
fmtcount.sty v1.03: Displaying the Values of LATEX

Counters

N.L.C. Talbot

1 July 2005

Contents

1 Introduction 1

2 Installation 1

3 Available Commands 2

4 Package Options 3

5 Multilingual Support 3

6 Configuration File fmtcount.cfg 4

7 LaTeX2HTML style 4

8 Acknowledgements 4

9 Contact Details 5

1 Introduction

The fmtcount package provides commands to display the values of LATEX counters
in a variety of formats. It also provides equivalent commands for actual numbers
rather than counter names. Limited multilingual support is available.

2 Installation

This package is distributed with the files fmtcount.dtx and fmtcount.ins. To
extract the code do:

latex fmtcount.ins

This will create the files fmtcount.sty and fmtcount.perl, along with several
.def files. Place fmtcount.sty and the .def files somewhere where LATEX will find
them (e.g. texmf/tex/latex/fmtcount/) and place fmtcount.perl somewhere
where LATEX2HTML will find it (e.g. latex2html/styles). Remember to refresh the
TEX database (using texhash under Linux, for other operating systems check the
manual.)

1

3 Available Commands

The commands can be divided into two categories: those that take the name of a
counter as the argument, and those that take a number as the argument.

The macro \ordinal{〈counter〉} will print the value of a LATEX counter\ordinal

〈counter〉 as an ordinal, where the macro \fmtord{〈text〉} is used to format the\fmtord

st,nd,rd,th bit. By default the ordinal is formatted as a superscript, if the package
option level is used, it is level with the text. For example, if the current section
is 3, then \ordinal{section} will produce the output: 3rd.

The macro \ordinalnum is like \ordinal but takes an actual number rather\ordinalnum

than a counter as the argument. For example: \ordinalnum{3} will produce: 3rd.
The macro \numberstring{〈counter〉} will print the value of 〈counter〉\numberstring

as text. E.g. \numberstring{section} will produce: three. The macro\Numberstring

\Numberstring{〈counter〉} does the same as \numberstring, but with initial let-
ters in uppercase. For example, \Numberstring{section} will produce: Three.

The macros \numberstringnum and \Numberstringnum work like \numberstring\numberstringnum

\Numberstringnum and \Numberstring, respectively, but take an actual number rather than a counter
as the argument. For example: \Numberstringnum{105} will produce: One Hun-
dred and Five.

The macro \ordinalstring{〈counter〉} will print the value of 〈counter〉 as\ordinalstring

a textual ordinal. E.g. \ordinalstring{section} will produce: third. The\Ordinalstring

macro \Ordinalstring{〈counter〉} does the same as \ordinalstring, but with
initial letters in uppercase. For example, \Ordinalstring{section} will produce:
Third.

The macros \ordinalstringnum and \Ordinalstringnum work like \Ordinalstring\ordinalstringnum

\Ordinalstringnum and \Ordinalstring, respectively, but take an actual number rather than a
counter as the argument. For example, \ordinalstringnum{3} will produce:
third.

The macro \binary{〈counter〉} will print the value of 〈counter〉 as a bi-\binary

nary number. E.g. \binary{section} will produce: 11. The declaration
\padzeroes[〈n〉] will ensure numbers are written to 〈n〉 digits, padding with ze-\padzeroes

roes if necessary. E.g. \padzeroes[8]\binary{section} will produce: 00000011.
The default value for 〈n〉 is 17.

The macro \binarynum is like \binary but takes an actual number rather than\binarynum

a counter as the argument. For example: \binarynum{5} will produce: 101.
The macro \octal{〈counter〉} will print the value of 〈counter〉 as an octal\octal

number. For example, if you have a counter called, say mycounter, and you set
the value to 125, then \octal{mycounter} will produce: 177. Again, the number
will be padded with zeroes if necessary, depending on whether \padzeroes has
been used.

The macro \octalnum is like \octal but takes an actual number rather than\octalnum

a counter as the argument. For example: \octalnum{125} will produce: 177.
The macro \hexadecimal{〈counter〉} will print the value of 〈counter〉 as a\hexadecimal

hexadecimal number. Going back to the previous example, \hexadecimal{mycounter}
will produce: 7d. Again, the number will be padded with zeroes if necessary, de-
pending on whether \padzeroes has been used. \Hexadecimal{〈counter〉} does\Hexadecimal

the same thing, but uses uppercase characters, e.g. \Hexadecimal{mycounter}
will produce: 7D.

The macros \hexadecimalnum and \Hexadecimalnum are like \hexadecimal\hexadecimalnum

\Hexadecimalnum and \Hexadecimal but take an actual number rather than a counter as the argu-

2

ment. For example: \hexadecimalnum{125} will produce: 7d, and \Hexadecimalnum{125}
will produce: 7D.

The macro \decimal{〈counter〉} is similar to \arabic but the number can\decimal

be padded with zeroes depending on whether \padzeroes has been used. For
example: \padzeroes[8]\decimal{section} will produce: 00000005.

The macro \decimalnum is like \decimal but takes an actual number rather\decimalnum

than a counter as the argument. For example: \padzeroes[8]\decimalnum{5}
will produce: 00000005.

The macro \aaalph{〈counter〉} will print the value of 〈counter〉 as: a b . . .\aaalph

z aa bb . . . zz etc. For example, \aaalpha{mycounter} will produce: uuuuu
if mycounter is set to 125. \AAAlph{〈counter〉} does the same thing, but uses\AAAlph

uppercase characters, e.g. \AAAlph{mycounter} will produce: UUUUU.
The macros \aaalphnum and \AAAlphnum are like \aaalph and \AAAlph but\aaalphnum

\AAAlphnum take an actual number rather than a counter as the argument. For example:
\aaalphnum{125} will produce: uuuuu, and \AAAlphnum{125} will produce: UU-
UUU.

The macro \abalph{〈counter〉} will print the value of 〈counter〉 as: a b\abalph

. . . z aa ab . . . az etc. For example, \abalpha{mycounter} will produce: du
if mycounter is set to 125. \ABAlph{〈counter〉} does the same thing, but uses\ABAlph

uppercase characters, e.g. \ABAlph{mycounter} will produce: DU.
The macros \abalphnum and \ABAlphnum are like \abalph and \ABAlph but\abalphnum

\ABAlphnum take an actual number rather than a counter as the argument. For example:
\abalphnum{125} will produce: du, and \ABAlphnum{125} will produce: DU.

4 Package Options

The following options can be passed to this package:
raise make ordinal st,nd,rd,th appear as superscript
level make ordinal st,nd,rd,th appear level with rest of text

These can also be set using the command:
\fmtcountsetoptions{fmtord=〈type〉}\fmtcountsetoptions

where 〈type〉 is either level or raise.

5 Multilingual Support

Version 1.02 of the fmtcount package now has limited multilingual support. The
following languages are implemented: English, Spanish, Portuguese, French,
French (Swiss) and French (Belgian). The package checks to see if the command
\date〈language〉 is defined1, and will load the code for those languages. The com-
mands \ordinal, \ordinalstring and \numberstring (and their variants) will
then be formatted in the currently selected language.

If the French language is selected, the French (France) version will be used
by default (e.g. soxiante-dix for 70). To select the Swiss or Belgian variants (e.g.
septente for 70) use: \fmtcountsetoptions{french=〈dialect〉} where 〈dialect〉 is
either swiss or belgian. You can also use this command to change the action of
\ordinal. \fmtcountsetoptions{abbrv=true} to produce ordinals of the form

1this will be true if you have loaded babel

3

2e or \fmtcountsetoptions{abbrv=false} to produce ordinals of the form 2eme

(default).
The french and abbrv settings only have an effect if the French language has

been defined.
The male gender for all languages is used by default, however the feminine form

can be obtained by passing f as an optional argument to \ordinal, \ordinalnum
etc. For example: \numberstring{section}[f]. Note that the optional argu-
ment comes after the compulsory argument.

Let me know if you find any spelling mistakes (has been known to happen in
English, let alone other languages I’m not so familiar with.)

6 Configuration File fmtcount.cfg

You can save your preferred default settings to a file called fmtcount.cfg, and
place it on the TEX path. These settings will then be loaded by the fmtcount
package.

Note that if you are using the datetime package, the datetime.cfg config-
uration file will override the fmtcount.cfg configuration file. For example, if
datetime.cfg has the line:

\renewcommand{\fmtord}[1]{\textsuperscript{\underline{#1}}}

and if fmtcount.cfg has the line:

\fmtcountsetoptions{fmtord=level}

then the former definition of \fmtord will take precedence.

7 LaTeX2HTML style

The LATEX2HTML style file fmtcount.perl is provided. The following limitations
apply:

• \padzeroes only has an effect in the preamble.

• The configuration file fmtcount.cfg is currently ignored. (This is because
I can’t work out the correct code to do this. If you know how to do this,
please let me know.) You can however do:

\usepackage{fmtcount}

\html{\input{fmtcount.cfg}}

This, I agree, is an unpleasant cludge.

8 Acknowledgements

I would like to thank my mother for the French and Portuguese support and my
Spanish dictionary for the Spanish support.

4

9 Contact Details

Dr Nicola Talbot
School of Computing Sciences
University of East Anglia
Norwich. NR4 7TJ.
United Kingdom.
http://theoval.cmp.uea.ac.uk/~nlct/

5

http://theoval.cmp.uea.ac.uk/~nlct/

	Introduction
	Installation
	Available Commands
	Package Options
	Multilingual Support
	Configuration File fmtcount.cfg
	LaTeX2HTML style
	Acknowledgements
	Contact Details

