%% %% This is file `example-external.tex', %% generated with the docstrip utility. %% %% The original source files were: %% %% exsol.dtx (with options: `example-external') %% %% This is a generated file. %% %% Copyright (C) 2019 by Walter Daems %% %% This file may be distributed and/or modified under the conditions of %% the LaTeX Project Public License, either version 1.3 of this license %% or (at your option) any later version. The latest version of this %% license is in: %% %% http://www.latex-project.org/lppl.txt %% %% and version 1.3 or later is part of all distributions of LaTeX version %% 2005/12/01 or later. %% \documentclass[a4paper,10pt]{article} \usepackage{a4wide} \usepackage[english]{babel} \usepackage[external]{exsol} \title{External example, from the \textsf{ExSol} package} \author{Walter Daems} \setlength{\parindent}{0em} \begin{document} \maketitle \section{Introduction} In this text we explain how to solve second-order polynomial equations. \section{Solving second-order polynomial equations} \begin{informulacollectiononly} \section*{Solving second-order polynomial equations} \end{informulacollectiononly} \begin{informulacollection} The roots of the following equation \begin{equation} a x^2 + bx + c = 0 \end{equation} can be determined as: \begin{equation} x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a} \end{equation} \end{informulacollection} \begin{exercises}[columns = 2] \begin{exercise} Solve the following equation for $x \in C$, with $C$ the set of complex numbers: \begin{equation} 5 x^2 -3 x = 5 \end{equation} \end{exercise} \begin{solution} Let's start by rearranging the equation, a bit: \begin{eqnarray} 5.7 x^2 - 3.1 x &=& 5.3\\ 5.7 x^2 - 3.1 x -5.3 &=& 0 \end{eqnarray} The equation is now in the standard form: \begin{equation} a x^2 + b x + c = 0 \end{equation} For quadratic equations in the standard form, we know that two solutions exist: \begin{equation} x_{1,2} = \frac{ -b \pm \sqrt{d}}{2a} \end{equation} with \begin{equation} d = b^2 - 4 a c \end{equation} If we apply this to our case, we obtain: \begin{equation} d = (-3.1)^2 - 4 \cdot 5.7 \cdot (-5.3) = 130.45 \end{equation} and \begin{eqnarray} x_1 &=& \frac{3.1 + \sqrt{130.45}}{11.4} = 1.27\\ x_2 &=& \frac{3.1 - \sqrt{130.45}}{11.4} = -0.73 \end{eqnarray} The proposed values $x = x_1, x_2$ are solutions to the given equation. \end{solution} \begin{exercise} Consider a 2-dimensional vector space equipped with a Euclidean distance function. Given a right-angled triangle, with the sides $A$ and $B$ adjacent to the right angle having lengths, $3$ and $4$, calculate the length of the hypotenuse, labeled $C$. \end{exercise} \begin{solution} This calls for application of Pythagoras' theorem, which tells us: \begin{equation} \left\|A\right\|^2 + \left\|B\right\|^2 = \left\|C\right\|^2 \end{equation} and therefore: \begin{eqnarray} \left\|C\right\| &=& \sqrt{\left\|A\right\|^2 + \left\|B\right\|^2}\\ &=& \sqrt{3^2 + 4^2}\\ &=& \sqrt{25} = 5 \end{eqnarray} Therefore, the length of the hypotenuse equals $5$. \end{solution} \end{exercises} And now, we can come to conclusion. \section{Conclusion} Solving second-order polynomial equations is very easy. \end{document} \endinput %% %% End of file `example-external.tex'.