Conjugacy criteria for half-linear ODE in theory of PDE with generalized *p*-Laplacian and mixed powers

Robert Mařík

Dpt. of Mathematics Mendel University Brno, CZ

- $x = (x_1, \ldots, x_n)_{i=1}^n \in \mathbb{R}^n, p > 1, p_i > 1,$
- A(x) is elliptic $n \times n$ matrix with differentiable components, c(x) and $c_i(x)$ are Hölder continuous functions, $\vec{b}(x) = (b_1(x), \dots, b_n(x))$ is continuous n-vector function,
- $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)_{i=1}^n$ and $\operatorname{div} = \frac{\partial}{\partial x_1} + \dots + \frac{\partial}{\partial x_n}$ is are the usual nabla and divergence operators,
- q is a conjugate number to the number p, i.e., $q = \frac{p}{p-1}$,
- $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^n , $\| \cdot \|$ is the usual norm in \mathbb{R}^n , $\| A \| = \sup \{ \|Ax\| : x \in \mathbb{R}^n \text{ with } \|x\| = 1 \} = \lambda_{\max}$ is the spectral norm
- **solution** of (E) in $\Omega \subseteq \mathbb{R}^n$ is a differentiable function u(x) such that $A(x)\|\nabla u(x)\|^{p-2}\nabla u(x)$ is also differentiable and u satisfies (E) in Ω
- $S(a) = \{x \in \mathbb{R}^n : ||x|| = a\},\$ $\Omega(a) = \{x \in \mathbb{R}^n : a \le ||x||\},\$ $\Omega(a,b) = \{x \in \mathbb{R}^n : a \le ||x|| \le b\}$

$$u'' + c(x)u = 0 \tag{1}$$

- Equation (1) is oscillatory if each solution has infinitely many zeros in $[x_0, \infty)$.
- Equation (1) is oscillatory if each solution has a zero $[a, \infty)$ for each a.
- Equation (1) is oscillatory if each solution has conjugate points on the interval $[a, \infty)$ for each a.
- All definition are equivalent (no accumulation of zeros and Sturm separation theorem).
- Equation is oscillatory if c(x) is large enough. Many oscillation criteria are expressed in terms of the integral $\int_{-\infty}^{\infty} c(x) dx$ (Hille and Nehari type)
- There are oscillation criteria which can detect oscillation even if $\int_{-\infty}^{\infty} c(x) dx$ is extremly small. These criteria are in fact series of conjugacy criteria.

$$(p(t)u')' + c(t)u + \sum_{i=1}^{m} c_i(t)|u|^{\alpha_i} \operatorname{sgn} u = e(t)$$
 (2)

where $\alpha_1 > \cdots > \alpha_m > 1 > \alpha_{m+1} > \cdots > \alpha_n > 0$.

Theorem A (Sun,Wong (2007)). If for any $T \ge 0$ there exists a_1 , b_1 , a_2 , b_2 such that $T \le a_1 < b_1 \le a_2 < b_2$ and

$$\begin{cases} c_i(t) \geq 0 & t \in [a_1,b_1] \cup [a_2,b_2], \ i=1,2,\ldots,n \\ e(x) \leq 0 & t \in [a_1,b_1] \\ e(x) \geq 0 & t \in [a_2,b_2] \end{cases}$$
 there exists a continuously differentiable function $u(t)$ satisfying $u(a_i) = u(b_i) = 0$, $u(t) = 0$

and there exists a continuously differentiable function u(t) satisfying $u(a_i) = u(b_i) = 0$, $u(t) \neq 0$ on (a_i, b_i) and

$$\int_{a_i}^{b_i} \left\{ p(t)u'^2(t) - Q(t)u^2(t) \right\} dt \le 0$$
 (3)

for i = 1, 2, where

$$Q(t) = k_0 |e(t)|^{\eta_0} \prod_{i=1}^{m} \left(c_i^{\eta_i}(t) \right) + c(t),$$

$$k_0 = \prod_{i=0}^m \eta_i^{-\eta_i}$$
 and η_i , $i = 0, ..., n$ are positive constants satisfying $\sum_{i=1}^m \alpha_i \eta_i = 1$ and $\sum_{i=0}^m \eta_i = 1$, then all solutions of (2) are oscillatory.

$$\Delta u + c(x)u = 0 \tag{4}$$

- Equation (4) is oscillatory if every solution has a zero on $\{x \in \mathbb{R}^n : ||x|| \ge a\}$ for each a.
- Equation (4) is *nodally oscillatory* if every solution has a nodal domain on $\{x \in \mathbb{R}^n : ||x|| \ge a\}$ for each a.
- Both definition are equivalent (Moss+Piepenbrink).

CONCEPT OF OSCILLATION FOR HALF-LINEAR PDE

$$\operatorname{div}\left(\|\nabla u\|^{p-2}\,\nabla u\right) + c(x)|u|^{p-2}u = 0\tag{5}$$

- Essentialy the same approach to oscillation as in linear case
- The equivalence between two oscillations is open problem.

$$\operatorname{div}\left(A(x) \|\nabla y\|^{p-2} \nabla y\right) + \left\langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y\right\rangle + c(x)|y|^{p-2}y + \sum_{i=1}^{m} c_i(x)|y|^{p_i-2}y = e(x),$$
(E)

Theorem B (O. Došlý (2001)). *Equation*
$$\operatorname{div}(\|\nabla u\|^{p-2}\nabla u) + c(x)|u|^{p-2}u = 0$$
 (6)

DETECTION OF OSCILLATION FROM ODE

is oscillatory, if the ordinary differential equation

$$\left(r^{n-1}|u'|^{p-2}u'\right)' + r^{n-1}\left(\frac{1}{\omega_n r^{n-1}} \int_{S(r)} c(x) \, dx\right) |u|^{p-2}u = 0 \tag{7}$$

is oscillatory. The number ω_n is the surface area of the unit sphere in \mathbb{R}^n .

J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for $A(x) = a(\|x\|)I$, $a(\cdot)$ differentiable).

- Extend method used in Theorem A to (E). Derive a general result, like Theorem B.
- ullet Derive a result which does depend on more general expression, than the mean value of c(x) over spheres centered in the origin.
- Remove restrictions used by previous authors (for example Xu (2009) excluded the possibility $p_i > p$ for every i).

$$\operatorname{div}\left(A(x) \|\nabla y\|^{p-2} \nabla y\right) + \left\langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y\right\rangle + c(x)|y|^{p-2}y + \sum_{i=1}^{m} c_i(x)|y|^{p_i-2}y = e(x),$$
(E)

Modus operandi

- Get rid of terms $\sum_{i=1}^m c_i(x)|y|^{p_i-2}y$ and e(x) (join with $c(x)|y|^{p-2}y$) and convert the problem into $\operatorname{div}\left(A(x)\|\nabla y\|^{p-2}\nabla y\right)+\left\langle \vec{b}(x),\|\nabla y\|^{p-2}\nabla y\right\rangle+C(x)|y|^{p-2}y=0.$
- Derive Riccati type inequality in *n* variables.
- Derive Riccati type inequality in 1 variable.
- Use this inequality as a tool which transforms results from ODE to PDE.

Using generalized AG inequality $\sum \alpha_i \geq \prod \left(\frac{\alpha_i}{n_i}\right)^{\eta_i}$, if $\alpha_i \geq 0$, $\eta_i > 0$ and $\sum \eta_i = 1$ we eliminate the right-hand side and terms with mixed powers.

Lemma 1. Let either y > 0 and $e(x) \le 0$ or y < 0 and $e(x) \ge 0$. Let $\eta_i > 0$ be numbers satisfying $\sum_{i=0}^m \eta_i = 1$ and $\eta_0 + \sum_{i=0}^m p_i \eta_i = p$ and let $c_i(x) \geq 0$ for every i. Then

$$\frac{1}{|y|^{p-2}y}\left(-e(x) + \sum_{i=1}^m c_i(x)|y|^{p_i-2}y\right) \ge C_1(x),$$

where

$$C_1(x):=\left|rac{e(x)}{\eta_0}
ight|^{\eta_0}\prod_{i=1}^m\left(rac{c_i(x)}{\eta_i}
ight)^{\eta_i}$$
 .

Remark: The numbers η_i from Lemma 1 exist, if $p_i > p$ for some i.

Lemma 2. Suppose $c_i(x) \geq 0$. Let $\eta_i > 0$ be numbers satisfying $\sum_{i=1}^{m} \eta_i = 1$ and $\sum_{i=1}^{m} p_i \eta_i = p$.

Then
$$\frac{1}{|y|^{p-2}y}\sum_{i=1}^m c_i(x)|y|^{p_i-2}y\geq C_2(x),$$

where

where
$$C_2(x) := \prod_{i=1}^m \left(rac{c_i(x)}{n_i}
ight)^{\eta_i}$$

(9)

(8)

Lemma 3. Let y be a solution of (E) which does not have zero on Ω . Suppose that there exists a function C(x) such that

$$C(x) \le c(x) + \sum_{i=1}^{m} c_i(x) |y|^{p_i - p} - \frac{e(x)}{|y|^{p-2}y}$$

Denote $\vec{w}(x) = A(x) \frac{\|\nabla y\|^{p-2} \nabla y}{\|y\|^{p-2} y}$. The function $\vec{w}(x)$ is well defined on Ω and satisfies the inequality

div
$$\vec{w} + (p-1)\Lambda(x) \|\vec{w}\|^q + \left\langle \vec{w}, A^{-1}(x)\vec{b}(x) \right\rangle + C(x) \le 0$$
 (10)

where

$$\Lambda(x) = \begin{cases} \lambda_{\max}^{1-q}(x) & 1 2. \end{cases}$$
 (11)

Lemma 4. Let (10) hold. Let $l > 1$, $l^* = \frac{l}{l-1}$ be two mutually conjugate numbers and

 $\alpha \in C^1(\Omega, \mathbb{R}^+)$ be a smooth function positive on Ω . Then $\operatorname{div}(\alpha(x)\vec{w}) + (p-1)\frac{\Lambda(x)\alpha^{1-q}(x)}{I^*} \|\alpha(x)\vec{w}\|^q$

$$\frac{\operatorname{div}(\alpha(x)w) + (p-1) \frac{1}{l^*}}{l^*} \|\alpha(x)w\|^{r} - \frac{l^{p-1}\alpha(x)}{p^{p}\Lambda^{p-1}(x)} \|A^{-1}(x)\vec{b}(x) - \frac{\nabla\alpha(x)}{\alpha(x)}\|^{p} + \alpha(x)C(x) \le 0$$

holds on Ω . If $\left\|A^{-1}\vec{b} - \frac{\nabla \alpha}{\alpha}\right\| \equiv 0$ on Ω , then this inequality holds with $l^* = 1$.

(11)

Theorem 1. Let the *n*-vector function \vec{w} satisfy inequality

$$\operatorname{div} \vec{w} + C_0(x) + (p-1)\Lambda_0(x) \|\vec{w}\|^q \le 0$$

on $\Omega(a,b)$. Denote $\widetilde{C}(r)=\int_{S(r)}C_0(x)\,\mathrm{d}\sigma$ and $\widetilde{R}(r)=\int_{S(r)}\Lambda_0^{1-p}\,\mathrm{d}\sigma$. Then the half-linear ordinary differential equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u\right)'+\widetilde{C}(r)|u|^{p-2}u=0, \qquad '=\frac{\mathrm{d}}{\mathrm{d}r}$$

is disconjugate on [a,b] and it possesses solution which has no zero on [a,b].

Theorem 2. Let l > 1. Let $l^* = 1$ if $\|\vec{b}\| \equiv 0$ and $l^* = \frac{l}{l-1}$ otherwise. Further, let $c_i(x) \geq 0$ for every i. Denote

$$\widetilde{R}(r) = (l^*)^{p-1} \int_{S(r)} \Lambda^{1-p}(x) d\sigma$$

and

$$\widetilde{C}(r) = \int_{S(r)} c(x) + C_1(x) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(x)} \|A^{-1}(x)\vec{b}(x)\|^p d\sigma,$$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (8). Suppose that the equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)' + \widetilde{C}(r)|u|^{p-2}u = 0$$

CDDEA 2010, Rajecké Teplice (10/12)

has conjugate points on [a,b]. If $e(x) \leq 0$ on $\Omega(a,b)$, then equation (E) has no positive solution on $\Omega(a,b)$. If $e(x) \geq 0$ on $\Omega(a,b)$, then equation (E) has no negative solution on $\Omega(a,b)$.

Theorem 3 (non-radial variant of Theorem 2). Let l > 1 and let $\Omega \subset \Omega(a,b)$ be an open domain with piecewise smooth boundary such that meas $(\Omega \cap S(r)) \neq 0$ for every $r \in [a,b]$. Let $c_i(x) \geq 0$

on Ω for every i and let $\alpha(x)$ be a function which is positive and continuously differentiable on Ω and vanishes on the boundary and outside Ω . Let $l^*=1$ if $\left\|A^{-1}\vec{b}-\frac{\nabla \alpha}{\alpha}\right\|\equiv 0$ on Ω and

 $l^* = \frac{l}{l-1}$ otherwise. In the former case suppose also that the integral

$$\int_{S(r)} \frac{\alpha(x)}{\Lambda^{p-1}(x)} \left\| A^{-1}(x) \vec{b}(x) - \frac{\nabla \alpha(x)}{\alpha(x)} \right\|^{p} d\sigma$$

which may have singularity on $\partial\Omega$ if $\Omega \neq \Omega(a,b)$ is convergent for every $r \in [a,b]$. Denote

$$\widetilde{R}(r) = (l^*)^{p-1} \int_{S(r)} \alpha(x) \Lambda^{1-p}(x) d\sigma$$

and

$$\widetilde{C}(r) = \int_{S(r)} \alpha(x) \left(c(x) + C_1(x) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(x)} \left\| A^{-1}(x) \vec{b}(x) - \frac{\nabla \alpha(x)}{\alpha(x)} \right\|^p \right) d\sigma,$$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (8) and suppose that equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)' + \widetilde{C}(r)|u|^{p-2}u = 0$$

has conjugate points on [a,b].

If $e(x) \leq 0$ on $\Omega(a,b)$, then equation (E) has no positive solution on $\Omega(a,b)$. If $e(x) \geq 0$ on $\Omega(a,b)$, then equation (E) has no negative solution on $\Omega(a,b)$.

Theorem 4. Let l, Ω , $\alpha(x)$, $\Lambda(x)$ and $\widetilde{R}(r)$ be defined as in Theorem 3 and let $c_i(x) \geq 0$ and $e(x) \equiv 0$ on $\Omega(a,b)$. Denote

$$\widetilde{C}(r) = \int_{S(r)} \alpha(x) \left(c(x) + C_2(x) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(x)} \left\| A^{-1}(x) \overrightarrow{b}(x) - \frac{\nabla \alpha(x)}{\alpha(x)} \right\|^p \right) d\sigma,$$

where $C_2(x)$ is defined by (9). If the equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)'+\widetilde{C}(r)|u|^{p-2}u=0$$

has conjugate points on [a,b], then every solution of equation (E) has zero on $\Omega(a,b)$.

Similar theorems can be derived also for estimates of terms with mixed powers based on different methods than AG inequality (see R. M., Nonlinear Analysis TMA 73 (2010)).

u'' + c(x)u = 0(E) $(p(t)u')'+c(t)u+\sum_{i=1}^mc_i(t)|u|^{\alpha_i}\operatorname{sgn}u=e(t)$ $+c(x)(y)^{p-2}y+\sum_{i=1}^{m}c_{i}(x)(y)^{p_{i}-2}y=e(x)$ Conjugacy criteria for half-linear ODE in theory of PDE Equation (1) is oscillatory if each solution has infinitely many zeros in [x₀, ∞). where $a_1 > \cdots > a_m > 1 > a_{m+1} > \cdots > a_n > 0$. with generalized p-Laplacian Equation (1) is oscillatory if each solution has a zero $[a,\infty)$ for each a• $x = (x_1, ..., x_n)_{i=1}^n \in \mathbb{R}^n, p > 1, p_i > 1,$ **Theorem A** (Sun, Wong (2007)). If for any $T \ge 0$ there exists a_1, b_1, a_2, b_2 such that $T \le a_1 < 0$ and mixed powers \bullet Equation (1) is oscillatory if each solution has conjugate points on the interval $[a,\infty)$ for each • A(x) is elliptic $n \times n$ matrix with differentiable components, c(x) and $c_i(x)$ are Mülder one $\{c_i(t) \geq 0 \mid t \in [a_1,b_1] \cup [a_2,b_2], i = 1,2,...,n$ tinuous functions. $b(x) = (b_1(x),...,b_n(x))$ is continuous in-vector function. Robert Malik • $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)_{i=1}^n$ and $\operatorname{div} = \frac{\partial}{\partial x_1} + \dots + \frac{\partial}{\partial x_n}$ is are the usual nabla and divergence Det of Mathematics ullet Equation is oscillatory if c(x) is large enough. Many oscillation criteria are expressed in terms county differentiable function u(t) satisfying $u(a_i)=u(b_i)=0, \, u(t)\neq 0$ Mendel University of the integral $\int_{-\infty}^{\infty} c(x) dx$ (Mille and Nehari type) Brno, CZ • q is a conjugate number to the number p, i.e., $q = \frac{p}{n-1}$ $\int^{b_1} \left\{ p(t) u'^2(t) - Q(t) u^2(t) \right\} dt \le 0$ • There are oscillation criteria which can detect oscillation even if $\int^\infty c(x)\,dx$ is extremly small. • (c) is the usual scalar product in R*. [-] is the usual norm in R*. [A] = for i = 1.2, where These criteria are in fact series of conjugacy criteria. $\sup \left\{ \|Ax\| : x \in \mathbb{R}^n \text{ with } \|x\| = 1 \right\} = \lambda_{\max} \text{ is the spectral norm}$ $Q(t) = k_0 |c(t)|^{\eta_0} \prod_{i=1}^m \left(c_i^{\eta_i}(t)\right) + c(t),$ • solution of (t) in $\Omega \subseteq \mathbb{R}^n$ is a differentiable function u(x) such that $A(x)\|\nabla u(x)\|^{p-2}\nabla u(x)$ is also differentiable and u satisfies (t) in Ω $k_0 = \prod_i \eta_i^{-\eta_i} \text{ and } \eta_i, \ i = 0, \dots, n \text{ are positive constants satisfying } \sum_i \alpha_i \eta_i = 1 \quad \text{and} \quad \sum_i \eta_i = 1,$ • $S(a) = \{x \in \mathbb{R}^n : ||x|| = a\},$ $\Omega(a) = \{x \in \mathbb{R}^n : a \le ||x||\},$ $\Omega(a,b) = \{x \in \mathbb{R}^n : a \le ||x|| \le b\}$ then all solutions of (2) are oscillatory. Using generalized AG inequality $\sum a_i \ge \prod \left(\frac{a_i}{n}\right)^{q_i}$, if $a_i \ge 0$, $q_i > 0$ and $\sum q_i = 1$ we eliminate (2) $\Delta u + c(x)u = 0$ $+ c(x)(y)^{p-2}y + \sum_{i=1}^{m} c_i(x)(y)^{p_i-2}y = e(x)^{p_i-2}y$ (E) $+ \epsilon(x)|y|^{p-2}y + \sum_{i=1}^{m} \epsilon_i(x)|y|^{pi-2}y = \epsilon(x)$ Lemma 1. Let either y > 0 and $e(x) \le 0$ or y < 0 and $e(x) \ge 0$. Let $\eta_i > 0$ be numbers satisfying • Equation (4) is oscillatory if every solution has a zero on $\{x\in\mathbb{R}^n:\|x\|\geq a\}$ for each a. $\sum_{i=1}^{m}\eta_i=1$ and $\eta_0+\sum_{i=1}^{m}p_i\eta_i=p$ and let $c_i(x)\geq 0$ for every i . Then Fountion (4) is notally oscillatory if many solution has a notal domain on (v ∈ Bⁿ · | v | > a). $\frac{1}{|u|^{p-2}u}\left(-e(x)+\sum_{i=1}^{m}c_{i}(x)|y|^{p_{i}-2}y\right)\geq C_{1}(x),$ $dy(||\nabla u||^{p-2}\nabla u) + c(x)|u|^{p-2}u = 0$ (6) . Both definition are equivalent (Moss+Piepenbrink). \bullet Get rid of terms $\sum c_i(x)(y|^{p_i-2}y$ and c(x) (join with $c(x)(y|^{p-2}y)$ and convert the problem is ascillatory if the ordinary differential equation $C_1(x) := \left| \frac{\sigma(x)}{\eta_0} \right|^{\eta_0} \prod_{i=1}^m \left(\frac{c_i(x)}{\eta_i} \right)$ $\left(r^{n-1}|u'|^{p-2}u'\right)'+r^{n-1}\left(\frac{1}{\omega_0r^{n-1}}\int_{S(r)}c(x)\ dx\right)|u|^{p-2}u=0$ (7) $\operatorname{div}\left(A(x)\left\|\nabla y\right\|^{p-2}\nabla y\right)+\left(\widetilde{b}(x),\left\|\nabla y\right\|^{p-2}\nabla y\right)+C(x)\|y|^{p-2}y=0.$ $\operatorname{div}\!\left(\|\nabla u\|^{p-2}\,\nabla u\right)+c(x)|u|^{p-2}u=0$ (5) · Derive Worsel tune inequality in a variables is oscillators. The number ω_{-} is the surface area of the unit sphere in \mathbb{R}^{n} Remark: The numbers in from Lemma 1 exist. If it, > it for some a . Essentially the same approach to oscillation as in linear case Jarol, T. Kusano and N. Yoshida proved independently similar result (for A(x) = a(||x||)I, $a(\cdot)$ Lemma 2. Suppose $c_i(x) \ge 0$. Let $\eta_i > 0$ be numbers satisfying $\sum_{i=1}^{m} \eta_i = 1$ and $\sum_{i=1}^{m} p_i \eta_i = p$. . The equivalence between two oscillations is open problem. Use this inequality as a tool which transforms results from ODE to PDE $\frac{1}{|y|^{p-2}y}\sum_{i}^{m}c_{i}(x)|y|^{p_{i}-2}y \ge C_{2}(x),$ • Extend method used in Theorem A to (E). Derive a general result, like Theorem B. ullet Derive a result which does depend on more general expression, than the mean value of c(x) $C_2(x) := \prod_i \left(\frac{c_i(x)}{\pi_i} \right)^i$ Remove restrictions used by previous authors (for example Xu (2009) excluded the possibility The numbers η_i from Lemma 2 exist iff $p_i > p$ for some i and $p_i < p$ for some j. mma 3. Let v be a solution of (E) which does not have zero on (1). Suppose that there exists Theorem 1. Let the n-vector function if satisfy inequality green 3 (non-radial variant of Theorem 2). Let l > 1 and let $\Omega \subset \Omega(a,b)$ be an open domain Theorem 4. Let I, Ω , a(x), $\Lambda(x)$ and $\tilde{E}(r)$ be defined as in Theorem 3 and let $c_i(x) \ge 0$ and wise amough boundary such that meas $(\Omega \cap S(r)) \neq 0$ for every $r \in [a,b]$. Let $c_i(x) \geq 0$ $\operatorname{div} \operatorname{div} + C_0(x) + (p-1)\Lambda_0(x) \|\operatorname{div}\|^q \leq 0$ on Ω for every i and let a(x) be a function which is positive and continuously differentiable or $C(x) \le c(x) + \sum_{i=1}^{m} c_i(x)|y|^{p_i-p} - \frac{c(x)}{|y|^{p-2}y}$ $\tilde{C}(r) = \int_{B(r)} a(x) \left(c(x) + C_2(x) - \frac{b^{r-1}}{b^r A^{r-1}(x)} \left\| A^{-1}(x) \tilde{F}(x) - \frac{\nabla a(x)}{a(x)} \right\|^p \right) d\sigma.$ so $\Omega(a,b)$. Denote $\tilde{C}(r)=\int_{a(a)}C_0(x)\,dr$ and $\tilde{R}(r)=\int_{a(a)}\Lambda_0^{1-p}\,dr$. Then the half-linear Ω and vanishes on the boundary and cutside Ω . Let I' = 1 if $\left|A^{-1}b - \frac{\nabla a}{a}\right| = 0$ on Ω and Denote $d(x) = A(x) \frac{\|\nabla y\|^{p-2} \nabla y}{\|dy^{p-2}\|}$. The function d(x) is well defined on Ω and satisfies the where $C_2(x)$ is defined by (9). If the equation atherwise. In the former case suppose also that the integral $(\tilde{R}(r)|u'|^{p-2}u)' + \tilde{C}(r)|u|^{p-2}u = 0, \quad ' = \frac{d}{}$ $\left(\widetilde{R}(r)|u'|^{p-2}u'\right)'+\widetilde{C}(r)|u|^{p-2}u=0$ $\int_{Br} \frac{a(x)}{\Lambda^{p-1}(x)} \left\| A^{-1}(x) \vec{b}(x) - \frac{\nabla a(x)}{a(x)} \right\|^p d\sigma$ $G(x) + (y - 1)\Lambda(x) \|g\|^{q} + \langle g, A^{-1}(x)\tilde{g}(x) \rangle + C(x) < 0$ is disconjugate on [a, b] and it possesses solution which has no zero on [a, b]. has conjugate points on [a,b], then every solution of equation (£) has zero on $\Omega(a,b)$. (10) Theorem 2. Let l > 1. Let $l^* = 1$ if ||S|| = 0 and $l^* = \frac{l}{l-1}$ otherwise. Further, let $c_i(x) \ge 0$ which may have singularity on $\partial\Omega$ if $\Omega\not\equiv\Omega(a,b)$ is convergent for every $r\in[a,b]$. Denote $A(x) = \begin{cases} \lambda_{min}^{1-q}(x) & 1 2. \end{cases}$ (11) $\widetilde{R}(r) = (f')^{p-1} \int_{\mathbb{R}^n} a(x) \Lambda^{1-p}(x) \, d\sigma$

 $\tilde{C}(r) = \int_{\mathbb{R}[r]} \mathbf{\alpha}(\mathbf{z}) \left(c(x) + C_1(x) - \frac{p^{p-1}}{p^p A^{p-1}(x)} \left\| A^{-1}(x) \tilde{b}(x) - \frac{\nabla a(x)}{a(x)} \right\|^p \right) \, \mathrm{d}r,$

 $\left(\tilde{R}(r)|u'|^{p-2}u'\right)'+\tilde{C}(r)|u|^{p-2}u=0$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (1) and suppose that equation

We (x) \leq 0 on $\Omega(a,b)$, then equation (E) has no positive solution on $\Omega(a,b)$. We (x) \geq 0 on $\Omega(a,b)$, then equation (E) has no negative solution on $\Omega(a,b)$

has conjugate points on [s,b].

Similar theorems can be derived also for estimates of terms with mixed

powers based on different methods than AG inequality (see R. M., Nonlinear Assalesis TMA 73 (2009)).

 $\widetilde{R}(r) = (I^*)^{p-1} \int_{u(s)} \Lambda^{1-p}(u) dv$

 $\widetilde{C}(r) = \int_{\mathcal{S}(r)} c(x) + C_1(x) - \frac{\mathcal{Y}^{-1}}{p^p \Lambda^{p-1}(x)} \left\| A^{-1}(x) \widetilde{b}(x) \right\|^p \, \mathrm{d} r,$

 $(\tilde{R}(r)|u'|^{p-2}u')' + \tilde{C}(r)|u|^{p-2}u = 0$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (8).

If $e(x) \le 0$ on $\Omega(x,b)$, then equation (ii) has no positive solution on $\Omega(x,b)$. If $e(x) \ge 0$ on $\Omega(x,b)$, then equation (iii) has no negative solution on $\Omega(x,b)$.

Lemma 4. Let (10) hold. Let l > 1, $l^* = \frac{l}{l-1}$, be two mutually conjugate numbers and

holds on Ω . If $\left\|A^{-1}\vec{b} - \frac{\nabla x}{a}\right\| = 0$ on Ω , then this inequality holds with $l^* = 1$.

 $-\frac{\delta^{p-1}a(x)}{\mu^{p}\Lambda^{p-1}(x)}\left\|A^{-1}(x)b(x) - \frac{\nabla a(x)}{a(x)}\right\|^{p} + a(x)C(x) \le 0$

 $a \in C^1(\Omega, \mathbb{R}^+)$ be a smooth function positive on Ω . Then $\operatorname{div}(a(x)dt) + (p-1)\frac{\Lambda(x)a^{1-p}(x)}{n}\|a(x)dt\|^q$