
The filehook Package
Martin Scharrer

martin@scharrer-online.de

http://www.ctan.org/pkg/filehook/

Version v0.3 – 2010/12/20

Abstract

This small package provides hooks for input files. Document and pack-
age authors can use these hooks to execute code at begin or the end of
specific or all input files.

1 Introduction

These package changes some internal LATEX macros used to load input files so
that they include ‘hooks’. A hook is an (internal) macro executed at specific
points. Normally it is initially empty, but can be extended using an user level
macro. The most common hook in LATEX is the ‘At-Begin-Document’ hook.
Code can be added to this hook using \AtBeginDocument{〈TEXcode〉}.

2 Usage

This package provides several groups of hooks: for file read using \input,
for files read using \include and for all read files (i.e. all files read using
\InputIfFileExists, which includes package and class files and files falling
into the first two groups). Since v0.3 from 2010/12/20 there are also hooks for
package and class files. All groups include a ‘AtBegin’ and a ‘AtEnd’ macro.
The \include group has also a ‘After’ hook which it is executed after the page
break (\clearpage) is inserted by the \include code. In contrast, the ‘AtEnd’
hook is executed before the trailing page break and the ‘AtBegin’ hook is exe-
cuted after the leading page break.

The first three groups includes general and file specific hooks. The general
hooks are executed for every file of this group and provide the file name as
argument #1. The file specific ones are only executed for a certain file. The
package and class hocks are always specific to one file.

The below macros can be used to add material (TEX code) to the related
hooks. All ‘AtBegin’ macros will append the code to the hooks, but the ‘AtEnd’
and ‘After’ macros will prefix the code instead. This ensures that two differ-
ent packages adding material in ‘AtBegin’/‘AtEnd’ pairs do not overlap each
other. Instead the later used package adds the code closer to the file content,

1

martin@scharrer-online.de
http://www.ctan.org/pkg/filehook/


‘inside’ the material added by the first package. Therefore it is safely possi-
ble to surround the content of a file with multiple LATEX environments using
multiple ‘AtBegin’/‘AtEnd’ macro calls. If required inside another package a
different order can be enforced by using the internal hook macros shown in the
implementation section.

Include Files

\AtBeginOfIncludes{〈TEX code〉}
\AtEndOfIncludes{〈TEX code〉}
\AfterIncludes{〈TEX code〉}

All these macro take one argument (some TEX code) which is added to
the specific hook for files read using \include. The code can use the macro
argument #1 which will be expanded to the include 〈file name〉, i.e. the hooks
are macros with one argument which will be the file name. As described above
the ‘AtEnd’ hook is executed before and the ‘After’ hook is executed after the
trailing \clearpage. Material which should be (still) valid in the page header
or footer of the last page of such an file should therefore use the ‘After’ hook.

\AtBeginOfIncludeFile{〈file name〉}{〈TEX code〉}
\AtEndOfIncludeFile{〈file name〉}{〈TEX code〉}
\AfterIncludeFile{〈file name〉}{〈TEX code〉}

These file-specific macros take the two arguments. The 〈code〉 is only exe-
cuted for the file with the given 〈file name〉 and only if it is read using \include.
It is not allowed to use macro arguments inside the code. The 〈file name〉 should
be identical to the name used for \include and not include the ‘.tex’ extension.

Input Files

\AtBeginOfInputs{〈TEX code〉}
\AtEndOfInputs{〈TEX code〉}

Like the \...OfIncludes{〈code〉} macros above, just for file read using
\input. Again, the macro argument #1 can be used inside the 〈code〉 and will
be expanded to the ¡file name¿.

\AtBeginOfInputFile{〈file name〉}{〈TEX code〉}
\AtEndOfInputFile{〈file name〉}{〈TEX code〉}

Like the \...OfIncludeFile{〈¡file name〉¿}{〈code〉} macros above, just for
file read using \input. Here the 〈file name〉 should include the file extension!
The 〈code〉 must not include any macro arguments (#1).

2



All Files

\AtBeginOfFiles{〈TEX code〉}
\AtEndOfFiles{〈TEX code〉}

These macros add the given {〈code〉} to two hooks executed for all files
read using the \InputIfFileExists macro. This macro is used internally
by the \input, \include and \usepackage/\RequirePackage macros. Pack-
ages and classes might use it to include additional or auxiliary files. Authors
can exclude those files from the hooks by using \IfFileExists{〈file name〉}
{\@input\@filef@und}{} instead.

\AtBeginOfFile{〈file name with extension〉}{〈TEX code〉}
\AtEndOfFile{〈file name with extension〉}{〈TEX code〉}

Like the \...OfIncludeFile{〈file name〉}{〈TEX code〉} macros above, just
for ‘all’ read files. Here the 〈file name〉 should include the file extension! The
〈code〉 must not include any macro arguments (#1).

The ‘all files’ hooks are closer to the file content than the \input and
\include hook, i.e. the \AtBeginOfFiles comes after the \AtBeginOfIncludes
and the \AtEndOfFiles comes before the \AtEndOfIncludes hook.

Package Files

\AtBeginOfPackageFile{〈package name〉}{〈TEX code〉}
\AtEndOfPackageFile*{〈package name〉}{〈TEX code〉}

This macros install the given 〈TEX code〉 in the ‘AtBegin’ and ‘AtEnd’
hooks of the given package file. The \AtBeginOfPackageFile simply executes
\AtBeginOfFile{〈package name〉.sty}{〈TEXcode〉}. Special care is taken to en-
sure that the ‘AtEnd’ code is executed after any code installed by the package
itself using the LATEX macro \AtEndOfPackage. If the starred version is used
and the package is already loaded the code is executed right away.

Class Files

\AtBeginOfClassFile{〈class name〉}{〈TEX code〉}
\AtEndOfClassFile*{〈class name〉}{〈TEX code〉}

This macros install the given 〈TEX code〉 in the ‘AtBegin’ and ‘AtEnd’
hooks of the given class file. They work with classes loaded using \LoadClass,
\LoadClassWithOptions and also \documentclass. However, in the latter case
filehook must be loaded using \RequirePackage beforehand. The \AtBeginOfClassFile

3



simply executes \AtBeginOfFile{〈class name〉.cls}{〈TEXcode〉}. Special care
is taken to ensure that the ‘AtEnd’ code is executed after any code installed by
the class itself using the LATEX macro \AtEndOfPackage. If the starred version
is used and the class is already loaded the code is executed right away.

3 Compatibility Issues with other Packages

The filehook package might clash with other packages or classes which also
redefine \InputIfFileExists. Special compatibility code is in place for the
known packages listed below (in their current implementation). If any other
unknown definition is found an error will be raised. The package option ‘force’
can be used to prevent this and to force the redefinition of this macro. Then any
previous modifications will be lost, which will most likely break the other pack-
age. Please do not hesitate to inform the author of filehook of any encountered
problems with other packages.

jmlrbook

The jmlrbook class from the jmlr bundle temporary redefines \InputIfFileExists
to import papers. The ‘original’ definition is saved away at load time of the pack-
age and is used internally by the new definition. This means that the hooks
will not be active for this imported files because filehook is loaded after the
class. This should not affect its normal usage. Note that, in theory, the package
could be loaded before \documentclass using \RequirePackage to enable the
file hooks also for these files.

memoir

The memoir class redefines \InputIfFileExists to add own hooks identical to
the At...OfFiles hooks (there called \AtBeginFile and \AtEndFile). This
hooks will be moved to the corresponding ones of filehook and will keep work-
ing as normal.

scrlfile

The scrlfile package from the koma-script bundle redefines \InputIfFileExists
to allow file name aliases and to also add hooks. If required it should be loaded
before filehook, which will add its hooks correctly to the modified definition.

fink

The filehook and currfile packages where written as replacements for the
fink package, where filehook provides the necessary hooks for currfile.
The fink package has now been deprecated in favour of currfile and should
not be used anymore. The fink compatibility code has been removed from

4



filehook and both cannot be used successfully together as both redefine the
\InputIfFileExists macro.

listings

The listings package uses \input inside \lstinputlisting. Therefore the
InputFile(s) and File(s) hooks are also triggered for these files. Please note
that this hooks are executing inside a verbatim environment. While the code
in the hook is not affected (because it was added outside the verbatim en-
vironment), any further code read using any input macro (\input, \@input,
\@@input(TEX’s \input{)}, . . . ) will be processed verbatim and typeset as
part of the listing. A known package suffering from this is svn-multi which
loads .svx files for every .tex file. A workaround for this issue is to temporally
redefine \input to \@input for \lstinputlisting: {\let\input\@input\lstinputlisting{...}}.

4 Implementation

4.1 Options

1 \newif\iffilehook@force

2 \DeclareOption{force }{\ filehook@forcetrue}

3 \ProcessOptions\relax

4.2 Installation of Hooks

The \@input@ and \@iinput macros from latex.ltx are redefined to install
the hooks.

First the original definitions are saved away.

5 \let\filehook@orig@@input@\@input@

6 \let\filehook@orig@@iinput\@iinput

\@input@

This macro is redefined for the \include file hooks. Checks if the next command
is \clearpage which indicates that we are inside \@include. If so the hooks
are installed, otherwise the original macro is used unchanged. For the ‘after’
hook an own \clearpage is inserted and the original one is gobbled.

8 \def\@input@ #1{%

9 \@ifnextchar\clearpage

10 {\ filehook@include@atbegin {#1}%

11 \filehook@orig@@input@ {#1}%

12 \filehook@include@atend {#1}%

13 \clearpage

5



14 \filehook@include@after {#1}%

15 \@gobble

16 }%

17 {\ filehook@orig@@input@ {#1}}%

18 }

\@iinput

This macro is redefined for the \input file hooks. it simply surrounds the
original macro with the hooks.

20 \def\@iinput #1{%

21 \filehook@input@atbegin {#1}%

22 \filehook@orig@@iinput {#1}%

23 \filehook@input@atend {#1}%

24 }

\InputIfFileExists

This macro is redefined for the general file hooks. The original definition is
checked but is not saved away and called by the new definition, because of the
existing complexity. The hooks must be places around the actual input macro
(\@@input).

Alternatives definitions of \InputIfFileExists are defined here for com-
parison. This is done inside a group to keep them only temporary.

26 \begingroup

27

28 \long\def\latex@InputIfFileExists #1#2{%

29 \IfFileExists {#1}%

30 {#2\ @addtofilelist {#1}%

31 \@@input\@filef@und

32 }%

33 }

34 \long\def\memoir@InputIfFileExists #1#2{%

35 \IfFileExists {#1}%

36 {#2\ @addtofilelist {#1}\ m@matbeginf {#1}%

37 \@@input \@filef@und

38 \m@matendf {#1}%

39 \killm@matf {#1}}%

40 }

41 \long\def\scrlfile@InputIfFileExists #1#2{%

42 \begingroup\expandafter\expandafter\expandafter\↙

endgroup

43 \expandafter\ifx\csname #1-@alias\endcsname\relax

6



44 \expandafter\@secondoftwo

45 \else

46 \scr@replacefile@msg {\ csname #1-@alias\endcsname↙

}{#1}%

47 \expandafter\@firstoftwo

48 \fi

49 {%

50 \expandafter\InputIfFileExists\expandafter {\↙

csname

51 #1-@alias\endcsname }{#2}%

52 }%

53 {\ IfFileExists {#1}{%

54 \scr@load@hook{before }{#1}%

55 #2\ @addtofilelist {#1}%

56 \@@input \@filef@und

57 \scr@load@hook{after }{#1}%

58 }}%

59 }

If the scrlfile package definition is detected the filehooks are added
to that definition. Unfortunately the \scr@load@hook{before} hook is placed
before not after the #2\@addtofilelist{#1} code. Otherwise the filehooks
could simply be added to these hooks. Note that should scrlfile ever change
its \InputIfFileExists macro this code will not be executed and the general
clause below will kick in.

61 \ifx\InputIfFileExists\scrlfile@InputIfFileExists

62

63 \long\gdef\InputIfFileExists #1#2{%

64 \begingroup\expandafter\expandafter\expandafter\↙

endgroup

65 \expandafter\ifx\csname #1-@alias\endcsname\relax

66 \expandafter\@secondoftwo

67 \else

68 \scr@replacefile@msg {\ csname #1-@alias\endcsname↙

}{#1}%

69 \expandafter\@firstoftwo

70 \fi

71 {%

72 \expandafter\InputIfFileExists\expandafter {\↙

csname

73 #1-@alias\endcsname }{#2}%

74 }%

75 {\ IfFileExists {#1}{%

76 \scr@load@hook{before }{#1}%

77 #2\ @addtofilelist {#1}%

78 \filehook@atbegin {#1}%

7



79 \@@input \@filef@und

80 \filehook@atend {#1}%

81 \scr@load@hook{after }{#1}%

82 }}%

83 }

84

85 \PackageInfo{filehook }{ Package ’scrlfile ’ detected ↙

and compensated for.}

Otherwise the normal filehook definition will be set. If memoir is detected
its hooks are added to the appropriate At...OfFiles hooks. This works fine
because its hooks have the exact same position.

88 \else

89

90 \ifx\InputIfFileExists\memoir@InputIfFileExists

91 \AtEndOfPackage{%

92 \AtBeginOfFiles {\ m@matbeginf {#1}}%

93 \AtEndOfFiles {\ m@matendf {#1}\ killm@matf {#1}}%

94 }

95 \PackageInfo{filehook }{ Detected ’memoir ’ class: the↙

memoir hooks will be moved to the ’At... OfFiles↙

’ hooks .}

96 \else

Finally, if no specific alternate definition is detected the original LATEX defi-
nition is checked for and a warning is given if any other unknown definition is
detected. In this case it will be simply overwritten.

98 \ifx\InputIfFileExists\latex@InputIfFileExists

99 \else

100 \@ifpackageloaded{scrlfile }{%

101 \PackageWarning{filehook }{ Detected ’scrlfile ’ ↙

package with unknown definition of \string\↙

InputIfFileExists}%

102 }{}%

103

104 \@ifclassloaded{memoir }{%

105 \PackageWarning{filehook }{ Detected ’memoir ’ class↙

with unknown definition of \string\↙

InputIfFileExists}%

106 }{}%

107

108 \iffilehook@force

109 \PackageWarning{filehook}

110 {Changed definition of \string\↙

InputIfFileExists\space detected !^^J%

8



111 The ’force ’ option is in effect and therefore↙

this macros is redefined.

112 This might break other packages or code}%

113 \else

114 \PackageError{filehook}

115 {Changed definition of \string\↙

InputIfFileExists\space detected !^^J%

116 Use the ’force ’ option to force the ↙

redefinition of this macro .^^J%

117 This might break other packages or code}%

118 \fi

119 \fi

120 \fi

121

122 \long\gdef\InputIfFileExists #1#2{%

123 \IfFileExists {#1}%

124 {#2\ @addtofilelist {#1}%

125 \filehook@atbegin {#1}%

126 \@@input\@filef@und

127 \filehook@atend {#1}%

128 }%

129 }

130

131 \fi

132

133 \endgroup

4.3 Initialisation of Hooks

The general hooks are initialised to call the file specific hooks.

\filehook@include@atbegin

\filehook@include@atend

\filehook@include@after

135 \def\filehook@include@atbegin #1{%

136 \@nameuse {\ filehook@include@atbegin@ #1}%

137 }

138 \def\filehook@include@atend #1{%

9



139 \@nameuse {\ filehook@include@atend@ #1}%

140 }

141 \def\filehook@include@after #1{%

142 \@nameuse {\ filehook@include@after@ #1}%

143 }

\filehook@input@atbegin

\filehook@input@atend

145 \def\filehook@input@atbegin #1{%

146 \@nameuse {\ filehook@input@atbegin@ #1}%

147 }

148 \def\filehook@input@atend #1{%

149 \@nameuse {\ filehook@input@atend@ #1}%

150 }

\filehook@atbegin

\filehook@atend

152 \def\filehook@atbegin #1{%

153 \@nameuse {\ filehook@atbegin@ #1}%

154 }

155 \def\filehook@atend #1{%

156 \@nameuse {\ filehook@atend@ #1}%

157 }

4.4 Hook Modification Macros

The following macros are used to modify the hooks, i.e. to prefix or append code
to them.

Internal Macros

The macro prefixes for the file specific hooks are stored in macros to reduce the
number of tokens in the following macro definitions.

10



159 \def\filehook@include@atbegin@{↙

filehook@include@atbegin@}

160 \def\filehook@include@atend@{filehook@include@atend@}

161 \def\filehook@include@after@{filehook@include@after@}

162 \def\filehook@input@atbegin@{filehook@input@atbegin@}

163 \def\filehook@input@atend@{filehook@input@atend@}

164 \def\filehook@input@after@{filehook@input@after@}

165 \def\filehook@atbegin@{filehook@atbegin@}

166 \def\filehook@atend@{filehook@atend@}

167 \def\filehook@after@{filehook@after@}

\filehook@append

Uses default LATEX macro.

169 \def\filehook@append {\ g@addto@macro}

\filehook@appendwarg

Appends code with one macro argument. The \@tempa intermediate step is
required because of the included ##1 which wouldn’t correctly expand otherwise.

171 \long\def\filehook@appendwarg #1#2{%

172 \begingroup

173 \toks@\expandafter {#1{##1}#2}%

174 \edef\@tempa {\the\toks@}%

175 \expandafter\gdef\expandafter #1\ expandafter ##\↙

expandafter 1\ expandafter {\ @tempa}%

176 \endgroup

177 }

\filehook@prefix

Prefixes code without an argument to a hook.

179 \long\def\filehook@prefix #1#2{%

180 \begingroup

181 \@temptokena {#2}%

182 \toks@\expandafter {#1}%

183 \xdef #1{\ the\@temptokena\the\toks@}%

184 \endgroup

185 }

11



\filehook@prefixwarg

Prefixes code with an argument to a hook.

187 \long\def\filehook@prefixwarg #1#2{%

188 \begingroup

189 \@temptokena {#2}%

190 \toks@\expandafter {#1{##1}}%

191 \edef\@tempa {\the\@temptokena\the\toks@}%

192 \expandafter\gdef\expandafter #1\ expandafter ##\↙

expandafter 1\ expandafter {\ @tempa}%

193 \endgroup

194 }

User Level Macros

The user level macros simple use the above defined macros on the appropriate
hook.

\AtBeginOfIncludes

196 \newcommand *\ AtBeginOfIncludes{%

197 \filehook@appendwarg\filehook@include@atbegin

198 }

\AtEndOfIncludes

200 \newcommand *\ AtEndOfIncludes{%

201 \filehook@prefixwarg\filehook@include@atend

202 }

\AfterOfIncludes

204 \newcommand *\ AfterIncludes{%

205 \filehook@prefixwarg\filehook@include@after

206 }

\AtBeginOfIncludeFile

12



208 \newcommand *\ AtBeginOfIncludeFile [1]{%

209 \@ifundefined {\ filehook@include@atbegin@ #1.tex}%

210 {\long\global\@namedef {\ filehook@include@atbegin@↙

#1.tex}}%

211 {\ expandafter\filehook@append\csname\↙

filehook@include@atbegin@ #1. tex\endcsname}%

212 }

\AtEndOfIncludeFile

214 \newcommand *\ AtEndOfIncludeFile [1]{%

215 \@ifundefined {\ filehook@include@atend@ #1.tex}%

216 {\long\global\@namedef {\ filehook@include@atend@↙

#1.tex}}%

217 {\ expandafter\filehook@prefix\csname\↙

filehook@include@atend@ #1.tex\endcsname}%

218 }

\AfterOfIncludeFile

220 \newcommand *\ AfterOfIncludeFile [1]{%

221 \@ifundefined {\ filehook@include@after@ #1.tex}%

222 {\long\global\@namedef {\ filehook@include@after@↙

#1.tex}}%

223 {\ expandafter\filehook@prefix\csname\↙

filehook@include@after@ #1.tex\endcsname}%

224 }

\AtBeginOfInputs

226 \newcommand *\ AtBeginOfInputs{%

227 \filehook@appendwarg\filehook@input@atbegin

228 }

\AtEndOfInputs

230 \newcommand *\ AtEndOfInputs{%

231 \filehook@prefixwarg\filehook@input@atend

232 }

13



\AtBeginOfInputFile

234 \newcommand *\ AtBeginOfInputFile [1]{%

235 \@ifundefined {\ filehook@input@atbegin@ #1}%

236 {\long\global\@namedef {\ filehook@input@atbegin@↙

#1}}%

237 {\ expandafter\filehook@append\csname\↙

filehook@input@atbegin@ #1\ endcsname}%

238 }

\AtEndOfInputFile

240 \newcommand *\ AtEndOfInputFile [1]{%

241 \@ifundefined {\ filehook@input@atend@ #1}%

242 {\long\global\@namedef {\ filehook@input@atend@ #1}}↙

%

243 {\ expandafter\filehook@prefix\csname\↙

filehook@input@atend@ #1\ endcsname}%

244 }

\AtBeginOfFiles

246 \newcommand *\ AtBeginOfFiles{%

247 \filehook@appendwarg\filehook@atbegin

248 }

\AtEndOfFiles

250 \newcommand *\ AtEndOfFiles{%

251 \filehook@prefixwarg\filehook@atend

252 }

\AtBeginOfFile

254 \newcommand *\ AtBeginOfFile [1]{%

255 \@ifundefined {\ filehook@atbegin@ #1}%

256 {\long\global\@namedef {\ filehook@atbegin@ #1}}%

257 {\ expandafter\filehook@append\csname\↙

filehook@atbegin@ #1\ endcsname}%

258 }

14



\AtEndOfFile

260 \newcommand *\ AtEndOfFile [1]{%

261 \@ifundefined {\ filehook@atend@ #1}%

262 {\long\global\@namedef {\ filehook@atend@ #1}}%

263 {\ expandafter\filehook@prefix\csname\↙

filehook@atend@ #1\ endcsname}%

264 }

\AtBeginOfPackageFile

#1: package name
Simply add the package extension and calls the general macro.

266 \newcommand *\ AtBeginOfPackageFile [1]{%

267 \AtBeginOfFile {#1.\ @pkgextension}%

268 }

\AtEndOfPackageFile

270 \newcommand *\ AtEndOfPackageFile{%

271 \@ifnextchar *\ AtEndOfPackageFile@star\↙

AtEndOfPackageFile@normal

272 }

\AtEndOfPackageFile@star

#1: package name
#2: code

If the package is already loaded the code is executed right away. Otherwise it
is installed normally.

274 \def\AtEndOfPackageFile@star *#1#2{%

275 \@ifpackageloaded {#1}%

276 {#2}%

277 {\ AtEndOfPackageFile@normal {#1}{#2}}%

278 }

\AtEndOfPackageFile@normal

#1: package name

15



#2: code
Installs the code at the end of the package file inside a \AtEndOfPackage com-
mand to ensure it is executed after any \AtEndOfPackage code installed by the
package itself.

Note if the package was already loaded or is not loaded at all the installed
code is never executed.

280 \def\AtEndOfPackageFile@normal #1#2{%

281 \AtEndOfFile {#1.\ @pkgextension }{\ AtEndOfPackage↙

{#2}}%

282 }

\AtBeginOfClassFile

#1: class name
Simply add the class extension and calls the general macro.

284 \newcommand *\ AtBeginOfClassFile [1]{%

285 \AtBeginOfFile {#1.\ @clsextension}%

286 }

\AtEndOfClassFile

#1: class name
#2: code

288 \newcommand *\ AtEndOfClassFile{%

289 \@ifnextchar *\ AtEndOfClassFile@star\↙

AtEndOfClassFile@normal

290 }

\AtEndOfClassFile@star

#1: class name
#2: code

If the class is already loaded the code is executed right away. Otherwise it is
installed normally.

292 \def\AtEndOfClassFile@star *#1#2{%

293 \@ifclassloaded {#1}%

294 {#2}%

295 {\ AtEndOfClassFile@normal {#1}{#2}}%

296 }

16



\AtEndOfClassFile@normal

#1: class name
#2: code

Installs the code at the end of the class file inside a \AtEndOfClass command
to ensure it is executed after any \AtEndOfClass code installed by the class
itself.

Note if the class was already loaded or is not loaded at all the installed code
is never executed.

298 \def\AtEndOfClassFile@normal #1#2{%

299 \AtEndOfFile {#1.\ @clsextension }{\ AtEndOfClass↙

{#2}}%

300 }

17


	Introduction
	Usage
	Compatibility Issues with other Packages
	Implementation
	Options
	Installation of Hooks
	Initialisation of Hooks
	Hook Modification Macros


