Options

In this package there are three types of options (examples and differences will be shown further)

1. for interval notation

- isointerval for using standardized format of interval described in ISO 31-11
- isoointerval for using standardized alternative format of interval described in ISO 31-11
- fnspeinterval for using special notation used at FNSPE CTU in Prague

2. for tensor notation (now for vectors and matrices)

- isotensor for using standardized format of tensor
- undertensor for using underline notation of tensor
- arrowtensor for using arrow notation of tensor

3. for complex notation (real and complex part)

- isocomplex for using standardized format of complex and real part
- oldcomplex for using old $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ default format of complex and real part

Macros

Interval

Let a and b be real numbers.

Closed interval

Using of macro

$$
\backslash c i\{a\}\{b\}
$$

as closed interval.

- isointerval

$$
[a, b]
$$

- isoointerval (same as for isointerval)

$$
[a, b]
$$

- fnspeinterval

$$
\langle a, b\rangle
$$

Opened interval

Using of macro

$$
\text { \oi }\{a\}\{b\}
$$

as opened interval.

- isointerval

$$
] a, b[
$$

- isoointerval

$$
(a, b)
$$

- fnspeinterval (same as for isoointerval)

$$
(a, b)
$$

Right closed interval

Using of macro

$$
\backslash \mathrm{rci}\{a\}\{b\}
$$

as right closed interval.

- isointerval

$$
] a, b]
$$

- isoointerval

$$
(a, b]
$$

- fnspeinterval

$$
(a, b\rangle
$$

Left closed interval

Using of macro

$$
\backslash l c i\{a\}\{b\}
$$

as left closed interval.

- isointerval

$$
[a, b[
$$

- isoointerval (same as for isointerval)

$$
[a, b)
$$

- fnspeinterval

$$
\langle a, b)
$$

Using in text

All these macros can be used directly in text (thanks to the command ensuremath). Therefore one can use this syntax

Let $\$ \mathrm{x} \$$ be in $\backslash c i\{a\}\{b\}$
which casts: Let x be in $[a, b]$.

Tensor

Let x be vector and A be matrix.

Vector

Using of macro
$\backslash \operatorname{vec}\{x\}$
as vector.

- isotensor - small letter with italic boldface
x
- undertensor
- arrowtensor

$$
\vec{x}
$$

Matrix

Using of macro
\backslash mat $\{x\}$
as matrix.

- isotensor - capital letter with italic boldface

A

- undertensor
- arrowtensor

$$
\stackrel{\leftrightarrow}{A}
$$

Using in text

All these macros can be used directly in text (thanks to the command ensuremath). Therefore one can use this syntax

$$
\text { Let } \backslash \operatorname{vec}\{x\} \text { be real. }
$$

which casts: Let $\overrightarrow{\mathrm{x}}$ be real.

Complex

Let $z \in \mathbb{C}$.

Real part

Using of macro

$$
\backslash \operatorname{Re}\{x\}
$$

as Real.

- oldcomplex

$$
\mathfrak{R e}\{z\}
$$

- isocomplex
$\operatorname{Re} z$

Imaginary part

Using of macro

$$
\backslash \operatorname{Im}\{x\}
$$

as Imaginary.

- oldcomplex

$$
\mathfrak{I m}\{z\}
$$

- isocomplex

$$
\operatorname{Im} z
$$

Using in text

All these macros can be used directly in text (thanks to the command ensuremath). Therefore one can use this syntax

```
Let $x$ equal to \ \Re{z}.
```

which casts: Let x equal to $\operatorname{Re} z$.

Subscript

In scientific $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ text with two or more character should be in roman style (not italic as default), due to one can use prefix! which make the word after it in roman style. Using of macro

$$
A_{-}\{!\text {unique }\}
$$

which leads to

$$
A_{\text {unigue }}
$$

instead of classic

$$
A_{\text {unique }}
$$

Special sets of numbers

Natural number

Macro
\natun
as natural number leads to

Integers

Macro
\inte
as interegers leads to

Rational number

Macro
\ratin
as rational number leads to

Real number

Macro
\backslash realn
as real number leads to

Complex number

Macro
\compn
as compex number leads to
\mathbb{C}

Using in text

All these macros can be used directly in text (thanks to the command ensuremath). Therefore one can use this syntax

$$
\text { Let } \$ n \$ \text { be in } \backslash n a t u n
$$

which casts: Let n be in \mathbb{N}.

Derivative

It is derived from physics package. The manual is here

Operator

Partially derived from physics package.

Gradient

Macro
$\backslash g r a d$
as gradient leads to

Divergence

Macro

> \div
as divergence leads to

$$
\nabla
$$

Derived from physics package, old mean of this command as math symbol from dividing has alias as
\divisionsymbol
which cast

$$
\div
$$

Rotation

In English literature as curl operator has macro
\rot
as rotation and leads to

$$
\nabla \times
$$

One can also use physics package command
\curl

Laplacian

Macro
as laplacian leads to \quad lapl
Δ

One can also use physics package notation

$$
\nabla^{2}
$$

which is cast by macro
\laplacian

Degree

Macro
$\backslash d e g r e e$
as degree leads to ${ }^{\circ}$. Can be used without math mode.

Physics unit

Variable unit

Macro

$$
\backslash \operatorname{varun}\{m\}\{\mathrm{kg}\}
$$

as variable unit leads to

$$
[m]=\mathrm{kg}
$$

This macro can be used directly in text (thanks to the ensure function). Therefore one can use

$$
\text { where } \backslash \text { varun }\{\mathrm{m}\}\{\mathrm{kg}\} \text { is the mass. }
$$

which casts: where $[m]=\mathrm{kg}$ is the mass.

Unit

Macro

$$
\mathrm{m} \backslash \text { unit }\{\mathrm{kg}\}
$$

as unit leads to

$$
m \mathrm{~kg}
$$

This macro looks as
\: \mathrm\{kg\}
the space before the roman characters is very important in science publications.

Expected value

Macro
$\backslash \operatorname{expv}\{x\}$
as expected value leads to

Shortcuts

One half
Macro
as half leads to \quad hif

$$
\frac{1}{2}
$$

One over
Macro
\oover\{x\}
as one over leads to

$$
\frac{1}{x}
$$

Spaces

Horizontal space

Macro
\hem[width]
as $\mathbf{h s p a c e}\{\mathbf{e m}\}$ leads to horizontal space of specific width (multiples of em). Special case is 1 em
which leads to
text text
or shortcut form space with 2 em width

$$
\backslash m a t h r m\{t e x t\} \backslash h t e m \backslash m a t h r m\{t e x t\}
$$

which casts
text text

Implies with em spaces

Macro

\impem

as implies with em spaces leads to

$$
\text { text } \Rightarrow \text { text }
$$

