpticalSize=18}}}

]

6.7 Font transformations

In rare situations users may want to mechanically distort the shapes of the glyphs in the cur-
rent font such as shown in Example 17. Please don’t overuse these features; they are not a
good alternative to having the real shapes.

If values are omitted, their defaults are as shown above.

Example : Explicitly choosing the hyphenation character.

EXAMPLE
HYPHENATION

EXAMPLE
HYPHEN+
ATION

\def\text{\fbox{\parbox{1.55cm}{%
EXAMPLE HYPHENATION%

}}\qquad\qquad\null\par\bigskip}

\fontspec{LinLibertine_R.otf}[HyphenChar=None]
\text
\fontspec{LinLibertine_R.otf}[HyphenChar={+}]
\text

30

Example : A demonstration of automatic optical size selection.

Automatic optical size
Automatic optical size

\fontspec{Latin Modern Roman}
Automatic optical size \\
\scalebox{0.4}{\Huge
Automatic optical size}

Example : Explicit optical size substitution for the Latin Modern Roman family.

Latin Modern optical sizes
Latin Modern optical sizes
Latin Modern optical sizes
Latin Modern optical sizes

\fontspec{Latin Modern Roman}[OpticalSize=5]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=8]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=12]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=17]
Latin Modern optical sizes

Example : Articifial font transformations.

ABCxyz ABCxyz
ABCxyz ABCxyz
ABCxyz ABCxyz

\fontspec{Quattrocento.otf} \emph{ABCxyz} \quad
\fontspec{Quattrocento.otf}[FakeSlant=0.2] ABCxyz

\fontspec{Quattrocento.otf} ABCxyz \quad
\fontspec{Quattrocento.otf}[FakeStretch=1.2] ABCxyz

\fontspec{Quattrocento.otf} \textbf{ABCxyz} \quad
\fontspec{Quattrocento.otf}[FakeBold=1.5] ABCxyz

31

If you want the bold shape to be faked automatically, or the italic shape to be slanted au-
tomatically, use the AutoFakeBold and AutoFakeSlant features. For example, the following
two invocations are equivalent:

\fontspec[AutoFakeBold=1.5]{Charis SIL}
\fontspec[BoldFeatures={FakeBold=1.5}]{Charis SIL}

If both of the AutoFake... features are used, then the bold italic font will also be faked.
The FakeBold and AutoFakeBold features are only available with the X ETEX engine and

will be ignored in LuaTEX.

6.8 Letter spacing

Letter spacing, or tracking, is the term given to adding (or subtracting) a small amount of
horizontal space in between adjacent characters. It is specified with the LetterSpace, which
takes a numeric argument, shown in Example 18.

The letter spacing parameter is a normalised additive factor (not a scaling factor); it is
defined as a percentage of the font size. That is, for a 10 pt font, a letter spacing parameter of
‘1.0’ will add 0.1 pt between each letter.

This functionality is not generally used for lowercase text inmodern typesetting but does
have historic precedent in a variety of situations. In particular, small amounts of letter spacing
can be very useful, when setting small caps or all caps titles. Also see theOpenType Uppercase
option of the Letters feature (3.1.7 on page 42).

Example : The LetterSpace feature.

USE TRACKING FOR DISPLAY CAPS TEXT
USE TRACKING FOR DISPLAY CAPS TEXT

\fontspec{Didot}
\addfontfeature{LetterSpace=0.0}
USE TRACKING FOR DISPLAY CAPS TEXT \\
\addfontfeature{LetterSpace=2.0}
USE TRACKING FOR DISPLAY CAPS TEXT

32

Part IV

OpenType

1 Introduction

OpenType fonts (and other ‘smart’ font technologies such as AAT and Graphite) can change
the appearance of text in many different ways. These changes are referred to as font features.
When the user applies a feature — for example, small capitals — to a run of text, the code in-
side the font makes appropriate substitutions and small capitals appear in place of lowercase
letters. However, the use of such features does not affect the underlying text. In our small
caps example, the lowercase letters are still stored in the document; only the appearance has
been changed by the OpenType feature. This makes it possible to search and copy text with-
out difficulty. If the user selected a different font that does not support small caps, the ‘plain’
lowercase letters would appear instead.

Some OpenType features are required to support particular scripts, and these features
are often applied automatically. The Indic scripts, for example, often require that characters
be reshaped and reordered after they are typed by the user, in order to display them in the
traditional ways that readers expect. Other features can be applied to support a particular
language. The Junicode font for medievalists uses by default the Old English shape of the
letter thorn, while in modern Icelandic thorn has a more rounded shape. If a user tags some
text as being in Icelandic, Junicode will automatically change to the Icelandic shape through
an OpenType feature that localises the shapes of letters.

There are a large group of OpenType features, designed to support high quality typogra-
phy amultitude of languages and writing scripts. Examples of some font features have already
been shown in previous sections; the complete set of OpenType font features supported by
fontspec is described below in Section 3.

The OpenType specification provides four-letter codes (e.g., smcp for small capitals) for
each feature. The four-letter codes are given below along with the fontspec names for various
features, for the benefit of people who are already familiar with OpenType. You can ignore the
codes if they don’t mean anything to you.

1.1 How to select font features

Font features are selected by a series of ⟨feature⟩=⟨option⟩ selections. Features are (usually)
grouped logically; for example, all font features relating to ligatures are accessed by writ-
ing Ligatures={...} with the appropriate argument(s), which could be TeX, Rare, etc., as
shown below in 3.1.8.

Multiple optionsmay be given to any feature that accepts non-numerical input, although
doing so will not always work. Some options will override others in generally obvious ways;
Numbers={OldStyle,Lining} doesn’t make much sense because the two options are mutu-
ally exclusive, and X ETEX will simply use the last option that is specified (in this case using
Lining over OldStyle).

If a feature or an option is requested that the font does not have, a warning is given in
the console output. As mentioned in Section 3.4 on page 7 these warnings can be suppressed
by selecting the [quiet] package option.

33

1.2 How do I know what font features are supported by my fonts?

Although I’ve long desired to have a feature within fontspec to display the OpenType
features within a font, it’s never been high on my priority list. One reason for that is
the existence of the document opentype-info.tex, which is available on ctan or typing
kpsewhich opentype-info.tex in a Terminal window. Make a copy of this file and place
it somewhere convenient. Then open it in your regular TEX editor and change the font name
to the font you’d like to query; after running through plain X ETEX, the output pdf will look
something like this:

OpenType Layout features found in ‘[Asana-Math.otf]’
script = ’DFLT’

language = ⟨default⟩
features = ’onum’ ’salt’ ’kern’

script = ’cher’
language = ⟨default⟩

features = ’onum’ ’salt’ ’kern’

script = ’grek’
language = ⟨default⟩

features = ’onum’ ’salt’ ’kern’

script = ’latn’
language = ⟨default⟩

features = ’onum’ ’salt’ ’kern’

script = ’math’
language = ⟨default⟩

features = ’dtls’ ’onum’ ’salt’ ’ssty’ ’kern’

I intentionally picked a font above that by design contains few font features; ‘regular’ text fonts
such as LatinModern Roman containmanymore, and I didn’t want to clutter up the document
too much. After finding the scripts, languages, and features contained within the font, you’ll
then need to cross-check the OpenType tags with the ‘logical’ names used by fontspec.

otfinfo Alternatively, and more simply, you can use the command line tool otfinfo, which
is distributed with TEXLive. Simply type in a Terminal window, say:

otfinfo -f `kpsewhich lmromandunh10-oblique.otf`

which results in:

aalt Access All Alternates
cpsp Capital Spacing
dlig Discretionary Ligatures
frac Fractions
kern Kerning
liga Standard Ligatures
lnum Lining Figures
onum Oldstyle Figures

34

pnum Proportional Figures
size Optical Size
tnum Tabular Figures
zero Slashed Zero

2 OpenType scripts and languages

Fonts that include glyphs for various scripts and languagesmay contain different font features
for the different character sets and languages they support, and different font features may
behave differently depending on the script or language chosen. When multilingual fonts are
used, it is important to select which language they are being used for, and more importantly
what script is being used.

The ‘script’ refers to the alphabet in use; for example, both English and French use the
Latin script. Similarly, the Arabic script can be used to write in both the Arabic and Persian
languages.

The Script and Language features are used to designate this information. The possible
options are tabulated in Table 2 on the following page and Table 3 on page 37, respectively.
When a script or language is requested that is not supported by the current font, a warning is
printed in the console output. See Section 2 on page 66 for methods to create new Script or
Language options if required.

Because these font features can change which features are able to be selected for the font,
the Script and Language settings are automatically selected by fontspec before all others,
and, if X ETEX is being used, will specifically select the OpenType renderer for this font, as
described in Section 1.2 on page 58.

OpenType fonts can make available different font features depending on the Script and
Language chosen. In addition, these settings can also set up their own font behaviour and
glyph selection (one example is differences in style between some of the letters in the alphabet
used for Bulgarian, Serbian, andRussian). The fontspec feature LocalForms = Offwill disable
some of these substitutions if desired for some reason. It is important to note that LocalForms
= On is a default not of fontspec but of the underlying font shaping engines in both X ETEX and
LuaTEX/otfload.

2.1 Script and Language examples

In the examples shown in Example 19, the Code2000 font6 is used to typeset various input
texts with and without the OpenType Script applied for various alphabets. The text is only
rendered correctly in the second case; many examples of incorrect diacritic spacing as well as
a lack of contextual ligatures and rearrangement can be seen. Thanks to Jonathan Kew, Yves
Codet and Gildas Hamel for their contributions towards these examples.

3 OpenType font features

There are a finite set of OpenType font features, and fontspec provides an interface to around
half of them. Full documentation will be presented in the following sections, including how

6http://www.code2000.net/

35

http://www.code2000.net/

Example : An example of various Scripts and Languages.

العربي العربي

हिन्दी िहदी

লেখ েলখ

મર્યાદા-સૂચક નિવેદન મયાદા-સૂચક િનવેદન

നമ്മുടെ പാരബര്യ നമ്മുെട പാരബര്യ

ਆਦਿ ਸਚੁ ਜੁਗਾਦਿ ਸਚੁ ਆਿਦ ਸਚੁ ਜੁਗਾਿਦ ਸਚੁ

தமிழ் தேடி தழ் ேத

ִרְדָּֽתּה הּ רִדְתָּֽ

cấp số mỗi cấp số mỗi

\testfeature{Script=Arabic}{\arabictext}
\testfeature{Script=Devanagari}{\devanagaritext}
\testfeature{Script=Bengali}{\bengalitext}
\testfeature{Script=Gujarati}{\gujaratitext}
\testfeature{Script=Malayalam}{\malayalamtext}
\testfeature{Script=Gurmukhi}{\gurmukhitext}
\testfeature{Script=Tamil}{\tamiltext}
\testfeature{Script=Hebrew}{\hebrewtext}
\def\examplefont{DoulosSILR.ttf}
\testfeature{Language=Vietnamese}{\vietnamesetext}

Table 2: Defined Scripts for OpenType fonts. Aliased names are shown in adjacent positions
marked with red pilcrows ().

Adlam
Ahom
Anatolian Hieroglyphs
Arabic
Armenian
Avestan
Balinese
Bamum
Bassa Vah
Batak
Bengali
Bhaiksuki
Bopomofo
Brahmi
Braille
Buginese
Buhid
Byzantine Music
Canadian Syllabics
Carian
Caucasian Albanian
Chakma
Cham
Cherokee

CJK
CJK Ideographic
Coptic
Cypriot Syllabary
Cyrillic
Default
Deseret
Devanagari
Duployan
Egyptian Hieroglyphs
Elbasan
Ethiopic

Georgian
Glagolitic
Gothic
Grantha
Greek
Gujarati
Gurmukhi
Hangul Jamo
Hangul
Hanunoo
Hatran
Hebrew

Hiragana and Katakana
Kana
Imperial Aramaic
Inscriptional Pahlavi
Inscriptional Parthian
Javanese
Kaithi
Kannada
Kayah Li
Kharosthi
Khmer
Khojki
Khudawadi
Lao
Latin
Lepcha
Limbu
Linear A
Linear B
Lisu
Lycian
Lydian
Mahajani
Malayalam

Mandaic
Manichaean
Marchen

Math
Maths
Meitei Mayek
Mende Kikakui
Meroitic Cursive
Meroitic Hieroglyphs
Miao
Modi
Mongolian
Mro
Multani
Musical Symbols
Myanmar

N’Ko
N’ko
Nabataean
Newa
Ogham
Ol Chiki
Old Italic
Old Hungarian
Old North Arabian
Old Permic
Old Persian Cuneiform
Old South Arabian
Old Turkic

Oriya
Odia
Osage
Osmanya
Pahawh Hmong
Palmyrene
Pau Cin Hau

Phags-pa
Phoenician
Psalter Pahlavi
Rejang
Runic
Samaritan
Saurashtra
Sharada
Shavian
Siddham
Sign Writing
Sinhala
Sora Sompeng
Sumero-Akkadian Cuneiform
Sundanese
Syloti Nagri
Syriac
Tagalog
Tagbanwa
Tai Le
Tai Lu
Tai Tham
Tai Viet
Takri
Tamil
Tangut
Telugu
Thaana
Thai
Tibetan
Tifinagh
Tirhuta
Ugaritic Cuneiform
Vai
Warang Citi
Yi

36

Table 3: Defined Languages for OpenType fonts. Aliased names are shown in adjacent positionsmarkedwith red pilcrows
().

Abaza
Abkhazian
Adyghe
Afrikaans
Afar
Agaw
Altai
Amharic
Arabic
Aari
Arakanese
Assamese
Athapaskan
Avar
Awadhi
Aymara
Azeri
Badaga
Baghelkhandi
Balkar
Baule
Berber
Bench
Bible Cree
Belarussian
Bemba
Bengali
Bulgarian
Bhili
Bhojpuri
Bikol
Bilen
Blackfoot
Balochi
Balante
Balti
Bambara
Bamileke
Breton
Brahui
Braj Bhasha
Burmese
Bashkir
Beti
Catalan
Cebuano
Chechen
Chaha Gurage
Chattisgarhi
Chichewa
Chukchi
Chipewyan
Cherokee
Chuvash
Comorian
Coptic
Cree
Carrier
Crimean Tatar
Church Slavonic
Czech
Danish
Dargwa
Woods Cree

German
Default
Dogri
Divehi
Djerma
Dangme
Dinka
Dungan
Dzongkha
Ebira
Eastern Cree
Edo
Efik
Greek
English
Erzya
Spanish
Estonian
Basque
Evenki
Even
Ewe
French Antillean

Farsi
Parsi
Persian
Finnish
Fijian
Flemish
Forest Nenets
Fon
Faroese
French
Frisian
Friulian
Futa
Fulani
Ga
Gaelic
Gagauz
Galician
Garshuni
Garhwali
Ge’ez
Gilyak
Gumuz
Gondi
Greenlandic
Garo
Guarani
Gujarati
Haitian
Halam
Harauti
Hausa
Hawaiin
Hammer-Banna
Hiligaynon
Hindi
High Mari
Hindko
Ho
Harari
Croatian

Hungarian
Armenian
Igbo
Ijo
Ilokano
Indonesian
Ingush
Inuktitut
Irish
Irish Traditional
Icelandic
Inari Sami
Italian
Hebrew
Javanese
Yiddish
Japanese
Judezmo
Jula
Kabardian
Kachchi
Kalenjin
Kannada
Karachay
Georgian
Kazakh
Kebena
Khutsuri Georgian
Khakass
Khanty-Kazim
Khmer
Khanty-Shurishkar
Khanty-Vakhi
Khowar
Kikuyu
Kirghiz
Kisii
Kokni
Kalmyk
Kamba
Kumaoni
Komo
Komso
Kanuri
Kodagu
Korean Old Hangul
Konkani
Kikongo
Komi-Permyak
Korean
Komi-Zyrian
Kpelle
Krio
Karakalpak
Karelian
Karaim
Karen
Koorete
Kashmiri
Khasi
Kildin Sami
Kui
Kulvi
Kumyk

Kurdish
Kurukh
Kuy
Koryak
Ladin
Lahuli
Lak
Lambani
Lao
Latin
Laz
L-Cree
Ladakhi
Lezgi
Lingala
Low Mari
Limbu
Lomwe
Lower Sorbian
Lule Sami
Lithuanian
Luba
Luganda
Luhya
Luo
Latvian
Majang
Makua
Malayalam Traditional
Mansi
Marathi
Marwari
Mbundu
Manchu
Moose Cree
Mende
Me’en
Mizo
Macedonian
Male
Malagasy
Malinke
Malayalam Reformed
Malay
Mandinka
Mongolian
Manipuri
Maninka
Manx Gaelic
Moksha
Moldavian
Mon
Moroccan
Maori
Maithili
Maltese
Mundari
Naga-Assamese
Nanai
Naskapi
N-Cree
Ndebele
Ndonga
Nepali

Newari
Nagari
Norway House Cree
Nisi
Niuean
Nkole
N’ko
Dutch
Nogai
Norwegian
Northern Sami
Northern Tai
Esperanto
Nynorsk
Oji-Cree
Ojibway
Oriya
Oromo
Ossetian
Palestinian Aramaic
Pali
Punjabi
Palpa
Pashto
Polytonic Greek
Pilipino
Palaung
Polish
Provencal
Portuguese
Chin
Rajasthani
R-Cree
Russian Buriat
Riang
Rhaeto-Romanic
Romanian
Romany
Rusyn
Ruanda
Russian
Sadri
Sanskrit
Santali
Sayisi
Sekota
Selkup
Sango
Shan
Sibe
Sidamo
Silte Gurage
Skolt Sami
Slovak
Slavey
Slovenian
Somali
Samoan
Sena
Sindhi
Sinhalese
Soninke
Sodo Gurage
Sotho

Albanian
Serbian
Saraiki
Serer
South Slavey
Southern Sami
Suri
Svan
Swedish
Swadaya Aramaic
Swahili
Swazi
Sutu
Syriac
Tabasaran
Tajiki
Tamil
Tatar
TH-Cree
Telugu
Tongan
Tigre
Tigrinya
Thai
Tahitian
Tibetan
Turkmen
Temne
Tswana
Tundra Nenets
Tonga
Todo
Turkish
Tsonga
Turoyo Aramaic
Tulu
Tuvin
Twi
Udmurt
Ukrainian
Urdu
Upper Sorbian
Uyghur
Uzbek
Venda
Vietnamese
Wa
Wagdi
West-Cree
Welsh
Wolof
Tai Lue
Xhosa
Yakut
Yoruba
Y-Cree
Yi Classic
Yi Modern
Chinese Hong Kong
Chinese Phonetic
Chinese Simplified
Chinese Traditional
Zande
Zulu

37

to enable and disable individual features, and how they interact.
A brief reference is provided (Table 4 on the following page) but note that this is an

incomplete listing — only the ‘enable’ keys are shown, and where alternative interfaces are
provided for convenience only the first is shown. (E.g., Numbers=OldStyle is the same as
Numbers=Lowercase.)

For completeness, the complete list of OpenType features not provided with a fontspec
interface is shown in Table 5 on page 40. Features omitted are partially by design and partially
by oversight; for example, the aalt feature is largely useless in TEX since it is designed for
providing a textscgui interface for selecting ‘all alternates’ of a glyph. Others, such as optical
bounds for example, simply haven’t yet been considered due to a lack of fonts available for
testing. Suggestions welcome for how/where to add these missing features to the package.

3.1 Tag-based features

3.1.1 Alternates — salt

The Alternate feature, alias StylisticAlternates, is used to access alternate font glyphs
when variations exist in the font, such as in Example 20. It uses a numerical selection, start-
ing from zero, that will be different for each font. Note that the Style=Alternate option is
equivalent to Alternate=0 to access the default case.

Note that the indexing starts from zero. With the LuaTEX engine, Alternate=Random
selects a random alternate.

See Section 1 on page 65 for a way to assign names to alternates if desired.

3.1.2 Character Variants — cvNN

‘Character Variations’ are selected numerically to adjust the output of (usually) a single char-
acter for the particular font. These correspond to the OpenType features cv01 to cv99.

For each character that can be varied, it is possible to select among possible options for
that particular glyph. For example, in the example below, variants are chosen for glyphs ‘4’
and ‘5’, and the trailing :⟨n⟩ corresponds to which variety to choose.

\fontspec{EB Garamond 12 Italic}[CharacterVariant={4,5:2}] \& violet

The numbering is entirely font-soecific. Glyph ‘5’ might be the character ‘v’, for example. Char-
acter variants are specifically designed not to conflict with each other, so you can enable them
individually per character. (Unlike stylistic alternates, say.) Note that the indexing starts from
zero.

Example : The Alternate feature.

a & h
a & h

\fontspec{LinLibertine_R.otf}
\textsc{a} \& h \\
\addfontfeature{Alternate=0}
\textsc{a} \& h

38

Table 4: Summary of OpenType features in fontspec, alphabetic by feature tag.

abvm Diacritics =AboveBase Above-base Mark
Positioning

afrc Fractions =Alternate Alternative Fractions
blwm Diacritics = BelowBase Below-base Mark

Positioning
calt Contextuals =Alternate Contextual Alternates
case Letters =Uppercase Case-Sensitive Forms
clig Ligatures =Contextual Contextual Ligatures
cpsp Kerning =Uppercase Capital Spacing
cswh Contextuals = Swash Contextual Swash
cvNN CharacterVariant = N :M Character Variant N

c2pc Letters = UppercasePetiteCaps Petite Capitals From
Capitals

c2sc Letters = UppercaseSmallCaps Small Capitals From
Capitals

dlig Ligatures =Rare Discretionary Ligatures
dnom VerticalPosition = Denominator Denominators
expt CJKShape = Expert Expert Forms
falt Contextuals = LineFinal Final Glyph on Line

Alternates
fina Contextuals =WordFinal Terminal Forms
frac Fractions =On Fractions
fwid CharacterWidth = Full Full Widths
halt CharacterWidth = AlternateHalf Alternate Half Widths
hist Style =Historic Historical Forms
hkna Style =HorizontalKana Horizontal Kana Alternates
hlig Ligatures =Historic Historical Ligatures
hwid CharacterWidth =Half Half Widths
init Contextuals =WordInitial Initial Forms
ital Style = Italic Italics
jp78 CJKShape = JIS1978 JIS78 Forms
jp83 CJKShape = JIS1983 JIS83 Forms
jp90 CJKShape = JIS1990 JIS90 Forms
jp04 CJKShape = JIS2004 JIS2004 Forms
kern Kerning =On Kerning
liga Ligatures =Common Standard Ligatures
lnum Numbers =Uppercase Lining Figures
locl LocalForms =On Localized Forms
mark Diacritics =MarkToBase Mark Positioning
medi Contextuals = Inner Medial Forms
mkmk Diacritics =MarkToMark Mark to Mark Positioning
nalt Annotation =N Alternate Annotation Forms

nlck CJKShape =NLC NLC Kanji Forms
numr VerticalPosition = Numerator Numerators
onum Numbers = Lowercase Oldstyle Figures
ordn VerticalPosition = Ordinal Ordinals
ornm Ornament =N Ornaments
palt CharacterWidth = AlternateProportional Proportional Alternate

Widths
pcap Letters = PetiteCaps Petite Capitals
pkna Style = ProportionalKana Proportional Kana
pnum Numbers = Proportional Proportional Figures
pwid CharacterWidth = Proportional Proportional Widths
qwid CharacterWidth =Quarter Quarter Widths
rand Letters =Random Randomize
rlig Ligatures =Required Required Ligatures
ruby Style =Ruby Ruby Notation Forms
salt Alternate =N Stylistic Alternates
sinf VerticalPosition = ScientificInferior Scientific Inferiors
smcp Letters = SmallCaps Small Capitals
smpl CJKShape = Simplified Simplified Forms
ssNN StylisticSet =N Stylistic Set N

ssty Style =MathScript Math script style alternates
subs VerticalPosition = Inferior Subscript
sups VerticalPosition = Superior Superscript
swsh Style = Swash Swash
titl Style = TitlingCaps Titling
tnum Numbers =Monospaced Tabular Figures
trad CJKShape =Traditional Traditional Forms
twid CharacterWidth =Third Third Widths
unic Letters =Unicase Unicase
valt Vertical = AlternateMetrics Alternate Vertical Metrics
vert Vertical =Alternates Vertical Writing
vhal Vertical =HalfMetrics Alternate Vertical Half

Metrics
vkna Style =VerticalKana Vertical Kana Alternates
vkrn Vertical =Kerning Vertical Kerning
vpal Vertical = ProportionalMetrics Proportional Alternate

Vertical Metrics
vrt2 Vertical =RotatedGlyphs Vertical Alternates and

Rotation
vrtr Vertical = AlternatesForRotation Vertical Alternates for

Rotation
zero Numbers = SlashedZero Slashed Zero

39

Table 5: List of unsupportedOpenType features.

aalt Access All Alternates
abvf Above-base Forms
abvs Above-base Substitutions
akhn Akhands
blwf Below-base Forms
blws Below-base Substitutions
ccmp Glyph Composition /

Decomposition
cfar Conjunct Form After Ro
cjct Conjunct Forms
cpct Centered CJK Punctuation
curs Cursive Positioning
dist Distances
dtls Dotless Forms
fin2 Terminal Forms #2
fin3 Terminal Forms #3
flac Flattened accent forms
half Half Forms
haln Halant Forms

hngl Hangul
hojo Hojo Kanji Forms
isol Isolated Forms
jalt Justification Alternates
lfbd Left Bounds
ljmo Leading Jamo Forms
ltra Left-to-right alternates
ltrm Left-to-right mirrored

forms
med2 Medial Forms #2
mgrk Mathematical Greek
mset Mark Positioning via

Substitution
nukt Nukta Forms
opbd Optical Bounds
pref Pre-Base Forms
pres Pre-base Substitutions
pstf Post-base Forms
psts Post-base Substitutions

rclt Required Contextual
Alternates

rkrf Rakar Forms
rphf Reph Forms
rtbd Right Bounds
rtla Right-to-left alternates
rtlm Right-to-left mirrored

forms
rvrn Required Variation

Alternates
size Optical size
stch Stretching Glyph

Decomposition
tjmo Trailing Jamo Forms
tnam Traditional Name Forms
vatu Vattu Variants
vjmo Vowel Jamo Forms

3.1.3 Contextuals

This feature refers to substitutions of glyphs that vary ‘contextually’ by their relative position
in a word or string of characters; features such as contextual swashes are accessed via the
options shown in Table 6.

Historic forms are accessed in OpenType fonts via the feature Style=Historic; this is
generally not contextual in OpenType, which is why it is not included in this feature.

3.1.4 Diacritics

Specifies how combining diacritics should be placed. These will usually be controlled auto-
matically according to the Script setting.

3.1.5 Fractions — frac

For OpenType fonts use a regular text slash to create fractions, but the Fraction feature must
be explicitly activated. Some (Asian fonts predominantly) also provide for the Alternate
feature. These are both shown in Example 21.

3.1.6 Kerning — kern

Specifies how inter-glyph spacing should behave. Well-made fonts include information for
how differing amounts of space should be inserted between separate character pairs. This
kerning space is inserted automatically but in rare circumstances you may wish to turn it off.

40

Table 6: Options for the OpenType font feature ‘Contextuals’.

Feature Option Tag

Contextuals = Swash cswh †
Alternate calt †
WordInitial init †
WordFinal fina †
LineFinal falt †
Inner medi †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Table 7: Options for the OpenType font feature ‘Diacritics’.

Feature Option Tag

Diacritics = MarkToBase mark †
MarkToMark mkmk †
AboveBase abvm †
BelowBase blwm †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Table 8: Options for the OpenType font feature ‘Fractions’.

Feature Option Tag

Fractions = On +frac
Off -frac
Reset

Alternate afrc †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Example : The Fractions feature.

1/2 1/4 5/6 13579/24680
½ ¼ ⅚ 13579/24680
1/2 1/4 5/6 13579/24680

\fontspec{Hiragino Maru Gothic Pro W4}
1/2 \quad 1/4 \quad 5/6 \quad 13579/24680 \\

\addfontfeature{Fractions=On}
1/2 \quad 1/4 \quad 5/6 \quad 13579/24680 \\

\addfontfeature{Fractions=Alternate}
1/2 \quad 1/4 \quad 5/6 \quad 13579/24680 \\

41

Table 9: Options for the OpenType font feature ‘Kerning’.

Feature Option Tag

Kerning = On +kern
Off -kern
Reset

Uppercase cpsp †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

As briefly mentioned previously at the end of 3.1.7, the Uppercase option will add a
small amount of tracking between uppercase letters, seen in Example 22, which uses the Ro-
mande fonts7 (thanks to Clea F. Rees for the suggestion). The Uppercase option acts sepa-
rately to the regular kerning controlled by the On/Off options.

3.1.7 Letters

The Letters feature specifies how the letters in the current font will look. OpenType fonts
may contain the following options: Uppercase, SmallCaps, PetiteCaps, UppercaseSmallCaps,
UppercasePetiteCaps, and Unicase.

Petite caps are smaller than small caps. SmallCaps and PetiteCaps turn lowercase let-
ters into the smaller caps letters, whereas the Uppercase... options turn the capital letters
into the smaller caps (good, e.g., for applying to already uppercase acronyms like ‘NASA’).
This difference is shown in Example 23. ‘Unicase’ is a weird hybrid of upper and lower case
letters.

Note that the Uppercase option will (probably) not actually map letters to uppercase.8
It is designed to select various uppercase forms for glyphs such as accents and dashes, such as
shown in Example 24; note the raised position of the hyphen to better match the surrounding
letters.

The Kerning feature also contains an Uppercase option, which adds a small amount of
spacing in between letters (see 3.1.6 on page 40).

7http://arkandis.tuxfamily.org/adffonts.html
8If you want automatic uppercase letters, look to LATEX’s \MakeUppercase command.

Example : Adding extra kerning for uppercase letters. (The difference is usually very small.)

UPPERCASE EXAMPLE
UPPERCASE EXAMPLE

\fontspec{RomandeADFStd-DemiBold.otf}
UPPERCASE EXAMPLE \\
\addfontfeature{Kerning=Uppercase}
UPPERCASE EXAMPLE

42

http://arkandis.tuxfamily.org/adffonts.html

Table 10: Options for the OpenType font feature ‘Letters’.

Feature Option Tag

Letters = Uppercase case †
SmallCaps smcp †
PetiteCaps pcap †
UppercaseSmallCaps c2sc †
UppercasePetiteCaps c2pc †
Unicase unic †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Example : Small caps from lowercase or uppercase letters.

THIS SENTENCE no verb
this sentence no verb

\fontspec{texgyreadventor-regular.otf}[Letters=SmallCaps]
THIS SENTENCE no verb \\
\fontspec{texgyreadventor-regular.otf}[Letters=UppercaseSmallCaps]
THIS SENTENCE no verb

Example : An example of the Uppercase option of the Letters feature.

UPPER-CASE example
UPPER-CASE example

\fontspec{LinLibertine_R.otf}
UPPER-CASE example \\
\addfontfeature{Letters=Uppercase}
UPPER-CASE example

43

3.1.8 Ligatures

Ligatures refer to the replacement of two separate characters with a specially drawn glyph
for functional or æsthetic reasons. The list of options, of which multiple may be selected at
one time, is shown in Table 11. A demonstration with the Linux Libertine fonts9 is shown in
Example 25.

Note the additional features accessed with Ligatures=TeX. These are not actually real
OpenType features, but additions provided by luaotfload (i.e., LuaTEX only) to emulate TEX’s
behaviour for ascii input of curly quotes and punctuation. In X ETEX this is achieved with the
Mapping feature (see Section 1.1 on page 58) but for consistency Ligatures=TeXwill perform
the same function as Mapping=tex-text.

3.1.9 Localised Forms — locl

This feature enables and disables glyph substitutions, etc., that are specific to the Language se-
lected in the font. This feature is automatically activated by default when present, so it should
not be generally necessary to use LocalForms = On. In certain scenarios it may be important
to turn it Off (although nothing specifically springs to mind).

3.1.10 Numbers

The Numbers feature defines how numbers will look in the selected font, accepting options
shown in Table 13.

The synonyms Uppercase and Lowercase are equivalent to Lining and OldStyle,
respectively. The differences have been shown previously in Section 2 on page 22. The
Monospaced option is useful for tabular material when digits need to be vertically aligned.

The SlashedZero option replaces the default zero with a slashed version to prevent con-
fusion with an uppercase ‘O’, shown in Example 26.

The Arabic option (with tag anum) maps regular numerals to their Arabic script or Per-
sian equivalents based on the current Language setting (see Section 2 on page 35). This option
is based on a LuaTEX feature of the luaotfload package, not an OpenType feature. (Thus, this
feature is unavailable in X ETEX.)

9http://www.linuxlibertine.org/

Table 11: Options for the OpenType font feature ‘Ligatures’.

Feature Option Tag

Ligatures = Required rlig †
Common liga †
Contextual clig †
Rare/Discretionary dlig †
Historic hlig †
TeX tlig †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

44

http://www.linuxlibertine.org/

Example : An example of the Ligatures feature.

strict→ strict
wurtzite → wurtzite
firefly→ firefly

\def\test#1#2{%
#2 \to {\addfontfeature{#1} #2}\\}

\fontspec{LinLibertine_R.otf}
\test{Ligatures=Historic}{strict}
\test{Ligatures=Rare}{wurtzite}
\test{Ligatures=NoCommon}{firefly}

Table 12: Options for the OpenType font feature ‘LocalForms’.

Feature Option Tag

LocalForms = On +locl
Off -locl
Reset

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Table 13: Options for the OpenType font feature ‘Numbers’.

Feature Option Tag

Numbers = Uppercase lnum †
Lowercase onum †
Lining lnum †
OldStyle onum †
Proportional pnum †
Monospaced tnum †
SlashedZero zero †
Arabic anum †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Example : The effect of the SlashedZero option.

0123456789 0123456789

\fontspec[Numbers=Lining]{texgyrebonum-regular.otf}
0123456789

\fontspec[Numbers=SlashedZero]{texgyrebonum-regular.otf}
0123456789

45

3.1.11 Ornament — ornm

Ornaments are selected with the Ornament feature (OpenType feature ornm), selected numer-
ically such as for the Annotation feature.

3.1.12 Style

‘Ruby’ refers to a small optical size, used in Japanese typography for annotations. For fonts
with multiple saltOpenType features, use the fontspec Alternate feature instead.

Example 27 shows an example of a font feature that involves glyph substitution for par-
ticular letters within an alphabet. Other options in these categories operate in similar ways,
with the choice of how particular substitutions are organised with which feature largely up to
the font designer.

In other features, larger breadths of changes can be seen, covering the style of an entire
alphabet. See Example 28; here, the Italic option affects the Latin text and the Ruby option
the Japanese.

Note the difference here between the default and the horizontal style kana in Example 29:
the horizontal style is slightly wider.

3.1.13 Stylistic Set variations — ssNN

This feature selects a ‘Stylistic Set’ variation, which usually corresponds to an alternate glyph
style for a range of characters (usually an alphabet or subset thereof). This feature is specified
numerically. These correspond to OpenType features ss01, ss02, etc.

Two demonstrations from the Junicode font10 are shown in Example 30 and Example 31;
thanks to Adam Buchbinder for the suggestion.

Multiple stylistic setsmay be selected simultaneously bywriting, e.g., StylisticSet={1,2,3}.
The StylisticSet feature is a synonym of the Variant feature for aat fonts. See Sec-

tion 1 on page 65 for away to assign names to stylistic sets, which should be done on a per-font
basis.

3.1.14 Vertical Position

The VerticalPosition feature is used to access things like subscript (Inferior) and su-
perscript (Superior) numbers and letters (and a small amount of punctuation, sometimes).
The Ordinal option will only raise characters that are used in some languages directly after a
number. The ScientificInferior feature will move glyphs further below the baseline than
the Inferior feature. These are shown in Example 32

10http://junicode.sf.net

Example : Example of the Alternate option of the Style feature.

M Q W
M Q W

\fontspec{Quattrocento.otf}
M Q W \\
\addfontfeature{Style=Alternate}
M Q W

46

http://junicode.sf.net

Table 14: Options for the OpenType font feature ‘Style’.

Feature Option Tag

Style = Alternate salt †
Italic ital †
Ruby ruby †
Swash swsh †
Cursive curs †
Historic hist †
TitlingCaps titl †
HorizontalKana hkna †
VerticalKana vkna †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Example : Example of the Italic and Ruby options of the Style feature.

Latin ようこそ ワカヨタレソ
Latin ようこそ ワカヨタレソ

\fontspec{Hiragino Mincho Pro}
Latin \kana \\
\addfontfeature{Style={Italic, Ruby}}
Latin \kana

Example : Example of the HorizontalKana and VerticalKana options of the Style feature.

ようこそ ワカヨタレソ
ようこそ ワカヨタレソ
ようこそ ワカヨタレソ

\fontspec{Hiragino Mincho Pro}
\kana \\

{\addfontfeature{Style=HorizontalKana}
\kana } \\

{\addfontfeature{Style=VerticalKana}
\kana }

Example : Insular letterforms, as used in medieval Northern Europe, for the Junicode font accessed
with the StylisticSet feature.

Insular forms.
Inꞅulaꞃ ꝼoꞃmꞅ.

\fontspec{Junicode}
Insular forms. \\
\addfontfeature{StylisticSet=2}
Insular forms. \\

47

Example : Enlargedminuscules (capital letters remain unchanged) for the Junicode font, accessedwith
the StylisticSet feature.

ENLARGED Minuscules.
ENLARGED Minuscules.

\fontspec{Junicode}
ENLARGED Minuscules. \\
\addfontfeature{StylisticSet=6}
ENLARGED Minuscules. \\

Table 15: Options for the OpenType font feature ‘VerticalPosition’.

Feature Option Tag

VerticalPosition = Superior sups †
Inferior subs †
Numerator numr †
Denominator dnom †
ScientificInferior sinf †
Ordinal ordn †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

Numerator and Denominator should only be used for creating arbitrary fractions (see
next section).

The realscripts package (which is also loaded by xltxtra forX ETEX) redefines the \textsubscript
and \textsuperscript commands to use the above font features automatically, including for
use in footnote labels. If this is the only feature of xltxtra you wish to use, consider loading
realscripts on its own instead.

3.2 CJK features

This section summarises the features which are largely intending for Chinese, Korean, and
Japanese typesetting.

Example : The VerticalPosition feature.

Superior: ¹²³⁴⁵⁶⁷⁸⁹⁰
Numerator: 12345
Denominator: 12345
Scientific Inferior: ₁₂₃₄₅

\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Superior]
Superior: 1234567890 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Numerator]
Numerator: 12345 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Denominator]
Denominator: 12345 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=ScientificInferior]
Scientific Inferior: 12345

48

3.2.1 Annotation — nalt

Some fonts are equipped with an extensive range of numbers and numerals in different forms.
These are accessed with the Annotation feature (OpenType feature nalt), selected numeri-
cally as shown in Example 33. Note that the indexing starts from zero.

3.2.2 Character width

Many Asian fonts are equipped with variously spaced characters for shoe-horning into their
generally monospaced text. These are accessed through the CharacterWidth feature.

Japanese alphabetic glyphs (in Hiragana or Katakana) may be typeset proportionally, to
better fit horizontalmeasures, ormonospaced, to fit into the rigid grid imposed by ideographic
typesetting. In this latter case, there are also half-width forms for squeezingmore kana glyphs
(which are less complex than the kanji they are amongst) into a given block of space. The same
features are given to roman letters in Japanese fonts, for typesetting foreign words in the same
style as the surrounding text.

The same situation occurs with numbers, which are provided in increasingly illegible
compressed forms seen in Example 35.

3.2.3 CJK shape

There have beenmany standards for howCJK ideographic glyphs are ‘supposed’ to look. Some
fonts will contain many alternate glyphs available in order to be able to display these gylphs
correctly in whichever form is appropriate. Both aat and OpenType fonts support the follow-
ing CJKShape options: Traditional, Simplified, JIS1978, JIS1983, JIS1990, and Expert.
OpenType also supports the NLC option.

3.2.4 Vertical typesetting

OpenType provides a plethora of features for accommodating the varieties of possibilities
needed for vertical typesetting (CJK and others). No capabilities for achieving such vertical
typesetting are provided by fontspec, however; please get in touch if there are improvements
that could be made.

Table 16: Options for the OpenType font feature ‘CharacterWidth’.

Feature Option Tag

CharacterWidth = Proportional pwid †
Full fwid †
Half hwid †
Third twid †
Quarter qwid †
AlternateProportional palt †
AlternateHalf halt †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

49

Example : Annotation forms for OpenType fonts.

1 2 3 4 5 6 7 8 9
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐

\fontspec{Hiragino Maru Gothic Pro}
1 2 3 4 5 6 7 8 9

\def\x#1{\\{\addfontfeature{Annotation=#1}
1 2 3 4 5 6 7 8 9 }}

\x0\x1\x2\x3\x4\x5\x6\x7\x7\x8\x9

Example : Proportional or fixed width forms.

ようこそ ワカヨタレソ abcdef
ようこそ ワカヨタレソ ａｂｃｄｅｆ
ようこそ ﾜｶﾖﾀﾚｿ abcdef

\def\test{\makebox[2cm][l]{\texta}%
\makebox[2.5cm][l]{\textb}%
\makebox[2.5cm][l]{abcdef}}

\fontspec{Hiragino Mincho Pro}
{\addfontfeature{CharacterWidth=Proportional}\test}\\
{\addfontfeature{CharacterWidth=Full}\test}\\
{\addfontfeature{CharacterWidth=Half}\test}

Example : Numbers can be compressed significantly.

―１２３２１―
‒1234554321‒
̶123456787654321̶
̶12345678900987654321̶

\fontspec[Renderer=AAT]{Hiragino Mincho Pro}
{\addfontfeature{CharacterWidth=Full}
---12321---}\\
{\addfontfeature{CharacterWidth=Half}
---1234554321---}\\
{\addfontfeature{CharacterWidth=Third}
---123456787654321---}\\
{\addfontfeature{CharacterWidth=Quarter}
---12345678900987654321---}

Example : Different standards for CJK ideograph presentation.

唖噛躯 妍并訝
唖噛躯 姸幷訝
啞嚙軀 妍并訝

\fontspec{Hiragino Mincho Pro}
{\addfontfeature{CJKShape=Traditional}
\text } \\
{\addfontfeature{CJKShape=NLC}
\text } \\
{\addfontfeature{CJKShape=Expert}
\text }

50

Table 17: Options for the OpenType font feature ‘CJKShape’.

Feature Option Tag

CJKShape = Traditional trad
Simplified smpl
JIS1978 jp78
JIS1983 jp83
JIS1990 jp90
Expert expt
NLC nlck

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Table 18: Options for the OpenType font feature ‘Vertical’.

Feature Option Tag

Vertical = RotatedGlyphs vrt2 †
AlternatesForRotation vrtr †
Alternates vert †
KanaAlternates vkna †
Kerning vkrn †
AlternateMetrics valt †
HalfMetrics vhal †
ProportionalMetrics vpal †

ResetAll
† These feature options can be disabled with ..Off variants, and reset

to default state (neither explicitly on nor off) with ..Reset.

51

Part V

Commands for accents and symbols
(‘encodings’)
The functionality described in this section is experimental.

In the pre-Unicode era, significant work was required by LATEX to ensure that input char-
acters in the source could be interpreted correctly depending on file encoding, and that glyphs
in the output were selected correctly depending on the font encoding. With Unicode, we have
the luxury of a single file and font encoding that is used for both input and output.

While thismay provide some illusion that we could get away simply with typingUnicode
text and receive correct output, this is not always the case. For a start, hyphenation in particular
is language-specific, so tags should be used when switch between languages in a document.
The babel and polyglossia packages both provide features for this.

Multilingual documents will often use different fonts for different languages, not just for
style, but for the more pragmatic reason that fonts do not all contain the same glyphs. (In fact,
only test fonts such as Code2000 provide anywhere near the full Unicode coverage.) Indeed,
certain fonts may be perfect for a certain application but miss a handful of necessary diacritics
or accented letters. In these cases, fontspec can leverage the font encoding technology built
into LATEX2 to provide on a per-font basis either provide fallback options or error messages
when a desired accent or symbol is not available. However, at present these features can only
be provided for input using LATEX commands rather than Unicode input; for example, typing
\`e instead of è or \textcopyright instead of © in the source file.

The most widely-used encoding in LATEX2ε was T1 with companion ‘TS1’ symbols pro-
vided by the textcomp package. These encodings provided glyphs to typeset text in a variety of
western European languages. As with most legacy LATEX2ε input methods, accents and sym-
bols were input using encoding-dependent commands such as \`e as described above. As of
2017, in LATEX2ε on X ETEX and LuaTEX, the default encoding is TU, which uses Unicode for
input and output. The TU encoding provides appropriate encoding-dependent definitions for
input commands to match the coverage of the T1+TS1 encodings. Wider coverage is not pro-
vided by default since (a) each font will provide different glyph coverage, and (b) it is expected
that most users will be writing with direct Unicode input.

For those users who do need finer-grained control, fontspec provides an interface for a
more extensible system.

1 A new Unicode-based encoding from scratch

Let’s say you need to provide support for a document originally written with fonts in the
OT2 encoding, which contains encoding-dependent commands for Cyrillic letters. An example
from the OT2 encoding definition file (ot2enc.def) reads:

57 \DeclareTextSymbol{\CYRIE}{OT2}{5}
58 \DeclareTextSymbol{\CYRDJE}{OT2}{6}
59 \DeclareTextSymbol{\CYRTSHE}{OT2}{7}
60 \DeclareTextSymbol{\cyrnje}{OT2}{8}

52

61 \DeclareTextSymbol{\cyrlje}{OT2}{9}
62 \DeclareTextSymbol{\cyrdzhe}{OT2}{10}

To recreate this encoding in a form suitable for fontspec, create a new file named, say,
fontrange-cyr.def and populate it with

...
\DeclareTextSymbol{\CYRIE} {\LastDeclaredEncoding}{"0404}
\DeclareTextSymbol{\CYRDJE} {\LastDeclaredEncoding}{"0402}
\DeclareTextSymbol{\CYRTSHE}{\LastDeclaredEncoding}{"040B}
\DeclareTextSymbol{\cyrnje} {\LastDeclaredEncoding}{"045A}
\DeclareTextSymbol{\cyrlje} {\LastDeclaredEncoding}{"0459}
\DeclareTextSymbol{\cyrdzhe}{\LastDeclaredEncoding}{"045F}
...

The numbers "0404, "0402, …, are the Unicode slots (in hexadecimal) of each glyph respec-
tively. The fontspec package provides a number of shorthands to simplify this style of input;
in this case, you could also write

\EncodingSymbol{\CYRIE}{"0404}
...

To use this encoding in a fontspec font, you would first add this to your preamble:

\DeclareUnicodeEncoding{unicyr}{
\input{fontrange-cyr.def}

}

Then follow it up with a font loading call such as

\setmainfont{...}[NFSSEncoding=unicyr]

The first argument unicyr is the name of the ‘encoding’ to use in the font family. (There’s
nothing special about the name chosen but it must be unique.) The second argument to
\DeclareUnicodeEncoding also allows adjustments to be made for per-font changes. We’ll
cover this use case in the next section.

2 Adjusting a pre-existing encoding

There are three reasons to adjust a pre-existing encoding: to add, to remove, and to redefine
some symbols, letters, and/or accents.

When adding symbols, etc., simply write

\DeclareUnicodeEncoding{unicyr}{
\input{tuenc.def}
\input{fontrange-cyr.def}
\EncodingSymbol{\textruble}{"20BD}

}

53

Of course if you consistently add a number of symbols to an encoding it would be a good idea
to create a new fontrange-XX.def file to suit your needs.

When removing symbols, use the \UndeclareSymbol{⟨cmd⟩} command. For example,
if you a loading a font that you know is missing, say, the interrobang (not that unusual a
situation), you might write:

\DeclareUnicodeEncoding{nobang}{
\input{tuenc.def}
\UndeclareSymbol\textinterrobang

}

Provided that you use the command \textinterrobang to typeset this symbol, it will appear
in fonts with the default encoding, while in any font loaded with the nobang encoding an
attempt to access the symbol will either use the default fallback definition or return an error,
depending on the symbol being undeclared.

The third use case is to redefine a symbol or accent. The most common use case in this
scenario is to adjust a specific accent command to either fine-tune its placement or to ‘fake’ it
entirely. For example, the underdot diacritic is used in typeset Sanskrit, but it is not necessarily
included as an accent symbol is all fonts. By default the underdot is defined in TU as:

\EncodingAccent{\d}{"0323}

For fonts with a missing (or poorly-spaced) "0323 accent glyph, the ‘traditional’ TEX fake
accent construction could be used instead:

\DeclareUnicodeEncoding{fakeacc}{
\input{tuenc.def}
\EncodingCommand{\d}[1]{%
\hmode@bgroup
\o@lign{\relax#1\crcr\hidewidth\ltx@sh@ft{-1ex}.\hidewidth}%

\egroup
}

}

This would be set up in a document as such:

\newfontfamily\sanskitfont{CharisSIL}
\newfontfamily\titlefont{Posterama}[NFSSEncoding=fakeacc]

Then later in the document, no additional work is needed:

...{\titlefont kalita\d m}... % <- uses fake accent

...{\sanskitfont kalita\d m}... % <- uses real accent

To reiterate from above, typing this input with Unicode text (‘kalitaṃ’) will bypass this en-
coding mechanism and you will receive only what is contained literally within the font.

54

3 Summary of commands

The LATEX2ε kernel provides the following font encoding commands suitable for Unicode en-
codings:

\DeclareTextCommand{⟨command⟩}{⟨encoding⟩}[⟨num⟩][⟨default⟩]{⟨code⟩}
\DeclareUnicodeAccent{⟨command⟩}{⟨encoding⟩}{⟨slot⟩}
\DeclareTextSymbol{⟨command⟩}{⟨encoding⟩}{⟨slot⟩}
\DeclareTextComposite{⟨command⟩}{⟨encoding⟩}{⟨letter⟩}{⟨slot⟩}
\DeclareTextCompositeCommand{⟨command⟩}{⟨encoding⟩}{⟨letter⟩}{⟨code⟩}
\UndeclareTextCommand{⟨command⟩}{⟨encoding⟩}

See fntguide.pdf for full documentation of these. As shown above, the following short-
hands are provided by fontspec to simplify the process of defining Unicode font range encod-
ings:

\EncodingCommand{⟨command⟩}[⟨num⟩][⟨default⟩]{⟨code⟩}
\EncodingAccent{⟨command⟩}{⟨code⟩}
\EncodingSymbol{⟨command⟩}{⟨code⟩}
\EncodingComposite{⟨command⟩}{⟨letter⟩}{⟨slot⟩}
\EncodingCompositeCommand{⟨command⟩}{⟨letter⟩}{⟨code⟩}
\UndeclareSymbol{⟨command⟩}
\UndeclareAccent{⟨command⟩}
\UndeclareCommand{⟨command⟩}
\UndeclareComposite{⟨command⟩}{⟨letter⟩}

55

Part VI

LuaTEX-only font features

1 Custom font features

LuaTEX, via the luaotfload package, allows the definition and re-definition of custom Open-
Type features for a selected font. This facility is particularly useful to implement custom sub-
stitutions or to disable unwanted but not all ligatures. Figure 1 shows an minimal example of
this type of functionality.

A third-party collection of additional examples aremaintained in the repository ‘fonts-in-luatex’11.
These examples are intended to correct or adjust font features in a range of commercial fonts
and provide a good introduction to some of the possibilities that LuaTEX affords.

Please refer to the LuaTEX/luaotfload documentation for more details.

11https://github.com/mewtant/fonts-in-luatex

56

https://github.com/mewtant/fonts-in-luatex

Figure 1: An example of custom font features.

\documentclass{article}
\usepackage{fontspec}
\directlua{

fonts.handlers.otf.addfeature {
name = "oneb",
type = "substitution",
data = {

["1"] = "one.ss01",
}

}
}
\setmainfont{Vollkorn-Regular.otf}[RawFeature=+oneb]
\begin{document}
1234567890
\end{document}

57

Part VII

Fonts and features with X ETEX

1 X ETEX-only font features

The features described here are available for any font selected by fontspec.

1.1 Mapping

The Mapping feature enables a X ETEX text-mapping scheme, with an example shown in Exam-
ple 37.

Only one mapping can be active at a time and a second call to Mapping will override the
first. Using the tex-text mapping is also equivalent to writing Ligatures=TeX. The use of
the latter syntax is recommended for better compatibility with LuaTEX documents.

1.2 Different font technologies: aat, OpenType, and Graphite

X ETEX supports three rendering technologies for typesetting, selected with the Renderer font
feature. The first, AAT, is that provided only by macOS. The second, OpenType, is an open
source OpenType interpreter. It provides greater support for OpenType features, notably con-
textual arrangement, over AAT. The third is Graphite, which is an alternative to OpenType
with particular features for less-common languages and the capability for more powerful font
options. Features for OpenType have already been discussed in IV on page 33; Graphite and
AAT features are discussed later in Section 2 on the following page and Section 3 on the next
page.

Unless you have a particular need, the Renderer feature is rarely explicitly required: for
OpenType fonts, the OpenType renderer is used automatically, and for aat fonts, AAT is chosen
by default. Some fonts, however, will contain font tables for multiple rendering technologies,
such as the Hiragino Japanese fonts distributed with macOS, and in these cases one over the
other may be preferred.

Among some other font features only available through a specific renderer, OpenType
provides for the Script and Language features, which allow different font behaviour for dif-
ferent alphabets and languages; see Section 2 on page 35 for the description of these features.
Because these font features can change which features are able to be selected for the font instance,
they are selected by fontspec before all others and will automatically and without warning select
the OpenType renderer.

Example : X ETEX’s Mapping feature.

“¡A small amount of—text!”
\fontspec{texgyrepagella-regular.otf}[Mapping=tex-text]
``!`A small amount of---text!''

58

1.3 Optical font sizes

Multiple Master fonts are parameterised over orthogonal font axes, allowing continuous se-
lection along such features as weight, width, and optical size. Whereas an OpenType font will
have only a few separate optical sizes, a Multiple Master font’s optical size can be specified
over a continuous range. Unfortunately, this flexibility makes it harder to create an automatic
interface through LATEX, and the optical size for a Multiple Master font must always be speci-
fied explicitly.

\fontspec{Minion MM Roman}[OpticalSize=11]
MM optical size test \\
\fontspec{Minion MM Roman}[OpticalSize=47]
MM optical size test \\
\fontspec{Minion MM Roman}[OpticalSize=71]
MM optical size test \\

2 The Graphite renderer

Since the Graphite renderer is designed for less common scripts and languages, usually with
specific or unique requirements, Graphite features are not standard across fonts.

Currently fontspec does not support a convenient interface to select Graphite font fea-
tures and all selection must be done via ‘raw’ font feature selection.

Here’s an example:

\fontspec{Charis SIL}[
Renderer=Graphite,
RawFeature={Uppercase Eng alternates=Large eng on baseline}]

Ŋ

Here’s another:

\fontspec{AwamiNastaliq-Regular.ttf}[Renderer=Graphite] ^^^^06b5
\addfontfeature{RawFeature={Lam with V=V over bowl}} ^^^^06b5

3 macOS’s aat fonts

Warning! X ETEX’s implementation on macOS is currently in a state of flux and the
information contained belowmaywell be wrong from 2013 onwards. There is a good
chance that the features described in this section will not be available any more as
X ETEX’s completes its transition to a cross-platform–only application.

macOS’s font technology began life before the ubiquitous-OpenType era and revolved
around the Apple-invented ‘aat’ font format. This format had some advantages (and other
disadvantages) but it never became widely popular in the font world.

Nonetheless, this is the font format that was first supported by X ETEX (due to its pedigree
on macOS in the first place) and was the first font format supported by fontspec. A number
of fonts distributed with macOS are still in the aat format, such as ‘Skia’.

59

3.1 Ligatures

Ligatures refer to the replacement of two separate characters with a specially drawn
glyph for functional or æsthetic reasons. For aat fonts, you may choose from any combina-
tion of Required, Common, Rare (or Discretionary), Logos, Rebus, Diphthong, Squared,
AbbrevSquared, and Icelandic.

Some other Apple aat fonts have those ‘Rare’ ligatures contained in the Icelandic fea-
ture. Notice also that the old TEX trick of splitting up a ligature with an empty brace pair does
not work in X ETEX; you must use a 0 pt kern or \hbox (e.g., \null) to split the characters up if
you do not want a ligature to be performed (the usual examples for when thismight be desired
are words like ‘shelffull’).

3.2 Letters

The Letters feature specifies how the letters in the current font will look. For aat fonts, you
may choose from Normal, Uppercase, Lowercase, SmallCaps, and InitialCaps.

3.3 Numbers

The Numbers feature defines how numbers will look in the selected font. For aat fonts, they
may be a combination of Lining or OldStyle and Proportional or Monospaced (the latter
is good for tabular material). The synonyms Uppercase and Lowercase are equivalent to
Lining and OldStyle, respectively. The differences have been shown previously in Section 2
on page 22.

3.4 Contextuals

This feature refers to glyph substitution that vary by their position; things like contextual
swashes are implemented here. The options for aat fonts are WordInitial, WordFinal (Ex-
ample 38), LineInitial, LineFinal, and Inner (Example 39, also called ‘non-final’ some-
times). As non-exclusive selectors, like the ligatures, you can turn them off by prefixing their
name with No.

3.5 Vertical position

The VerticalPosition feature is used to access things like subscript (Inferior) and super-
script (Superior) numbers and letters (and a small amount of punctuation, sometimes). The
Ordinal option is (supposed to be) contextually sensitive to only raise characters that appear
directly after a number. These are shown in Example 40.

Example : Contextual glyph for the beginnings and ends of words.

where is all the vegemite

\newfontface\fancy{Hoefler Text Italic}[%
Contextuals={WordInitial,WordFinal}]

\fancy where is all the vegemite

60

Example :A contextual feature for the ‘long s’ can be convenient as the character does not need to be
marked up explicitly.

‘Inner’ ſwaſhes can ſometimes
contain the archaic long s.

\fontspec{Hoefler Text}[Contextuals=Inner]
`Inner' swashes can \emph{sometimes} \\
contain the archaic long~s.

Example : Vertical position for AAT fonts.

Normal
1 2ⁿ 3 4 0 8

\fontspec{Skia}
Normal

\fontspec{Skia}[VerticalPosition=Superior]
Superior

\fontspec{Skia}[VerticalPosition=Inferior]
Inferior \\

\fontspec{Skia}[VerticalPosition=Ordinal]
1st 2nd 3rd 4th 0th 8abcde

The realscripts package (also loaded by xltxtra) redefines the \textsubscript and
\textsuperscript commands to use the above font features, including for use in footnote
labels.

3.6 Fractions

Many fonts come with the capability to typeset various forms of fractional material. This is
accessed in fontspec with the Fractions feature, which may be turned On or Off in both aat
and OpenType fonts.

In aat fonts, the ‘fraction slash’ or solidus character, is to be used to create fractions.When
Fractions are turned On, then only pre-drawn fractions will be used. See Example 41.

Using the Diagonal option (aat only), the font will attempt to create the fraction from
superscript and subscript characters.

Some (Asian fonts predominantly) also provide for the Alternate feature shown in Ex-
ample 42.

Example : Fractions in AAT fonts. The ^^^^2044 glyph is the ‘fraction slash’ that may be typed in
macOS with opt+shift+1; not shown literally here due to font contraints.

½ 5⁄6
1/2 5/6
¹³⁵⁷⁹⁄₂₄₆₈₀
13579/24680

\fontspec[Fractions=On]{Skia}
1{^^^^2044}2 \quad 5{^^^^2044}6 \\ % fraction slash
1/2 \quad 5/6 % regular slash

\fontspec[Fractions=Diagonal]{Skia}
13579{^^^^2044}24680 \\ % fraction slash

\quad 13579/24680 % regular slash

61

Example : Alternate design of pre-composed fractions.

1/2 1/4 5/6 13579/24680
1/2 1/4 5/6 13579/24680

\fontspec{Hiragino Maru Gothic Pro}
1/2 \quad 1/4 \quad 5/6 \quad 13579/24680 \\

\addfontfeature{Fractions=Alternate}
1/2 \quad 1/4 \quad 5/6 \quad 13579/24680

3.7 Variants

The Variant feature takes a single numerical input for choosing different alphabetic shapes.
Don’t mindmy fancy Example 43 :) I’m just looping through the nine (!) variants of Zapfino.

See Section 1 on page 65 for a way to assign names to variants, which should be done on
a per-font basis.

3.8 Alternates

Selection of Alternates againmust be done numerically; see Example 44. See Section 1 on
page 65 for a way to assign names to alternates, which should be done on a per-font basis.

3.9 Style

The options of the Style feature are defined in aat as one of the following: Display,
Engraved, IlluminatedCaps, Italic, Ruby,12 TallCaps, or TitlingCaps.

Typical examples for these features are shown in 3.1.12.

3.10 CJK shape

There have beenmany standards for howCJK ideographic glyphs are ‘supposed’ to look. Some
fonts will containmany alternate glyphs in order to be able to display these gylphs correctly in
whichever form is appropriate. Both aat andOpenType fonts support the following CJKShape
options: Traditional, Simplified, JIS1978, JIS1983, JIS1990, and Expert. OpenType
also supports the NLC option.

12 ‘Ruby’ refers to a small optical size, used in Japanese typography for annotations.

Example : Nine variants of Zapfino.

ddddddddd

\newcounter{var}
\whiledo{\value{var}<9}{%

\edef\1{%
\noexpand\fontspec[Variant=\thevar,

Color=0099\thevar\thevar]{Zapfino}}\1%
\makebox[0.75\width]{d}%
\stepcounter{var}}

\hspace*{2cm}

62

Example : Alternate shape selection must be numerical.

Sphinx Of Black Quartz, JudgeMyVow
Sphinx Of Black Quartz, JudgeMyVow

\fontspec{Hoefler Text Italic}[Alternate=0]
Sphinx Of Black Quartz, {\scshape Judge My Vow} \\
\fontspec{Hoefler Text Italic}[Alternate=1]
Sphinx Of Black Quartz, {\scshape Judge My Vow}

3.11 Character width

See 3.2.2 on page 49 for relevant examples; the features are the same between OpenType and
aat fonts. aat also allows CharacterWidth=Default to return to the original font settings.

3.12 Vertical typesetting

X ETEX provides for vertical typesetting simply with the ability to rotate the individual glyphs
as a font is used for typesetting, as shown in Example 45.

No actual provision is made for typesetting top-to-bottom languages; for an example of
how to do this, see the vertical Chinese example provided in the X ETEX documentation.

3.13 Diacritics

Diacritics are marks, such as the acute accent or the tilde, applied to letters; they usually in-
dicate a change in pronunciation. In Arabic scripts, diacritics are used to indicate vowels. You
may either choose to Show, Hide or Decompose them in aat fonts. The Hide option is for
scripts such as Arabic which may be displayed either with or without vowel markings. E.g.,
\fontspec[Diacritics=Hide]{...}

Some older fonts distributed with macOS included ‘O/’ etc. as shorthand for writing ‘Ø’
under the label of the Diacritics feature. If you come across such fonts, you’ll want to turn
this feature off (imagine typing hello/goodbye and getting ‘helløgoodbye’ instead!) by de-
composing the two characters in the diacritic into the ones you actually want. I recommend
using the proper LATEX input conventions for obtaining such characters instead.

Example : Vertical typesetting.

共産主義者は

共
産
主
義
者
は

\fontspec{Hiragino Mincho Pro}
\verttext

\fontspec{Hiragino Mincho Pro}[Renderer=AAT,Vertical=RotatedGlyphs]
\rotatebox{-90}{\verttext}% requires the graphicx package

63

3.14 Annotation

Various Asian fonts are equipped with amore extensive range of numbers and numerals in dif-
ferent forms. These are accessed through the Annotation feature with the following options:
Off, Box, RoundedBox, Circle, BlackCircle, Parenthesis, Period, RomanNumerals, Diamond,
BlackSquare, BlackRoundSquare, and DoubleCircle.

64

Part VIII

Customisation and programming
interface
This is the beginning of somework to provide some hooks that use fontspec for variousmacro
programming purposes.

1 Defining new features

This package cannot hope to contain every possible font feature. Three commands are pro-
vided for selecting font features that are not provided for out of the box. If you are using them
a lot, chances are I’ve left something out, so please let me know.

New aat features may be created with this command:\newAATfeature
\newAATfeature{⟨feature⟩}{⟨option⟩}{⟨feature code⟩}{⟨selector code⟩}

Use the X ETEX file AAT-info.tex to obtain the code numbers. See Example 46.
New OpenType features may be created with this command:\newopentypefeature

\newopentypefeature{⟨feature⟩}{⟨option⟩}{⟨feature tag⟩}
The synonym \newICUfeature is deprecated.
Here’s what it would look like in practise:

\newopentypefeature{Style}{NoLocalForms}{-locl}

In case the above commands do not accommodate the desired font feature (perhaps a\newfontfeature
new X ETEX feature that fontspec hasn’t been updated to support), a command is provided to
pass arbitrary input into the font selection string:

\newfontfeature{⟨name⟩}{⟨input string⟩}
For example, Zapfino used to contain anAAT feature ‘Avoid d-collisions’. To access it with

this package, you could do some like the following:

\newfontfeature{AvoidD} {Special= Avoid d-collisions}
\newfontfeature{NoAvoidD}{Special=!Avoid d-collisions}
\fontspec{Zapfino}[AvoidD,Variant=1]
sockdolager rubdown \\
\fontspec{Zapfino}[NoAvoidD,Variant=1]
sockdolager rubdown

Example : Assigning new aat features.

This isXeTeX by JonathanKew.

\newAATfeature{Alternate}{HoeflerSwash}{17}{1}
\fontspec{Hoefler Text Italic}[Alternate=HoeflerSwash]
This is XeTeX by Jonathan Kew.

65

The advantage to using the \newAATfeature and \newopentypefeature commands in-
stead of \newfontfeature is that they check if the selected font actually contains the desired
font feature at load time. By contrast, \newfontfeaturewill not give a warning for improper
input.

2 Defining new scripts and languages

While the scripts and languages listed in Table 2 and Table 3 are intended to be comprehensive,\newfontscript
\newfontlanguage there may be some missing; alternatively, you might wish to use different names to access

scripts/languages that are already listed. Adding scripts and languages can be performed with
the \newfontscript and \newfontlanguage commands. For example,

\newfontscript{Arabic}{arab}
\newfontlanguage{Zulu}{ZUL}

The first argument is the fontspec name, the second theOpenType tag. The advantage to using
these commands rather than \newfontfeature (see Section 1 on the previous page) is the
error-checking that is performed when the script or language is requested.

Both commands accept a comma-separated list of OpenType tags in order of preference.
This permits, for example, supporting both new and old versions of a language tag with a
common user interface:

\newfontlanguage{Turkish}{TRK,TUR}

Here, a font that is requested with Script=Turkish will first be checked for the OpenType
language tag TRK, whichwill be selected if available. If not available, the TUR tagwill be queried
and used if possible as a fallback.

3 Going behind fontspec’s back

Expert users may wish not to use fontspec’s feature handling at all, while still taking advan-
tage of its LATEX font selection conveniences. The RawFeature font feature allows font feature
selection using a literal feature selection string if you happen to have the OpenType feature
tag memorised.

Multiple features can either be included in a single declaration:
[RawFeature=+smcp;+onum]

or with multiple declarations:
[RawFeature=+smcp, RawFeature=+onum]

Example : Using raw font features directly.

Pagella small caps
\fontspec{texgyrepagella-regular.otf}[RawFeature=+smcp]
Pagella small caps

66

4 Renaming existing features & options

If you don’t like the name of a particular font feature, it may be aliased to another with\aliasfontfeature
the \aliasfontfeature{⟨existing name⟩}{⟨new name⟩} command, such as shown in Exam-
ple 48.

Spaces in feature (and option names, see below) are allowed. (You may have noticed this
already in the lists of OpenType scripts and languages).

If you wish to change the name of a font feature option, it can be aliased to another with\aliasfontfeatureoption
the command \aliasfontfeatureoption{⟨font feature⟩}{⟨existing name⟩}{⟨new name⟩},
such as shown in Example 49.

This example demonstrates an important point: when aliasing the feature options, the
original feature name must be used when declaring to which feature the option belongs.

Only feature options that exist as sets of fixed strings may be altered in this way. That
is, Proportional can be aliased to Prop in the Letters feature, but 550099BB cannot be
substituted for Purple in a Color specification. For this type of thing, the \newfontfeature
command should be used to declare a new, e.g., PurpleColor feature:

\newfontfeature{PurpleColor}{color=550099BB}

Except that this example was written before support for named colours was implemented. But
you get the idea.

5 Programming interface

5.1 Variables

In some cases, it is useful to know what the LATEX font family of a specific fontspec font is. Af-\l_fontspec_family_tl
\l_fontspec_font ter a \fontspec-like command, this is stored inside the \l_fontspec_family_tl macro. Oth-

erwise, LATEX’s own \f@family macro can be useful here, too. The raw TEX font that is defined
from the ‘base’ font in the family is stored in \l_fontspec_font.

Package authors who need to load fonts with legacy LATEX nfss commands may also need\g_fontspec_encoding_tl
to know what the default font encoding is. Since this has changed from EU1/EU2 to TU, it is
best to use the variables \g_fontspec_encoding_tl or \UTFencname instead.

5.2 Functions for loading new fonts and families

\fontspec_set_family:Nnn #1 : LATEX family
#2 : fontspec features
#3 : font name

Defines a new nfss family from given ⟨features⟩ and ⟨font⟩, and stores the family name
in the variable ⟨family⟩. This font family can then be selected with standard LATEX commands

Example : Renaming font features.

Roman LettersAnd Swash

\aliasfontfeature{ItalicFeatures}{IF}
\fontspec{Hoefler Text}[IF = {Alternate=1}]
Roman Letters \itshape And Swash

67

Example : Renaming font feature options.

Sciₑntific Infₑriₒr: ₁₂₃₄₅

\aliasfontfeature{VerticalPosition}{Vert Pos}
\aliasfontfeatureoption{VerticalPosition}{ScientificInferior}{Sci Inf}
\fontspec{LinLibertine_R.otf}[Vert Pos=Sci Inf]
Scientific Inferior: 12345

\fontfamily{⟨family⟩}\selectfont. See the standard fontspec user commands for applica-
tions of this function.

Previously this function set the ⟨family⟩ variable locally, but this was inconsistent with
how the NFSS assigns families. It is now a global operation.

(End definition for \fontspec_set_family:Nnn. This function is documented on page ??.)

\fontspec_set_fontface:NNnn #1 : primitive font
#2 : LATEX family
#3 : fontspec features
#4 : font name

Variant of the above in which the primitive TEX font command is stored in the variable
⟨primitive font⟩. If a family is loaded (with bold and italic shapes) the primitive font command
will only select the regular face. This feature is designed for LATEX programmers who need to
perform subsequent font-related tests on the ⟨primitive font⟩.

Previously this function set the ⟨family⟩ variable locally, but this was inconsistent with
how the NFSS assigns families. It is now a global operation.

(End definition for \fontspec_set_fontface:NNnn. This function is documented on page ??.)

5.3 Conditionals

The following functions in expl syntax may be used for writing code that interfaces with
fontspec-loaded fonts. The following conditionals are all provided in TF, T, and F forms.

5.3.1 Querying font families

\fontspec_font_if_exist:nTF Testwhether the ‘font name’ (#1) exists or is loadable. The syntax of #1 is a restricted/simplified
version of fontspec’s usual font loading syntax; fonts to be loaded by filename are detected by
the presence of an appropriate extension (.otf, etc.), and paths should be included inline.
E.g.:

\fontspec_font_if_exist:nTF {cmr10}{T}{F}
\fontspec_font_if_exist:nTF {Times~ New~ Roman}{T}{F}
\fontspec_font_if_exist:nTF {texgyrepagella-regular.otf}{T}{F}
\fontspec_font_if_exist:nTF {/Users/will/Library/Fonts/CODE2000.TTF}{T}{F}

(End definition for \fontspec_font_if_exist:nTF. This function is documented on page ??.)
The synonym \IfFontExistsTF is provided for ‘document authors’.

\fontspec_if_fontspec_font:TF Test whether the currently selected font has been loaded by fontspec.

68

(End definition for \fontspec_if_fontspec_font:TF. This function is documented on page ??.)

\fontspec_if_opentype:TF Test whether the currently selected font is an OpenType font. Always true for LuaTEX fonts.

(End definition for \fontspec_if_opentype:TF. This function is documented on page ??.)

\fontspec_if_small_caps:TF Test whether the currently selected font has a ‘small caps’ face to be selected with \scshape
or similar. Note that testing whether the font has the Letters=SmallCaps font feature is
sufficient but not necessary for this command to return true, since small caps can also be
loaded from separate font files. The logic of this command is complicated by the fact that
fontspec will merge shapes together (for italic small caps, etc.).

(End definition for \fontspec_if_small_caps:TF. This function is documented on page ??.)

5.3.2 Availability of features

\fontspec_if_aat_feature:nnTF Test whether the currently selected font contains the aat feature (#1,#2).

(End definition for \fontspec_if_aat_feature:nnTF. This function is documented on page ??.)

\fontspec_if_feature:nTF Testwhether the currently selected font contains the rawOpenType feature #1. E.g.: \fontspec_if_feature:nTF {pnum} {True} {False}.
Returns false if the font is not loaded by fontspec or is not an OpenType font.

(End definition for \fontspec_if_feature:nTF. This function is documented on page ??.)

\fontspec_if_feature:nnnTF Test whether the currently selected font with raw OpenType script tag #1 and raw OpenType
language tag #2 contains the rawOpenType feature tag #3. E.g.: \fontspec_if_feature:nnnTF {latn} {ROM} {pnum} {True} {False}.
Returns false if the font is not loaded by fontspec or is not an OpenType font.

(End definition for \fontspec_if_feature:nnnTF. This function is documented on page ??.)

\fontspec_if_script:nTF Testwhether the currently selected font contains the rawOpenType script #1. E.g.: \fontspec_if_script:nTF {latn} {True} {False}.
Returns false if the font is not loaded by fontspec or is not an OpenType font.

(End definition for \fontspec_if_script:nTF. This function is documented on page ??.)

\fontspec_if_language:nTF Test whether the currently selected font contains the raw OpenType language tag #1. E.g.:
\fontspec_if_language:nTF {ROM} {True} {False}. Returns false if the font is not
loaded by fontspec or is not an OpenType font.

(End definition for \fontspec_if_language:nTF. This function is documented on page ??.)

\fontspec_if_language:nnTF Test whether the currently selected font contains the raw OpenType language tag #2 in script
#1. E.g.: \fontspec_if_language:nnTF {cyrl} {SRB} {True} {False}. Returns false if
the font is not loaded by fontspec or is not an OpenType font.

(End definition for \fontspec_if_language:nnTF. This function is documented on page ??.)

69

5.3.3 Currently selected features

\fontspec_if_current_feature:nTF Test whether the currently loaded font is using the specified rawOpenType feature tag #1. The
tag string #1 should be prefixed with + to query an active feature, and with a - (hyphen) to
query a disabled feature.

(End definition for \fontspec_if_current_feature:nTF. This function is documented on page ??.)

\fontspec_if_current_script:nTF Test whether the currently loaded font is using the specified raw OpenType script tag #1.

(End definition for \fontspec_if_current_script:nTF. This function is documented on page ??.)

\fontspec_if_current_language:nTF Test whether the currently loaded font is using the specified raw OpenType language tag #1.

(End definition for \fontspec_if_current_language:nTF. This function is documented on page ??.)

70

	I Getting started
	1 History
	2 Introduction
	2.1 Acknowledgements

	3 Package loading and options
	3.1 Font encodings
	3.2 Maths fonts adjustments
	3.3 Configuration
	3.4 Warnings

	4 Interaction with LaTeX2ε and other packages
	4.1 Verbatim
	4.2 Commands for old-style and lining numbers
	4.3 Italic small caps
	4.4 Emphasis and nested emphasis
	4.5 Strong emphasis

	II General font selection
	1 Main commands
	2 Font selection
	2.1 By font name
	2.2 By file name
	2.3 By custom file name using a .fontspec file
	2.4 Querying whether a font `exists'

	3 Commands to select font families
	3.1 More control over font shape selection
	3.2 Specifically choosing the nfss family
	3.3 Choosing additional nfss font faces
	3.4 Math(s) fonts

	4 Miscellaneous font selecting details

	III Selecting font features
	1 Default settings
	2 Working with the currently selected features
	2.1 Priority of feature selection

	3 Different features for different font shapes
	4 Selecting fonts from TrueType Collections (TTC files)
	5 Different features for different font sizes
	6 Font independent options
	6.1 Colour
	6.2 Scale
	6.3 Interword space
	6.4 Post-punctuation space
	6.5 The hyphenation character
	6.6 Optical font sizes
	6.7 Font transformations
	6.8 Letter spacing

	IV OpenType
	1 Introduction
	1.1 How to select font features
	1.2 How do I know what font features are supported by my fonts?

	2 OpenType scripts and languages
	2.1 Script and Language examples

	3 OpenType font features
	3.1 Tag-based features
	3.2 CJK features

	V Commands for accents and symbols (`encodings')
	1 A new Unicode-based encoding from scratch
	2 Adjusting a pre-existing encoding
	3 Summary of commands

	VI LuaTeX-only font features
	1 Custom font features

	VII Fonts and features with XeTeX
	1 XeTeX-only font features
	1.1 Mapping
	1.2 Different font technologies: aat, OpenType, and Graphite
	1.3 Optical font sizes

	2 The Graphite renderer
	3 macOS's aat fonts
	3.1 Ligatures
	3.2 Letters
	3.3 Numbers
	3.4 Contextuals
	3.5 Vertical position
	3.6 Fractions
	3.7 Variants
	3.8 Alternates
	3.9 Style
	3.10 CJK shape
	3.11 Character width
	3.12 Vertical typesetting
	3.13 Diacritics
	3.14 Annotation

	VIII Customisation and programming interface
	1 Defining new features
	2 Defining new scripts and languages
	3 Going behind fontspec's back
	4 Renaming existing features & options
	5 Programming interface
	5.1 Variables
	5.2 Functions for loading new fonts and families
	5.3 Conditionals

