
The filehook Package

Martin Scharrer
martin@scharrer-online.de

http://www.ctan.org/pkg/filehook

Version v0.5b – 2011/07/18

Abstract

This package provides hooks for input files. Document and package authors
can use these hooks to execute code at begin or the end of specific or all input
files.

1 Introduction

These package changes some internal LATEX macros used to load input files so that they
include ‘hooks’. A hook is an (internal) macro executed at specific points. Normally it
is initially empty, but can be extended using an user level macro. The most common
hook in LATEX is the ‘At-Begin-Document’ hook. Code can be added to this hook using
\AtBeginDocument{〈TEX code〉}.

This package provides hooks for files read by the LATEX macros \input, \include
and \InputIfFileExists as well as (since v0.3 from 2010/12/20) for class and pack-
age files, i.e. macros \documentclass, \LoadClassWithOptions and \LoadClass
as well as \usepackage, \RequirePackageWithOptions and \RequirePackage.
Note that \InputIfFileExists, and therefore its hooks, is used by the aforemen-
tioned macros. In v0.4 from 2011/03/01 special hooks where added which are ex-
ecuted for every read file, but will not be executed a second time by the internal
\InputIfFileExists inside \input and \include.

For all files a ‘AtBegin’ and a ‘AtEnd’ hook is installed. For \include files there is
also a ‘After’ hook which it is executed after the page break (\clearpage) is inserted
by the \include code. In contrast, the ‘AtEnd’ hook is executed before the trailing
page break and the ‘AtBegin’ hook is executed after the leading page break. The
‘AtBegin’ hook can be used to set macros to file specific values. These macros can be
reset in the ‘AtEnd’ hook to the parent file values. If these macros appear in the page
header or footer they need to be reset ‘After’ hook to ensure that the correct values
are used for the last page.

In addition to general hooks which are executed for all files of there type, file
specific one can be defined which are only executed for the named file. The hooks for
classes and packages are always specific to one file.

Older versions of this package provided the file name as argument #1 for the
general hooks. This has been changed in v0.4 from 2011/01/03: the hook code is
stored and executed without modifications, i.e. macro argument characters (#) are
now handled like normal and don’t have to be doubled. See section 5 for information
how to upgrade older documents.

1

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/filehook


2 Usage

The below macros can be used to add material (TEX code) to the related hooks. All
‘AtBegin’ macros will append the code to the hooks, but the ‘AtEnd’ and ‘After’ macros
will prefix the code instead. This ensures that two different packages adding material
in ‘AtBegin’/‘AtEnd’ pairs do not overlap each other. Instead the later used package
adds the code closer to the file content, ‘inside’ the material added by the first package.
Therefore it is safely possible to surround the content of a file with multiple LATEX
environments using multiple ‘AtBegin’/‘AtEnd’ macro calls. If required inside another
package a different order can be enforced by using the internal hook macros shown
in the implementation section.

Every File

\AtBeginOfEveryFile{〈TEX code〉}
\AtEndOfEveryFile{〈TEX code〉}

Sometime certain code should be executed at the begin and end of every read file,
e.g. pushing and popping a file stack. The ‘At...OfFiles’ hooks already do a good
job here. Unfortunately there is the issue with the \clearpage in \include. The
\AtEndOfFiles is executed before it, which can cause issues with page headers and
footers. A workaround, e.g. done by older versions of the currfile package, is to
execute the code twice for include files: once in the include related hooks and once
in the OfFiles hooks.

A better solution for this problem was added in v0.4 from 2011/01/03: the
EveryFile hooks will be executed exactly once for every file, independent if it is read
using \input, \include or \InputIfFileExists. Special care is taken to suppress
them for the \InputIfFileExists inside \input and \include.

These hooks are located around the more specific hooks: For \input files the
‘Begin’ hook is executed before the \AtBeginOfInputs hook and the ‘End’ hook after
the \AtEndOfInputs. Similarly, for \include files the ‘Begin’ hook is executed be-
fore the \AtBeginOfIncludes hook and the ‘End’ hook after the \AfterIncludes
(!). For files read by \InputIfFileExists (e.g. also for \usepackage, etc.) they
are executed before and after the \AtBeginOfFiles and \AtEndOfFiles hooks,
respectively. Note that the \AtBeginOfEveryFile hook is executed before the
\AtBeginOfPackageFile/\AtBeginOfClassFile hooks and that the \AtEndOfEveryFile
hook is executed also before the hooks \AtEndOfPackageFile/\AtEndOfClassFile.
Therefore the ‘Every’ and ‘PackageFile’/‘ClassFile’ hooks do not nest correctly like all
other hooks do.

All Files

\AtBeginOfFiles{〈TEX code〉}
\AtEndOfFiles{〈TEX code〉}

These macros add the given {〈code〉} to two hooks executed for all files read us-
ing the \InputIfFileExists macro. This macro is used internally by the \input,
\include and \usepackage/\RequirePackage macros. Packages and classes might

2



use it to include additional or auxiliary files. Authors can exclude those files from the
hooks by using the following code instead:

\IfFileExists{〈file name〉}{\@input\@filef@und}{}

\AtBeginOfFile{〈file name〉}{〈TEX code〉}
\AtEndOfFile{〈file name〉}{〈TEX code〉}

Like the \...OfIncludeFile{〈file name〉}{〈TEX code〉} macros above, just for ‘all’
read files. If the 〈file name〉 does not include a file extension it will be set to ‘.tex’.

The ‘all files’ hooks are closer to the file content than the \input and \include
hook, i.e. the \AtBeginOfFiles comes after the \AtBeginOfIncludes and the
\AtEndOfFiles comes before the \AtEndOfIncludes hook.

The following figure shows the positions of the hooks inside the macro:

\InputIfFileExists:
Hook: AtBeginOfEveryFile
Hook: AtBeginOfFile{〈file name〉}
Hook: AtBeginOfFiles
Content

Hook: AtEndOfFiles
Hook: AtEndOfFile{〈file name〉}
Hook: AtEndOfEveryFile

Include Files

\AtBeginOfIncludes{〈TEX code〉}
\AtEndOfIncludes{〈TEX code〉}
\AfterIncludes{〈TEX code〉}

As described above the ‘AtEnd’ hook is executed before and the ‘After’ hook is executed
after the trailing \clearpage. Note that material which appears in the page header
or footer should be updated in the ‘After’ hook, not the ‘AtEnd’ hook, to ensure that
the old values are still valid for the last page.

\AtBeginOfIncludeFile{〈file name〉}{〈TEX code〉}
\AtEndOfIncludeFile{〈file name〉}{〈TEX code〉}
\AfterIncludeFile{〈file name〉}{〈TEX code〉}

These file-specific macros take the two arguments. The 〈code〉 is only executed for
the file with the given 〈file name〉 and only if it is read using \include. The 〈file
name〉 should be identical to the name used for \include and not include the ‘.tex’
extension. Files with a different extension are neither supported by \include nor
this hooks.

The following figure shows the positions of the hooks inside the macro:

3



\include:

\clearpage (implicit)
Hook: AtBeginOfEveryFile
Hook: AtBeginOfIncludeFile{〈file name〉}
Hook: AtBeginOfIncludes

\InputIfFileExists:
Hook: AtBeginOfFile{〈file name〉}
Hook: AtBeginOfFiles
Content

Hook: AtEndOfFiles
Hook: AtEndOfFile{〈file name〉}

Hook: AtEndOfIncludes
Hook: AtEndOfIncludeFile{〈file name〉}
\clearpage (implicit)
Hook: AfterIncludes
Hook: AfterIncludeFile{〈file name〉}
Hook: AtEndOfEveryFile

Input Files

\AtBeginOfInputs{〈TEX code〉}
\AtEndOfInputs{〈TEX code〉}

Like the \...OfIncludes{code} macros above, just for file read using \input.

\AtBeginOfInputFile{〈file name〉}{〈TEX code〉}
\AtEndOfInputFile{〈file name〉}{〈TEX code〉}

Like the \...OfIncludeFile{〈file name〉}{code} macros above, just for file read
using \input. If the 〈file name〉 does not include a file extension it will be set to
‘.tex’.

The following figure shows the positions of the hooks inside the macro:

\input:
Hook: AtBeginOfEveryFile
Hook: AtBeginOfInputFile{〈file name〉}
Hook: AtBeginOfInputs

\InputIfFileExists:
Hook: AtBeginOfFile{〈file name〉}
Hook: AtBeginOfFiles
Content

Hook: AtEndOfFiles
Hook: AtEndOfFile{〈file name〉}

Hook: AtEndOfInputs
Hook: AtEndOfInputFile{〈file name〉}
Hook: AtEndOfEveryFile

4



Package Files

\AtBeginOfPackageFile*{〈package name〉}{〈TEX code〉}
\AtEndOfPackageFile*{〈package name〉}{〈TEX code〉}

This macros install the given 〈TEX code〉 in the ‘AtBegin’ and ‘AtEnd’ hooks of the given
package file. The \AtBeginOfPackageFile simply executes \AtBeginOfFile{〈package
name〉.sty}{〈TEXcode〉}. Special care is taken to ensure that the ‘AtEnd’ code is exe-
cuted after any code installed by the package itself using the LATEX macro \AtEndOfPackage.
Note that it is therefore executed after the ‘AtEndOfEveryFile’ hook. If the starred
version is used and the package is already loaded the code is executed right away.

The following figure shows the positions of the hooks inside the macros:

\usepackage/\RequirePackage/\RequirePackageWithOptions:

\InputIfFileExists:
Hook: AtBeginOfEveryFile
Hook: AtBeginOfFile{〈file name〉}
(includes AtBeginOfPackageFile{〈file name〉})

Hook: AtBeginOfFiles
Content

Hook: AtEndOfFiles
Hook: AtEndOfFile{〈file name〉}
Hook: AtEndOfEveryFile

Hook: AtEndOfPackage (LATEX hook)
Hook: AtEndOfPackageFile{〈file name〉}

Class Files

\AtBeginOfClassFile*{〈class name〉}{〈TEX code〉}
\AtEndOfClassFile*{〈class name〉}{〈TEX code〉}

This macros install the given 〈TEX code〉 in the ‘AtBegin’ and ‘AtEnd’ hooks of the given
class file. They work with classes loaded using \LoadClass, \LoadClassWithOptions
and also \documentclass. However, in the latter case filehook must be loaded
using \RequirePackage beforehand. The macro \AtBeginOfClassFile simply
executes \AtBeginOfFile{〈class name〉.cls}{...}. Special care is taken to ensure
that the ‘AtEnd’ code is executed after any code installed by the class itself using
the LATEX macro \AtEndOfClass. Note that it is therefore executed after the ‘AtEnd-
OfEveryFile’ hook. If the starred version is used and the class is already loaded the
code is executed right away.

The following figure shows the positions of the hooks inside the macros:

5



\documentclass/\LoadClass/\LoadClassWithOptions:

\InputIfFileExists:
Hook: AtBeginOfEveryFile
Hook: AtBeginOfFile{〈file name〉}
(includes AtBeginOfClassFile{〈file name〉})

Hook: AtBeginOfFiles
Content

Hook: AtEndOfFiles
Hook: AtEndOfFile{〈file name〉}
Hook: AtEndOfEveryFile

Hook: AtEndOfClass (LATEX hook)
Hook: AtEndOfClassFile{〈file name〉}

2.1 Clearing Hooks

\ClearHook\At...Of...〈argument(s) of hook macro〉

Using this macro existing hooks can be globally cleared, i.e. set to empty. This shouldNew in v0.5
2011/01/09 be used with care because it will also remove all (user level) hook code set by packages

into this hook. Note that the special hook code installed by the packages currfile
and svn-multi as well as the compatibility code described in section 4 is not affected.
The syntax for this macro is the same as for the normal hook macros only with a
leading \ClearHook, where the 〈code〉 argument is mandatory but its content is
ignored. Examples:

\ClearHook\AtBeginOfInputFile{〈file name〉}{〈ignored〉}
\ClearHook\AtBeginOfFiles{〈ignored〉}

6



3 PGF Key Interface

An auxiliary package pgf-filehook is provided which adds support for the versatile
pgfkeys interface. This interface is heavily used by pgf (portable graphics format)
and its higher level format TikZ. It allows the definition and execution of styles and
commands (macros) using a 〈key〉=〈value〉 format. Main benefits over similar formats
is the support for a “directory structure” inside the key and the ability to call functions
on the value before it gets processed by the key. The main way to define and execute
keys is the macro \pgfkeys{〈key〉=〈value〉,...}. TikZ provides the similar macro
\tikzstyle which defaults to the main path ‘/tikz’. More detailed information can
be found in the official pgfmanual.

All filehook macros described in the previous section (\AtXXXOfYYY) can also
be accessed using the pgf keys directory ‘/filehook’, where all hook type have an
own sub-directory (/filehook/YYY) in which the hooks for this type are located
(/filehook/YYY/AtXXX). For example \AtBeginOfInputs{〈code〉} can also be ac-
cessed using

\pgfkeys{/filehook/Inputs/AtBegin={〈code〉}}
or \AfterIncludeFile{〈file name〉}{〈code〉} as

\pgfkeys{/filehook/IncludeFile/After={〈file name〉}{〈code〉}}
as well as \AtEndOfClassFile*{〈file name〉}{〈code〉} as

\pgfkeys{/filehook/ClassFile/AtEnd=*{〈file name〉}{〈code〉}}.

\pgffilehook{〈key〉=〈value〉,...}

This macro is like \pgfkeys but defaults to the ‘/filehook’ directory, so that it can
be dropped from the 〈key〉. Note that pgfkeys also supports to “change the directory”
using 〈directory〉/.cd, so that it does not need to be included in further keys. All
directories are defined as ‘is family’ so that the /.cd is assumed if the directory is
used on its own. For example

\pgfkeys{/filehook/Inputs/AtBegin={〈code〉},/filehook/Inputs/AtEnd={〈code〉}}
can be shorten as

\pgffilehook{Inputs,AtBegin={〈code〉},AtEnd={〈code〉}}.

Some of the pgf key functions can become useful, e.g. if the hook code should be
expanded before it is added to the hook:

\pgffilehook{EveryFile/AtBegin/.expand once={\headertext \currfilename}}
will expand the first macro \headertext (actually the first token) in the hook code
once (using \expandafter), but not any other tokens. In this example future changes
of \headertext would not have any effect on the hook code, but \currfilename
will be expanded for every file. Other useful functions are ‘.expand twice’ (expand
the first token twice) and ‘.expanded’ (expand the whole hook code using \edef).

7



4 Compatibility Issues with Classes and other Packages

The filehook package might clash with other packages or classes which also redefine
\InputIfFileExists or internal macros used by \include and \input (which are
\@input@ and \@iinput). Special compatibility code is in place for the packages
listed below (in their current implementation). If any other unknown definition of
\InputIfFileExists is found an error will be raised. The package option ‘force’
can be used to prevent this and to force the redefinition of this macro. Then any
previous modifications will be lost, which will most likely break the other package.
Table 1 lists all packages and classes which where found do be incompatible. The
packages auxhook, stampinclude, rerunfilecheck and excludeonly redefine
one or more of the above macros but have been found compatible with filehook.
Please do not hesitate to inform the author of filehook of any encountered problems
with other packages.

4.1 Supported Classes and Packages

The following classes and packages are actively supported and should work as normal
when used together with filehook. Please note that most of them are incompatible
to each other, which filehook might not fix.

memoir

The memoir class redefines \InputIfFileExists to add own hooks identical to the
‘At...OfFiles’ hooks (there called \AtBeginFile and \AtEndFile). This hooks will
be moved to the corresponding ones of filehook and will keep working as normal.
Since v0.4 from 2011/01/03 this modification will be also applied when the filehook
package is loaded (using \RequirePackage) before the memoir class. However, the
hooks from filehook need to be temporally disabled while reading the memoir class.
They will not be triggered for all files read directly by this class, like configuration and
patch files. Note that the ‘At...OfClassFile’ hooks still work for the memoir class file
itself. In fact they are used to restore the default definition of \InputIfFileExists
at the begin and patch it at the end of the class file. The filehook package should be
loaded either before the class (using \RequirePackage) or directly after it. Because
the memoir hook code is moved to the filehook hooks this class should then be
compatible with below packages if memoir and filehook are loaded before them.

scrlfile

The scrlfile package from the koma-script bundle redefines \InputIfFileExists
to allow file name aliases and to also add hooks. If required it should be loaded before
filehook, which will add its hooks correctly to the modified definition. Since v0.4
from 2011/01/03 this modification will be also applied when the scrlfile package
is loaded after filehook.

fink

The filehook and currfile packages where written as replacements for the fink
package, where filehook provides the necessary hooks for currfile. The fink
package has now been deprecated in favour of currfile and should not be used
anymore. The fink compatibility code has been removed from filehook and both

8



Table 1: Incompatible packages and classes

Name Type Note Affected Hooks

paper class with journal option All hocks for \include’d files
journal class All hocks for \include’d files
gmparts package \include hooks
newclude package formally includex All hocks for \include’d files

cannot be used successfully together as both redefine the \InputIfFileExists
macro.

listings

The listings package uses \input inside \lstinputlisting. Therefore the InputFile(s)
and File(s) hooks are also triggered for these files. Please note that this hooks are
executing inside a verbatim environment. While the code in the hook is not affected
(because it was added outside the verbatim environment), any further code read using
any input macro (\input, \@input, \@@input (TEX’s \input), . . . ) will be processed
verbatim and typeset as part of the listing. Since v0.4 this macro is automatically
patched so \@input is used instead to avoid this issue.

4.2 Other Classes and Packages

jmlrbook

The jmlrbook class from the jmlr bundle temporary redefines \InputIfFileExists
to import papers. The ‘original’ definition is saved away at load time of the package
and is used internally by the new definition. This means that the hooks will not be
active for this imported files because filehook is loaded after the class. This should
not affect its normal usage. Note that, in theory, the package could be loaded before
\documentclass using \RequirePackage to enable the file hooks also for these
files.

LATEX’s \bibliography

The standard LATEX macro \bibliography uses the same internal macro \@input@
to read a file as \include does. The ‘include’ hooks will also be executed for this
.bbl file if the macro is directly followed by \clearpage, because the filehook
code will assume it is executed inside \include. This rare case can be easily avoided
by placing a \relax after \bibliography{...}.

5 Upgrade Guide

This sections gives information for users of older versions of this package which
unfortunately might not be 100% backwards compatible.

9



Upgrade to v0.4 - 2011/01/03

• The macro \AfterIncludeFile was misspelled as \AfterOfIncludeFile in
the implementation of earlier versions, but not in the documentation. This
has now be corrected. Please adjust your code to use the correct name and to
require the filehook package from 2011/01/03.

• All general hooks (the one not taking a file argument) used to have an implicit
argument #1 which was expanded to the file name (i.e. the argument of \input
etc.). This has now be changed, so that macro arguments are not handled
special in hook code, which e.g. simplifies macro definitions. Older hook code
might need to change ## to # to compensate for this change. If the file name is
required the macros (e.g. \currfilename) of the partner package currfile
should be used. These macros are available everywhere including in all hocks.

10



6 Implementation

6.1 Options

1 \newif \ iffilehook@force
2 \ DeclareOption {force }{\ filehook@forcetrue }
3 \ ProcessOptions \ relax

6.2 Initialisation of Hooks

The general hooks are initialised to call the file specific hooks.

4 \ @ifpackageloaded { etoolbox }{%
5 \let\ filehook@csuse \csuse
6 }{%
7 \def\ filehook@csuse #1{\ ifcsname #1\ endcsname \↙

csname #1\ expandafter \ endcsname \fi}
8 }

\filehook@include@atbegin

9 \def\ filehook@include@atbegin #1{%
10 \let\ InputIfFileExists \ filehook@@InputIfFileExists
11 \ filehook@csuse {\ filehook@include@atbegin@ #1}%
12 \ filehook@include@@atbegin
13 }

\filehook@include@@atbegin

14 \def\ filehook@include@@atbegin {}

\filehook@include@atend

15 \def\ filehook@include@atend #1{%
16 \ filehook@include@@atend
17 \ filehook@csuse {\ filehook@include@atend@ #1}%
18 }

\filehook@include@@atend

19 \def\ filehook@include@@atend {}

11



\filehook@include@after

20 \def\ filehook@include@after #1{%
21 \ filehook@include@@after
22 \ filehook@csuse {\ filehook@include@after@ #1}%
23 }

\filehook@include@@after

24 \def\ filehook@include@@after {}

\filehook@input@atbegin

25 \def\ filehook@input@atbegin #1{%
26 \let\ InputIfFileExists \ filehook@@InputIfFileExists
27 \ filehook@csuse {\ filehook@input@atbegin@ \↙

filehook@ensureext {#1}}%
28 \ filehook@input@@atbegin
29 }

\filehook@input@@atbegin

30 \def\ filehook@input@@atbegin {}

\filehook@input@atend

31 \def\ filehook@input@atend #1{%
32 \ filehook@input@@atend
33 \ filehook@csuse {\ filehook@input@atend@ \↙

filehook@ensureext {#1}}%
34 }

\filehook@input@@atend

35 \def\ filehook@input@@atend {}

12



\filehook@atbegin

36 \def\ filehook@atbegin #1{%
37 \ filehook@csuse {\ filehook@atbegin@ \↙

filehook@ensureext {#1}}%
38 \ filehook@@atbegin
39 }

\filehook@@atbegin

40 \def\ filehook@@atbegin {}

\filehook@atend

41 \def\ filehook@atend #1{%
42 \ filehook@@atend
43 \ filehook@csuse {\ filehook@atend@ \ filehook@ensureext↙

{#1}}%
44 }

\filehook@@atend

45 \def\ filehook@@atend {}

\filehook@every@atbegin

46 \def\ filehook@every@atbegin #1{%
47 \ filehook@every@@atbegin
48 }

\filehook@every@@atbegin

49 \def\ filehook@every@@atbegin {}

\filehook@every@atend

50 \def\ filehook@every@atend #1{%
51 \ filehook@every@@atend
52 }

13



\filehook@every@@atend

53 \def\ filehook@every@@atend {}

6.3 Hook Modification Macros

The following macros are used to modify the hooks, i.e. to prefix or append code to
them.

Internal Macros

The macro prefixes for the file specific hooks are stored in macros to reduce the
number of tokens in the following macro definitions.

54 \def\ filehook@include@atbegin@ {↙
filehook@include@atbegin@ }

55 \def\ filehook@include@atend@ { filehook@include@atend@ }
56 \def\ filehook@include@after@ { filehook@include@after@ }
57 \def\ filehook@input@atbegin@ { filehook@input@atbegin@ }
58 \def\ filehook@input@atend@ { filehook@input@atend@ }
59 \def\ filehook@input@after@ { filehook@input@after@ }
60 \def\ filehook@atbegin@ { filehook@atbegin@ }
61 \def\ filehook@atend@ { filehook@atend@ }
62 \def\ filehook@after@ { filehook@after@ }

\filehook@append

Uses default LATEX macro.

63 \def\ filehook@append {\ g@addto@macro }

\filehook@appendwarg

Appends code with one macro argument. The \@tempa intermediate step is required
because of the included ##1 which wouldn’t correctly expand otherwise.

64 \long\def\ filehook@appendwarg #1#2{%
65 \ begingroup
66 \toks@\ expandafter {#1{##1}#2} %
67 \edef\ @tempa {\ the\toks@}%
68 \ expandafter \gdef\ expandafter #1\ expandafter ##\↙

expandafter 1\ expandafter {\ @tempa }%
69 \ endgroup
70 }

14



\filehook@prefix

Prefixes code to a hook.

71 \long\def\ filehook@prefix #1#2{%
72 \ begingroup
73 \ @temptokena {#2}%
74 \toks@\ expandafter {#1}%
75 \xdef #1{\ the\ @temptokena \the\toks@}%
76 \ endgroup
77 }

\filehook@prefixwarg

Prefixes code with an argument to a hook.

78 \long\def\ filehook@prefixwarg #1#2{%
79 \ begingroup
80 \ @temptokena {#2}%
81 \toks@\ expandafter {#1{##1}} %
82 \edef\ @tempa {\ the\ @temptokena \the\toks@}%
83 \ expandafter \gdef\ expandafter #1\ expandafter ##\↙

expandafter 1\ expandafter {\ @tempa }%
84 \ endgroup
85 }

\filehook@addtohook

#1: Macro which should be used to add the material to the hook
#2: Macro name prefix
#3: End of macro name (file name)

The macro first expands the file name (#3) to flatten all included macros. An extension
is added if missing, as well as the prefix. All modifications of \@tempa are made inside
a group to keep them local.

86 \def\ filehook@addtohook #1#2#3{ %
87 \ begingroup
88 \edef\ @tempa {#3}%
89 \edef\ @tempa {#2\ filehook@ensureext {\ @tempa }}%
90 \ @ifundefined {\ @tempa }{\ global \ @namedef {\ @tempa↙

}{}}{} %
91 \ expandafter \ endgroup
92 \ expandafter #1\ csname \ @tempa \ endcsname
93 }

User Level Macros

The user level macros simple use the above defined macros on the appropriate hook.

15



\AtBeginOfIncludes

94 \ newcommand *\ AtBeginOfIncludes {%
95 \ filehook@append \ filehook@include@@atbegin
96 }

\AtEndOfIncludes

97 \ newcommand *\ AtEndOfIncludes {%
98 \ filehook@prefix \ filehook@include@@atend
99 }

\AfterIncludes

100 \ newcommand *\ AfterIncludes {%
101 \ filehook@prefix \ filehook@include@@after
102 }

\AtBeginOfIncludeFile

103 \ newcommand *\ AtBeginOfIncludeFile [1]{%
104 \ filehook@addtohook \ filehook@append \↙

filehook@include@atbegin@ {\ filehook@ensuretex↙
{#1}}%

105 }

\AtEndOfIncludeFile

106 \ newcommand *\ AtEndOfIncludeFile [1]{%
107 \ filehook@addtohook \ filehook@prefix \↙

filehook@include@atend@ {\ filehook@ensuretex {#1}}↙
%

108 }

\AfterIncludeFile

109 \ newcommand *\ AfterIncludeFile [1]{%
110 \ filehook@addtohook \ filehook@prefix \↙

filehook@include@after@ {\ filehook@ensuretex {#1}}↙
%

111 }

16



\AtBeginOfInputs

112 \ newcommand *\ AtBeginOfInputs {%
113 \ filehook@append \ filehook@input@@atbegin
114 }

\AtEndOfInputs

115 \ newcommand *\ AtEndOfInputs {%
116 \ filehook@prefix \ filehook@input@@atend
117 }

\AtBeginOfInputFile

118 \ newcommand *\ AtBeginOfInputFile {%
119 \ filehook@addtohook \ filehook@append \↙

filehook@input@atbegin@
120 }

\AtEndOfInputFile

121 \ newcommand *\ AtEndOfInputFile {%
122 \ filehook@addtohook \ filehook@prefix \↙

filehook@input@atend@
123 }

\AtBeginOfFiles

124 \ newcommand *\ AtBeginOfFiles {%
125 \ filehook@append \ filehook@@atbegin
126 }

\AtEndOfFiles

127 \ newcommand *\ AtEndOfFiles {%
128 \ filehook@prefix \ filehook@@atend
129 }

17



\AtBeginOfEveryFile

130 \ newcommand *\ AtBeginOfEveryFile {%
131 \ filehook@append \ filehook@every@@atbegin
132 }

\AtEndOfEveryFile

133 \ newcommand *\ AtEndOfEveryFile {%
134 \ filehook@prefix \ filehook@every@@atend
135 }

\AtBeginOfFile

136 \ newcommand *\ AtBeginOfFile {%
137 \ filehook@addtohook \ filehook@append \↙

filehook@atbegin@
138 }

\AtEndOfFile

139 \ newcommand *\ AtEndOfFile {%
140 \ filehook@addtohook \ filehook@prefix \ filehook@atend@
141 }

\AtBeginOfClassFile

142 \ newcommand *\ AtBeginOfClassFile {%
143 \ @ifnextchar *
144 {\ AtBeginOfXFile@star \ @clsextension }%
145 {\ AtBeginOfXFile@normal \ @clsextension }%
146 }

\AtBeginOfPackageFile

147 \ newcommand *\ AtBeginOfPackageFile {%
148 \ @ifnextchar *
149 {\ AtBeginOfXFile@star \ @pkgextension }%
150 {\ AtBeginOfXFile@normal \ @pkgextension }%
151 }

18



\AtBeginOfXFile@star

#1: extension
#2: name

If the class or package is already loaded the code is executed right away. Otherwise it
is installed normally.

152 \def\ AtBeginOfXFile@star #1*#2{ %
153 \ @ifl@aded {#1}{#2} %
154 {\ @firstofone }%
155 {\ AtBeginOfXFile@normal {#1}{#2}} %
156 }

\AtBeginOfXFile@normal

#1: extension
#2: name

157 \def\ AtBeginOfXFile@normal #1#2{%
158 \ AtBeginOfFile {#2.#1} %
159 }

\AtEndOfClassFile

160 \ newcommand *\ AtEndOfClassFile {%
161 \ @ifnextchar *
162 {\ AtEndOfXFile@star \ @clsextension }%
163 {\ AtEndOfXFile@normal \ @clsextension }%
164 }

\AtEndOfPackageFile

165 \ newcommand *\ AtEndOfPackageFile {%
166 \ @ifnextchar *
167 {\ AtEndOfXFile@star \ @pkgextension }%
168 {\ AtEndOfXFile@normal \ @pkgextension }%
169 }

\AtEndOfXFile@star

#1: extension
#2: name

If the class or package is already loaded the code is executed right away. Otherwise it
is installed normally.

19



170 \def\ AtEndOfXFile@star #1*#2{ %
171 \ @ifl@aded {#1}{#2} %
172 {\ @firstofone }%
173 {\ AtEndOfXFile@normal {#1}{#2}} %
174 }

\AtEndOfXFile@normal

#1: extension
#2: name

Note that \AtEndOfClass is identical to \AtEndOfPackage, so no differentiation
between classes and packages is needed here.

175 \long\def\ AtEndOfXFile@normal #1#2#3{ %
176 \ AtEndOfFile {#2.#1}{\ AtEndOfPackage {#3}}%
177 }

\ClearHook

Clears the hook by temporary redefining the prefix and append macros to do a simple
definition to empty.

178 \ newcommand *\ ClearHook {%
179 \ begingroup
180 \def\ filehook@prefix ##1##2{ %
181 \gdef ##1{}%
182 \ endgroup
183 }%
184 \let\ filehook@append \ filehook@prefix
185 }

6.4 Installation of Hooks

The \@input@ and \@iinput macros from latex.ltx are redefined to install the
hooks.

First the original definitions are saved away.

\filehook@orig@@input@

186 \let\ filehook@orig@@input@ \ @input@

\filehook@orig@@iinput

187 \let\ filehook@orig@@iinput \ @iinput

20



\@input@

This macro is redefined for the \include file hooks. Checks if the next command
is \clearpage which indicates that we are inside \@include. If so the hooks are
installed, otherwise the original macro is used unchanged. For the ‘after’ hook an
own \clearpage is inserted and the original one is gobbled.

188 \def\ @input@ #1{%
189 \ @ifnextchar \ clearpage
190 {%
191 \ filehook@every@atbegin {#1}%
192 \ filehook@include@atbegin {#1}%
193 \ filehook@orig@@input@ {#1}%
194 \ filehook@include@atend {#1}%
195 \ clearpage
196 \ filehook@include@after {#1}%
197 \ filehook@every@atend {#1}%
198 \ @gobble
199 }%
200 {\ filehook@orig@@input@ {#1}}%
201 }

\@iinput

This macro is redefined for the \input file hooks. it simply surrounds the original
macro with the hooks.

202 \def\ filehook@@iinput #1{%
203 \ filehook@every@atbegin {#1}%
204 \ filehook@input@atbegin {#1}%
205 \ filehook@orig@@iinput {#1}%
206 \ filehook@input@atend {#1}%
207 \ filehook@every@atend {#1}%
208 }
209 \let\ @iinput \ filehook@@iinput

\filehook@swap

Auxiliary macro which swaps the two arguments. This is needed to expand \@filef@und,
which is given as first argument but needed then as the second one.

210 \def\ filehook@swap #1#2{#2#1}

\filehook@ensureext

This macro ensures the existence of a file name extension. If non is given ‘.tex’ is
added.

21



211 \def\ filehook@ensureext #1{%
212 \ expandafter \ filehook@@ensureext #1\ empty .tex\↙

empty \empty
213 }

\filehook@@ensureext

214 \def\ filehook@@ensureext #1.#2\ empty #3\ empty {#1.#2}

\filehook@ensuretex

Ensures a ‘.tex’ extension, i.e. adds it if missing, even if there is a different one.

215 \def\ filehook@ensuretex #1{%
216 \ expandafter \ filehook@@ensuretex #1\ empty .tex\↙

empty \empty
217 }

\filehook@@ensuretex

218 \def\ filehook@@ensuretex #1. tex\ empty #2\ empty {#1. tex}

The filehook default definition of \InputIfFileExists is defined here to-
gether with alternatives definitions for comparison. There are stored first in a token
register and later stored in a macro which is expanded if required. This is always
done inside a group to keep them temporary only. The token register is used to avoid
doubling of macro argument characters.

\latex@InputIfFileExists

Standard LATEX definition of \InputIfFileExists.

219 \long\def\ latex@InputIfFileExists #1#2{%
220 \ IfFileExists {#1}%
221 {#2\ @addtofilelist {#1}%
222 \ @@input \ @filef@und
223 }%
224 }

\filehook@default@InputIfFileExists

22



225 \long\gdef\ filehook@default@InputIfFileExists #1#2{%
226 \ IfFileExists {#1}%
227 {\ expandafter \ filehook@swap
228 \ expandafter {\ @filef@und }%
229 {#2\ @addtofilelist {#1}%
230 \ filehook@every@atbegin {#1}%
231 \ filehook@atbegin {#1}%
232 \ @@input }%
233 \ filehook@atend {#1}%
234 \ filehook@every@atend {#1}%
235 }%
236 }

\filehook@@default@InputIfFileExists

237 \long\gdef\ filehook@@default@InputIfFileExists #1#2{%
238 \let\ InputIfFileExists \ filehook@InputIfFileExists
239 \ IfFileExists {#1}%
240 {\ expandafter \ filehook@swap
241 \ expandafter {\ @filef@und }%
242 {#2\ @addtofilelist {#1}%
243 \ filehook@atbegin {#1}%
244 \ @@input }%
245 \ filehook@atend {#1}%
246 }%
247 }

\scrlfile@InputIfFileExists

248 \long\def\ scrlfile@InputIfFileExists #1#2{%
249 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
250 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
251 \ expandafter \ @secondoftwo
252 \else
253 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%
254 \ expandafter \ @firstoftwo
255 \fi
256 {%
257 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
258 #1- @alias \ endcsname }{#2}%
259 }%
260 {\ IfFileExists {#1}{%
261 \ scr@load@hook { before }{#1}%
262 #2\ @addtofilelist {#1}%

23



263 \ @@input \ @filef@und
264 \ scr@load@hook {after }{#1}%
265 }}%
266 }

\filehook@scrlfile@InputIfFileExists

267 \long\def\ filehook@scrlfile@InputIfFileExists #1#2{%
268 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
269 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
270 \ expandafter \ @secondoftwo
271 \else
272 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%
273 \ expandafter \ @firstoftwo
274 \fi
275 {%
276 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
277 #1- @alias \ endcsname }{#2}%
278 }%
279 {\ IfFileExists {#1}{%
280 \ expandafter \ filehook@swap
281 \ expandafter {\ @filef@und }%
282 {\ scr@load@hook { before }{#1}%
283 #2\ @addtofilelist {#1}%
284 \ filehook@every@atbegin {#1}%
285 \ filehook@atbegin {#1}%
286 \ @@input }%
287 \ filehook@atend {#1}%
288 \ filehook@every@atend {#1}%
289 \ scr@load@hook {after }{#1}%
290 }}%
291 }

\filehook@@scrlfile@InputIfFileExists

292 \long\def\ filehook@@scrlfile@InputIfFileExists #1#2{%
293 \let\ InputIfFileExists \ filehook@InputIfFileExists
294 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
295 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
296 \ expandafter \ @secondoftwo
297 \else
298 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%

24



299 \ expandafter \ @firstoftwo
300 \fi
301 {%
302 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
303 #1- @alias \ endcsname }{#2}%
304 }%
305 {\ IfFileExists {#1}{%
306 \ expandafter \ filehook@swap
307 \ expandafter {\ @filef@und }%
308 {\ scr@load@hook { before }{#1}%
309 #2\ @addtofilelist {#1}%
310 \ filehook@atbegin {#1}%
311 \ @@input }%
312 \ filehook@atend {#1}%
313 \ scr@load@hook {after }{#1}%
314 }}%
315 }

316 \ ProvidesPackage {filehook - memoir }[2011/01/03 v0.1 ↙
filehook patch for memoir class]

317 \ RequirePackage { filehook }
318 \ begingroup

\memoir@InputIfFileExists

319 \long\def\ memoir@InputIfFileExists #1#2{%
320 \ IfFileExists {#1}%
321 {#2\ @addtofilelist {#1}\ m@matbeginf {#1}%
322 \ @@input \ @filef@und
323 \ m@matendf {#1}%
324 \ killm@matf {#1}}%
325 }

326 \ ifcase
327 \ifx\ InputIfFileExists \ latex@InputIfFileExists 0\↙

else
328 \ifx\ InputIfFileExists \ memoir@InputIfFileExists ↙

0\ else
329 1%
330 \fi\fi
331 \relax
332 \ global \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists
333 \ global \let\ filehook@@InputIfFileExists \↙

filehook@@default@InputIfFileExists
334 \ global \let\ InputIfFileExists \↙

filehook@InputIfFileExists

25



335 \ filehook@appendwarg \ filehook@atbegin {\ m@matbeginf↙
{#1}}%

336 \ filehook@prefixwarg \ filehook@atend {\ m@matendf {#1}\↙
killm@matf {#1}}%

337 \ PackageInfo { filehook }{ Detected ’memoir ’ class: the↙
memoir hooks will be moved to the ‘At ... OfFiles ↙

’ hooks}
338 \else
339 \ iffilehook@force
340 \ global \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists
341 \ global \let\ filehook@@InputIfFileExists \↙

filehook@@default@InputIfFileExists
342 \ global \let\ InputIfFileExists \↙

filehook@InputIfFileExists
343 \ PackageWarning { filehook }{ Detected ’memoir ’ class↙

with unknown definition of \ string \↙
InputIfFileExists .^^J%

344 The ’force ’ option of ’↙
filehook ’ is in ↙
effect . Macro is ↙
overwritten with ↙
default !}%

345 \else
346 \ PackageError { filehook }{ Detected ’memoir ’ class ↙

with unknown definition of \ string \↙
InputIfFileExists .^^J%

347 Use the ’force ’ option of↙
’filehook ’ to ↙

overwrite it .}{}%
348 \fi
349 \fi

350 \ endgroup

351 \ ProvidesPackage {filehook - listings }[2011/01/02 v0.1 ↙
Patch for listings to avoid hooks for verbatim ↙
input files]

352 \ begingroup
353

354 \long\def\patch #1\ def\ lst@next #2#3\ endpatch {%
355 \toks@ {#2}%
356 \edef\ @tempa {\ the\toks@}%
357 \def\ @tempb {\ input {####1}} %
358 \ifx\ @tempa \ @tempb
359 \gdef\ lst@InputListing ##1{#1\ def\ lst@next {\↙

@input {##1}}#3} %
360 \else
361 \ PackageWarning {filehook - listings }{To -be -↙

patched code in macro \ string \↙

26



lst@InputListing was not found !}%
362 \fi
363 }
364

365 \ @ifundefined { lst@InputListing }{%
366 \ PackageWarning {filehook - listings }{To -be - patched ↙

Macro \ string \ lst@InputListing not found !}%
367 }{}
368

369 \ expandafter \patch\ lst@InputListing {#1}\ endpatch
370

371 \ endgroup

372 \ ProvidesPackage {filehook - scrlfile }[2011/01/03 v0.1 ↙
filehook patch for scrlfile package ]

373 \ RequirePackage { filehook }
374 \ begingroup

\scrlfile@InputIfFileExists

375 \long\def\ scrlfile@InputIfFileExists #1#2{%
376 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
377 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
378 \ expandafter \ @secondoftwo
379 \else
380 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%
381 \ expandafter \ @firstoftwo
382 \fi
383 {%
384 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
385 #1- @alias \ endcsname }{#2}%
386 }%
387 {\ IfFileExists {#1}{%
388 \ scr@load@hook { before }{#1}%
389 #2\ @addtofilelist {#1}%
390 \ @@input \ @filef@und
391 \ scr@load@hook {after }{#1}%
392 }}%
393 }

\filehook@scrlfile@InputIfFileExists

27



394 \long\def\ filehook@scrlfile@InputIfFileExists #1#2{%
395 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
396 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
397 \ expandafter \ @secondoftwo
398 \else
399 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%
400 \ expandafter \ @firstoftwo
401 \fi
402 {%
403 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
404 #1- @alias \ endcsname }{#2}%
405 }%
406 {\ IfFileExists {#1}{%
407 \ expandafter \ filehook@swap
408 \ expandafter {\ @filef@und }%
409 {\ scr@load@hook { before }{#1}%
410 #2\ @addtofilelist {#1}%
411 \ filehook@every@atbegin {#1}%
412 \ filehook@atbegin {#1}%
413 \ @@input }%
414 \ filehook@atend {#1}%
415 \ filehook@every@atend {#1}%
416 \ scr@load@hook {after }{#1}%
417 }}%
418 }

\filehook@@scrlfile@InputIfFileExists

419 \long\def\ filehook@@scrlfile@InputIfFileExists #1#2{%
420 \let\ InputIfFileExists \ filehook@InputIfFileExists
421 \ begingroup \ expandafter \ expandafter \ expandafter \↙

endgroup
422 \ expandafter \ifx\ csname #1- @alias \ endcsname \relax
423 \ expandafter \ @secondoftwo
424 \else
425 \ scr@replacefile@msg {\ csname #1- @alias \ endcsname↙

}{#1}%
426 \ expandafter \ @firstoftwo
427 \fi
428 {%
429 \ expandafter \ InputIfFileExists \ expandafter {\↙

csname
430 #1- @alias \ endcsname }{#2}%
431 }%
432 {\ IfFileExists {#1}{%

28



433 \ expandafter \ filehook@swap
434 \ expandafter {\ @filef@und }%
435 {\ scr@load@hook { before }{#1}%
436 #2\ @addtofilelist {#1}%
437 \ filehook@atbegin {#1}%
438 \ @@input }%
439 \ filehook@atend {#1}%
440 \ scr@load@hook {after }{#1}%
441 }}%
442 }

If the scrlfile package definition is detected the filehooks are added to that
definition. Unfortunately the \scr@load@hook{before} hook is placed before not
after the #2\@addtofilelist{#1} code. Otherwise the filehooks could simply be
added to these hooks. Note that this will stop working if scrlfile ever changes its
definition of the \InputIfFileExists macro.

443 \ ifcase
444 \ifx\ InputIfFileExists \ latex@InputIfFileExists 0\↙

else
445 \ifx\ InputIfFileExists \ scrlfile@InputIfFileExists↙

0\ else
446 1%
447 \fi\fi
448 \relax
449 \ global \let\ filehook@InputIfFileExists \↙

filehook@scrlfile@InputIfFileExists
450 \ global \let\ filehook@@InputIfFileExists \↙

filehook@@scrlfile@InputIfFileExists
451 \ global \let\ InputIfFileExists \↙

filehook@InputIfFileExists
452 \ PackageInfo { filehook }{ Package ’scrlfile ’ detected ↙

and compensated for}%
453 \else
454 \ iffilehook@force
455 \ global \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists
456 \ global \let\ filehook@@InputIfFileExists \↙

filehook@@default@InputIfFileExists
457 \ global \let\ InputIfFileExists \↙

filehook@InputIfFileExists
458 \ PackageWarning { filehook }{ Detected ’scrlfile ’ ↙

package with unknown definition of \ string \↙
InputIfFileExists .^^J%

459 The ’force ’ option of ’↙
filehook ’ is in ↙
effect . Macro is ↙
overwritten with ↙
default !}%

460 \else
461 \ PackageError { filehook }{ Detected ’scrlfile ’ ↙

29



package with unknown definition of \ string \↙
InputIfFileExists .^^J%

462 Use the ’force ’ option of↙
’filehook ’ to ↙

overwrite it .}{}%
463 \fi
464 \fi

465 \ endgroup

466 \ ProvidesPackage {filehook -fink }[2011/01/03 v0.1 ↙
filehook compatibility code for fink package ]

467 \ RequirePackage { filehook }
468 \ RequirePackage { currfile }%
469

470 \ begingroup
471

472 \long\def\ fink@old@InputIfFileExists #1#2{%
473 \ IfFileExists {#1}{%
474 #2\ @addtofilelist {#1}%
475 \ fink@prepare {#1}%
476 \ expandafter \ fink@input %
477 \ expandafter \ fink@restore \ expandafter {\ finkpath }}↙

%
478 }
479

480 \long\def\ fink@new@InputIfFileExists #1#2{%
481 \ IfFileExists {#1}{%
482 #2\ @addtofilelist {#1}%
483 \edef\ fink@before {\ noexpand \ fink@input {#1}}%
484 \edef\ fink@after {\ noexpand \ fink@restore {\ finkpath↙

}}%
485 \ expandafter \ fink@before \ fink@after }%
486 }
487

488 \ ifcase
489 \ifx\ InputIfFileExists \ filehook@InputIfFileExists↙

0\ else
490 \ifx\ InputIfFileExists \ latex@InputIfFileExists ↙

1\ else
491 \ifx\ InputIfFileExists \ fink@new@InputIfFileExists↙

1\ else
492 \ifx\ InputIfFileExists \ fink@old@InputIfFileExists↙

1\ else
493 1%
494 \fi\fi\fi\fi
495 \relax
496 \or
497 \ global \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists

30



498 \ global \let\ filehook@@InputIfFileExists \↙
filehook@@default@InputIfFileExists

499 \ global \let\ InputIfFileExists \↙
filehook@InputIfFileExists

500 \ PackageInfo {filehook -fink }{ Package ’fink ’ detected↙
and replaced by ’currfile ’}%

501 \else
502 \ iffilehook@force
503 \ global \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists
504 \ global \let\ filehook@@InputIfFileExists \↙

filehook@@default@InputIfFileExists
505 \ global \let\ InputIfFileExists \↙

filehook@InputIfFileExists
506 \ PackageWarning {filehook -fink }{ Detected ’fink ’ ↙

package with unknown definition of \ string \↙
InputIfFileExists .^^J%

507 The ’force ’ option of ’↙
filehook ’ is in ↙
effect . Macro is ↙
overwritten with ↙
default !}%

508 \else
509 \ PackageError {filehook -fink }{ Detected ’fink ’ ↙

package with unknown definition of \ string \↙
InputIfFileExists .^^J%

510 Use the ’force ’ ↙
option of ’↙
filehook ’ to ↙
overwrite it .}{}%

511 \fi
512 \fi
513

514 \ endgroup

\InputIfFileExists

First we test for the scrlfile package. The test macro adds the necessary patches if
so. In order to also support it when it is loaded afterwards the two hooks below are
used to revert the definition before the package and patch it afterwards.

515 \ AtBeginOfPackageFile *{ scrlfile }{%
516 \let\ InputIfFileExists \ latex@InputIfFileExists
517 }%
518 \ AtEndOfPackageFile *{ scrlfile }{%
519 \ RequirePackage {filehook - scrlfile }%
520 }%

Fink:

31



521 \ AtBeginOfPackageFile *{ fink }{%
522 \ RequirePackage { kvoptions }%
523 \ begingroup
524 \let\ InputIfFileExists \ latex@InputIfFileExists
525 }%
526 \ AtEndOfPackageFile *{ fink }{%
527 \edef\ @tempa {\ noexpand \ PassOptionsToPackage {↙

mainext =\ fnk@mainext , maindir =\ fnk@maindir }{↙
currfile }}%

528 \ expandafter \ endgroup \ @tempa
529 \ RequirePackage {filehook -fink}%
530 }%

If memoir is detected its hooks are added to the appropriate ‘At...OfFiles’ hooks.
This works fine because its hooks have the exact same position. Please note that the
case when memoir is used together with scrlfile is not explicitly covered. In this
case the scrlfile package will overwrite memoirs definition.

531 \ AtBeginOfClassFile *{ memoir }{%
532 \let\ filehook@@InputIfFileExists \↙

latex@InputIfFileExists
533 \let\ InputIfFileExists \ latex@InputIfFileExists
534 \let\ @iinput \ filehook@orig@@iinput
535 }%
536 \ AtEndOfClassFile *{ memoir }{%
537 \let\ @iinput \ filehook@@iinput
538 \ RequirePackage {filehook - memoir }%
539 }%

Finally, if no specific alternate definition is detected the original LATEX definition is
checked for and a error is given if any other unknown definition is detected. The force
option will change the error into a warning and overwrite the macro with the default.

540 \ ifcase
541 \ifx\ InputIfFileExists \ filehook@InputIfFileExists↙

0\ else
542 \ifx\ InputIfFileExists \ latex@InputIfFileExists 1\↙

else
543 \ iffilehook@force 1\ else
544 9%
545 \fi\fi\fi
546 \relax % 0
547 \or% 1
548 \let\ filehook@InputIfFileExists \↙

filehook@default@InputIfFileExists
549 \let\ filehook@@InputIfFileExists \↙

filehook@@default@InputIfFileExists
550 \let\ InputIfFileExists \ filehook@InputIfFileExists
551 \ iffilehook@force
552 \ PackageWarning { filehook }{ Detected unknown ↙

definition of \ string \ InputIfFileExists .^^J%

32



553 The ’force ’ option of↙
’filehook ’ is in ↙

effect . Macro is ↙
overwritten with ↙
default !}%

554 \fi
555 \else
556 \ PackageError { filehook }{ Detected unknown ↙

definition of \ string \ InputIfFileExists .^^J%
557 Use the ’force ’ option of↙

’filehook ’ to ↙
overwrite it .}{}%

558 \fi

559 \ AtBeginDocument {%
560 \ifx\ InputIfFileExists \ filehook@InputIfFileExists↙

\else
561 \ PackageWarning { filehook }{ Macro \ string \↙

InputIfFileExists \ space got redefined ↙
after ’filehook ’ was loaded .^^J%

562 Certain file hooks ↙
might now be ↙
dysfunctional !}

563 \fi
564 }

6.5 Support for PGF Keys

565 \ ProvidesPackage {pgf - filehook }[2010/01/07 v1.0 PGF ↙
keys for the filehook package ]

566 \ RequirePackage { filehook }
567 \ RequirePackage { pgfkeys }
568

569 \ pgfkeys {%
570 / filehook /.is family ,
571 /filehook ,
572 %
573 EveryFile /.is family ,
574 EveryFile / AtBegin /. code ={\ AtBeginOfEveryFile↙

{#1}} ,
575 EveryFile / AtBegin /. value required ,
576 EveryFile /AtEnd /. code ={\ AtEndOfEveryFile {#1}} ,
577 EveryFile /AtEnd /. value required ,
578 %
579 Files /.is family ,
580 Files/ AtBegin /. code ={\ AtBeginOfFiles {#1}} ,
581 Files/ AtBegin /. value required ,
582 Files/AtEnd /. code ={\ AtEndOfFiles {#1}} ,
583 Files/AtEnd /. value required ,

33



584 %
585 File /.is family ,
586 File/ AtBegin /. code 2 args ={\ AtBeginOfFile↙

{#1}{#2}} ,
587 File/ AtBegin /. value required ,
588 File/AtEnd /. code 2 args ={\ AtEndOfFile {#1}{#2}} ,
589 File/AtEnd /. value required ,
590 %
591 Inputs /.is family ,
592 Inputs / AtBegin /. code ={\ AtBeginOfInputs {#1}} ,
593 Inputs / AtBegin /. value required ,
594 Inputs /AtEnd /. code ={\ AtEndOfInputs {#1}} ,
595 Inputs /AtEnd /. value required ,
596 %
597 InputFile /.is family ,
598 InputFile / AtBegin /. code 2 args ={\↙

AtBeginOfInputFile {#1}{#2}} ,
599 InputFile / AtBegin /. value required ,
600 InputFile /AtEnd /. code 2 args ={\ AtEndOfInputFile↙

{#1}{#2}} ,
601 InputFile /AtEnd /. value required ,
602 %
603 Includes /.is family ,
604 Includes / AtBegin /. code ={\ AtBeginOfIncludes {#1}} ,
605 Includes / AtBegin /. value required ,
606 Includes /AtEnd /. code ={\ AtEndOfIncludes {#1}} ,
607 Includes /AtEnd /. value required ,
608 Includes /After /. code ={\ AfterIncludes {#1}} ,
609 Includes /After /. value required ,
610 %
611 IncludeFile /.is family ,
612 IncludeFile / AtBegin /. code 2 args ={\↙

AtBeginOfIncludeFile {#1}{#2}} ,
613 IncludeFile / AtBegin /. value required ,
614 IncludeFile /AtEnd /. code 2 args ={\↙

AtEndOfIncludeFile {#1}{#2}} ,
615 IncludeFile /AtEnd /. value required ,
616 IncludeFile /After /. code 2 args ={\ AfterIncludeFile↙

{#1}{#2}} ,
617 IncludeFile /After /. value required ,
618 %
619 ClassFile /.is family ,
620 ClassFile / AtBegin /. code ={\ AtBeginOfClassFile #1},
621 ClassFile / AtBegin /. value required ,
622 ClassFile /AtEnd /. code ={\ AtEndOfClassFile #1},
623 ClassFile /AtEnd /. value required ,
624 %
625 PackageFile /.is family ,
626 PackageFile / AtBegin /. code ={\ AtBeginOfPackageFile↙

#1},

34



627 PackageFile / AtBegin /. value required ,
628 PackageFile /AtEnd /. code ={\ AtEndOfPackageFile #1},
629 PackageFile /AtEnd /. value required ,
630 }
631

632 \ newcommand {\ pgffilehook }{\ pgfqkeys {/ filehook }}

35


	Introduction
	Usage
	Clearing Hooks

	PGF Key Interface
	Compatibility Issues with Classes and other Packages
	Supported Classes and Packages
	Other Classes and Packages

	Upgrade Guide
	Implementation
	Options
	Initialisation of Hooks
	Hook Modification Macros
	Installation of Hooks
	Support for PGF Keys


