
The fcolumn package∗

Edgar Olthof
edgar <dot> olthof <at> inter <dot> nl <dot> net

Printed September 27, 2015

Abstract

In financial reports, text and currency amounts are regularly put in one
table, e.g., a year balance or a profit-and-loss overview. This package pro-
vides the settings for automatically typesetting and checking such columns,
including the sum line (preceded by a rule of the correct width), using the
specifier f.

1 Introduction

The package fcolumn provides the macros for an extra tabular specifier that makes
creating financial tables easy. The column specifier f itself is rather simple. It is
the predefined version of a generic column F. The generic version expects three
arguments: #1 is the group separator, #2 is the decimal mark, and #3 the coding
used for grouping digits of the integer part and decimal part.

The f-column in the current version of the package is defined for the continental
European standard: \newcolumntype{f}{F{.}{,}{3,2}}. This means that a
number like 1234567 will be typeset as 12.345,67. People in the Anglo-saxon world
would rather code \newcolumntype{f}{F{,}{.}{3,2}}, yielding 12,345.67 for the
number given above. The default value for #3 is 3,2, indicating that grouping of
the integer part is by three digits and that the decimal part consists of two digits.
If however, in your country or company grouping is done with a thinspace every
four digits and there are three digits after the decimal mark—that happens to be a
\cdot—, then simply specify \newcolumntype{f}{F{\,}{\cdot}{4,3}} in that
case.

By default two digits are used for the decimal part, so if you really want no
decimal digits (in that case of course also skipping the decimal mark) you have to
explicitly specify x,0.

This package requires and loads the array package [1]. To show where and
how the F-column is used, let’s look at some typical financial information as shown
in Table 1 and how this is entered in LATEX (Table 2). All the work was done by
the column specifier “f” (for “finance”). In this case it constructs the \sumline,

∗This file has version number v1.1.1, last revised 2015/09/20.

1

Table 1: Example Table
Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00
bank account −603,23 mortgage 150.000,00
savings 28.000,00
cash 145,85 profit 27.542,62

227.542,62 227.542,62

Table 2: Verbatim version of Example Table

\begin{table}[htb]

\caption{Example Table}

\label{tab:ex1}

\begin{tabular}{@{}lflf@{}}

\multicolumn4c{\bfseries Balance sheet}\\

\toprule

properties&\multicolumn1r{31 dec 2014}&

debts&\multicolumn1{l@{}}{31 dec 2014}\\

\midrule

house & 20000000 & equity capital& 5000000\\

bank account& -60323 & mortgage & 15000000\\

savings& 2800000 \\

cash& 14585 & profit & 2754262\\

\sumline

\bottomrule

\end{tabular}

\end{table}

typesets the numbers, calculates the totals, determines the widths of the sumrules,
and checks whether the two columns are in balance; if not, the user is warned via
a \message. Of course for nice settings the booktabs package [2] was used, but
that is not the point here.

This package is heavily inspired by the dcolumn package by David Carlisle [3],
some constructions are more or less copied from that package.

2 Commands

The user only needs to know six commands or constructions. These six are given
here.

F In the tabular the column specifier F can be given with arguments, or the prede-
fined version f, where the three arguments of F are {.}, {,}, and 3,2. If you want

2

g to be your own definition like the curious one given in Section 1, then specify
\newcolumntype{g}{F{\,}{\cdot}{4,3}} prior to using g in a tabular.

Entries in an F-column are from that moment on, treated as (integer) numbers
unless explicitly escaped by \leeg, see below. The numbers are typeset according
to the template the user gives with his/her F-column.

\sumline The numbers in an F-column are typeset as a financial amount, but the real benefit
comes with the \sumline. It does three things:
• It calculates the total of the column so far and the maximum width encoun-

tered so far, including the width of the total;
• It generates a rule with width calculated in the first item;
• It checks the columns that are supposed to balance whether or not they

actually do. If so, nothing happens. If not, a \message is given that column
i and j do not balance, where i and j are the relevant columns. This is
only done if the total number of F-columns is even, e.g., if there are six
F-columns, then 1 is checked against 4, 2 against 5, and 3 against 6. If the
number of F-columns is odd then anything could be possible in that table
and nothing is assumed about structure within the table. This behaviour
can be overridden, see below.

\resetsumline Suppose you want to typeset one tabular with the profit-and-loss of many projects
individually. The layout of those tabulars is the same and it were nice if all columns
were aligned. This can be done by making it one big tabular with a fresh start for
each project. The macro \resetsumlines is used for that: it resets all totals and
all column widths, see for example Table 3. Note that the rules in the first and

Table 3: Example: multiple projects
Project 1

expense actual budget income actual budget

food 450,00 500,00 tickets 1.000,00 1.000,00
drinks 350,00 400,00
music 180,00 100,00
profit 20,00

1.000,00 1.000,00 1.000,00 1.000,00
Project 2

expense actual budget income actual budget

food 250,00 300,00 tickets 400,00 450,00
drinks 100,00 80,00
music 80,00 70,00 loss 30,00

430,00 450,00 430,00 450,00

third F-columns of project 1 cover 1.000,00 whereas in project 2 those rules are
shorter since they only cover 430,00; still the columns are aligned. The verbatim
way of setting up Table 3 is given in Table 4.

3

Table 4: Verbatim version of Table 3

\begin{table}[htb]

\caption{Example: multiple projects}

\label{tab:ex3}

\begin{tabular}{@{}lfflff@{}}

\multicolumn6c{\bfseries Project~1}\\

\toprule

expense&\multicolumn1r{actual}&\multicolumn1r{budget}&

income&\multicolumn1r{actual}&\multicolumn1{r@{}}{budget}\\

\midrule

food & 45000 & 50000 & tickets& 100000 & 100000\\

drinks & 35000 & 40000 \\

music & 18000 & 10000 \\

profit & 2000 \\

\sumline

\resetsumline

\multicolumn6c{\bfseries Project~2}\\

\toprule

expense&\multicolumn1r{actual}&\multicolumn1r{budget}&

income&\multicolumn1r{actual}&\multicolumn1{r@{}}{budget}\\

\midrule

food & 25000 & 30000 & tickets& 40000 & 45000\\

drinks & 10000 & 8000 \\

music & 8000 & 7000 & loss & 3000 \\

\sumline

\bottomrule

\end{tabular}

\end{table}

\leeg If an F-column should be empty then simply leave it empty. If however it should
not be empty but the entry should be treated as text—even it is a number—this
can be done with \leeg. It expects an argument and this argument is typeset
in the column, affecting the maximum column width so far. The common case is
where p.m. (pro memoria) is entered. An empty F-column followed by \\ does
not work: either remove the & or specify \leeg{}.

\checkfcolumns The automatic column balance check can also be done manually. If F-columns 1
and 4 should balance and you want them to be checked, then simply say
\checkfcolumns14. With more than nine F-columns you may be forced to say
something like \checkfcolumns{10}{12}.

\strictaccounting In the rare occasion that a negative number occurs in a financial table, the sign of
that number can be an explicit minus sign (−) or the number is coloured red, or
it is typeset between parentheses, and there may be even other ways. By default
(for aesthetic reasons) fcolumn typesets it with a minus sign, but strict accounting

4

prescibes that the number should be put between parentheses. The latter can be
accomplished by setting \strictaccountingtrue.

3 The macros

column F

column f

The column specifier F is the generic one, and f is the default (European) one
for easy use. Note that the definition of the column type f does not use private
macros (no @), so overriding its definition is easy for a user.

1 \newcolumntype{F}[3]{>{\b@fi{#1}{#2}{#3}}r<{\e@fi}}

2 \newcolumntype{f}{F{.}{,}{3,2}}

\FCsc@l

\FCtc@l

Two 〈count〉s are defined, that both start at zero: the 〈count〉 \FCsc@l, that keeps
track at which F-column the tabular is working on and the 〈count〉 \FCtc@l, that
records the number of F-columns that were encountered so far. Later in the
package the code can be found for generating a new 〈count〉 and a new 〈dimen〉 if
the number of requested F-columns is larger than currently available. This is of
course the case when an F-column is used for the first time.

3 \newcount\FCsc@l \FCsc@l=0

4 \newcount\FCtc@l \FCtc@l=0

\geldm@cro The macro \geldm@cro takes a number and by default interprets this as an amount
expressed in cents (dollar cents, euro cents, centen, Pfennige, kopecks, groszy) and
typesets it as the amount in entire currency units (dollars, euros, guldens, Marke,
ruble, z loty) with comma as decimal separator and the dot as thousand separator.
As explained, this can be changed. It uses a private boolean \withs@p and an
accessable, i.e., without @ boolean: \strictaccounting. The latter is used to
typeset negative numbers between parentheses. By default it doesn’t do this: a
minus sign is used.

5 \newif\ifwiths@p

6 \newif\ifstrictaccounting \strictaccountingfalse

Actually \geldm@cro is only a wrapper around \g@ldm@cro.

7 \def\geldm@cro#1#2{\withs@pfalse

8 \afterassignment\g@ldm@cro\count@#2\relax{#1}}

\g@ldm@cro This macro starts by looking at the sign of #2: if it is negative, it prints the
correct indicator (a parenthesis or a minus sign), assigns the absolute value of
#2 to \count2 and goes on. Note that \geldm@cro and therefore \g@ldm@cro are
always used within $s, so it is really a minus sign that is printed, not a hyphen. All
calculations are done with \count0, \count1, etc. i.e., without fcolumn-specific
〈count〉s because it is all done locally. Leaving the tabular environment will restore
their values.

9 \def\g@ldm@cro#1\relax#2{%

10 \ifnum#2<0 \ifstrictaccounting(\else-\fi\count2=-#2 \else\count2=#2 \fi

Calculate the entire currency units: this is the result of x/a as integer division,
with a = 10n and n the part of #1 after the separator (if any). Here the first

5

character of #1 is discarded, so the separator in #1 is not strict: you could also
specify 3.2 instead of 3,2 (or even 3p2).

11 \count3=\ifx\relax#1\relax2 \else \@gobble#1\relax\fi

12 \count4=\count3

13 \loop

14 \ifnum\count3>0 \divide\count2 by 10 \advance\count3 by \m@ne

15 \repeat

The value in \count2 is then output by \g@ldens using the separation given.

16 \g@ldens{\the\count@}%

If there is a decimal part. . .

17 \ifnum\count4>0\decim@lmark

Next the decimal part is dealt with. Now x mod a is calculated in the usual way:
x− (x/a) ∗ a with integer division. The minus sign necessary for this calculation
is introduced in the next line by changing the comparison from < to >.

18 \ifnum#2>0 \count2=-#2\else\count2=#2 \fi

19 \count3=\count4

20 \loop

21 \ifnum\count3>0 \divide\count2 by 10 \advance\count3 by \m@ne

22 \repeat

The value of \count3 is 0 now. Now counting up again, this saved an assignment.

23 \loop

24 \ifnum\count3<\count4 \multiply\count2 by 10 \advance\count3 by \@ne

25 \repeat

26 \ifnum#2>0 \advance\count2 by #2

27 \else \advance\count2 by -#2

28 \fi

29 \zerop@d{\number\count3}{\number\count2}%

30 \fi

If the negative number is indicated by putting it between parentheses, then the
closing parenthesis should stick out of the column, otherwise the alignment of this
entry in the column is wrong. This is done by an \rlap and therefore does not
influence the column width. For the last column this means that this parenthe-
sis may even stick out of the table. I don’t like this, therefore I chose to put
\strictaccountingfalse. Change if you like.

31 \ifnum#2<0 \ifstrictaccounting\rlap{)}\fi\fi}

\g@ldens Here the whole currency units are dealt with. The macro \g@ldens is used re-
cursively, therefore the double braces; this allows to use \count0 locally. Tail
recursion is not possible here (at least I don’t know of a way), but that is not very
important, as the largest number (which is 231 − 1) will only cause a threefold
recursion. This also implies that the largest amount this package can deal with is
2.147.483.647 (using x.0). For most people this is probably more than enough if
the currency is euros or dollars. If not, then it is more likely that you are spending
your time on the beach than studying this package. And otherwise make clear that
you use a currency unit of k$.

32 \def\g@ldens#1{{\count3=\count2 \count0=#1

6

First divide by 10n, where n is #1.

33 \loop

34 \ifnum\count0>0

35 \divide\count2 by 10

36 \advance\count0 by \m@ne

37 \repeat

Here is the recursive part,

38 \ifnum\count2>0 \g@ldens{#1}\fi

and then reconstruct the rest of the number.

39 \count0=#1

40 \loop

41 \ifnum\count0>0

42 \multiply\count2 by 10

43 \advance\count0 by\m@ne

44 \repeat

45 \count2=-\count2

46 \advance\count2 by \count3 \du@zendprint{#1}}}

\du@zendprint The macro \du@zendprint takes care for correctly printing the separator and
possible trailing zeros.

47 \def\du@zendprint#1{\ifwiths@p\sep@rator\zerop@d{#1}{\number\count2}%

48 \else\zerop@d{1}{\number\count2}\fi \global\withs@ptrue}

\zerop@d The macro \zerop@d uses at least #1 digits for printing the number #2, padding
with zeros when necessary. Initially this was a nice macro using tail recursion until
it was found that the running time of that macro was proportional to n2, where
n is roughly the number of zeros to be padded. The worst case situation is when
printing “0”. The running time of the current version is only linear in n.

It is done within an extra pair of braces, so that \count0 and \count1 can be
used without disturbing their values in other macros.

49 \def\zerop@d#1#2{{\count0=1 \count1=#2

First determine the number of digits of #2 (expressed in the decimal system). This
number is in \count0 and is at least 1.

50 \loop

51 \divide \count1 by 10

52 \ifnum\count1>0 \advance\count0 by\@ne

53 \repeat

The number of zeros to be padded is max(0, #1-\count0) (the second argument
can be negative), so a simple loop suffices.

54 \loop

55 \ifnum\count0<#1\relax 0\advance\count0 by\@ne

56 \repeat

57 \number#2}}

\zetg@ld This macro takes care for several things: it increases the total for a given F-
column, it records the largest width of the entries in that column and it typesets
#1 via \geldm@cro.

7

58 \def\zetg@ld#1#2{\global\advance\csname

59 FCtot@\romannumeral\FCsc@l\endcsname by #1

60 \setbox0=\hbox{$\geldm@cro{#1}{#2}$}%

61 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

62 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

63 \fi\unhbox0}

\b@fi The macro \b@fi provides the beginning of the financial column. It will be inserted
in the column to capture the number entered by the user. The \let is only local
to the column and is necessary because \ignorespaces is automatically inserted
by the preamble-generating macro \@mkpream. Its effect should be annihilated,
otherwise the assignment to \bedr@g goes wrong. The plain LATEX command
\@empty is used for that. The separator and decimal mark are within a math
environment, so you can indeed specify \, instead of \thinspace, but there is
an extra brace around, so it doesn’t affect the spacing between the digits (trick
copied from dcolumn, Ref. [3]).

64 \newcount\bedr@g

65 \def\b@fi#1#2#3{\def\sep@rator{{#1}}\def\decim@lmark{{#2}}%

66 \def\sp@l{#3}\let\ignorespaces=\@empty \let\unskip=\@empty

67 \global\advance\FCsc@l by \@ne

The value specified by the user is then captured by \bedr@g and this is done in a
special way: \bedr@g is assigned globally within \box0. Why? To later check the
width of this box, see \e@fi.

68 \setbox0=\hbox\bgroup\global\bedr@g=}

\e@fi If the user enters a number, say 10, LATEX will read \setbox 0 = \hbox \bgroup

\global \bedr@g = 10 123 \relax \egroup, which is perfectly valid. The count
\bedr@g is 10 now and \box0 is non-empty, in fact containing the number 123
(although any number would be good: it is discarded anyway). If however nothing
was entered by the user, LATEX will read \setbox 0 = \hbox \bgroup \global

\bedr@g = 123 \relax \egroup, which is also perfectly valid, but now \bedr@g

is 123 and \box0 is empty. So the width of \box0 can be used to discriminate
without actually using its contents in the horizontal list. Later, with the code
for \leeg a related trick will be used. The space at the beginning of \e@fi is
important, otherwise the 123 might be concatenated with the user entry, leading
to wrong numbers.

69 \def\e@fi{ 123\relax\egroup\ifdim\wd0>\z@

70 \zetg@ld{\number\bedr@g}{\sp@l}%

71 \fi}

Please note that this trick does not work for an empty F-column that is ended by
\\. The reason is that the first thing \\ does—even before providing the \cr —is
to issue a \relax. This stops the assignment to \bedr@g and causes a TEX error,
complaining about a missing number. This is then repaired by TEX by inserting
a zero, so it doesn’t affect the total of that column, but in particular this zero is
then typeset, which it is not supposed to. I decided to leave it this way because in
practice this is never a problem: simply discard the last & and the column before

8

the offending column will now be ended by \\. Iterate for this line until a filled
F-column or a non-F-column is encountered. This is assuming that you did not
specify |s in the tabular description: for them to work for the whole table you
should have all &s in place (this is true in general, not only for fcolumn). On the
other hand you should never, ever use vertical rules in tables, according to Ref. [2].
And if you really must, then fill the empty F-columns with \leeg{}.

Here are adaptations to existing macros.

\@array The definition of \@array had to be extended slightly because it should also in-
clude \@mksumline (acting on the same #2 as \@mkpream gets). This change is
transparant: it only adds functionality and if you don’t use that, you won’t notice
the difference. It starts by just copying the original definition from the array

package [1].

72 \def\@array[#1]#2{%

73 \@tempdima \ht \strutbox

74 \advance \@tempdima by\extrarowheight

75 \setbox \@arstrutbox \hbox{\vrule

76 \@height \arraystretch \@tempdima

77 \@depth \arraystretch \dp \strutbox

78 \@width \z@}%

Here comes the first change: after each \\ (or \cr for that matter) the 〈count〉
\FCsc@l should be reset. This is easiest done with \everycr, but \everycr is put
to {} by \ialign, so that definition should change. The resetting should be done
globally.

79 \def\ialign{\everycr{\noalign{\global\FCsc@l=0 }}%

80 \tabskip\z@skip\halign}

Then the definition is picked up again.

81 \begingroup

82 \@mkpream{#2}%

83 \xdef\@preamble{\noexpand \ialign \@halignto

84 \bgroup\@arstrut\@preamble\tabskip\z@\cr}%

85 \endgroup

The combination \endgroup followed by \begingroup seems redundant, but that
is not the case: the \endgroup restores everything that was not \global. With
the following \begingroup it is ensured that \@mksumline experiences the same
settings as \@mkpream did.

86 \begingroup

87 \@mksumline{#2}%

88 \endgroup

As a side product of \@mksumline also the 〈count〉s for the totals and 〈dimen〉s for
the widths of the colums are created. The columns should start fresh, i.e., totals
are 0 and widths are 0 pt.

89 \res@tsumline

From here on it is just the old definition of array.sty.

9

90 \@arrayleft

91 \if #1t\vtop \else \if#1b\vbox \else \vcenter \fi \fi

92 \bgroup

93 \let \@sharp ##\let \protect \relax

94 \lineskip \z@

95 \baselineskip \z@

96 \m@th

97 \let\\\@arraycr \let\tabularnewline\\\let\par\@empty \@preamble}

Because \@array was changed here and it is this version that should be used,
\@@array should be \let equal to \@array again.

98 \let\@@array=\@array

\@mksumline The construction of the sumline is much easier than that of the preamble for several
reasons. It may be safely assumed that the preamble specifier is grammatically
correct because it has already been screened by \@mkpream. Furthermore most
entries will simply add nothing to \sumline, e.g., @, !, and | can be fully ignored.
Ampersands are only inserted by c, l, r, p, m, and b. So a specifier like @{}lflf@{}
will yield the sumline &\a&&\a\\, (where \a is a macro that prints the desired
result of the column, see later). Had the specifier been l|f||@{ }l|f, then
the same sumline must be constructed: all difficulties are already picked up and
solved in the creation of the preamble.

In reality the sumline must be constructed from the expanded form of the
specifier, so @{}lf@{} will expand as @{}l>{\b@fi{.}{,}{3,2}}r<{\e@fi}@{}.
The rules for constructing the sumline are now very simple:
• add an ampersand when c, l, r, p, m, or b is found, unless it is the first one

(this is the same as in the preamble);
• add a \a when <{\e@fi} is found;
• ignore everything else;
• close with a \\.

(In reality also the column check is inserted just before the \\, see \aut@check.)
To discriminate, a special version of \testpach could be written, but that is not
necessary: \testpach can do all the work, although much of it will be discarded.
Here speed is sacrificed for space and this can be afforded because the creation of
the sumline is only done once per \tabular.

The start is copied from \@mkpream.

99 \def\@mksumline#1{\gdef\sumline{}\@lastchclass 4 \@firstamptrue

At first the column number is reset and the actual code for what was called \a

above is made inactive.

100 \global\FCsc@l=0

101 \let\prr@sult=\relax

Then \@mkpream is picked up again.

102 \@temptokena{#1}

103 \@tempswatrue

104 \@whilesw\if@tempswa\fi{\@tempswafalse\the\NC@list}%

105 \count0\m@ne

106 \let\the@toks\relax

10

107 \prepnext@tok

Next is the loop over all tokens in the expanded form of the specifier. The change
with respect to \@mkpream is that the body of the loop is now only dealing with
F-classes 0, 2, and 10. What to do in those cases is of course different from what to
do when constructing the preamble, so special definitions are created, see below.

108 \expandafter \@tfor \expandafter \@nextchar

109 \expandafter :\expandafter =\the\@temptokena \do

110 {\@testpach

111 \ifcase \@chclass \@classfz

112 \or \or \@classfii \or

113 \or \or \or \or \or \or \or \@classfx \fi

114 \@lastchclass\@chclass}%

And the macro is finished by applying the \aut@check and appending the \\

to the sumline. Note that the \aut@check is performed in the last column, but
since it does not put anything in the horizontal list—it only writes to screen and
transcript file—, this is harmless.

115 \xdef\sumline{\sumline\noexpand\aut@check\noexpand\\}}

\@addtosumline Macro \@addtosumline, as its name already suggests, adds something to the
sumline, like its counterpart \@addtopreamble did to the preamble.

116 \def\@addtosumline#1{\xdef\sumline{\sumline #1}}

\@classfx Class f10 for the sumline creation is a stripped down version of \@classx: add an
ampersand unless it is the first. It deals with the specifiers b, m, p, c, l, and r.

117 \def\@classfx{\if@firstamp \@firstampfalse \else \@addtosumline &\fi}

\@classfz Class f0 is applicable for specifiers c, l, and r, and if the arguments of p, m, or b

are given. The latter three cases, with \@chnum is 0, 1, or 2 should be ignored and
the first three cases are now similar to class f10.

118 \def\@classfz{\ifnum\@chnum<\thr@@ \@classfx\fi}

\@classfii Here comes the nice and nasty part. Class f2 is applicable if a < is specified. This is
tested by checking \@lastchclass, which should be equal to 8. Then it is checked
that the argument to < is indeed \e@fi. This check is rather clumsy but this was
the first way, after many attempts, that worked. It is necessary because the usage
of < is not restricted to \e@fi: the user may have specified other LATEX-code
using <.

119 \def\@classfii{\ifnum\@lastchclass=8

120 \edef\t@stm{\expandafter\string\@nextchar}

121 \edef\t@stn{\string\e@fi}

122 \ifx\t@stm\t@stn

If both tests yield true then add the macro to typeset everything.

123 \@addtosumline{\prr@sult}

But we’re not done yet: in the following lines of code the appropriate 〈count〉s
and 〈dimen〉s are created, if necessary. Note that \FCsc@l was set to 0 in the
beginning of \@mksumline, so it is well-defined when \@classfii is used.

11

124 \global\advance\FCsc@l by \@ne

125 \ifnum\FCsc@l>\FCtc@l

Apparently the number of requested columns is larger than the currently available
number of relevant 〈count〉s and 〈dimen〉s, so new ones should be created. What
is checked here is merely the existence of \FCtot@<some romannumeral>. If it
already exists—although it may not even be a 〈count〉; that is not checked—it
is not created by fcolumn and a warning is given. In case it is a 〈count〉 you’re
just lucky, although any change to this 〈count〉 is global anyway, so things will be
overwritten. In the case it is not a 〈count〉, things will go haywire and you’ll soon
find out. The remedy then is to rename your 〈count〉 prior to fcolumn to avoid
this name clash.

126 \expandafter\ifx\csname FCtot@\romannumeral\FCsc@l\endcsname\relax

127 \expandafter\newcount\csname FCtot@\romannumeral\FCsc@l\endcsname

128 \else

129 \message{^^JWarning: FCtot@\romannumeral\FCsc@l \space is already

130 defined and it may not even be a <count>. I’ll proceed,

131 but with fingers crossed. }

132 \fi

And the same is applicable for the 〈dimen〉: in case of a name clash you have to
rename your 〈dimen〉 prior to fcolumn.

133 \expandafter\ifx\csname FCwd@\romannumeral\FCsc@l\endcsname\relax

134 \expandafter\newdimen\csname FCwd@\romannumeral\FCsc@l\endcsname

If the creation was successful, the 〈count〉 \FCtc@l should be increased.

135 \global\FCtc@l=\FCsc@l

136 \else

137 \message{^^JWarning: FCwd@\romannumeral\FCsc@l \space is already

138 defined and it may not even be a <dimen>. I’ll proceed,

139 but with fingers crossed. }

140 \fi

141 \fi

142 \fi

143 \fi}

Once created it is not necessary to initialise them here because that is done later
in one go.

\leeg This macro is used to overrule the default behaviour of the pair \b@fi and \e@fi.
It starts with ending the assignment to \bedr@g in the same way that \e@fi would
normally do. Then the effect of \e@fi (that is still in the preamble) is annihilated
by \letting it to be \relax. This \let is only local to the current column. Then
the argument to \leeg is treated in a similar way as \e@fi would do with a typeset
number.

Since the user may from time to time also need a column entry other than a
number in the table, e.g., \leeg{p.m.}, this definition is without at-sign.

144 \def\leeg#1{ 234\relax\egroup \let\e@fi=\relax \setbox0=\hbox{#1}%

145 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

146 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

12

147 \fi\unhbox0}

Note that anything may be given as argument to \leeg, so in principle it can also
be used to cheat: \leeg{0,03} will insert 0,03 in the table but it doesn’t increase
the totals of that column by 3 (assuming 3,2 coding for the separations). But you
won’t cheat, won’t you? It may affect the width, so be careful: don’t insert the
unabridged version of Romeo and Julia here.

\prr@sult The macro \prr@sult actually puts the information together. It starts like \leeg.

148 \def\prr@sult{ 345\relax\egroup \let\e@fi=\relax

Then the information for the last line is computed. It is not sufficient to calculate
the width of the result (in points) to use that as the width of the rule separating
the individual entries and the result. It may be that the sum is larger (in points)
than any of the entries, e.g., when the result of 600 + 600 is typeset. The width of
the rule should be equal to the width of \hbox{$12{,}00$} then (using specifier
3,2). On the other hand the width of the rule when summing 2400 and −2400
should be that of \hbox{$-24{,}00$} (or \hbox{$(24{,}00$}, see above), not
the width of the result \hbox{$0{,}00$}. Therefore the maximum of all entry
widths, including the result, was calculated.

149 \setbox0=\hbox{$\geldm@cro{\number\csname

150 FCtot@\romannumeral\FCsc@l\endcsname}{\sp@l}$}%

151 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

152 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

153 \fi

154 \vbox{\hrule width \csname FCwd@\romannumeral\FCsc@l\endcsname

155 \vskip2pt

156 \hbox to \csname FCwd@\romannumeral\FCsc@l\endcsname{\hfil\unhbox0}}}

\aut@check If the number of F-columns is even, it is assumed that they are part of two sets
of columns of which each column of the first set should balance the appropriate
column of the second set. If on the other hand the number of columns is odd, then
at least one column has nothing to balance against and no checking occurs. It is
correct to check for oddness of \FCsc@l since this \aut@check is only performed
in the last column of the tabular: the value of \FCsc@l now equals the number of
columns used in the current tabular (and may differ from \FCtc@l).

The output is only to screen and the transcript file; it doesn’t change the
appearance of your document, so in case the assumption is wrong you can safely
ignore the result and go on. The 〈count〉s 0 and 1 are used here and this can be
done because any content of those 〈count〉s from previous calculations has become
irrelevant at this moment.

157 \def\aut@check{\ifodd\FCsc@l\else \count0=\@ne \count1=\FCsc@l

158 \divide\count1 by \tw@ \advance\count1 by \@ne

159 \loop

160 \ifnum\csname FCtot@\romannumeral\count0\endcsname=

161 \csname FCtot@\romannumeral\count1\endcsname\else

162 \message{^^JWarning: F-columns \number\count0 \space

163 and \number\count1 \space do not balance! }%

13

164 \fi

165 \ifnum\count1=\FCsc@l\else

166 \advance\count0 by\@ne \advance\count1 by\@ne

167 \repeat

168 \fi }

\checkfcolumns But the assumptions for \aut@check may be wrong, therefore manual control on
this checking is also made possible here. The macro \checkfcolumns provides a
way to the user to check that the appropriate columns are balanced (as it should
in a balance). Arguments #1 and #2 are the column numbers to compare. It is
the responsibility of the user to provide the correct numbers here, otherwise bogus
output is generated.

169 \def\checkfcolumns#1#2{\noalign{\ifnum\csname FCtot@\romannumeral#1

170 \endcsname=\csname FCtot@\romannumeral#2\endcsname\else

171 \message{^^JWarning: F-columns #1 and #2 do not balance! }%

172 \fi}}

\res@tsumline Since all changes to the totals and widths of the columns are global, they have
to be reset actively at the start of a tabular or array. That is an action by itself,
but it may occur more often, on request of the user, therefore a special macro
is defined. A side effect of this macro is that \FCsc@l is reset to 0. This is an
advantage: it should be zero at the beginning of a line in the table (for other lines
this is done by the \\).

173 \def\res@tsumline{\FCsc@l=\FCtc@l\loop\ifnum\FCsc@l>0

174 \global\csname FCtot@\romannumeral\FCsc@l\endcsname=0

175 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\z@

176 \advance\FCsc@l by \m@ne

177 \repeat}

\resetsumline To reset a sumline within a table, it should be done within a \noalign.

178 \def\resetsumline{\noalign{\res@tsumline}}

That’s it!

Acknowledgement

Thanks to Karl Berry for valuable comments regarding the consistency of the
installation procedure of this version.

References

[1] Frank Mittelbach and David Carlisle. A new implementation of LATEX’s
tabular and array environment.

[2] Simon Fear. Publication quality tables in LATEX.
[3] David Carlisle. The dcolumn package.

14

Change History

v0.1
General: First working version . . . 1

v1.0
General: Three-argument version is

working properly 1
v1.1

General: Automatic checking of col-
umn balance performed when
number of F-columns is even
(behaviour can be overridden).
Empty entries are now recog-
nised and correctly treated
as such, except for the one
ended by the double backslash.

Not serious; workaround possi-
ble. Furthermore optimisation
of code: minimised the num-
ber of private counts and reset-
ting of column counter done in
a nicer way. 1

v1.1.1

General: Installation procedure
changed from .ins-in-.dtx to
separate .ins and .dtx after dis-
cussion with Karl Berry as well
as some minor code improve-
ments. 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@@array 98

\@addtosumline
. . . . 116, 117, 123

\@array 72

\@arraycr 97

\@arrayleft 90

\@chclass 111, 114

\@chnum 118

\@classfii . . . 112, 119

\@classfx . 113, 117, 118

\@classfz 111, 118

\@empty 66, 97

\@lastchclass
. 99, 114, 119

\@mksumline 87, 99

\@temptokena . . 102, 109

\@testpach 110

\\ 97, 115

A

\afterassignment . . . 8

\aut@check . . . 115, 157

B
\b@fi 1, 64
\bedr@g 64, 68, 70

C
\checkfcolumns . . 1, 169
\column F 1
\column f 1

D
\decim@lmark 17, 65
\du@zendprint . . . 46, 47

E
\e@fi 1, 69, 121, 144, 148
\everycr 79

F
\F 1
\FCsc@l . . . 3, 59, 61,

62, 67, 79, 100,
124–127, 129,
133–135, 137,
145, 146, 150–
152, 154, 156,
157, 165, 173–176

\FCtc@l . 3, 125, 135, 173

G
\g@ldens 16, 32
\g@ldm@cro 8, 9
\geldm@cro . . 5, 60, 149
\global 48, 58,

62, 67, 68, 79,
100, 124, 135,
146, 152, 174, 175

H
\halign 80
\hrule 154

I
\ialign 79, 83
\ifdim . . 61, 69, 145, 151
\ifnum 10,

14, 17, 18, 21,
24, 26, 31, 34,
38, 41, 52, 55,
118, 119, 125,
160, 165, 169, 173

\ifodd 157

15

\ifstrictaccounting

. 6, 10, 31
\ifwiths@p 5, 47
\ifx . . . 11, 122, 126, 133
\ignorespaces 66

L
\leeg 1, 144
\let . . 66, 93, 97, 98,

101, 106, 144, 148

N
\NC@list 104
\newcolumntype . . . 1, 2
\newcount . 3, 4, 64, 127
\newdimen 134
\newif 5, 6
\noalign . . 79, 169, 178
\noexpand 83, 115
\number . . 29, 47, 48,

57, 70, 149, 162, 163

P
\prr@sult . 101, 123, 148

R
\relax . . 8, 9, 11, 55,

69, 93, 101, 106,
126, 133, 144, 148

\res@tsumline
. 89, 173, 178

\resetsumline . . . 1, 178
\rlap 31
\romannumeral . . 59,

61, 62, 126, 127,
129, 133, 134,
137, 145, 146,
150–152, 154,
156, 160, 161,
169, 170, 174, 175

S
\sep@rator 47, 65

\sp@l 66, 70, 150

\strictaccounting . . 1

\strictaccountingfalse

. 6

\sumline . 1, 99, 115, 116

T

\t@stm 120, 122

\t@stn 121, 122

U

\unskip 66

W

\withs@pfalse 7

\withs@ptrue 48

Z

\zerop@d . 29, 47, 48, 49

\zetg@ld 58, 70

16

