Solutions to the exercises, specified in the example of the ExSol package

Walter Daems

June 4, 2016

Exercise 2-1: Solve the following equation for $x \in C$, with C the set of complex numbers:

$$
\begin{equation*}
5 x^{2}-3 x=5 \tag{1}
\end{equation*}
$$

Solution: Let's start by rearranging the equation, a bit:

$$
\begin{align*}
5.7 x^{2}-3.1 x & =5.3 \tag{2}\\
5.7 x^{2}-3.1 x-5.3 & =0 \tag{3}
\end{align*}
$$

The equation is now in the standard form:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{4}
\end{equation*}
$$

For quadratic equations in the standard form, we know that two solutions exist:

$$
\begin{equation*}
x_{1,2}=\frac{-b \pm \sqrt{d}}{2 a} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
d=b^{2}-4 a c \tag{6}
\end{equation*}
$$

If we apply this to our case, we obtain:

$$
\begin{equation*}
d=(-3.1)^{2}-4 \cdot 5.7 \cdot(-5.3)=130.45 \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{1}=\frac{3.1+\sqrt{130.45}}{11.4}=1.27 \tag{8}\\
& x_{2}=\frac{3.1-\sqrt{130.45}}{11.4}=-0.73 \tag{9}
\end{align*}
$$

The proposed values $x=x_{1}, x_{2}$ are solutions to the given equation.
Exercise 2-2: Consider a 2-dimensional vector space equipped with a Euclidean distance function. Given a right-angled triangle, with the sides A and B adjacent to the right angle having lengths, 3 and 4, calculate the length of the hypotenuse, labeled C.

Solution: This calls for application of Pythagoras' theorem, which tells us:

$$
\begin{equation*}
\|A\|^{2}+\|B\|^{2}=\|C\|^{2} \tag{10}
\end{equation*}
$$

and therefore:

$$
\begin{align*}
\|C\| & =\sqrt{\|A\|^{2}+\|B\|^{2}} \tag{11}\\
& =\sqrt{3^{2}+4^{2}} \tag{12}\\
& =\sqrt{25}=5 \tag{13}
\end{align*}
$$

Therefore, the length of the hypotenuse equals 5 .

