Conjugacy criteria for half-linear ODE
 in theory of PDE with generalized p-Laplacian and mixed powers

Robert Mařík

Dpt. of Mathematics Mendel University

Brno, CZ

$$
\begin{align*}
\operatorname{div}\left(A(x)\|\nabla y\|^{p-2} \nabla y\right) & +\left\langle\vec{b}(x),\|\nabla y\|^{p-2} \nabla y\right\rangle \\
& +c(x)|y|^{p-2} y+\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y=e(x) \tag{E}
\end{align*}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)_{i=1}^{n} \in \mathbb{R}^{n}, p>1, p_{i}>1$,
- $A(x)$ is elliptic $n \times n$ matrix with differentiable components, $c(x)$ and $c_{i}(x)$ are Hölder continuous functions, $\vec{b}(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right)$ is continuous n-vector function,
- $\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)_{i=1}^{n}$ and div $=\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{n}}$ is are the usual nabla and divergence operators,
- q is a conjugate number to the number p, i.e., $q=\frac{p}{p-1}$,
- $\langle\cdot, \cdot\rangle$ is the usual scalar product in $\mathbb{R}^{n},\|\cdot\|$ is the usual norm in $\mathbb{R}^{n},\|A\|=$ $\sup \left\{\|A x\|: x \in \mathbb{R}^{n}\right.$ with $\left.\|x\|=1\right\}=\lambda_{\text {max }}$ is the spectral norm
- solution of (E) in $\Omega \subseteq \mathbb{R}^{n}$ is a differentiable function $u(x)$ such that $A(x)\|\nabla u(x)\|^{p-2} \nabla u(x)$ is also differentiable and u satisfies (E) in Ω
- $S(a)=\left\{x \in \mathbb{R}^{n}:\|x\|=a\right\}$,
$\Omega(a)=\left\{x \in \mathbb{R}^{n}: a \leq\|x\|\right\}$,
$\Omega(a, b)=\left\{x \in \mathbb{R}^{n}: a \leq\|x\| \leq b\right\}$

$$
\begin{equation*}
u^{\prime \prime}+c(x) u=0 \tag{1}
\end{equation*}
$$

- Equation (1) is oscillatory if each solution has infinitely many zeros in $\left[x_{0}, \infty\right)$.
- Equation (1) is oscillatory if each solution has a zero $[a, \infty)$ for each a.
- Equation (1) is oscillatory if each solution has conjugate points on the interval $[a, \infty)$ for each a.
- All definition are equivalent (no accumulation of zeros and Sturm separation theorem).
- Equation is oscillatory if $c(x)$ is large enough. Many oscillation criteria are expressed in terms of the integral $\int^{\infty} c(x) \mathrm{d} x$ (Hille and Nehari type)
- There are oscillation criteria which can detect oscillation even if $\int^{\infty} c(x) \mathrm{d} x$ is extremly small. These criteria are in fact series of conjugacy criteria.

$$
\begin{equation*}
\left(p(t) u^{\prime}\right)^{\prime}+c(t) u+\sum_{i=1}^{m} c_{i}(t)|u|^{\alpha_{i}} \operatorname{sgn} u=e(t) \tag{2}
\end{equation*}
$$

where $\alpha_{1}>\cdots>\alpha_{m}>1>\alpha_{m+1}>\cdots>\alpha_{n}>0$.
Theorem A (Sun,Wong (2007)). If for any $T \geq 0$ there exists $a_{1}, b_{1}, a_{2}, b_{2}$ such that $T \leq a_{1}<$ $b_{1} \leq a_{2}<b_{2}$ and

$$
\begin{cases}c_{i}(t) \geq 0 & t \in\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right], i=1,2, \ldots, n \\ e(x) \leq 0 & t \in\left[a_{1}, b_{1}\right] \\ e(x) \geq 0 & t \in\left[a_{2}, b_{2}\right]\end{cases}
$$

and there exists a continuously differentiable function $u(t)$ satisfying $u\left(a_{i}\right)=u\left(b_{i}\right)=0, u(t) \neq 0$ on $\left(a_{i}, b_{i}\right)$ and

$$
\begin{equation*}
\int_{a_{i}}^{b_{i}}\left\{p(t) u^{\prime 2}(t)-Q(t) u^{2}(t)\right\} \mathrm{d} t \leq 0 \tag{3}
\end{equation*}
$$

for $i=1,2$, where

$$
Q(t)=k_{0}|e(t)|^{\eta_{0}} \prod_{i=1}^{m}\left(c_{i}^{\eta_{i}}(t)\right)+c(t)
$$

$k_{0}=\prod_{i=0}^{m} \eta_{i}^{-\eta_{i}}$ and $\eta_{i}, i=0, \ldots, n$ are positive constants satisfying $\sum_{i=1}^{m} \alpha_{i} \eta_{i}=1 \quad$ and $\quad \sum_{i=0}^{m} \eta_{i}=1$, then all solutions of (2) are oscillatory.

$$
\begin{equation*}
\Delta u+c(x) u=0 \tag{4}
\end{equation*}
$$

- Equation (4) is oscillatory if every solution has a zero on $\left\{x \in \mathbb{R}^{n}:\|x\| \geq a\right\}$ for each a.
- Equation (4) is nodally oscillatory if every solution has a nodal domain on $\left\{x \in \mathbb{R}^{n}:\|x\| \geq a\right\}$ for each a.
- Both definition are equivalent (Moss+Piepenbrink).

$$
\begin{equation*}
\operatorname{div}\left(\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0 \tag{5}
\end{equation*}
$$

- Essentialy the same approach to oscillation as in linear case
- The equivalence between two oscillations is open problem.

$$
\begin{align*}
\operatorname{div}\left(A(x)\|\nabla y\|^{p-2} \nabla y\right) & +\left\langle\vec{b}(x),\|\nabla y\|^{p-2} \nabla y\right\rangle \\
& +c(x)|y|^{p-2} y+\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y=e(x) \tag{E}
\end{align*}
$$

Detection of oscillation from ODE

Theorem B (O. Došly (2001)). Equation

$$
\begin{equation*}
\operatorname{div}\left(\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0 \tag{6}
\end{equation*}
$$

is oscillatory, if the ordinary differential equation

$$
\begin{equation*}
\left(r^{n-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+r^{n-1}\left(\frac{1}{\omega_{n} r^{n-1}} \int_{S(r)} c(x) \mathrm{d} x\right)|u|^{p-2} u=0 \tag{7}
\end{equation*}
$$

is oscillatory. The number ω_{n} is the surface area of the unit sphere in \mathbb{R}^{n}.
J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for $A(x)=a(\|x\|) I, a(\cdot)$ differentiable).

- Extend method used in Theorem A to (E). Derive a general result, like Theorem B.
- Derive a result which does depend on more general expression, than the mean value of $c(x)$ over spheres centered in the origin.
- Remove restrictions used by previous authors (for example Xu (2009) excluded the possibility $p_{i}>p$ for every i).

$$
\begin{align*}
\operatorname{div}\left(A(x)\|\nabla y\|^{p-2} \nabla y\right) & +\left\langle\vec{b}(x),\|\nabla y\|^{p-2} \nabla y\right\rangle \\
& +c(x)|y|^{p-2} y+\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y=e(x) \tag{E}
\end{align*}
$$

- Get rid of terms $\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y$ and $e(x)$ (join with $c(x)|y|^{p-2} y$) and convert the problem into

$$
\operatorname{div}\left(A(x)\|\nabla y\|^{p-2} \nabla y\right)+\left\langle\vec{b}(x),\|\nabla y\|^{p-2} \nabla y\right\rangle+C(x)|y|^{p-2} y=0
$$

- Derive Riccati type inequality in n variables.
- Derive Riccati type inequality in 1 variable.
- Use this inequality as a tool which transforms results from ODE to PDE.

Using generalized AG inequality $\sum \alpha_{i} \geq \prod\left(\frac{\alpha_{i}}{\eta_{i}}\right)^{\eta_{i}}$, if $\alpha_{i} \geq 0, \eta_{i}>0$ and $\sum \eta_{i}=1$ we eliminate the right-hand side and terms with mixed powers.

Lemma 1. Let either $y>0$ and $e(x) \leq 0$ or $y<0$ and $e(x) \geq 0$. Let $\eta_{i}>0$ be numbers satisfying $\sum_{i=0}^{m} \eta_{i}=1$ and $\eta_{0}+\sum_{i=1}^{m} p_{i} \eta_{i}=p$ and let $c_{i}(x) \geq 0$ for every i. Then

$$
\frac{1}{|y|^{p-2} y}\left(-e(x)+\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y\right) \geq C_{1}(x)
$$

where

$$
\begin{equation*}
C_{1}(x):=\left|\frac{e(x)}{\eta_{0}}\right|^{\eta_{0}} \prod_{i=1}^{m}\left(\frac{c_{i}(x)}{\eta_{i}}\right)^{\eta_{i}} \tag{8}
\end{equation*}
$$

Remark: The numbers η_{i} from Lemma 1 exist, if $p_{i}>p$ for some i.
Lemma 2. Suppose $c_{i}(x) \geq 0$. Let $\eta_{i}>0$ be numbers satisfying $\sum_{i=1}^{m} \eta_{i}=1$ and $\sum_{i=1}^{m} p_{i} \eta_{i}=p$. Then

$$
\frac{1}{|y|^{p-2} y} \sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-2} y \geq C_{2}(x)
$$

where

$$
\begin{equation*}
C_{2}(x):=\prod_{i=1}^{m}\left(\frac{c_{i}(x)}{\eta_{i}}\right)^{\eta_{i}} \tag{9}
\end{equation*}
$$

Remark: The numbers η_{i} from Lemma 2 exist iff $p_{i}>p$ for some i and $p_{j}<p$ for some j.

Lemma 3. Let y be a solution of (E) which does not have zero on Ω. Suppose that there exists a function $C(x)$ such that

$$
C(x) \leq c(x)+\sum_{i=1}^{m} c_{i}(x)|y|^{p_{i}-p}-\frac{e(x)}{|y|^{p-2} y}
$$

Denote $\vec{w}(x)=A(x) \frac{\|\nabla y\|^{p-2} \nabla y}{|y|^{p-2} y}$. The function $\vec{w}(x)$ is well defined on Ω and satisfies the inequality

$$
\begin{equation*}
\operatorname{div} \vec{w}+(p-1) \Lambda(x)\|\vec{w}\|^{q}+\left\langle\vec{w}, A^{-1}(x) \vec{b}(x)\right\rangle+C(x) \leq 0 \tag{10}
\end{equation*}
$$

where

$$
\Lambda(x)= \begin{cases}\lambda_{\max }^{1-q}(x) & 1<p \leq 2 \tag{11}\\ \lambda_{\min } \lambda_{\max }^{-q}(x) & p>2\end{cases}
$$

Lemma 4. Let (10) hold. Let $l>1, l^{*}=\frac{l}{l-1}$ be two mutually conjugate numbers and $\alpha \in C^{1}\left(\Omega, \mathbb{R}^{+}\right)$be a smooth function positive on Ω. Then

$$
\begin{aligned}
\operatorname{div}(\alpha(x) \vec{w})+(p-1) \frac{\Lambda(x) \alpha^{1-q}(x)}{l^{*}} & \|\alpha(x) \vec{w}\|^{q} \\
& -\frac{l^{p-1} \alpha(x)}{p^{p} \Lambda^{p-1}(x)}\left\|A^{-1}(x) \vec{b}(x)-\frac{\nabla \alpha(x)}{\alpha(x)}\right\|^{p}+\alpha(x) C(x) \leq 0
\end{aligned}
$$

holds on Ω. If $\left\|A^{-1} \vec{b}-\frac{\nabla \alpha}{\alpha}\right\| \equiv 0$ on Ω, then this inequality holds with $l^{*}=1$.

Theorem 1. Let the n-vector function \vec{w} satisfy inequality

$$
\operatorname{div} \vec{w}+C_{0}(x)+(p-1) \Lambda_{0}(x)\|\vec{w}\|^{q} \leq 0
$$

on $\Omega(a, b)$. Denote $\widetilde{C}(r)=\int_{S(r)} C_{0}(x) \mathrm{d} \sigma$ and $\widetilde{R}(r)=\int_{S(r)} \Lambda_{0}^{1-p} \mathrm{~d} \sigma$. Then the half-linear ordinary differential equation

$$
\left(\widetilde{R}(r)\left|u^{\prime}\right|^{p-2} u\right)^{\prime}+\widetilde{C}(r)|u|^{p-2} u=0, \quad \prime=\frac{\mathrm{d}}{\mathrm{~d} r}
$$

is disconjugate on $[a, b]$ and it possesses solution which has no zero on $[a, b]$.
Theorem 2. Let $l>1$. Let $l^{*}=1$ if $\|\vec{b}\| \equiv 0$ and $l^{*}=\frac{l}{l-1}$ otherwise. Further, let $c_{i}(x) \geq 0$ for every i. Denote

$$
\widetilde{R}(r)=\left(l^{*}\right)^{p-1} \int_{S(r)} \Lambda^{1-p}(x) \mathrm{d} \sigma
$$

and

$$
\widetilde{C}(r)=\int_{S(r)} c(x)+C_{1}(x)-\frac{l^{p-1}}{p^{p} \Lambda^{p-1}(x)}\left\|A^{-1}(x) \vec{b}(x)\right\|^{p} \mathrm{~d} \sigma,
$$

where $\Lambda(x)$ is defined by (11) and $C_{1}(x)$ is defined by (8).
Suppose that the equation

$$
\left(\widetilde{R}(r)\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\widetilde{C}(r)|u|^{p-2} u=0
$$

has conjugate points on $[a, b]$.
If $e(x) \leq 0$ on $\Omega(a, b)$, then equation (E) has no positive solution on $\Omega(a, b)$.
If $e(x) \geq 0$ on $\Omega(a, b)$, then equation (E) has no negative solution on $\Omega(a, b)$.

Theorem 3 (non-radial variant of Theorem 2). Let $l>1$ and let $\Omega \subset \Omega(a, b)$ be an open domain with piecewise smooth boundary such that meas $(\Omega \cap S(r)) \neq 0$ for every $r \in[a, b]$. Let $c_{i}(x) \geq 0$ on Ω for every i and let $\alpha(x)$ be a function which is positive and continuously differentiable on Ω and vanishes on the boundary and outside Ω. Let $l^{*}=1$ if $\left\|A^{-1} \vec{b}-\frac{\nabla \alpha}{\alpha}\right\| \equiv 0$ on Ω and $l^{*}=\frac{l}{l-1}$ otherwise. In the former case suppose also that the integral

$$
\int_{S(r)} \frac{\alpha(x)}{\Lambda^{p-1}(x)}\left\|A^{-1}(x) \vec{b}(x)-\frac{\nabla \alpha(x)}{\alpha(x)}\right\|^{p} \mathrm{~d} \sigma
$$

which may have singularity on $\partial \Omega$ if $\Omega \neq \Omega(a, b)$ is convergent for every $r \in[a, b]$. Denote

$$
\widetilde{R}(r)=\left(l^{*}\right)^{p-1} \int_{S(r)} \alpha(x) \Lambda^{1-p}(x) \mathrm{d} \sigma
$$

and

$$
\widetilde{C}(r)=\int_{S(r)} \alpha(x)\left(c(x)+C_{1}(x)-\frac{l^{p-1}}{p^{p} \Lambda^{p-1}(x)}\left\|A^{-1}(x) \vec{b}(x)-\frac{\nabla \alpha(x)}{\alpha(x)}\right\|^{p}\right) \mathrm{d} \sigma,
$$

where $\Lambda(x)$ is defined by (11) and $C_{1}(x)$ is defined by (8) and suppose that equation

$$
\left(\widetilde{R}(r)\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\widetilde{C}(r)|u|^{p-2} u=0
$$

has conjugate points on $[a, b]$.
If $e(x) \leq 0$ on $\Omega(a, b)$, then equation (E) has no positive solution on $\Omega(a, b)$. If $e(x) \geq 0$ on $\Omega(a, b)$, then equation (E) has no negative solution on $\Omega(a, b)$.

Theorem 4. Let $l, \Omega, \alpha(x), \Lambda(x)$ and $\widetilde{R}(r)$ be defined as in Theorem 3 and let $c_{i}(x) \geq 0$ and $e(x) \equiv 0$ on $\Omega(a, b)$. Denote

$$
\widetilde{C}(r)=\int_{S(r)} \alpha(x)\left(c(x)+C_{2}(x)-\frac{l^{p-1}}{p^{p} \Lambda^{p-1}(x)}\left\|A^{-1}(x) \vec{b}(x)-\frac{\nabla \alpha(x)}{\alpha(x)}\right\|^{p}\right) \mathrm{d} \sigma
$$

where $C_{2}(x)$ is defined by (9). If the equation

$$
\left(\widetilde{R}(r)\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\widetilde{C}(r)|u|^{p-2} u=0
$$

has conjugate points on $[a, b]$, then every solution of equation (E) has zero on $\Omega(a, b)$.

Similar theorems can be derived also for estimates of terms with mixed powers based on different methods than AG inequality (see R. M., Nonlinear Analysis TMA 73 (2010)).

Conjugacy criteria for half-linear ODE
with generalized p-Laplacia generalized p-Laplacia
and mixed powers

Robert Maik
Dpe. ot Mathematics
Mendel Unierasiy

- 9 is 2 conjugre number to the number p. i.e. $q-\frac{p}{p-1}$.

-

inta \quad dv $\left(A(x)|\nabla y|^{P^{-2} \nabla y}\right)+\left.\left\langle\left[(x)|\nabla y|^{\beta-2} \nabla y\right\rangle+C(x)\right| y\right|^{-2} \mid y=0$.

- Derreve Ricati gpee imquater in I vanables

astemary diflerential equmition

where $C_{2}(x)$ क sedfinued by ($)$. Wr the equatian

$$
\left(R(\gamma) \mid u^{q} p^{-2} \alpha\right)^{\prime}+\left.\dot{C}(\gamma)|\alpha|\right|^{-2} x^{-2}-0
$$

R(r)||n

