The filehook Package

Martin Scharrer
martin@scharrer-online.de

http://www.ctan.org/pkg/filehook/

Version v0.4 — 2011/01/03

Abstract
This package provides hooks for input files. Document and package
authors can use these hooks to execute code at begin or the end of specific
or all input files.

1 Introduction

These package changes some internal ITEX macros used to load input files so
that they include ‘hooks’. A hook is an (internal) macro executed at specific
points. Normally it is initially empty, but can be extended using an user level
macro. The most common hook in BTEX is the ‘At-Begin-Document’ hook.
Code can be added to this hook using \AtBeginDocument{(7pXcode)}.

This package provides hooks for files read by the ITEX macros \input,
\include and \InputIfFileExists as well as (since v0.3 from 2010/12/20) for
class and package files, i.e. macros \documentclass, \LoadClassWithOptions
and \LoadClass as well as \usepackage, \RequirePackageWithOptions and
\RequirePackage. Note that \InputIfFileExists, and therefore its hooks,
is used by the aforementioned macros. In v0.4 from 2011/03/01 special hooks
where added which are executed for every read file, but will not be executed a
second time by the internal \InputIfFileExists inside \input and \include.

For all files a ‘AtBegin’ and a ‘AtEnd’ hook is installed. For \include
files there is also a ‘After’ hook which it is executed after the page break
(\clearpage) is inserted by the \include code. In contrast, the ‘AtEnd’ hook
is executed before the trailing page break and the ‘AtBegin’ hook is executed
after the leading page break. The ‘AtBegin’ hook can be used to set macros to
file specific values. These macros can be reset in the ‘AtEnd’ hook to the parent
file values. If these macros appear in the page header or footer they need to be
reset ‘After’ hook to ensure that the correct values are used for the last page.

In addition to general hooks which are executed for all files of there type,
file specific one can be defined which are only executed for the named file. The
hooks for classes and packages are always specific to one file.

Older versions of this package provided the file name as argument #1 for the
general hooks. This has been changed in v0.4 from 2011/01/03: the hook code
is stored and executed without modifications, i.e. macro argument characters
(#) are now handled like normal and don’t have to be doubled. See section 4
for information how to upgrade older documents.

martin@scharrer-online.de
http://www.ctan.org/pkg/filehook/

2 Usage

The below macros can be used to add material (TEX code) to the related hooks.
All ‘AtBegin’ macros will append the code to the hooks, but the ‘AtEnd’ and
‘After’ macros will prefiz the code instead. This ensures that two different
packages adding material in ‘AtBegin’/‘AtEnd’ pairs do not overlap each other.
Instead the later used package adds the code closer to the file content, ‘inside’ the
material added by the first package. Therefore it is safely possible to surround
the content of a file with multiple I#TEX environments using multiple ‘AtBe-
gin’/‘AtEnd’ macro calls. If required inside another package a different order
can be enforced by using the internal hook macros shown in the implementation
section.

Every File

\AtBeginOfEveryFile{(7pX code)}
\AtEndOfEveryFile{(TgX code)}

Sometime certain code should be executed at the begin and end of every
read file, e.g. pushing and popping a file stack. The ‘At...OfFiles’ hooks already
do a good job here. Unfortunately there is the issue with the \clearpage in
\include. The \AtEndOfFiles is executed before it, which can cause issues
with page headers and footers. A workaround, e.g. done by older versions of
the currfile package, is to execute the code twice for include files: once in the
include related hooks and once in the 0fFiles hooks.

A better solution for this problem was added in v0.4 from 2011/01/03: the
EveryFile hooks will be executed exactly once for every file, independent if it
is read using \input, \include or \InputIfFileExists. Special care is taken
to suppress them for the \InputIfFileExists inside \input and \include.

These hooks are located around the more specific hooks: For \input files
the ‘Begin’ hook is executed before the \AtBeginOfInputs hook and the ‘End’
hook after the \AtEnd0f Inputs. Similarly, for \include files the ‘Begin’ hook
is executed before the \AtBeginOfIncludes hook and the ‘End’ hook after
the \AfterIncludes(!). For files read by \InputIfFileExists(e.g. also for
\usepackage, etc.) they are executed before and after the \AtBeginOfFiles
and \AtEndOfFiles hooks, respectively. Note that the \AtBeginOfEveryFile
hook is executed before the \AtBeginOfPackageFile/\AtBeginOfClassFile
hooks and that the \AtEndOfEveryFile hook is executed also before the hooks
\AtEndOfPackageFile/\AtEndOfClassFile. Therefore the ‘Every’ and ‘Pack-
ageFile’/‘ClassFile’ hooks do not nest correctly like all other hooks do.

All Files

\AtBeginOfFiles{(7pX code)}
\AtEndOfFiles{(TEX code)}

These macros add the given {(code)} to two hooks executed for all files
read using the \InputIfFileExists macro. This macro is used internally
by the \input, \include and \usepackage/\RequirePackage macros. Pack-
ages and classes might use it to include additional or auxiliary files. Authors
can exclude those files from the hooks by using \IfFileExists{(file name)}
{\@input\@filef@und}{} instead.

\AtBeginOfFile{(file name with extension)}{{TgX code)}
\AtEnd0fFile{(file name with extension)}{{TpX code)}

Like the \...0fIncludeFile{(file name)}{(TEX code)} macros above, just
for ‘all’ read files. Here the (file name) should include the file extension!

The ‘all files’ hooks are closer to the file content than the \input and
\include hook, i.e. the \AtBeginOfFiles comes after the \AtBeginOf Includes
and the \AtEndOfFiles comes before the \AtEndOfIncludes hook.

The following figure shows the positions of the hooks inside the macro:

\InputIfFileExists:

Hook: AtBeginOfEveryFile
Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Include Files

\AtBeginOfIncludes{(TgX code)}
\AtEnd0f Includes{(7gX code)}
\AfterIncludes{(7pX code)}

As described above the ‘AtEnd’ hook is executed before and the ‘After’ hook
is executed after the trailing \clearpage. Note that material which appears in
the page header or footer should be updated in the ‘After’ hook, not the ‘AtEnd’
hook, to ensure that the old values are still valid for the last page.

\AtBeginOfIncludeFile{(file name)}{{TEX code)}
\AtEnd0f IncludeFile{(file name)}{(TgX code)}
\AfterIncludeFile{(file name)}{{TEX code)}

These file-specific macros take the two arguments. The (code) is only exe-
cuted for the file with the given (file name) and only if it is read using \include.
The (file name) should be identical to the name used for \include and not in-
clude the ‘. tex’ extension.

The following figure shows the positions of the hooks inside the macro:

\include:

\clearpage (implicit)

Hook: AtBeginOfEveryFile

Hook: AtBeginOflncludeFile{(file name)}
Hook: AtBeginOfIncludes

\InputIfFileExists:

Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{{file name)}

Hook: AtEndOflncludes

Hook: AtEndOfIncludeFile{(file name)}
\clearpage (implicit)

Hook: AfterIncludes

Hook: AfterIncludeFile{(file name)}
Hook: AtEndOfEveryFile

Input Files

\AtBeginOf Inputs{(7gX code)}
\AtEnd0f Inputs{(7pX code)}

Like the \. . .0fIncludes{code} macros above, just for file read using \input.

\AtBeginOf InputFile{(file name)}X{(TEX code)}
\AtEndOf InputFile{(file name)}(TEX code)}

Like the \...0fIncludeFile{(file name)}{code} macros above, just for file
read using \input. Here the (file name) should include the file extension!
The following figure shows the positions of the hooks inside the macro:

\input:

Hook: AtBeginOfEveryFile

Hook: AtBeginOflnputFile{{file name)}

Hook: AtBeginOflnputs
\InputIfFileExists:

Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}

Hook: AtEndOflnputs
Hook: AtEndOflnputFile{(file name)}
Hook: AtEndOfEveryFile

Package Files

\AtBeginOfPackageFile*{(package name)X{{TEX code)}
\AtEndOfPackageFile*{(package name)H{TEX code)}

This macros install the given (TgX code) in the ‘AtBegin’ and ‘AtEnd’
hooks of the given package file. The \AtBeginOfPackageFile simply executes
\AtBegin0fFile{(package name).sty}{(TgpXcode)}. Special care is taken to en-
sure that the ‘AtEnd’ code is executed after any code installed by the package
itself using the IXTEX macro \AtEndOfPackage. If the starred version is used
and the package is already loaded the code is executed right away.

The following figure shows the positions of the hooks inside the macros:

\usepackage/\RequirePackage/\RequirePackageWithOptions:

\InputIfFileExists:

Hook: AtBeginOfEveryFile

Hook: AtBeginOfFile{(file name)}

(includes AtBeginOfPackageFile{(file name)})
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Hook: AtEndOfPackage (IATEX hook)
Hook: AtEndOfPackageFile{(file name)}

Class Files

\AtBeginOfClassFile*{(class name)X{{TEX code)}
\AtEnd0fClassFilex*{(class name)}H(TEX code)}

This macros install the given (TgX code) in the ‘AtBegin’ and ‘AtEnd’
hooks of the given class file. They work with classes loaded using \LoadClass,
\LoadClassWithOptions and also \documentclass. However, in the latter
case filehook must be loaded using \RequirePackage beforehand. The macro
\AtBegin0fClassFile simply executes \AtBeginOfFile{(class name).cls}{...}.
Special care is taken to ensure that the ‘AtEnd’ code is executed after any code
installed by the class itself using the BTEX macro \AtEnd0fClass. If the starred
version is used and the class is already loaded the code is executed right away.

The following figure shows the positions of the hooks inside the macros:

\documentclass/\LoadClass/\LoadClassWithOptions:

\InputIfFileExists:

Hook: AtBeginOfEveryFile

Hook: AtBeginOfFile{(file name)}
(includes AtBeginOfClassFile{(file name)})
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Hook: AtEndOfClass (IATEX hook)
Hook: AtEndOfClassFile{(file name)}

3 Compatibility Issues with Classes and other
Packages

The filehook package might clash with other packages or classes which also re-
define \InputIfFileExists or internal macros used by \include and \input (which
are \@ input@ and \@ iinput). Special compatibility code is in place for the
packages listed below (in their current implementation). If any other unknown
definition of \InputIfFileExists is found an error will be raised. The pack-
age option ‘force’ can be used to prevent this and to force the redefinition of
this macro. Then any previous modifications will be lost, which will most likely
break the other package. Table 1 lists all packages and classes which where found
do be incompatible. The packages auxhook, stampinclude, rerunfilecheck
and excludeonly redefine one or more of the above macros but have been
found compatible with filehook. Please do not hesitate to inform the author
of filehook of any encountered problems with other packages.

3.1 Supported Classes and Packages

The following classes and packages are actively supported and should work as
normal when used together with filehook. Please note that most of them are
incompatible to each other, which filehook might not fix.

memoir

The memoir class redefines \InputIfFileExists to add own hooks identical
to the ‘At...OfFiles’ hooks (there called \AtBeginFile and \AtEndFile). This
hooks will be moved to the corresponding ones of filehook and will keep work-
ing as normal. Since v0.4 from 2011/01/03 this modification will be also ap-
plied when the filehook package is loaded (using \RequirePackage) before
the memoir class. However, the hooks from filehook need to be temporally
disabled while reading the memoir class. They will not be triggered for all files
read directly by this class, like configuration and patch files. Note that the
‘At...OfClassFile’ hooks still work for the memoir class file itself. In fact they
are used to restore the default definition of \InputIfFileExists at the begin
and patch it at the end of the class file. The filehook package should be loaded
either before the class (using \RequirePackage) or directly after it. Because
the memoir hook code is moved to the filehook hooks this class should then
be compatible with below packages if memoir and filehook are loaded before
them.

scrlfile

The scrlfile package from the koma-script bundle redefines \InputIfFileExists
to allow file name aliases and to also add hooks. If required it should be loaded
before filehook, which will add its hooks correctly to the modified definition.

Since v0.4 from 2011/01/03 this modification will be also applied when the
scrlfile package is loaded after filehook.

fink

The filehook and currfile packages where written as replacements for the
fink package, where filehook provides the necessary hooks for currfile.
The fink package has now been deprecated in favour of currfile and should
not be used anymore. The fink compatibility code has been removed from
filehook and both cannot be used successfully together as both redefine the
\InputIfFileExists macro.

listings

The listings package uses \input inside \lstinputlisting. Therefore the
InputFile(s) and File(s) hooks are also triggered for these files. Please note
that this hooks are executing inside a verbatim environment. While the code
in the hook is not affected (because it was added outside the verbatim en-
vironment), any further code read using any input macro (\input, \@input,
\@@input (TEX’s \input{)}, ...) will be processed verbatim and typeset as
part of the listing. Since v0.4 this macro is automatically patched so \@input
is used instead to avoid this issue.

3.2 Other Classes and Packages
jmlrbook

The jmlrbook class from the jmlr bundle temporary redefines \InputIfFileExists
to import papers. The ‘original’ definition is saved away at load time of the pack-
age and is used internally by the new definition. This means that the hooks
will not be active for this imported files because filehook is loaded after the
class. This should not affect its normal usage. Note that, in theory, the package
could be loaded before \documentclass using \RequirePackage to enable the
file hooks also for these files.

ETEX’s \bibliography

The standard BTEX macro \bibliography uses the same internal macro \@input@
to read a file as \include does. The ‘include’ hooks will also be executed for this
.bbl file if the macro is directly followed by \clearpage, because the filehook
code will assume it is executed inside \include. This rare case can be easily
avoided by placing a \relax after \bibliography{...}.

Table 1: Incompatible packages and classes

Name Type Note Affected Hooks

paper class with journal option All hocks for \include’d files
journal class All hocks for \include’d files
gmparts package \include hooks

newclude package formally includex All hocks for \include’d files

4 Upgrade Guide

This sections gives information for users of older versions of this package which
unfortunately might not be 100% backwards compatible.

Upgrade to v0.4 - 2011/01/03

e The macro \AfterIncludeFile was misspelled as \AfterOfIncludeFile
in the implementation of earlier versions, but not in the documentation.
This has now be corrected. Please adjust your code to use the correct
name and to require the filehook package from 2011/01/03.

e All general hooks (the one not taking a file argument) used to have an im-
plicit argument #1 which was expanded to the file name (i.e. the argument
of \input etc.). This has now be changed, so that macro arguments are
not handled special in hook code, which e.g. simplifies macro definitions.
Older hook code might need to change ## to # to compensate for this
change. If the file name is required the macros (e.g. \currfilename) of
the partner package currfile should be used. These macros are available
everywhere including in all hocks.

10

5 Implementation
5.1 Options
\newif\iffilehook@force

\DeclareOption{force}{\filehook@forcetruel
\ProcessOptions\relax

5.2 Initialisation of Hooks

The general hooks are initialised to call the file specific hooks.

\filehook@include@atbegin

\def\filehook@include®@atbegin#1{/
\let\InputIfFileExists\filehook@@InputIfFileExists
\@nameuse{\filehook@include@atbegin@#1}/
\filehook@include@@atbegin

}

\filehook@include@@atbegin

\def\filehook@include@@atbegin{}

\filehook@include®@atend

\def\filehook@include@atend#1{/
\filehook@include@@atend
\@nameuse{\filehook@include@atend@#1}/

\filehook@include@@atend

\def\filehook@include@@atend{}

\filehook@include@after

11

\def\filehook@include@after#1{/
\filehook@include@@after
\@nameuse{\filehook@include@after@#1}/

\filehook@include@@after

\def\filehook@include@@after{}

\filehook@input@atbegin

\def\filehook@input@atbegin#1{/
\let\InputIfFileExists\filehook@@InputIfFileExists
\@nameuse{\filehook@input@atbegin@\,

filehook@ensureext{#1}} 7
\filehook@input@@atbegin
}

\filehook@input@@atbegin

\def\filehook@input@@atbegin{}

\filehook@input@atend

\def\filehook@input@atend#1{/
\filehook@input@®@atend

\@nameuse{\filehook@input@atend@\filehook@ensureext,

{#1}}x7%

\filehook@input@Q@atend

\def\filehook@input@@atend{}

\filehook@atbegin

12

©

\def\filehook@atbegin#1{/
\@nameuse{\filehook@atbegin@\filehook@ensureext,
{#1}}7
\filehook@Q@atbegin
}

\filehook@@atbegin

\def\filehook@@atbegin{}

\filehook®@atend

\def\filehook@atend#1{/
\filehook@@atend
\@nameuse{\filehook@atend@\filehook@ensureext{#1}}/

\filehook@@atend

10

\def\filehook@@atend{}

\filehook@every@atbegin

\def\filehook@every@atbegin#1{/
\filehook@every@@atbegin
}

\filehook@every@Qatbegin

\def\filehook@every@@atbegin{}

\filehook@every@atend

\def\filehookQevery@atend#1{/
\filehook@every@Q@atend
}

13

\filehook@every@Qatend

\def\filehook@every@@atend{}

5.3 Hook Modification Macros

The following macros are used to modify the hooks, i.e. to prefix or append code
to them.

Internal Macros

The macro prefixes for the file specific hooks are stored in macros to reduce the
number of tokens in the following macro definitions.

\def\filehook@include@atbegin@{,
filehook@include@atbegin@}
\def\filehook@include@atend@{filehook@include@atend®@}
\def\filehook@include@after@{filehook@include@after@}
\def\filehook@input@atbegin@{filehook@input@atbegin@}
\def\filehook@input@atend@{filehook@input@atend®@}
\def\filehook@input@after@{filehook@input@after@}
\def\filehook@atbegin@{filehook@atbegin@}
\def\filehook@atend@{filehook@atend@}
\def\filehook@after@{filehook@after@}

\filehook@append

Uses default ETEX macro.
\def\filehook@append{\g@addto@macro}

\filehook@appendwarg

Appends code with one macro argument. The \@tempa intermediate step is
required because of the included ##1 which wouldn’t correctly expand otherwise.

\long\def\filehook@appendwarg#1#2{/
\begingroup
\toks@\expandafter {#1{##1}#2} %
\edef\@tempa{\the\toks@}/
\expandafter\gdef\expandafter#1\expandafter##\
expandafterl\expandafter{\@tempal/
\endgroup

14

\filehook@prefix

Prefixes code to a hook.

\long\def\filehook@prefix#1#2{/
\begingroup
\@temptokena{#23}/
\toks@\expandafter {#1}/
\xdef#1{\the\Q@temptokena\the\toks@}/
\endgroup
}

\filehook@prefixwarg

Prefixes code with an argument to a hook.

\long\def\filehook@prefixwarg#1#2{/
\begingroup
\@temptokena{#23}
\toks@\expandafter {#1{##1}}
\edef\@tempa{\the\@temptokenalthe\toks@}/
\expandafter\gdef\expandafter#1l\expandafter##\
expandafter1\expandafter{\@tempal/
\endgroup
}

\filehook@addtohook

#1: Macro which should be used to add the material to the hook

#2: Macro name prefix

#3: End of macro name (file name)
The macro first expands the file name (#3) to flatten all included macros. An
extension is added if missing, as well as the prefix. All modifications of \@tempa
are made inside a group to keep them local.

\def\filehook@addtohook#1#2#3{/
\begingroup
\edef\@tempa{#3}/
\edef\@tempa{#2\filehook@ensureext{\Q@tempal}/
\@ifundefined{\@tempal}t{\global\@namedef{\@tempa,

37

\expandafter\endgroup
\expandafter#1l\csname\Qtempal\endcsname

15

User Level Macros

The user level macros simple use the above defined macros on the appropriate
hook.

\AtBeginOfIncludes

so \newcommand*\AtBeginOfIncludes{/
90 \filehook@append\filehook@include@@atbegin
91 }

\AtEndOfIncludes

92 \newcommand *\AtEndOfIncludes{/
03 \filehook@prefix\filehook@include®@@atend
94 }

\AfterIncludes

o5 \newcommand*\AfterIncludes{/
96 \filehook@prefix\filehook@include@@after
97 }

\AtBeginOfIncludeFile

os \newcommand*\AtBeginOfIncludeFile [1]{/

99 \filehook@addtohook\filehook@append\,
filehook@include@atbegin@{\filehook@ensuretex
{#1}}7

00}

\AtEndOfIncludeFile

101 \newcommand*\AtEndOfIncludeFile [1]1{/

102 \filehook@addtohook\filehook@prefix\,
filehook@include@atend@{\filehook@ensuretex{#1}}.
VA

16

\AfterIncludeFile

10+ \newcommand*\AfterIncludeFile [1]{/

105 \filehook@addtohook\filehook@prefix\,
filehook@include@after@{\filehook@ensuretex{#1}},
VA

06}

\AtBeginOf Inputs

07 \newcommand*\AtBeginOfInputs{/
108 \filehook@append\filehook@input@@atbegin
109 }

\AtEnd0f Inputs

10 \newcommand*\AtEndOfInputs{/
11 \filehook@prefix\filehook@input@@atend
112 }

\AtBeginOfInputFile

11z \newcommand*\AtBeginOfInputFile{/
114 \filehook@addtohook\filehook®@append\,
filehook@input@atbegin®@

\AtEndOfInputFile

16 \newcommand*\AtEndOfInputFile{/
117 \filehook@addtohook\filehook@prefix\,
filehook@input@atend@

\AtBeginOfFiles

17

\newcommand *\AtBeginOfFiles{/
\filehook@append\filehook@@atbegin
}

\AtEndOfFiles

\newcommand*\AtEnd0fFiles{/
\filehook@prefix\filehook@@atend
}

\AtBeginOfEveryFile

\newcommand*\AtBeginOfEveryFile{/
\filehook@append\filehook@every@@atbegin
}

\AtEnd0fEveryFile

\newcommand *\AtEndOfEveryFile{/
\filehook@prefix\filehook@every@Q@atend
}

\AtBeginOfFile

©

\newcommand *\AtBeginOfFile{/
\filehook@addtohook\filehook®@append\.
filehook@atbegin®@

\AtEnd0fFile

\newcommand *\AtEndOfFile{/
\filehook@addtohook\filehook@prefix\filehook@atend@
}

\AtBeginOfClassFile

18

\newcommand*\AtBeginOfClassFile{/
\@ifnextcharx*
{\AtBeginOfXFile@star\Qclsextensionl}/
{\AtBeginOfXFile@normal\@clsextensionl}/

\AtBeginOfPackageFile

\newcommand*\AtBeginOfPackageFile{/
\@ifnextchar*
{\AtBeginOfXFile@star\@pkgextension}/
{\AtBeginOfXFile@normal\@pkgextension}/

\AtBeginOfXFile@star

#1: extension

#2: name
If the class or package is already loaded the code is executed right away. Oth-
erwise it is installed normally.

\def\AtBeginOfXFileQ@star#1x#2{/
\@ifl@aded {#1}{#2} %
{\efirstofonel}/
{\AtBeginOfXFile@normal {#1}{#2}} %

\AtBeginOfXFile@normal

#1: extension
#2: name

\def\AtBeginOfXFile@normal#1#2{/

\AtBeginOfFile {#2.#1}/
b

\AtEndOfClassFile

\newcommand*\AtEndOfClassFile{/
\@ifnextcharx*
{\AtEndOfXFile@star\@clsextension}/
{\AtEndOfXFile@normal\@clsextension}/

19

\AtEndOfPackageFile

\newcommand*\AtEndOfPackageFile{/

\@ifnextcharx*

{\AtEndOfXFile@star\Q@pkgextensionl}/
{\AtEndOfXFile@normal\@pkgextensionl}/

\AtEndOfXFile®@star

#1: extension
#2: name

If the class or package is already loaded the code is executed right away. Oth-

erwise it is installed normally.

\def\AtEndOfXFile@star#1x#2{/

\QiflQaded {#1}{#2}/
{\e@efirstofonel}ly

{\AtEndOfXFile@normal {#1}{#2}}%

\AtEndOfXFile@normal

#1: extension
#2: name

Note that \AtEnd0fClass is identical to \AtEnd0fPackage, so no differenciation
between classes and packages is needed here.

\def\AtEndOfXFile@normal#1#2#3{/
\AtEndOfFile{#2.#1}{\AtEndOfPackage{#3}}/

}

5.4 Installation of Hooks

The \@input@ and \@iinput macros from latex.ltx are redefined to install

the hooks.

First the original definitions are saved away.

\filehook@orig@@input®@

\let\filehook@orig@@input@\@input@

20

\filehook@orig@@iinput

\let\filehook@orig@@iinput\@iinput

\@input@

This macro is redefined for the \include file hooks. Checks if the next command
is \clearpage which indicates that we are inside \@include. If so the hooks
are installed, otherwise the original macro is used unchanged. For the ‘after’
hook an own \clearpage is inserted and the original one is gobbled.

\def\@input@#1{/
\@ifnextchar\clearpage

{7

\filehook@everyQ@atbegin{#1}/
\filehook@include@atbegin{#1}/
\filehook@orig@@input@{#1} 7
\filehook@include@atend{#1}/

\clearpage

\filehook@include@after{#1}/
\filehook@everyQatend{#1}/

This macro is redefined for the \input file hooks.

original macro with the hooks.

\def\filehook@@iinput#1{/

\filehook@every@atbegin{#1}/
\filehook@input@atbegin{#1} %
\filehook@orig@@iinput{#1}/

\@gobble
Y
7 {\filehook@orig@@input@{#1}}%
+
\@iinput

\filehook@input@atend {#1}/
\filehook@every@atend{#11}/

3

\let\@iinput\filehook®@@iinput

\filehook@swap

21

it simply surrounds the

Auxiliary macro which swaps the two arguments. This is needed to expand
\@filef@und, which is given as first argument but needed then as the second
one.

\def\filehook@swap#1#2{#2#1}

\filehook@ensureext

199

200

This macro ensures the existence of a file name extension. If non is given ‘. tex’
is added.

\def\filehook@ensureext#1{/
\expandafter\filehook@@ensureext#1l\empty.tex\
empty\empty

\filehook@@ensureext

201

\def\filehook@@ensureext#1.#2\empty#3\empty{#1.#2}

\filehook@ensuretex

204

3

Ensures a
one.

.tex’ extension, i.e. adds it if missing, even if there is a different

\def\filehook@ensuretex#1{/
\expandafter\filehook@@ensuretex#1l\empty.tex\,
empty\empty

\filehook@@ensuretex

\def\filehook@@ensuretex#l.tex\empty#2\empty{#1.tex}

The filehook default definition of \InputIfFileExists is defined here to-
gether with alternatives definitions for comparison. There are stored first in a
token register and later stored in a macro which is expanded if required. This
is always done inside a group to keep them temporary only. The token register
is used to avoid doubling of macro argument characters.

\latex@InputIfFileExists

Standard ITEX definition of \InputIfFileExists.

22

200 \long\def\latex@InputIfFileExists#1#2{/
207 \IfFileExists{#1}/

208 {#2\ @addtofilelist{#1} 7
209 \@Q@input\@filef@und

210 }Z

211 }

\filehook@default@InputIfFileExists

212 \long\gdef\filehook@default@InputIfFileExists#1#2{/
213 \IfFileExists{#1}/

214 {\expandafter\filehook@swap

215 \expandafter{\@filef@und}/

216 {#2\@addtofilelist{#1}7

217 \filehook@every@atbegin{#1}/

218 \filehook@atbegin{#1}%
210 \@@input}/

220 \filehook@atend{#1}/
221 \filehook@everyQatend{#1}/
222 }Z

\filehook@@default@InputIfFileExists

224 \long\gdef\filehook@@default@InputIfFileExists#1#2{/
225 \let\InputIfFileExists\filehook@InputIfFileExists
226 \IfFileExists{#1}/

227 {\expandafter\filehook@swap

228 \expandafter{\@filef@und}/

229 {#2\@addtofilelist{#1}7

230 \filehook@atbegin{#1}/

231 \@Q@inputl}/
232 \filehook@atend{#1} Y

233 A

\scrlfile@InputIfFileExists

235 \long\def\scrlfile@InputIfFileExists#1#2{/
\begingroup\expandafter\expandafter\expandafter\,
endgroup

N

23

\expandafter\ifx\csname #1-Qalias\endcsnamelrelax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Q@alias\endcsname,
H#1} 7
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\
csname
#1-@alias\endcsname}{#2} 7
Y7
{\IfFileExists{#1}{/
\scr@load@hook{before}{#1}/
#2\Qaddtofilelist{#1}/
\@@input \@filef@und
\scr@load@hook{after}{#1}/
i3 A

\filehook@scrlfile@InputIfFileExists

o
IS

\long\def\filehook@scrlfile@InputIfFileExists#1#2{/
\begingroup\expandafter\expandafter\expandafter\,
endgroup
\expandafter\ifx\csname #1-Qalias\endcsnamelrelax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Qalias\endcsname,
H#1}7
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\,
csname
#1-Q@alias\endcsname }{#2}/
Yz
{\IfFileExists{#1}{/
\expandafter\filehook@swap
\expandafter{\@filef@undl}/
{\scr@load@hook{before}{#1} %
#2\Qaddtofilelist{#1}/
\filehook@every@atbegin{#1}/
\filehook@atbegin{#1}/

24

\@@input}/

\filehook@atend {#1}/

\filehook@everyQatend{#1}/

\scr@load@hook{after}{#1} %
a4

\filehook@@scrlfile@InputIfFileExists

\long\def\filehook@@scrlfile@InputIfFileExists#1#2{/
\let\InputIfFileExists\filehook@InputIfFileExists
\begingroup\expandafter\expandafter\expandafter\

endgroup
\expandafter\ifx\csname #1-Qalias\endcsnamelrelax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Q@alias\endcsname,
H#1} 7
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\
csname
#1-@alias\endcsname}{#2} 7
Y7
{\IfFileExists{#1}{/
\expandafter\filehook@swap
\expandafter{\@filef@undl}/
{\scr@load@hook{before}{#1}/
#2\ @addtofilelist{#1}/
\filehook@atbegin{#1}/
\@Q@inputl}/
\filehook@atend{#1}/
\scr@load@hook{after}{#1}/
i3 4
}

\ProvidesPackage{filehook-memoir}[2011/01/03 v0.1 .
filehook patch for memoir class]

\RequirePackage{filehook}

\begingroup

\memoir@InputIfFileExists

25

33

23

o

\long\def\memoir@InputIfFileExists#1#2{/

\IfFileExists{#1}/
{#2\@addtofilelist{#1}\m@matbeginf {#1}7
\@Q@input \@filef@und
\m@matendf {#1} %
\killm@matf {#1}} %

\ifcase

\ifx\InputIfFileExists\latex@InputIfFileExists O\,
else
\ifx\InputIfFileExists\memoir@InputIfFileExists .
O\else
1%
\fi\fi

\relax

\global\let\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
\globalllet\filehook@@InputIfFileExists\,
filehook@@default@InputIfFileExists
\global\let\InputIfFileExists\,
filehook@InputIfFileExists
\filehook@appendwarg\filehook@atbegin{\m@matbeginf
{#13}7
\filehook@prefixwarg\filehook@atend{\m@matendf {#1}\

\else

killm@matf {#1}} 7

\PackageInfo{filehook}{Detected ’memoir’ class: the,
memoir hooks will be moved to the ‘At...0fFiles.
> hooks}

\iffilehook®@force

\globalllet\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
\globalllet\filehook@@InputIfFileExists\.
filehook@@default@InputIfFileExists
\globalllet\InputIfFileExists\
filehook@InputIfFileExists
\PackageWarning{filehook}{Detected ’memoir’ class,
with unknown definition of \string\,
InputIfFileExists. " J/
The ’force’ option of ’.
filehook’ is in .~
effect. Macro is o
overwritten with .
default !}/
\else

26

\PackageError{filehook}{Detected ’memoir’ class .
with unknown definition of \string\.,
InputIfFileExists. " J/

Use the ’force’ option of.
>filehook’ to
overwrite it.}{}/
\fi
\fi

\endgroup

\ProvidesPackage{filehook-1listings}[2011/01/02 vO.1 .
Patch for listings to avoid hooks for verbatim .
input files]

\begingroup

\long\def\patch#1\def\1lst@next#2#3\endpatch{/
\toks@{#2}/
\edef\@tempa{\the\toks@}/
\def\@tempb{\input {####1}} 7
\ifx\@tempa\@tempb
\gdef\1lst@Inputlisting##1{#1\def\1lst@next{\
Q@input {##1}}#3} 7
\else
\PackageWarning{filehook-1listings}{To-be-
patched code in macro \string\,
lst@Inputlisting was not found!'}/
\fi
}

\@ifundefined{1lst@InputListingl}{/
\PackageWarning{filehook-listings}{To-be-patched .
Macro \string\lst@Inputlisting not found!}/
H3

\expandafter\patch\1lst@InputListing{#1}\endpatch

\endgroup

\ProvidesPackage{filehook-scrlfile}[2011/01/03 vO0.1 .
filehook patch for scrlfile package]

\RequirePackage{filehook}

\begingroup

\scrlfile@InputIfFileExists

27

\long\def\scrlfile@InputIfFileExists#1#2{/

\begingroup\expandafter\expandafter\expandafter\
endgroup
\expandafter\ifx\csname #1-Q@alias\endcsnamel\relax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Q@alias\endcsname,
H#1}Y 7
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\
csname
#1-Q@alias\endcsname }{#2}/
Yz
{\IfFileExists{#1}{/
\scr@load@hook{before}{#1}/
#2\@addtofilelist{#1}/
\@@input \@filef@und
\scr@load@hook{after}{#1} /%
13 4

\filehook@scrlfile@InputIfFileExists

\long\def\filehook@scrlfile@InputIfFileExists#1#2{/

\begingroup\expandafter\expandafter\expandafter\
endgroup
\expandafter\ifx\csname #1-@alias\endcsname\relax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Q@alias\endcsname,
H#1}r7
\expandafter\Q@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\
csname
#1-Q@alias\endcsname }{#2}/
Yz
{\IfFileExists{#1}{/
\expandafter\filehook@swap
\expandafter{\@filef@undl}/
{\scr@load@hook{before}{#1}/

28

#2\ 0addtofilelist{#1}/
\filehook@everyQ@atbegin{#1}
\filehook@atbegin{#1}/
\@@input} %
\filehook@atend {#1}
\filehook@everyQatend{#1}/
\scr@load@hook{after}{#1} 7
Y7

\filehook@@scrlfile@InputIfFileExists

106

107

108

409

110

\long\def\filehook@@scrlfile@InputIfFileExists#1#2{/
\let\InputIfFileExists\filehook@InputIfFileExists
\begingroup\expandafter\expandafter\expandafter\

endgroup
\expandafter\ifx\csname #1-Qalias\endcsnamelrelax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Q@alias\endcsname,
H#1} 7
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\
csname
#1-Q@alias\endcsname }{#2} 7
Yz
{\IfFileExists{#1}{/
\expandafter\filehook@swap
\expandafter{\@filef@undl}/
{\scr@load@hook{before}{#1}/
#2\ @addtofilelist{#1}/
\filehook@atbegin{#1}/
\@@input} %
\filehook@atend{#1}/
\scr@load@hook{after}{#1}/
Y7

If the scrlfile package definition is detected the filehooks are added
to that definition. Unfortunately the \scr@load@hook{before} hook is placed
before not after the #2\@addtofilelist{#1} code. Otherwise the filehooks
could simply be added to these hooks. Note that this will stop working if
scrlfile ever changes its definition of the \InputIfFileExists macro.

29

\ifcase
\ifx\InputIfFileExists\latex@InputIfFileExists O\,
else
\ifx\InputIfFileExists\scrlfile@InputIfFileExists,
O\else
17
\fi\fi
\relax
\global\let\filehook@InputIfFileExists\,
filehook@scrlfile@InputIfFileExists
\global\let\filehook@@InputIfFileExists\,
filehook@@scrlfile@InputIfFileExists
\globalllet\InputIfFileExists\,
filehook@InputIfFileExists
\PackageInfo{filehook}{Package ’scrlfile’ detected .
and compensated forl}/
\else
\iffilehook@force
\globalllet\filehook@InputIfFileExists\
filehook@default@InputIfFileExists
\globalllet\filehook@@InputIfFileExists\,
filehook@@default@InputIfFileExists
\global\let\InputIfFileExists\,
filehook@InputIfFileExists
\PackageWarning{filehook}{Detected ’scrlfile’ .
package with unknown definition of \string\,
InputIfFileExists. "~ J/
The ’force’ option of ’.
filehook’ is in .
effect. Macro is .
overwritten with .
default !}/
\else
\PackageError{filehook}{Detected ’scrlfile’ .
package with unknown definition of \string\,
InputIfFileExists. "~ J/
Use the ’force’ option of.
>filehook’ to
overwrite it.}{}/
\fi
\fi

\endgroup

\ProvidesPackage{filehook-fink}[2011/01/03 vO0.1 .
filehook compatibility code for fink packagel

30

\RequirePackage{filehook}
\RequirePackage{currfile}/

\begingroup

\long\def\fink@old@InputIfFileExists#1#2{/
\IfFileExists{#1}{/
#2\Q@addtofilelist{#1}/
\fink@prepare{#1}/
\expandafter\fink@input/
\expandafter\fink@restore\expandafter{\finkpathl}}
%
}

\long\def\fink@new@InputIfFileExists#1#2{/
\IfFileExists{#1}{/
#2\Qaddtofilelist {#1}/
\edef\fink@before{\noexpand\fink@input{#1}}/
\edef\fink@after{\noexpand\fink@restore{\finkpath,
i3 4

\expandafter\fink@before\fink@after}/

}

\ifcase
\ifx\InputIfFileExists\filehook@InputIfFileExists,
O\else
\ifx\InputIfFileExists\latex@InputIfFileExists .
1\else
\ifx\InputIfFileExists\fink@new@InputIfFileExists,
1\else
\ifx\InputIfFileExists\fink@old@InputIfFileExists,
1\else
17
\Efi\fi\fi\fi
\relax
\or
\global\let\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
\globalllet\filehook@@InputIfFileExists\.
filehook@@default@InputIfFileExists
\global\let\InputIfFileExists\
filehook@InputIfFileExists
\PackageInfo{filehook-fink}{Package ’fink’ detected.,
and replaced by ’currfile’}/
\else
\iffilehook@force

31

190 \globalllet\filehook@InputIfFileExists\,

filehook@default@InputIfFileExists

191 \globalllet\filehook@@InputIfFileExists\.

filehook@@default@InputIfFileExists

192 \globalllet\InputIfFileExists\,

filehook@InputIfFileExists

193 \PackageWarning{filehook-fink}{Detected ’fink’ .

package with unknown definition of \string\,
InputIfFileExists. ~~J/
194 The ’force’ option of ’.
filehook’ is in .
effect. Macro is .
overwritten with
default !}/
195 \else
196 \PackageError{filehook-fink}{Detected ’fink’ .
package with unknown definition of \string\,
InputIfFileExists. " J/

197 Use the ’force’
option of ’_
filehook’ to
overwrite it.}{}/

198 \fl

o \fi

so00 \endgroup

\InputIfFileExists

First we test for the scrlfile package. The test macro adds the necessary
patches if so. In order to also support it when it is loaded afterwards the two
hooks below are used to revert the definition before the package and patch it
afterwards.

s \AtBeginOfPackageFilex{scrlfile}{/

503 \let\InputIfFileExists\latex@InputIfFileExists
soa }X

so5 \AtEndOfPackageFile*{scrlfilel}{/

506 \RequirePackage{filehook-scrlfile}/

507 }%

Fink:

sos. \AtBeginOfPackageFilex{fink}{/
509 \RequirePackage{kvoptionsl}/
510 \begingroup

32

\let\InputIfFileExists\latex@InputIfFileExists
Y
\AtEndOfPackageFile*{fink}{/
\edef\@tempa{\noexpand\PassOptionsToPackage{.
mainext=\fnk@mainext ,maindir=\fnk@maindir}{.
currfile}})
\expandafter\endgroup\Q@tempa
\RequirePackage{filehook-fink}/
Yz
If memoir is detected its hooks are added to the appropriate ‘At...OfFiles’
hooks. This works fine because its hooks have the exact same position. Please
note that the case when memoir is used together with scrlfile is not explicitly
covered. In this case the scrlfile package will overwrite memoirs definition.

\AtBeginOfClassFile*{memoir}{/

\let\filehook@@InputIfFileExists\,
latex@InputIfFileExists

\let\InputIfFileExists\latex@InputIfFileExists
\let\@iinput\filehook@orig@@iinput

h ¥4

\AtEndOfClassFile*{memoir}{/
\let\@iinput\filehook@@iinput
\RequirePackage{filehook -memoirl}/

Yz
Finally, if no specific alternate definition is detected the original IXTEX def-

inition is checked for and a error is given if any other unknown definition is

detected. The force option will change the error into a warning and overwrite

the macro with the default.

\ifcase
\ifx\InputIfFileExists\filehook@InputIfFileExists,
O\else
\ifx\InputIfFileExists\latex@InputIfFileExists 1\,
else
\iffilehook@force 1\else
9z
\Nfi\fi\fi
\relax/ 0
\or/ 1
\let\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
\let\filehook@@InputIfFileExists\,
filehook@@default@InputIfFileExists
\let\InputIfFileExists\filehook@InputIfFileExists
\iffilehook@force

33

\PackageWarning{filehook}{Detected unknown .
definition of \string\InputIfFileExists. ~"J/
The ’force’ option of.
’filehook’ is in .
effect. Macro is .
overwritten with .
default !}/
\fi
\else
\PackageError{filehook}{Detected unknown .,
definition of \string\InputIfFileExists. ~"J/
Use the ’force’ option of.
’filehook’ to
overwrite it.}{}/

\fi
\AtBeginDocument{/
\ifx\InputIfFileExists\filehook@InputIfFileExists,
\else
\PackageWarning{filehook}{Macro \string\.
InputIfFileExists\space got redefined .
after ’filehook’ was loaded.”"J%
Certain file hooks .
might now be .
dysfunctional!}
\fi
}

34

	Introduction
	Usage
	Compatibility Issues with Classes and other Packages
	Supported Classes and Packages
	Other Classes and Packages

	Upgrade Guide
	Implementation
	Options
	Initialisation of Hooks
	Hook Modification Macros
	Installation of Hooks

