Options

In this package there are three types of options (examples and differences will be shown further)

- 1. for interval notation
 - isointerval for using standardized format of interval described in ISO 31-11
 - \bullet isoointerval for using standardized alternative format of interval described in ISO 31-11
 - fnspeinterval for using special notation used at FNSPE CTU in Prague
- 2. for tensor notation (now for vectors and matrices)
 - isotensor for using standardized format of tensor
 - undertensor for using underline notation of tensor
 - arrowtensor for using arrow notation of tensor
- 3. for complex notation (real and complex part)
 - isocomplex for using standardized format of complex and real part
 - \bullet oldcomplex for using old LATEX default format of complex and real part

Macros

Interval

Let a and b be real numbers.

Closed interval

Using of macro

 $\ci{a}{b}$

as closed interval.

isointerval

[a,b]

• isoointerval (same as for isointerval)

[a,b]

fnspeinterval

 $\langle a, b \rangle$

Opened interval

Using of macro

 $oi{a}{b}$

as opened interval.

• isointerval

]a,b[

- isoointerval
- fnspeinterval (same as for isoointerval)

```
(a,b)
```

(a, b)

Right closed interval

Using of macro

 $rci{a}{b}$

as right closed interval.

• isointerval]a,b]• isoointerval (a,b]• fnspeinterval (a,b)

Left closed interval

Using of macro

 $lci{a}{b}$

as left closed interval.

• isointerval

[a, b[

• isoointerval (same as for isointerval)

[a,b)

fnspeinterval

 $\langle a, b \rangle$

Using in text

All these macros can be used directly in text (thanks to the command ensure-math). Therefore one can use this syntax

Let $x\ be in \ci{a}{b}$

which casts: Let x be in [a, b].

Tensor

Let x be vector and A be matrix.

Vector

Using of macro

\vec{x}

as $\mathbf{vec}\mathbf{tor}.$

• isotensor - small letter with italic boldface

	х
• undertensor	
	\underline{x}
• arrowtensor	
	\vec{x}

Matrix

Using of macro

 \max{x}

as matrix.

• isotensor - capital letter with italic boldface

Α

 $\underline{\underline{A}}$

- undertensor
- arrowtensor
- $\stackrel{\leftrightarrow}{A}$

Using in text

All these macros can be used directly in text (thanks to the command *ensure*math). Therefore one can use this syntax

Let $\bigvee c{x}$ be real.

which casts: Let \vec{x} be real.

Complex

Let $z \in \mathbb{C}$.

Real part

Using of macro

\<mark>Re{x</mark>}

as \mathbf{Real} .

• oldcomplex

 $\mathfrak{Re}\left\{ z
ight\}$

isocomplex

 ${\rm Re}\; z$

Imaginary part

Using of macro

\lm{x}

as **Im**aginary.

 \bullet oldcomplex $\Im\mathfrak{m}\left\{z\right\}$ \bullet isocomplex $\operatorname{Im} z$

Using in text

All these macros can be used directly in text (thanks to the command ensure-math). Therefore one can use this syntax

Let x equal to $Re{z}$.

which casts: Let x equal to Re z.

Subscript

In scientific IAT_EX text with two or more character should be in roman style (not italic as default), due to one can use prefix ! which make the word after it in roman style. Using of macro

A_{!unique}

which leads to

 A_{unigue}

instead of classic

 A_{unique}

Special sets of numbers

Natural number

Macro

\natun

as ${\bf natural} \ {\bf n} {\bf umber}$ leads to

Integers

Macro

\inte

as **inte**regers leads to

 \mathbb{Z}

 \mathbb{N}

Rational number

Macro

\ratin

as ${\bf rational}\ {\bf n} {\bf u} {\bf m} {\bf b} {\bf e} {\bf r}$ leads to

 \mathbb{Q}

Real number

Macro

\realn

as **real n**umber leads to

 \mathbb{R}

Complex number

Macro

\compn

as **comp**ex **n**umber leads to

 \mathbb{C}

Using in text

All these macros can be used directly in text (thanks to the command ensure-math). Therefore one can use this syntax

Let \$n\$ be in \natun

which casts: Let n be in \mathbb{N} .

Derivative

It is derived from *physics* package. The manual is here.

Operator

Partially derived from *physics* package.

Gradient

Macro

\grad

as **grad**ient leads to

 ∇

Divergence

Macro

\div

as $\mathbf{div}\mathbf{e}\mathbf{r}\mathbf{g}\mathbf{e}\mathbf{n}\mathbf{c}\mathbf{e}$ leads to

 $\nabla \cdot$

Derived from physics package, old mean of this command as math symbol from dividing has alias as

\divisionsymbol

which cast

÷

Rotation

In English literature as **curl** operator has macro

\rot

as ${\bf rot}{\bf a}{\bf t}{\bf o}{\bf t}{\bf a}{\bf d}{\bf s}$ to

abla imes

One can also use *physics* package command \curl

Laplacian

Macro

\lapl

as **lapl**acian leads to

 Δ

One can also use physics package notation

 ∇^2

which is cast by macro

\laplacian

Degree

Macro

\degree

as degree leads to $^{\circ}$. Can be used without math mode.

Physics unit

Variable unit

Macro

 $varun{m}{kg}$

as ${\bf var} {\rm iable} \ {\bf un} {\rm it} \ {\rm leads} \ {\rm to}$

[m] = kg

This macro can be used directly in text (thanks to the *ensure* function). Therefore one can use

where $varun{m}{kg}$ is the mass.

which casts: where [m] = kg is the mass.

Unit

Macro

m\unit{kg}

as **unit** leads to

 $m \ \mathrm{kg}$

This macro looks as

\;\mathrm{kg}

the space before the roman characters is very important in science publications.

Expected value

Macro

\expv{x}

as **exp**ected **v**alue leads to

 $\langle x \rangle$

Shortcuts

One half

Macro

 \hlf

as	half	leads	to				1
----	------	-------	----	--	--	--	---

 $\overline{2}$

One over

Macro

 $\operatorname{vover}{x}$

as one over leads to

 $\frac{1}{x}$

Spaces

Horizontal space

Macro

\hem[width]

as $\mathbf{h} \mathrm{space}\{\mathbf{em}\}$ leads to horizontal space of specific width (multiples of em). Special case is 1em

\mathrm{text}\hem\mathrm{text}

which leads to

text text

or shortcut form space with 2em width

\mathrm{text}\htem\mathrm{text}

which casts

text text

Implies with em spaces

Macro

\impem

as ${\bf implies}$ with ${\bf em}$ spaces leads to

 $\mathrm{text} \hspace{0.1in} \Rightarrow \hspace{0.1in} \mathrm{text}$