The filemod Package

Martin Scharrer
martin@scharrer-online.de

http://www.ctan.org/pkg/filemod
Version v1.0 - 2011/03/23

Abstract

This package provides macros to read and compare the modification dates of
files. These files can be .tex files, images or other files as long as they can be
found by the ETEX compiler. It uses the \pdffilemoddate primitive of pdfEIEX
to receive the file modification date as PDF date string, parses it and returns
the value to the user. This package will also work for DVI output with recent
versions of the ETEX compiler which uses pdfBIEX in DVI mode. The functionality
is provided by purely expandable macros or by faster but non-expandable ones.

Contents 2.5 Parsing of the file modifi-
cationdate 5
1 Introduction 1 2.6 Auxiliary Macros 6
2 Usage 2 3 Implementation 7
2.1 Print File Modification 51 P 7

Date and Time 2 ’ a.rs‘er """"""

29 Get File Modification 3.2 Minimal set of expandable
Date and Time as Number 3 Macros 8
2.3 Compare File Modifica- 3.3 Expandable Macros 10
tion Date/Time 3 3.4 Non-Expandable Macros . 18
2.4 Return Newest or Oldest 3.5 Display Macros 22
File fromalList 4 3.6 Auxiliary Macros 24

1 Introduction

This package provides several macros to read and compare the modification dates
of files. The same functionality is provided by two groups of macros: The macros
of the first group all start with a lower case letter and are fully expandable. This
means they can be used in places where a string must be provided, like in \input or
\includegraphics. Because assignments are not expandable some of these macros,
like the ones for comparisons, need to reread and re-parse the file modification dates
if they are required in more than one place inside the macro.

The macros of the second group all start with a upper case letter and are not
expandable because assignments are used internally. However, this allows techniques
which speed up the processing of these macros, making this macros faster than the
expandable counterparts. If expandability is not required these macros should be
preferred.

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/filemod

2 Usage

The following macros are provided by this package:

2.1 Print File Modification Date and Time

The following macros can be used to print (i.e. typeset) the file modification date and
time of files in the document. The \formatdate and \formattime macros of the
datetime’ can be used in addition to format the dates and times in a language specific
format. See also the getfiledate? package which also prints file modification dates
including adding fancy frames around it.

\filemodprint{(filename)}

Prints the file modifications date and time using \filemodparse and \thefilemod.

\filemodprintdate{(filename)}

Prints the file modifications date using \filemodparse and \thefilemoddate.

\filemodprinttime{(filename)}

Prints the file modifications time using \filemodparse and \thefilemodtime.

\thefilemod

Reads the date and time as seven arguments and typesets it. This macro can be
redefined to a custom format.

By default it simple uses \thefilemoddate and \thefilemodtime separated by
\filemodsep (a space by default): “2011/03/23 01:38:37 Z”

\thefilemoddate

Receives the date as three arguments YYYY, MM and DD and typesets it. This macro
can be redefined to a custom format.
Default format: “2011/03/23”

It could be redefined to use the \formatdate macro of the datetime:
\renewcommand*{\thefilemoddate} [3] {\formatdate{#3}{#2}{#1}}

\thefilemodtime

Receives the time and timezone as four arguments HH, mm, SS and TZ and typesets it.
This macro can be redefined to a custom format.
Default format: “01:38:37 Z”

It could be redefined to use the \formattime macro of the datetime:
\renewcommand*{\thefilemodtime} [4] {\formattime{#1}{#2}{#3}}

ICTAN: http://www.ctan.org/pkg/datetime
2CTAN: http://www.ctan.org/pkg/getfiledate

http://www.ctan.org/pkg/datetime
http://www.ctan.org/pkg/getfiledate

2.2 Get File Modification Date and Time as Number

The following macros return both the file modification date and time as an integer
number which is in the valid range for TgX. They can be used for numerical operations
and are used internally by the comparison macros.

\filemodnumdate{(filename)}

Expands to an integer of the form YYYYMMDD which can be used for numeric compar-
isons like \ifnum. This macros uses \filemodparse and \filemodnotexists will
be used if the file does not exist.

\filemodnumtime{(filename)}

Expands to an integer of the form HHmmSS which can be used for numeric comparisons
like \ifnum. This macros uses \filemodparse and \filemodnotexists will be
used if the file does not exist.

\filemodNumdate{(filename)}

Expands to an integer of the form YYYYMMDD which can be used for numeric compar-
isons like \ifnum. Parses the file modification date by itself and will return 00000000
if the file does not exist.

\filemodNumtime{(filename)}

Expands to an integer of the form HHmmSS which can be used for numeric comparisons
like \ifnum. Parses the file modification date by itself and will return 000000 if the
file does not exist.

\Filemodgetnum{(filename)}

Stores the file modification date and time as numbers (YYYYMMDD and HHmmSS) as well
the timezone string into the macros \filemoddate, \filemodtime and \filemodtz.
2.3 Compare File Modification Date/Time

The following macros allow the comparison of the file modification date/time of two

files.

\filemodcmp [(num)]{(filename 1)}{(filename 2)}{{clause 1)}{{clause 2)}{ (clause 3)

This macro compares the file modification date and time of the two given files and
expands to the clause of the newest file. An numerical optional argument can be given
to determine the outcome if both files have the exact same modification date/time (or
both do not exists). If (num) is 0, no clause will be expanded, i.e. the macro expands
to an empty text. If (num) is 1 (default) or 2 the macro expands to the corresponding
clause. However if (num) is 3, the macro will await a third clause and expands to it if
both files modification dates are equal.

This macro is fully expandable even when the optional argument is used. However,
(filename 1) must not be equal to ‘[’.

\filemodCmp{(filename 1)}{(filename 2)}{(clause 1)}{(clause 2)}

This is a simpler and therefore faster version of \filemodcmp. It is fully expandable,
does not take any optional arguments and will always expand to the first clause if both
file modification dates are equal (or both files do not exist). The \filemodNumdate
and \filemodNumtime macros are used in the comparison. These three macros are
also provided by the sub-package filemod-expmin.

\Filemodcmp [(num)]{(filename 1)}{(filename 2)}{{clause 1)}{{clause 2)}{(clause 3)

This macro provides the same functionality as \filemodcmp. It is not expandable but
will be processed faster. The optional argument is processed like normally.

\FilemodCmp [(num)]{(filename 1)}{(filename 2)}

This macro will compare the two file modification dates like \Filemodcmp and
\filemodcmp but does not take the possible clauses as arguments, instead it stores the
result into the expandable macro \filemodcmpresult which then takes {(clause 1)}
{(clause 2)} (and also {(clause 3)} if (num) was 3) as arguments and expand to the
one corresponding to the newest file. This set of macros gives the user the speed
benefit of \Filemodcmp while still be able to use the result in an expandable context.

\filemodoptdefault

Holds the default number (i.e. 1) for the optional argument of the previous and
following macros. This macro can be redefined with a number or a numeric expression
valid for \ifcase. It should not contain any trailing spaces. Note that some commands
only accept 1 or 2 as valid optional argument.

2.4 Return Newest or Oldest File from a List

The following macros return the newest or oldest file. Note that the optional arguments
of the following macros should only be either 1 or 2. If no optional argument is
provided the value of \filemodoptdefault is used.

\filemodnewest [(num)]{(filename 1)} filename 2)3}

Expands the filename of the newest given file or filename (num) if both file modifica-
tion dates are identical. The catcode of the filenames is not changed.

\filemodoldest [(num)]{(filename 1)}{(filename 2)}

Expands the filename of the oldest given file or filename (num) if both file modification
dates are identical. The catcode of the filenames is not changed.

\filemodNewest [(num)]{{(filename 1)}{(filename 2)} .. .{(filename n)}}

Expands the filename of the newest given file. The filename will have catcode 12
except in the case when only one filename was given which is returned unchanged.

The files are compared in pairs of two in the given order (i.e. first 1 and 2 and the result
with 3 etc.) The optional argument (num) can be used to indicate which filename
should be used if both file modification dates are identical.

\filemodOldest [(num)]{{(filename 1)}{(filename 2)} .. .{(filename n)}}

Expands the filename of the oldest given file. The filename will have catcode 12 except
in the case when only one filename was given which is returned unchanged. The files
are compared in pairs of two in the given order (i.e. first 1 and 2 and the result with 3
etc.) The optional argument (num) can be used to indicate which filename should be
used if both file modification dates are identical.

\Filemodnewest [(num)]{(filename 1)}{(filename 2)}

Same as \filemodnewest just not expandable but faster. Stores the newer of the two
file names in \filemodresultfile. Its file modification date and time is stored in
\filemodresultdate and \filemodresulttime. The catcode of the filenames is
not changed.

\Filemodoldest [(num)]{(filename 1)}{(filename 2)3}

Same as \filemodoldest just not expandable but faster. Stores the older of the two
file names in \filemodresultfile. Its file modification date and time is stored in
\filemodresultdate and \filemodresulttime. The catcode of the filenames is
not changed.

\FilemodNewest [(num)]{{(filename 1)}{(filename 2)} .. .{(filename n)}}

Same as \filemodNewest just not expandable but faster. Stores the newest of the
given file names in \filemodresultfile. Its file modification date and time is stored
in \filemodresultdate and \filemodresulttime. The catcode of the filenames
is not changed.

\FilemodOldest [(num)]{{(filename 1)}{{filename 2)} .. .{(filename n)}}

Same as \filemodOldest just not expandable but faster. Stores the oldest of the
given file names in \filemodresultfile. Its file modification date and time is stored
in \filemodresultdate and \filemodresulttime. The catcode of the filenames
is not changed.

2.5 Parsing of the file modification date

The format returned by the \pdffilemoddate primitive is “D:” followed by a num-
ber in the format “YYYYMMDDHHmmSST” which needs to be parsed before it is useful.
The letters have the following meaning: Y = year, M = month, D = day, H = hour,
mm = minutes, S = seconds, T or TZ = timezone string. The number of letters indi-
cates the length except for the timezone which is of variable length. An example is
“D:20110323013837Z2” which is the file modification date of the source file of this
manual. Unfortunately this number is to large for TeX to be taken as an integer for

numerical comparisons, so it is broken into two numbers (YYYYMMDD and HHmmSS)
which are compared in multiple steps.

\filemodparse{(macro)}{(filename)}

Parses the file modification datetime of the given file and passes the result to the given
macro. The macro will receive seven arguments:

(macro){(YYYY) H(MM)}{(DD)}{(HH) }{(mm)}H (SS) H(TZ)}

i.e. year, month, day, hour, minutes, seconds and the timezone as signed offset or Z
(catcode 12).

\filemodnotexists{(macro)}

This macro will be called by \filemodparse with the original given macro when
the given file does not exists. By default it contains all zeros except Z (catcode 12) as
timezone:

#1{0000}{00}{00}{00}{00}{00}{Z2}

The user can redefine this macro to a different content, e.g. to a different fall-back
value or to display a warning. Note if this macro contains non-expandable code the
macros which uses it aren’t expandable anymore.

2.6 Auxiliary Macros

\filemodZ

Defined to ‘Z’ with catcode 12 as it is returned as timezone. This might be useful for
comparisons or custom definitions.

\filemodz

Let (\let) to ‘Z’ with catcode 12 as it is returned as timezone. This might be useful
for comparisons or custom definitions.

3 Implementation

3.1 Parser

\filemodparse

#1: Macro or tokens to process result
#2: file name

\newcommand*\filemodparse [2]{%
\expandafter\filemod@parse\pdffilemoddate {#2}\
relax{#1}/

\filemod@parse

#1: Expanded file mod date
#2: Macro

\def\filemod@parse#l\relax#2{J
\ifx\relax#i\relax
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi
{\filemodnotexists{#2}}
{\filemod@parse@#1\empty{#2}\relax}

The ‘D’, “:* and ‘Z’ characters are changed to catcode 12 because this is how they

appear in the string returned by \pdffilemoddate.

\begingroup
\@makeother\D
\@makeother\Z
\@makeother:

\filemod@parse@

#1:Y1
#2:Y2
#3:Y3
#4:Y4
#5: M1
#6: M2
#7: D1
#8: D2
#9: Rest

1

18

\gdef\filemod@parse@ D:#1#2#3#4#5#6#7#8#9\relax{’
\filemod@parse@Q@{{#1#2#3#4}{#5#6}{#7#8}}#9\relax
}

\filemodnotexists

#1: Macro provided to \filemodparse
Macro which is used for non-existing files.
\gdef\filemodnotexists#1{7
#1{0000}{00}{00}{00}{00}{00}{Z}7%
}

\endgroup

\filemod@parse@@

#1: {YYYY{MM}{DD}

#2: H1

#3: H2

#4: m1

#5: m2

#6: S1

#7:S2

#8: TZ

#9: Macro
Reads the rest of the file mod date and places the resulting arguments in front of the
given macro.

\def\filemod@parseQ@Q#1#2#3#4#5#6#7#8\ empty#9\relax{’
#O#1{#2#3}{#4#5}{#6#7}{#8}Y
}

3.2 Minimal set of expandable Macros

The ‘D’, “:” and ‘Z’ characters are changed to catcode 12 because this is how they
appear in the string returned by \pdffilemoddate.

\begingroup

\@makeother\D

\@makeother\Z

\@makeother:

\filemodNumdate

31

\gdef\filemodNumdate#1{
\expandafter\filemod@Numdate\pdffilemoddate{#1}D
:00000000000000Z\relax

\filemod@Numdate

\gdef\filemod@Numdate D:#1#2#3#4#5#6#7#8#9\relax{)
HI#2#3#AH#CHOERTHEY,
}

\filemodNumtime

\gdef\filemodNumtime#1{7
\expandafter\filemod@Numtime\pdffilemoddate{#1}D
:00000000000000Z\relax

\filemod@Numtime

40

\gdef\filemod@Numtime D:#1#2#3#4#5#6#7#8#9\relax{/
\filemod@@Numtime#9\relax
3

\filemod@@Numtime

\gdef\filemod@@Numtime #1#2#3#4#5#6#7\relax{/
H1#2#3#4#5#67,
}

\endgroup

\filemodCmp

\newcommand*\filemodCmp [2] {7
\ifcase0Y
\ifnum\filemodNumdate{#2}>\filemodNumdate {#1}
1\else
\ifnum\filemodNumdate{#2}=\filemodNumdate,
{#1} 7
\ifnum\filemodNumtime {#2}>_
filemodNumtime {#1} 1\fi
\fi
\fi
\space
\expandafter\Q@firstoftwo
\or
\expandafter\@secondoftwo
\fi

o \RequirePackage{filemod-expmin}

3.3 Expandable Macros

3.3.1 Numeric macros

\filemodnumdate

Simply calls the parse macro.

¢« \newcommand*\filemodnumdate{\filemodparse\,
filemod@numdate}

\filemod@numdate

#1: YYYY
#2: MM
#3: DD
#4: HH
#5: mm
#6: SS
#7: TZ

% Gobbles everything except "YYYYMMDD" which is .
returned as number without the braces.
o \def\filemod@numdate#1#2#3#4#5#6#T7T{#1#2#3}

\filemodnumtime

Simply calls the parse macro.

« \newcommand*\filemodnumtime{\filemodparse\,
filemod@numtime}

\filemod@numtime

#1:YYYY
#2: MM
#3: DD
#4: HH
#5: mm
#6: SS
#7: TZ
Gobbles everything except ‘HHmmSS’ which is returned as number without the braces.

s \def\filemod@numtime#1#2#3#4#5#6#7{#4#5#67}

3.3.2 Optional argument handler

10

\filemod@opt

#1: Macro to read optional argument when present

#2: Next macro which receives default optional argument as first normal argument

#3: [or first mandatory argument
This macro checks if an optional argument is present. Here #1 and #2 are handlers
and #3 is the first balanced text which followed the macro, i.e. either ‘[’ or the first
mandatory argument. The \ifx compares ‘[’ and the first token of #3. There are
three possible cases:

1. If they do not match everything until and including \else is skipped. Then
\remove@to@nnil®@exec is expanded which removes the following \@nnil.
This leaves \empty and the rest of the false clause. The \fi is removed using
\expandafter and the trailing {#3} is read by #2 as normal argument.

2. If #3is exactly ‘[’ the \ifx [#3 part is removed by TgX. The \remove@to@nnil@exec
removes the \@nnil and the \remove@to@nnil because there was nothing be-
fore \@nnil. Therefore \expandafter#1 is executed which triggers \else
which removes everything up to and including \fi. Then the optional argument
handler #1 is expanded which receives the ‘[* as ‘{ [}” which is then gobbled.

3. The #3 starts with ‘[’ but contains more material, i.e. was original a mandatory
argument. Then \ifx expands to the true clause and removes the first token of
#3. The \remove@to@nnil@exec gobbles the rest of #3 but reads and reinserts
\remove@to@nnil which gobbles everything to the next \@nnil after \else
and therefore jumps to the false clause. This clause is executed like normal, i.e.
#2 is called with the default optional argument and {#3} as second argument.

\def\filemod@opt#1#2#3{Y
\expandafter
\remove@to@nnil@exec
\ifx [#3\@nnil\remove@to@nnil

\expandafter#1Y
\else\@nnil\empty
\expandafter#2/
\expandafter\filemodoptdefault
\fi
{#3}7

\remove@to@nnil@exec

#1: Tokens to remove
#2: Following token
Removes everything to \@nnil and executes the next token except if #1 was empty.

\def\remove@to@nnil@exec#1\@nnil#2{Y
\ifx\@nnil#1\@nnillelse
\expandafter#2
\fi

11

3.3.3 Compare file dates

\filemodcmp

Compare two file mod dates. Calls macros to check for an optional argument in an
expandable way.

\newcommand*\filemodcmp{’
\filemod@opt\filemod@cmp@opt\filemod@cmp
}

\filemodoptdefault

The default optional argument which is used if none is provided.

\newcommand*\filemodoptdefault{1}

\filemod@cmpQ@opt

#1: ‘[wrapped in {}
#2: Content of optional argument
Removes the brackets from the optional argument.

\def\filemod@cmp@opt #1#2]1{Y%
\filemod@cmp{#2}Y%
}

\filemod@cmp

This saves several \expandafter’s in \filemod@opt.

\def\filemod@cmp{\filemod@@cmp >}

\filemod@@cmp

#1: Compare sign: > or <
#2: Optional argument
#3: File name 1
#4: File name 2
Compares the dates and times of the two files. The three cases are (0) file 1 newer
than file 2, (1) file 2 newer than file 1, (2) both files have the same date.
In (2) the optional argument #2 determines which clause is executed.

12

o \def\filemod@@cmp#1#2#3#41{Y

; \ifcase0Y

% \ifnum\filemodnumdate {#4}#1\filemodnumdate,
{#3} 1\else

03 \ifnum\filemodnumdate{#4}=\filemodnumdate,

{#3} %
\ifnum\filemodnumtime {#4}#1\
filemodnumtime {#3} 1\else
95 \ifnum\filemodnumtime {#4}=_
filemodnumtime {#3} 2\fi

o \fi

. \fi

98 \fi

% \space

100 \csname Q@firstoft\ifnum#2>2 hreelelse wol\fi\,
expandafter\endcsname

\or

102 \csname @secondoft\ifnum#2>2 hreelelse wolfi\,
expandafter\endcsname

103 \else

104 \csname @Y

105 \ifcase#2/

106 gobbletwol

107 \or

108 firstoftwol

109 \or

110 secondoftwo’,

o \else

112 thirdofthreel

113 \fl

14 \expandafter

115 \endcsname

\@firstofthree

Expands to the first of the next three arguments.

s \long\def\@firstofthree#1#2#3{#1}

\@secondofthree

Expands to the second of the next three arguments.

5 \long\def\@secondofthree#1#2#3{#2}

3.3.4 Compare file mod times and return file name

13

\filemodnewest

First a macro is called to handle an optional argument in an expandable way.

\newcommand*\filemodnewest{/
\filemod@opt\filemod@newest@opt\filemod@newest
}

\filemod@newest@opt

#1: The ‘[’ wrapped in {}
#2: Content of optional argument
Removes braces around the optional argument.

\def\filemod@newestQopt #1#2]{%
\filemod@newest {#2}%
}

\filemod@newest

#1: optional argument
#2: file name 1
#3: file name 2
Uses the normal (internal) compare macro with the file names as the result clauses.

\def\filemod@newest#1#2#3{7,
\filemod@@cmp >{# 1 {#2F{#3F{#2}{#3}7
}

\filemodoldest

First a macro is called to handle an optional argument in an expandable way.

\newcommand*\filemodoldest{’
\filemod@opt\filemod@oldest@opt\filemod@oldest
}

\filemod@oldest@opt

#1: The ‘[’ wrapped in {}
#2: Content of optional argument
Removes braces around the optional argument.

\def\filemod@oldest@opt#1#2]{%
\filemod@oldest {#2}7
}

14

\filemod@oldest

#1: optional argument
#2: file name 1
#3: file name 2
Uses the normal (internal) compare macro with the file names as the result clauses.

\def\filemod@oldest#1#2#3{
\filemod@@cmp <{#1}{#2}{#3}{#2}{#3}7
}

3.3.5 Newest and oldest file of a list of files

\filemodNewest

#1: Tokens between macros and opening brace
Checks for an optional argument and substitutes the default if it is missing.

\newcommand*\filemodNewest{}
\def\filemodNewest#1#{/
\expandafter\expandafter
\expandafter\@filemodNewest
\csname
@’
\ifx\@nnil#1\@nnil
first
\else
second’
\fi
oftwoY
\endcsname
{[\filemodoptdefaultl}’
{#1}7

\filemodOldest

#1: Tokens between macros and opening brace
Like \filemodNewest but returns the oldest file in the given list. It and its sub-macros
are simply copies of minor changes of the Newest counterparts. This is done for the
benefit of expansion speed versus memory usage. Future versions might use common
code instead.

\newcommand*\filemodOldest{}

\def\filemodOldest#1#{/
\expandafter\expandafter
\expandafter\@filemodOldest
\csname

15

(A

\ifx\@nnil#1\@nnil
firstY

\else
secondY

\fi
oftwoY

\endcsname
{[\filemodoptdefaultl]}
{#1}%

\@filemodNewest

#1: Optional argument
#2: File name list
Removes ‘[1’ from first and braces from the second argument (the filename list).

\def\@filemodNewest [#1]#2{Y%
\@@filemodNewest{#1}#2\filemod@end
}

\@filemodOldest

#1: Optional argument
#2: File name list
Like \@filemodNewest.

\def\@filemodOldest [#1]1#2{
\@@filemodOldest{#1}#2\filemod@end
}

\@@filemodNewest

#1: Optional argument

#2: First file name
Reads the optional argument as #1 and the first filename as #2. It then reverses the
order for the processing loop.

\def\@@filemodNewest#1#2{Y
\filemod@Newest {#2}{#1}7
}

\@@filemodOldest

#1: Optional argument
#2: First file name

16

\def\@@filemodOldest#1#2{Y%
\filemod@Oldest {#2}{#1}%
}

\filemod@Newest

#1: First file name

#2: Optional argument

#3: Second file name
Checks if the second filename is the end marker. In this case the first filename is
returned (i.e. expanded to). Otherwise expands the compare macro. This is done in one
step using \csname which is then turned into a string which \ is gobbled. Because of
the required expandability the \escapechar can’t be changed. Finally it calls itself
recursively with the expanded result.

\def\filemod@Newest#1#2#3{7
\iffilemod@end {#3}/
{#1}7%
{%
\expandafter\expandafter
\expandafter\expandafter
\expandafter\expandafter
\expandafter\filemod@Newest
\expandafter\expandafter
\expandafter\expandafter
\expandafter\expandafter
\expandafter{Y
\expandafter\expandafter
\expandafter\@gobble
\expandafter\string\csname\filemod@@cmp .,
>{#2}{#1}{#3}{#1}{#3}\ endcsname }{#2}}7

\filemod@0ldest

#1: First file name
#2: Optional argument
#3: Second file name
Like \filemode@Newest but with different compare operator.

\def\filemod@Oldest#1#2#3{7
\iffilemod@end {#3}/

{#1}7
{7%
\expandafter\expandafter
\expandafter\expandafter
\expandafter\expandafter
\expandafter\filemod@Oldest
\expandafter\expandafter

17

\expandafter\expandafter

\expandafter\expandafter

\expandafter{’

\expandafter\expandafter

\expandafter\@gobble

\expandafter\string\csname\filemod@@cmp
<{#2}{#1}{#3}{#1}{#3}\ endcsname }{#2}}7

\iffilemod@end

#1: Next filename or end marker
Checks if the argument is the \filemod@end marker.

\def\iffilemod@end#1{/
\ifx\filemod@end#17
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi

\filemod@end

Unique end marker which would expand to nothing. Could be replaced with \@nnil.
\def\filemod@end{\@gobble{filemod@end1}}

3.4 Non-Expandable Macros

The following macros are not expandable but contain assignments which must be
executed. This makes them faster because information can be buffered. Some of them
can return expandable results.

3.4.1 Get Numeric Representation of File Modification Date

\Filemodgetnum

\newcommand*\Filemodgetnum{\filemodparse\,
Filemod@getnum}

\Filemod@getnum

18

\def\Filemod@getnum#1#2#3#4#5#6#7{Y
\def\filemoddate {#1#2#3}7
\def\filemodtime {#4#5#61}7
\def\filemodtz{#7}Y

3.4.2 Compare Two File Modification Dates

\Filemodcmp

#1: Optional argument (default: ‘1)
Calls \Filemod@cmp to execute the result at the end.

\newcommand\Filemodcmp [1] [1]1{%
\def\filemod@next{\filemodcmpresult}’
\Filemod@cmp{#1}7

\FilemodCmp

Calls \Filemod@cmp to not execute the result at the end. Instead the user must use
\filemodcmpresult explicitly.

\newcommand\FilemodCmp [1] [1]1{%
\let\filemod@next\empty
\Filemod@cmp{#1}7

\Filemod@cmp

#1: Optional argument

#2: File name 1

#3: File name 2
Compares both files and defines \filemodcmpresult so that it expands to the win-
ning clause. It might be directly executed at the end or not depending on the definition
of \filemod@next which is set by the user level macros which use this macro.

\def\Filemod@cmp#1#2#3{Y
\Filemodgetnum{#2}
\let\filemoddatea\filemoddate
\let\filemodtimea\filemodtime
\Filemodgetnum{#3}7
\ifcaseOY
\ifnum\filemoddate>\filemoddatea\spacellelse
\ifnum\filemoddate=\filemoddatea\space
\ifnum\filemodtime >\filemodtimea\
spacellelse

19

\ifnum\filemodtime=\filemodtimea\
space2\fi
246 \fi
247 \ fi
a8 \fi
249 \relax
First file is newer:

\def\filemodresultfile{#13}7
\ifnum#1>2\relax
\def\filemodcmpresult##1##2##3{##1}7
\else
\let\filemodcmpresult\@firstoftwo
\fi
\or

Second file is newer:

2 \def\filemodresultfile {#23}7
258 \ifnum#1>2\relax
259 \def\filemodcmpresult ##1##2##3{##23}7
\else
\let\filemodcmpresult\@secondoftwo
\fi
263 \else

File mod dates are equal. The optional argument determines which clause is used.

266 \ifcase#l\relax
\let\filemodresultfile\empty
\let\filemodcmpresult\@gobbletwo

) \or

268 \def\filemodresultfile{#1}

269 \let\filemodcmpresult\@firstoftwo

\or
\def\filemodresultfile{#2}7
\let\filemodcmpresult\@secondoftwo

o7 \else

274 \let\filemodresultfile\empty
\let\filemodcmpresult\@thirdofthree

\fi
\fi
78 \filemod@next

\filemodcmpresult

Defined above.

3.4.3 Compare file mod times and return file name

20

\Filemodnewest

Simply uses \FilemodNewest.

\newcommand*\Filemodnewest [3] [\filemodoptdefault]{\.
FilemodNewest [{#1}]1{{#2}{#3}}}

\Filemodoldest

Simply uses \FilemodOldest.

\newcommand *\Filemodoldest [3] [\filemodoptdefault]{\.
FilemodOldest [{#1}]1{{#2}{#3}}}

\FilemodNewest

Uses \Filemod@est with a different compare sign. Stores the optional argument for
later processing. This avoids the need to pass it around as an argument.

\newcommand*\FilemodNewest [2] [\filemodoptdefault]{’
\def\filemode@tie{#1}7
\def\filemod@gl{>}7
\Filemod@est#2\filemod@end

\FilemodOldest

Uses \Filemod@est with a different compare sign. Stores the optional argument for
later processing. This avoids the need to pass it around as an argument.

\newcommand*\FilemodOldest [2] [\filemodoptdefault]{’
\def\filemode@tie{#1}Y
\def\filemod@gl{<}’
\Filemod@est#2\filemod@end

\Filemod@est

)92

#1: file name 1
Initiates the macros with the name, date and time of the first file. Then the recursive
part is called.

\def\Filemod@est#1{
\def\filemodresultfile{#1}7
\Filemodgetnum{#1}7
\let\filemodresultdate\filemoddate
\let\filemodresulttime\filemodtime
\Filemod@@est

21

\Filemod@@est

#1: Next filename or end marker
Recursive part. Simple aborts (expands to nothing) if #1 is the end-marker. Then the re-
sulting file is in \filemodresultfile and the date and time are in \filemodresultdate

and \filemodresulttime, respectively.

\def\Filemod@Q@est#1{Y%
\iffilemod@end {#1}{}{%

\Filemodgetnum{#13}7

\ifcaseOY

\ifnum\filemoddate\filemod@gl\
filemodresultdate\spacellelse
\ifnum\filemoddate=\filemodresultdate\,
space
\ifnum\filemodtime\filemod@gl\
filemodresulttime\spacellelse
\ifnum\filemodtime=_

\fi
\fi
\fi
\else

\fi

filemodresulttime\space
\ifnum\filemode@tie=1\else 1\,
fi

\def\filemodresultfile{#1}7
\let\filemodresultdate\filemoddate
\let\filemodresulttime\filemodtime

\fi
\Filemod@@est
Y

\filemod@gl

Initial value of compare sign. Not really required to be defined here because it is
defined to the required sign every time it is used.

\def\filemod@gl{>}

3.5 Display Macros

\filemodprint

\newcommand*\filemodprint{\filemodparse\thefilemod}

22

\filemodprintdate

\newcommand*\filemodprintdate{\filemodparse\,
the@filemoddate}

\filemodprinttime

\newcommand*\filemodprinttime{\filemodparse\,
the@filemodtime}

\thefilemod

\newcommand*\thefilemod [7]{Y
\thefilemoddate{#1}{#2}{#3}7
526 \filemodsep
27 \thefilemodtime {#4}{#5}{#6}{#7}7%
v}

2 \let\filemodsep\space

\thefilemoddate

s \newcommand*\thefilemoddate [3]1{7
#1/#2/#37,
}

\thefilemodtime

s \newcommand*\thefilemodtime [4]4{7
» #1:#2:#3~#479,
}

\the@filemoddate

\def\the@filemoddate#1#2#3#4#5#6#7{
. \thefilemoddate {#1}{#2}{#3}%
338 }

23

\the@filemodtime

\def\the@filemodtime#1#2#3{ Y
\thefilemodtime
}

3.6 Auxiliary Macros

The ‘2’ characters are changed to catcode 12 because this is how they appear in the
string returned by \pdffilemoddate.

\begingroup

\@makeother\D

\filemodZ

Holds ‘Z’ with catcode 12 (other) like it is returned by \pdffilemoddate. Requires
use of \csname because ‘Z’ isn’t a letter at the moment.

\expandafter\gdef\csname filemodZ\endcsname{Z}

\filemodz

345

\let\filemodz=Z\relax

\endgroup

24

	Introduction
	Usage
	Print File Modification Date and Time
	Get File Modification Date and Time as Number
	Compare File Modification Date/Time
	Return Newest or Oldest File from a List
	Parsing of the file modification date
	Auxiliary Macros

	Implementation
	Parser
	Minimal set of expandable Macros
	Expandable Macros
	Non-Expandable Macros
	Display Macros
	Auxiliary Macros

