The HTEX3 Sources

The BTEX3 Project”

March 7, 2011

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for ITEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level IXTEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of N TEX 2¢. In time,
a I¥TEX3 format will be produced based on this code. This allows the code to be
used in BTEX 2¢ packages now while a stand-alone TREX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*Frank Mittelbach, Denys Duchier, Chris Rowley, Rainer Schopf, Johannes Braams, Michael Downes,
David Carlisle, Alan Jeffrey, Morten Hggholm, Thomas Lotze, Javier Bezos, Will Robertson, Joseph
Wright

Contents

I Introduction to expl3 and this document

1 Naming functions and variables

1.0.1 Terminological inexactitude

2 Documentation conventions

I The I13names package: A systematic naming scheme for

TEX
3 Setting up the B*TEX3 programming language

4 Using the modules

IIT The I3basics package: Basic Definitions

5 Predicates and conditionals
5.1 Primitive conditionals o L

5.2 Non-primitive conditionals oL,
6 Control sequences

7 Selecting and discarding tokens from the input stream
7.1 Extending the interface L o oL

7.2 Selecting tokens from delimited arguments
8 That which belongs in other modules but needs to be defined earlier

9 Defining functions
9.1 Defining new functions using primitive parameter text
9.2 Defining new functions using the signature
9.3 Defining functions using primitive parameter text

9.4 Defining functions using the signature (no checks)

ii

12

12
14
14

15

9.5 Undefining functions 22

9.6 Copying function definitions oL 22
9.7 Imternal functions Lo 23
10 The innards of a function 24
11 Grouping and scanning 25
12 Checking the engine 25

IV The 13expan package: Controlling Expansion of Function

Arguments 25
13 Brief overview 26
14 Defining new variants 26

14.1 Methods for defining variants 27
15 Introducing the variants 28
16 Manipulating the first argument 29
17 Manipulating two arguments 30
18 Manipulating three arguments 31
19 Preventing expansion 31
20 Unbraced expansion 32
V The I3prg package: Program control structures 33
21 Conditionals and logical operations 33
22 Defining a set of conditional functions 33

23 The boolean data type 35

iii

24 Boolean expressions

25 Case switches

26 Generic loops

27 Choosing modes

28 Alignment safe grouping and scanning

29 Producing n copies

30 Sorting

30.1 Variable type and scope oL o
30.2 Mapping to variables oo oo

VI The 13quark package: “Quarks”
31 Functions
32 Recursion

33 Constants

VII The I3token package: A token of my appreciation...

34 Character tokens

35 Generic tokens

36 Peeking ahead at the next token

VIII The I3int package: Integers/counters

iv

36

38

39

39

40

40

41
42
42

43

43

44

45

45

46

49
93

53

55

37 Integer values

37.1 Integer expressions
37.2 Integer variables Lo
37.3 Comparing integer expressions
37.4 Formatting integers L Lo
37.5 Converting from other formats

37.6 Low-level conversion functions

38 Variables and constants

38.1 Internal functions

IX The I3skip package: Dimension and skip registers

39 Skip registers

39.1 Functions L oo
39.2 Formatting a skip register value

39.3 Variable and constants

40 Dim registers

40.1 Functions e

40.2 Variable and constants

41 Muskips

X The I3tl package: Token Lists

42 Functions

43 Predicates and conditionals

44 Working with the contents of token lists
45 Variables and constants

46 Searching for and replacing tokens

55
95
o6
99
61
62
63

65
66

68

68
68
71
71

71
71
75

75

76

76

80

81

83

84

47 Heads or tails? 85

XI The 13toks package: Token Registers 86
48 Allocation and use 86
49 Adding to the contents of token registers 89
50 Predicates and conditionals 90
51 Variable and constants 90
XII The I13seq package: Sequences 90
52 Functions for creating/initialising sequences 91
53 Adding data to sequences 92
54 Working with sequences 93
55 Predicates and conditionals 95
56 Internal functions 95
57 Functions for ‘Sequence Stacks’ 96
XIII The 13clist package: Comma separated lists 96
58 Functions for creating/initialising comma-lists 97
59 Putting data in 98
60 Getting data out 99
61 Mapping functions 99

62 Predicates and conditionals 101

vi

63 Higher level functions
64 Functions for ‘comma-list stacks’

65 Internal functions

XIV The I3prop package: Property Lists
66 Functions
67 Predicates and conditionals

68 Internal functions

XV The I3font package: “Fonts”

69 Functions

XVI The I3box package: Boxes
70 Generic functions
71 Horizontal mode

72 Vertical mode

XVII The I3io package: Low-level file i/o

73 Opening and closing streams

73.1 Writing to files o o oo
73.2 Reading from files oL oL

74 Internal functions

75 Variables and constants

vii

102

103

103

104

104

107

108

108

109

109

110

113

114

116

117
118
119

120

120

XVIITI The I3msg package: Communicating with the user

76 Creating new messages

77 Message classes

78 Redirecting messages

79 Support functions for output
80 Low-level functions

81 Kernel-specific functions

82 Variables and constants

XIX The I3xref package: Cross references

XX The I3keyval package: Key-value parsing
83 Features of 13keyval

84 Functions for keyval processing

85 Internal functions

86 Variables and constants

XXI The I3keys package: Key—value support
87 Creating keys

88 Sub-dividing keys

88.1 Multiple choices.

89 Setting keys

89.1 Examining keys: internal representation

viii

121

121

122

123

124

125

126

127

128

129

129

130

131

132

134

137
137

138

90 Internal functions

91 Variables and constants

XXII The I3file package: File Loading

92 Loading files

XXIIT The I3fp package: Floating point arithmetic

93 Floating point numbers

93.1 Comstants
93.2 Floating-point variables 0L
93.3 Conversion to other formats
93.4 Rounding floating point values
93.5 Tests on floating-point values
93.6 Unary operationso o
93.7 Arithmetic operations
93.8 Power operations
93.9 Exponential and logarithm functions
93.10Trigonometric functions oo

93.11Notes on the floating point unit

XXIV The I3luatex package: LuaTgX-specific functions

94 Breaking out to Lua

95 Category code tables

XXV Implementation

ix

139

142

142

142

143

153

154

155

96 I3names implementation 155

96.1 Internal functions 156
96.2 Bootstrap code 156
96.3 Requirements L e 157
96.4 Catcode assignments L o 158
96.5 Setting up primitive nameso 159
96.6 Reassignment of primitives L 0oL 160
96.7 expl3 code switches L 171
96.8 Package loading Lo 172
96.9 Finishingup 176
96.10Showing memory Usage v v v v v v vt i e 178
97 13basics implementation 179
97.1 Renaming some TEX primitives (again) 179
97.2 Defining functions Lo o 181
97.3 Selecting tokens Lo 182
97.4 Gobbling tokens from input Lo 184
97.5 Expansion control from 13expan 184
97.6 Conditional processing and definitions 184
97.7 Dissecting a control sequence 189
97.8 Exist or freeo 191
97.9 Defining and checking (new) functions 193
97.10More new definitionso 196
97.11Copying definitionso 199
97.12Undefining functionso oL 200
97.13Diagnostic wrapper functions L. 200
97.14Engine specific definitions L oL oo 201
97.15Scratch functions oL Lo 201
97.16Defining functions from a given number of arguments 201
97.17Using the signature to define functions 203

98 I13expan implementation
98.1 Internal functions and variables
98.2 Module code L
98.3 General expansion oL
98.4 Hand-tuned definitions L
98.5 Definitions with the ‘general’ technique
98.6 Preventing expansion Lo Lo e
98.7 Defining function variants L.
98.8 Last-unbraced versions o

98.9 Items held from earlier

99 13prg implementation
99.1 Variables L
99.2 Module code L
99.3 Choosing modes o vt i
99.4 Producing n copieso
99.5 Booleans
99.6 Parsing boolean expressions0 oo
99.7 Case switch
99.8 Sorting
99.9 Variable type and scope Lo L s
99.10Mapping to variables L L Lo oL

10d3quark implementation

1013token implementation
101.1Documentation of internal functions
101.2Module code oL e
101.3Character tokens L
101.4Generic tokens oL Lo
101.5Peeking ahead at the next token,

xi

206
206
207
208
212
213
214
214
217
218

219
219
219
220
221
225
226
233
235
238
238

241

1023int implementation 262
102.1Internal functions and variables L. 263
102.2Module loading and primitives definitions 263
102.3Allocation and setting oL 264
102.4Scanning and conversiono oL oL 272
102.5Defining constants 283
102.6Backwards compatibility 000 oo 285

1033skip implementation 286
103.1Skip registers e 286
103.2Dimen registers oL oL 290
103.3Muskips L 295

1043tl implementation 296
104.1Functions oL e 296
104.2Variables and constants oL Lo oo 301
104.3Predicates and conditionals oL 303
104.4Working with the contents of token lists 305
104.5Checking for and replacing tokens 311
104.6Heads or tails? L 313

1043toks implementation 317
105.1Allocation and use L. oL 318
105.2Adding to token registers’ contentso 320
105.3Predicates and conditionalso 322
105.4Variables and constantso Lo oo 323

10d3seq implementation 323
106.1Allocating and initialisation oL 324
106.2Predicates and conditionals oL 325
106.3Getting data out Lo 326
106.4Putting datain Lo Lo 327
106.5Mapping« . oL e 328
106.6Manipulation L L 329
106.7Sequence stacks Lo 330

xii

1073clist implementation
107.1Allocation and initialisation
107.2Predicates and conditionals oo 0oL,
107.3Retrieving datao
107.4Storing data Lo
107.5Mapping« .o e e
107.6Higher level functions o oo
107.7Stack operations

1083prop implementation
108.1Functions v v i e e e e e e e e
108.2Predicates and conditionals oo o

108.3Mapping functions oL o
1093font implementation

11d3box implementation
110.1Generic boxes o Lo e
110.2Vertical boxes L e
110.3Horizontal boxes L L e

1113io implementation
111.1Variables and constants
111.2Stream management
111.3Immediate writing L o

111.4Deferred writing L

112Special characters for writing
112.1Reading input L

1133msg implementation
113.1Variables and constants L oo
113.20utput helper functions oL o oo
113.3Generic functions oL Lo
113.4General functions
113.5Redirection functions L oL o

113.6Kernel-specific functions o

331
331
332
333
334
335
336
338

339
339
343
343

345

347
347
351
353

354
354
356
360
362

362
362

1143xref implementation 376

114.1Internal functions and variables oo, 376
114.2Module code L 376
1143xref test file 379
11d3keyval implementation 381
116.1Module code oL 381
116.1.1 Variables and constants L. 390
116.1.2Internal functions Lo oL 391
116.1.3Properties o e e 399
116.1.4Messages« o v e e 403

1173file implementation 404
118 mplementation 408
118.1Constants oL e e 408
118.2Variables L 409
118.3Parsing numbers L 412
118.4Internal utilitieso 416
118.50perations for fp variables 0oL 417
118.6 Transferring to other types oL, 422
118.7Rounding numberso oL 429
118.8Unary functions L 432
118.9Basic arithmetic L L 433
118.1Arithmetic for internal use oL 443
118.1Trigonometric functions oL o 449
118.1®xponent and logarithm functions 462
118.1Jests for special values 486
118.1Floating-point conditionals oo L. 486
TI8.1BMeSsages . . v v v v v v i e e 491
119mplementation 492
119.1Category code tables Lo o 493

Xiv

Part I

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the INTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

EXTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a small
number of very basic functions, all expl3 function names contain at least one underscore
to divide the module name from the descriptive name of the function. For example, all
functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no argu-
ments, this will be blank and the function name will end :. Most functions take one or
more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument though exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So So \foo:c {ArgumentOne} will act in the same way as
\foo:N \ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: the plain TEX \edef.

f The £ specifier stands for full expansion, and in contrast to z stops at the first non-
expandable item without trying to execute it.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter to
define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.

1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.

clist Comma separated list.
dim ‘Rigid’ lengths.

int Integer-valued count register.

IThe module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

num A ‘fake’ integer type using only macros. Useful for setting up allocation routines.
prop Property list.
skip ‘Rubber’ lengths.

seq ‘Sequence’: a data-type used to implement lists (with access at both ends) and
stacks.

stream An input or output stream (for reading from or writing to, respectively).
t1l Token list variables: placeholder for a token list.

toks Token register.

1.0.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to ‘variables’ and ‘functions’ as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions are
simply macros that may or mayn’t take arguments and expand to their replacement text.
Many of the common variables are also macros, and if placed into the input stream will
simply expand to their definition as well — a ‘function’ with no arguments and a ‘token
list variable’ are in truth one and the same. On the other hand, some ‘variables’ are
actually registers that must be initialised and their values set and retreived with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of ‘macros
that contain data’ and ‘macros that contain code’, and a consistent wrapper is applied
to all forms of ‘data’ whether they be macros or actually registers. This means that
sometimes we will use phrases like ‘the function returns a value’, when actually we just
mean ‘the macro expands to something’ Similarly, the term ‘execute’ might be used
in place of ‘expand’ or it might refer to the more specific case of ‘processing in TEX’s
stomach’ (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions and
need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn
\ExplSyntax0ff

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few additional
conventions: If two related functions are given with identical names but different ar-
gument specifiers, these are termed wvariants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N
\seq_new:c

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Some functions are fully expandable, which allows it to be used within an x-type argument
(in plain TEX terms, inside an \edef). These fully expandable functions are indicated in
the documentation by a star:

’ \cs_to_str:N * ‘\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Conditional (if) functions are normally defined in three variants, with T, F and TF
argument specifiers. This allows them to be used for different ‘true’/‘false’ branches,
depending on which outcome the conditional is being used to test. To indicate this
without repetition, this information is given in a shortened form:

’ \Xetex—if—engine:ZE'*"\xetex_if_engine:TF (true code) (false code)

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_-
engine:F and \xetex_if_engine:TF are all available. Usually, the illustration will use
the TF variant, and so both (true code) and (false code) will be shown. The two variant
forms T and F take only (true code) and (false code), respectively. Here, the star also
shows that this function is expandable. With some minor exceptions, all conditional
functions in the expl3 modules should be defined in this way.

Variables, constants and so on are described in a similar manner:

_tmpa_tl | A ghort piece of text will describe the variable: there is no syntax illus-

tration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases, the
text will include an extra ‘TEpXhackers note’ section:

’ \token_to_str:N x ‘\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case, it
would point out that this function is the TEX primitive \string.

Part 11

The I13names package
A systematic naming scheme for TEX

3 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

¢ defines new names for all TEX primitives;
o defines catcode regimes for programming;
e provides settings for when the code is used in a format;

e provides tools for when the code is used as a package within a IXTEX 2¢ context.

4 Using the modules

The modules documented in source3 are designed to be used on top of BTEX 2 and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the TEX3 format, but work in
this area is incomplete and not included in this documentation.

As the modules use a coding syntax different from standard KTEX it provides a few
functions for setting it up.

\ExplSyntax0On
\ExplSyntax0ff

\ExplSyntaxOn (code) \ExplSyntaxOff
Issues a catcode regime where spaces are ignored and colon and underscore are letters.
A space character may by input with ~ instead.

\ExplSyntaxNamesOn
\ExplSyntaxNames0ff

\ExplSyntaxNamesOn (code) \ExplSyntaxNamesOff
Issues a catcode regime where colon and underscore are letters, but spaces remain the
same.

\ProvidesExplPackage

\ProvidesExplClass \RequirePackage{expl3}

3 A \ProvidesExplPackage {(package)}
\ProvidesExplFile {(date)} {(version)} {(description)}

The package 13names (this module) provides \ProvidesExplPackage which is a wrap-
per for \ProvidesPackage and sets up the KTEX3 catcode settings for program-
ming automatically. Similar for the relationship between \ProvidesExplClass and
\ProvidesClass. Spaces are not ignored in the arguments of these commands.

\GetIdInfo
\filename
\filenameext
\filedate
\fileversion
\filetimestamp

\fileauthor \RequirePackage{1l3names}

\filedescription \GetIdInfo $Id: (cws or svn info field) $ {(description)}
Extracts all information from a CVS or SVN field. Spaces are not ignored in these fields.
The information pieces are stored in separate control sequences with \filename for the
part of the file name leading up to the period, \filenameext for the extension, \filedate
for date, \fileversion for version, \filetimestamp for the time and \fileauthor for
the author.

To summarize: Every single package using this syntax should identify itself using one of
the above methods. Special care is taken so that every package or class file loaded with
\RequirePackage or alike are loaded with usual IATEX catcodes and the XTEX3 catcode
scheme is reloaded when needed afterwards. See implementation for details. If you use
the \GetIdInfo command you can use the information when loading a package with

\ProvidesExplPackage{\filename}{\filedate}{\fileversion}{\filedescription}

Part III

The 13basics package
Basic Definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

5 Predicates and conditionals

KTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied in the (true arg) or the (false arg). These
arguments are denoted with T and F repectively. An example would be

\cs_if_free:cTF{abc} {{true code)} {{false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as ‘conditionals’; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a ‘predicate’ for the same test as described
below.

Predicates ‘Predicates’ are functions that return a special type of boolean value which
can be tested by the function \if _predicate:w or in the boolean expression parser.
All functions of this type are expandable and have names that end with _p in the
description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return ‘true’ if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\if_predicate:w \cs_if_free_p:N \1_tmpz_tl (true code) \else:
(false code) \fi:

or in expressions utilizing the boolean logic parser:

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {{false code)}

Like their branching cousins, predicate functions ensure that all underlying primi-
tive \else: or \fi: have been removed before returning the boolean true or false
values.?

For each predicate defined, a ‘predicate conditional” will also exist that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and IX¥TEX. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

5.1 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if num:w.

Certain conditionals deal with specific data types like boxes and fonts and are described
there. The ones described below are either the universal conditionals or deal with control
sequences. We will prefix primitive conditionals with \if_.

\if_true: *

\if_false: *

\or: *

\else: * |,]

\fi: N \}f_true: (true code) \else: (false code) \flf
) \if_false: (true code) \else: (false code) \fi:

\reverse_if:N x \reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).

2If defined using the interface provided.

\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. \or: is used in case switches, see [3intexpr for more.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless.

. . \if_meaning:w (arg1) (arg2) (true code) \else: (false code)
’ \if _meaning:w * ‘\fi:

\if_meaning:w executes (true code) when (argi) and (args) are the same, otherwise it
executes (false code). (arg1) and (args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

Mi:w * \if:w (tokeni1) (tokena) (true code) \else: (false code) \fi:

\:.Lf_charcod?:w * | \if_catcode:w (token1) (tokena) (true code) \else: (false
\if_catcode:w * code) \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

. . \if_predicate:w (predicate) (true code) \else: (false code)
| \if _predicate:w * ‘\fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

’ \if_bool:N x ‘ \if_bool:N (boolean) (true code) \else: (false code) \fi:
This function takes a boolean variable and branches according to the result.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:

\:‘Lf_cs_ex:!.st:N * I\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false
\if cs exist:w * code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if _mode_horizontal:
\if _mode_vertical:
\if _mode_math:

*
*
*
\if _mode_inner: *

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

5.2 Non-primitive conditionals

’ \cs_if_eq_name_p:NN ‘\cs_if_eq_name_p:NN (es1) (cs2)

Returns ‘true’ if (cs1) and (cs2) are textually the same, i.e. have the same name, other-
wise it returns ‘false’.

\cs_if_eq_p:NN
\cs_if_eq_p:cN
\cs_if_eq_ p:Nc
\cs_if_eq_p:cc
\cs_if_eq:NNTF
\cs_if_eq:cNTF
\cs_if_eq:NcTF
\cs_if_eq:ccTF %

X ot X X X X X%

\cs_if_eq_p:NNTF (cs1) (cs2)
\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}
These functions check if (¢s1) and (cs2) have same meaning.

\cs_if_free_p:N x
\cs_if_free_p:c «*
\cs_if_free:NTF «x

\cs_if_free_p:N (cs
\cs_if free:cTF * T p:ll (es)

\cs_if_free:NTF (cs) {(true code)} {(false code)}

Returns ‘true’ if (cs) is either undefined or equal to \tex_relax:D (the function that is
assigned to newly created control sequences by TEX when \cs:w ... \cs_end: is used).
In addition to this, ‘true’ is only returned if (cs) does not have a signature equal to D,
i.e., ‘do not use’ functions are not free to be redefined.

\cs_if_exist_p:N %
\cs_if_exist_p:c =
\cs_if_exist:NTF x

\cs_if_exist_p:N (cs
\cs if exist:cTF % p:N (cs)

\cs_if_exist:NTF (cs) {(true code)} {{false code)}
These functions check if (es) exists, i.e., if (cs) is present in the hash table and is not the
primitive \tex_relax:D.

’ \cs_if_do_not_use_p:N *>‘\cs_if_do_not_use_p:N (es)

10

These functions check if (cs) has the arg spec D for ‘do not use’. There are no TF-
type conditionals for this function as it is only used internally and not expected to be
widely used. (For now, anyway.)

\chk_if_free_cs:N
\chk if free cs:c

\chk_if_free_cs:N (cs)
This function checks that (cs) is (free) according to the criteria for \cs_if_free_p:N
above. If not, an error is generated.

\chk_if_exist_cs:N
\chk_if_exist_cs:c

\chk_if_exist_cs:N (cs)
This function checks that (cs) is defined. If it is not an error is generated.

\str_if_eq_p:nn
\str_if_eq_p:Vn
\str_if_eq_p:on
\str_if_eq_p:no
\str_if_eq_p:nV
\str_if_eq_p:VV
\str_if_eq_p:xx
\str_if_eq:nnTF
\str_if_eq:VnIF
\str_if_eq:onIF
\str_if_eq:noTF
\str_if_eq:nVIF
\str_if_eq:VVIF

if : tl tl
\str_if_eq:xxTF \str_if_eq_p:mn {{tl1)} {(tl>)}

\str_if_eq:nnTF {(tl1)} {(tl2)} {(true code)} {(false code)}
Compares the two (token lists) on a character by character basis, and is true if the two
lists contain the same characters in the same order. Thus for example

b D D D D R P D S S S R

\str_if_eq_p:xx { abc } { \tl_to_str:n { abc } }

is logically true. The branching versions then leave either (true code) or {false code) in
the input stream, as appropriate to the truth of the test and the variant of the function
chosen. The logical truth of the test is left in the input stream by the predicate version.
All versions of these functions are fully expandable (including those involving an x-type
expansion).

\c_true_bool
\c_false_bool

Constants that represent ‘true’ or ‘false’; respectively. Used to implement predicates.

11

6 Control sequences

\cs:w *
\cs_end: %

\cs:w (tokens) \cs_end:
This is the TEX internal way of generating a control sequence from some token list.
(tokens) get expanded and must ultimately result in a sequence of characters.

TEXhackers note: These functions are the primitives \csname and \endcsname. \cs:w is
considered weird because it expands tokens until it reaches \cs_end:.

\cs_show:N

\cs_show:N (cs)
\cs_show:c

\cs_show:c {{arg)}
This function shows in the console output the meaning of the control sequence {cs) or
that created by (arg).

TEXhackers note: This is TEX’s \show and associated csname version of it.

\cs_meaning:N x \cs_meaning:N (cs)

\cs_meaning:c {{arg)}
This function expands to the meaning of the control sequence (cs) or that created by

{arg).

\cs_meaning:c *

TEXhackers note: This is TEX’s \meaning and associated csname version of it.

7 Selecting and discarding tokens from the input
stream

The conditional processing cannot be implemented without being able to gobble and
select which tokens to use from the input stream.

\use:n *
\use:nn *
\use:nnn *
\use:nnnn *

\use:n {{arg)}
Functions that returns all of their arguments to the input stream after removing the
surrounding braces around each argument.

12

TEXhackers note: \use:n is ITEX 2¢’s \@firstofone/\Q@iden.

\use:c {(cs)}

Function that returns to the input stream the control sequence created from its argument.
Requires two expansions before a control sequence is returned.

TEXhackers note: \use:c is ITEX 2¢’s \@nameuse.

\use:x {(ezpandable tokens)}

Function that fully expands its argument before passing it to the input stream. Contents
of the argument must be fully expandable.

TEXhackers note: LuaTgX provides \expanded which performs this operation in an expand-
able manner, but we cannot assume this behaviour on all platforms yet.

\use_none:n *
\use_none:nn *
\use_none:nnn *
\use_none:nnnn *
\use_none:nnnnn *
\use none:nnnnnn *
\use none:nnnnnnn *
\use_none:nnnnnnnn *

*

\use_none:n {(arg1)}
\use_none:nnnnnnnnn

\use_none:nn {{arg1)} {({arg2)}

These functions gobble the tokens or brace groups from the input stream.

TEXhackers note: \use_none:n, \use_none:nn, \use_none:nnnn are KTEX 2¢’s \@gobble,
\@gobbletwo, and \@gobblefour.

\use_i:nn

\use_ii:nn * \use_i:nn {(code1)} {(code2)}
Functions that execute the first or second argument respectively, after removing the
surrounding braces. Primarily used to implement conditionals.

TEXhackers note: These are KTEX 2¢’s \@firstoftwo and \@secondoftwo, respectively.

13

\use_i:nnn *
\use_ii:nnn «
\use_iii:nnn x

\use_i:nnn {(arg1)} {({arg2)} {{args)?}
Functions that pick up one of three arguments and execute them after removing the
surrounding braces.

TEXhackers note: #TEX 2¢ has only \@thirdofthree.

\use_i:nnnn x
\use_ii:nnnn %
\use_iii:nnnn x
\use_iv:nnnn x

\use_i:nnnn {(arg1)} {{arg2)} {{args)} {{args)}
Functions that pick up one of four arguments and execute them after removing the
surrounding braces.

7.1 Extending the interface

’ \use_i_ii:nmn x ‘ \use_i_ii:nnn {(arg1)} {{arg2)} {{args)}
This function used in the expansion module reads three arguments and returns (without
braces) the first and second argument while discarding the third argument.

If you wish to select multiple arguments while discarding others, use a syntax like this.
Its definition is

\cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}

7.2 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w *
\use_none_delimit_by_q_stop:w *
\use_none_delimit_by_q_recursion_stop:w *

\use_none_delimit_by_q_nil:w (balanced text) \q_nil

Gobbles (balanced text). Useful in gobbling the remainder in a list structure or ter-
minating recursion.

\use_i_delimit_by_q_nil:nw *
\use_i_delimit_by_q_stop:nw *
\use_i_delimit_by_q_recursion_stop:nw *

\use_i_delimit_by_q_nil:nw {{arg)} (balanced text) \q_

14

Gobbles (balanced text) and executes (arg) afterwards. This can also be used to get
the first item in a token list.

\use_i_after_fi:nw {{arg)} \fi:

\use_i_after_else:nw {(arg)} \else: (balanced text) \fi:
\use_i_after_or:nw {(arg)} \or: (balanced text) \fi:
\use_i_after_orelse:nw {(arg)} \or:/\else: (balanced text)
\fi:

\use_i_after_fi:nw *
\use_i_after_else:nw *
\use_i_after_or:nw *
\use_i_after_orelse:nw *

Executes (arg) after executing closing out \fi:. \use_i_after_orelse:nw can be used
anywhere where \use_i_after_else:nw or \use_i_after_or:nw are used.

8 That which belongs in other modules but needs to
be defined earlier

’ \exp_after:wl x ‘\exp_after:wN (token) (tokenz)

Expands (tokens) once and then continues processing from (token).

TEXhackers note: This is TEX’s \expandafter.

\exp_not:N %

\exp_not:N (token
\exp_not:n * P- <)

\exp_not:n {(tokens)}
In an expanding context, this function prevents (token) or (tokens) from expanding.

TEXhackers note: These are TEX’s \noexpand and e-TEX’s \unexpanded, respectively.

| \prg_do_nothing: « | This is as close as we get to a null operation or no-op.

TEXhackers note: Definition as in I#TEX’s \empty but not used for the same thing.

15

\iow_log:x
\iow_term:x

\iow_log:x {(message)}
\iow_shipout_x:Nn -8 < ge)

\iow_shipout_x:Nn (write_stream) {(message)}
Writes (message) to either to log or the terminal.

’ \msg_kernel_bug:x ‘\msg_kernel_bug:x {(message)}
Internal function for calling errors in our code.

’ \cs_record meaning:N ‘ Placeholder for a function to be defined by 13chk.

\c_minus_one
\c_zero
\c_sixteen

Numeric constants.

9 Defining functions

There are two types of function definitions in KTEX3: versions that check if the function
name is still unused, and versions that simply make the definition. The latter are used
for internal scratch functions that get new meanings all over the place.

For each type there is an additional choice to be made: Does the function to be de-
fined contain delimited arguments? The answer in 99% of the cases is no. For this type
the programmer will know the number of arguments and in most cases use the argu-
ment signature to signal this, e.g., \foo_bar:nnn presumably takes three arguments.
We therefore also provide functions that automatically detect how many arguments are
required and construct the parameter text on the fly.

A definition of a new function can be done locally and globally. Currently nearly all
function definitions are done locally on top level, in other words they are global but
don’t show it. Therefore I think it may be better to remove the local variants in the
future and declare all checked function definitions global.

TgXhackers note: While TEX makes all definition functions directly available to the user
ETREX3 hides them very carefully to avoid the problems with definitions that are overwritten
accidentally. Many functions that are in TEX a combination of prefixes and definition functions
are provided as individual functions.

A slew of functions are defined in the following sections for defining new functions.
Here’s a quick summary to get an idea of what’s available:

\cs_(g)(new/set)(_protected)(_nopar):(N/c)(p)(n/x)

That stands for, respectively, the following variations:

16

g Global or local;

new/set Define a new function or re-define an existing one;
protected Prevent expansion of the function in x arguments;
nopar Restrict the argument(s) from containing \par;

N/c Either a control sequence or a ‘csname’;

p Either the a primitive TEX argument or the number of arguments is detected from the
argument signature, i.e., \foo:nnn is assumed to have three arguments #1#2#3;

n/x Either an unexpanded or an expanded definition.

That adds up to 128 variations (!). However, the system is very logical and only a handful
will usually be required often.

9.1 Defining new functions using primitive parameter text

\cs_new:Npn
\cs_new:Npx
\cs_new:cpn
\cs_new:cpx

\cs_new:Npn (cs) (parms) {({code)}
Defines a function that may contain \par tokens in the argument(s) when called. This
is not allowed for normal functions.

\cs_new_nopar:Npn
\cs_new_nopar :Npx
\cs_new_nopar:cpn
\cs_new_nopar:cpx

\cs_new_nopar:Npn (cs) (parms) {{code)}

Defines a new function, making sure that (cs) is unused so far. (parms) may consist
of arbitrary parameter specification in TEX syntax. It is under the responsibility of the
programmer to name the new function according to the rules laid out in the previous
section. (code) is either passed literally or may be subject to expansion (under the x
variants).

\cs_new_protected:Npn
\cs_new_protected:Npx
\cs_new_protected:cpn
\cs_new_protected:cpx

\cs_new_protected:Npn (cs) (parms) {(code)}

17

Defines a function that is both robust and may contain \par tokens in the argument(s)
when called.

\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:cpx

\cs_new_protected_nopar:Npn (cs) (parms) {(code)}

Defines a function that does not expand when inside an x type expansion.

9.2 Defining new functions using the signature

\cs_new:Nn
\cs_new:Nx
\cs_new:cn

\cs_new:cx \cs_new:Nn (cs) {(code)}
Defines a new function, making sure that (cs) is unused so far. The parameter text is
automatically detected from the length of the function signature. If (cs) is missing a
colon in its name, an error is raised. It is under the responsibility of the programmer to
name the new function according to the rules laid out in the previous section. (code) is
either passed literally or may be subject to expansion (under the x variants).

TEXhackers note: Internally, these use TEX’s \long. These forms are recommended for low-
level definitions as experience has shown that \par tokens often turn up in programming situa-
tions that wouldn’t have been expected.

\cs_new_nopar:Nn
\cs_new_nopar:Nx
\cs_new_nopar:cn
\cs_new_nopar:cx

\cs_new_nopar:Nn (cs) {{code)}
Version of the above in which \par is not allowed to appear within the argument(s) of
the defined functions.

\cs_new_protected:Nn
\cs_new_protected:Nx
\cs_new_protected:cn
\cs_new_protected:cx

\cs_new_protected:Nn (cs) {(code)}

18

Defines a function that is both robust and may contain \par tokens in the argument(s)
when called.

\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:Nx
\cs_new_protected_nopar:cn
\cs_new_protected_nopar:cx

\cs_new_protected_nopar:Nn (cs) {(code)}

Defines a function that does not expand when inside an x type expansion. \par is
not allowed in the argument(s) of the defined function.

9.3 Defining functions using primitive parameter text

Besides the function definitions that check whether or not their argument is an unused
function we need function definitions that overwrite currently used definitions. The
following functions are provided for this purpose.

\cs_set:Npn
\cs_set:Npx
\cs_set:cpn
\cs_set:cpx

\cs_set:Npn (cs) (parms) {(code)}
Like \cs_set_nopar:Npn but allows \par tokens in the arguments of the function being
defined.

TEXhackers note: These are equivalent to TEX’s \long\def and so on. These forms are
recommended for low-level definitions as experience has shown that \par tokens often turn up
in programming situations that wouldn’t have been expected.

\cs_gset:Npn
\cs_gset:Npx
\cs_gset:cpn
\cs_gset:cpx

\cs_gset:Npn (cs) (parms) {(code)}
Global variant of \cs_set :Npn.

\cs_set_nopar:Npn
\cs_set_nopar:Npx
\cs_set_nopar:cpn
\cs_set_nopar:cpx

\cs_set_nopar:Npn (cs) (parms) {({code)}
Like \cs_new_nopar:Npn etc. but does not check the (cs) name.

19

TEXhackers note: \cs_set_nopar:Npn is the X TEX3 name for TEX’s \def and \cs_set_nopar:Npx
corresponds to the primitive \edef. The \cs_set_nopar:cpn function was known in KTEX2 as
\@namedef. \cs_set_nopar:cpx has no equivalent.

\cs_gset_nopar:Npn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpn
\cs_gset_nopar:cpx

\cs_gset_nopar:Npn (cs) (parms) {(code)}
Like \cs_set_nopar:Npn but defines the (cs) globally.

hackers note: \cs_gset_nopar:Npn and \cs_gset_nopar:Npx are ’s \gdef and \xdef.
g P P g P P g

\cs_set_protected:Npn
\cs_set_protected:Npx
\cs_set_protected:cpn
\cs_set_protected:cpx

\cs_set_protected:Npn (cs) (parms) {(code)}

Naturally robust macro that won’t expand in an x type argument. These varieties allow
\par tokens in the arguments of the function being defined.

\cs_gset_protected:Npn
\cs_gset_protected:Npx
\cs_gset_protected:cpn
\cs_gset_protected:cpx

\cs_gset_protected:Npn (cs) (parms) {{code)}

Global versions of the above functions.

\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:cpx

\cs_set_protected_nopar:Npn (cs) (parms) {(code)}

Naturally robust macro that won’t expand in an x type argument. If you want for some
reason to expand it inside an x type expansion, prefix it with \exp_after:wN \prg_do_nothing:

\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpn

\cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npn (cs) (parms) {(code)}

Global versions of the above functions.

20

9.4 Defining functions using the signature (no checks)

As above but now detecting the parameter text from inspecting the signature.

\cs_set:Nn
\cs_set:Nx
\cs_set:cn

\cs_set:cx \cs_set:Nn (cs) {(code)}

Like \cs_set_nopar:Nn but allows \par tokens in the arguments of the function being
defined.

\cs_gset:Nn

\cs_gset:Nx

\cs_gset:cn

\cs_gset:cx \cs_gset:Nn (cs) {(code)}
Global variant of \cs_set:Nn.

\cs_set_nopar:Nn
\cs_set_nopar:Nx
\cs_set_nopar:cn
\cs_set_nopar:cx

\cs_set_nopar:Nn (cs) {(code)}
Like \cs_new_nopar:Nn etc. but does not check the (cs) name.

\cs_gset_nopar:Nn
\cs_gset_nopar:Nx
\cs_gset_nopar:cn
\cs_gset_nopar:cx

\cs_gset_nopar:Nn (cs) {(code)}
Like \cs_set_nopar:Nn but defines the (cs) globally.

\cs_set_protected:Nn
\cs_set_protected:cn
\cs_set_protected:Nx
\cs_set_protected:cx

\cs_set_protected:Nn (cs) {(code)}

Naturally robust macro that won’t expand in an x type argument. These varieties also
allow \par tokens in the arguments of the function being defined.

\cs_gset_protected:Nn
\cs_gset_protected:cn
\cs_gset_protected:Nx
\cs_gset_protected:cx

\cs_gset_protected:Nn (cs) {(code)}

21

Global versions of the above functions.

\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:cn
\cs_set_protected_nopar:Nx
\cs_set_protected_nopar:cx

\cs_set_protected_nopar:Nn (cs) {(code)}

Naturally robust macro that won’t expand in an x type argument. This also comes
as a long version. If you for some reason want to expand it inside an x type expansion,
prefix it with \exp_after:wN \prg_do_nothing:.

\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:cn
\cs_gset_protected_nopar:Nx
\cs_gset_protected_nopar:cx

\cs_gset_protected_nopar:Nn (cs) {(code)}

Global versions of the above functions.

9.5 Undefining functions

\cs_undefine:N
\cs_undefine:c
\cs_gundefine:N
\cs_gundefine:c

\cs_gundefine:N (cs)

Undefines the control sequence locally or globally. In a global context, this is useful for
reclaiming a small amount of memory but shouldn’t often be needed for this purpose.
In a local context, this can be useful if you need to clear a definition before applying a
short-term modification to something.

9.6 Copying function definitions

\cs_new_eq:NN
\cs_new_eq:cN
\cs_new_eq:Nc
\cs_new_eq:cc

\cs_new_eq:NN (cs1) (cs2)
Gives the function (cs1) locally or globally the current meaning of (csz). If (cs1) already

22

exists then an error is called.

\cs_set_eq:NN
\cs_set_eq:cN
\cs_set_eq:Nc
\cs_set_eq:cc
\cs_gset_eq:NN
\cs_gset_eq:cN
\cs_gset_eq:Nc
\cs_gset_eq:cc

\cs_set_eq:cN (cs1) (cs2)
Gives the function (cs1) the current meaning of (css). Again, we may always do this
globally.

\cs_set_eq:NwN (cs1) (cs2)

\cs_set_eq:NuN (cs1) = (cs2)

These functions assign the meaning of (css) locally or globally to the function (cs1).
Because the TEX primitive operation is being used which may have an equal sign and (a
certain number of) spaces between (cs1) and (cso) the name contains a w. (Not happy
about this convention!).

] \cs_set_eq:NwN

TEXhackers note: \cs_set_eq:NwN is the ITEX3 name for TEX’s \1et.

9.7 Internal functions

\pref_global:D
\pref_long:D
\pref_protected:D

\pref_global:D \cs_set_nopar:Npn

Prefix functions that can be used in front of some definition functions (namely ...). The
result of prefixing a function definition with \pref_global:D makes the definition global,
\pref_long:D change the argument scanning mechanism so that it allows \par tokens
in the argument of the prefixed function, and \pref_protected:D makes the definition
robust in \writes etc.

None of these internal functions should be used by a programmer since the necessary
combinations are all available as separate function, e.g., \cs_set:Npn is internally im-
plemented as \pref_long:D \cs_set_nopar:Npn.

TEXhackers note: These prefixes are the primitives \global, \long, and \protected. The
\outer prefix isn’t used at all within I¥TEX3 because . .. (it causes more hassle than it’s worth?
It’s nevery proved useful in any meaningful way?)

23

10 The innards of a function

’ \cs_to_str:N * ‘\cs_to_str:N (cs)

This function returns the name of {cs) as a sequence of letters with the escape character
removed.

\token_to_str:N x
\token_to_str:c *

\token_to_str:N (arg)
This function return the name of (arg) as a sequence of letters including the escape
character.

TEXhackers note: This is TEX’s \string.

’ \token_to_meaning:N x ‘

\token_to_meaning:N (arg)

This function returns the type and definition of (arg) as a sequence of letters.

TEXhackers note: This is TEX’s \meaning.

\cs_get_function_name:N *
\cs_get_function_signature:N *

\cs_get_function_name:N \(fn):(args)

The name variant strips off the leading escape character and the trailing argument speci-
fication (including the colon) to return (fn). The signature variants does the same but
returns the signature (args) instead.

’ \cs_split_function:NN x ‘\cs_split_function:NN \(fn):(args) (post process)

Strips off the leading escape character, splits off the signature without the colon,
informs whether or not a colon was present and then prefixes these results with
(post process), i.e., (post process){(name)}{(signature)}(true)/(false). For example,
\cs_get_function_name:N is nothing more than \cs_split_function:NN \(fn): (args)
\use_i:nnn.

’ \cs_get_arg_count_from_signature:N x ‘\cs_get_arg_count_from_signature:N \{(fn): (args)

Returns the number of chars in (args), signifying the number of arguments that the
function uses.

Other functions regarding arbitrary tokens can be found in the I3token module.

24

11 Grouping and scanning

\scan_stop:

This function stops TEX’s scanning ahead when ending a number.

TgXhackers note: This is the TEX primitive \relax renamed.

\group_begin:
\group_end:

\group_begin: (...) \group_end:
Encloses (...) inside a group.

TEXhackers note: These are the TEX primitives \begingroup and \endgroup renamed.

’ \group_execute_after:N ‘\group_execute_after:N (token)

Adds (token) to the list of tokens to be inserted after the current group ends (through
an explicit or implicit \group_end:).

TEXhackers note: This is TEX’s \aftergroup.

12 Checking the engine

’ \xetex_if_engine:TF * ‘\xetex_if_engine:TF {(true code)} {(false code)}

This function detects if we’re running a XeTEX-based format.

’ \luatex_if_engine:TF * ‘\luatex_if_engine:TF {(true code)} {(false code)}

This function detects if we're running a LuaTgX-based format.

\c_xetex_is_engine_bool
\c_luatex_is_engine_bool

Boolean variables used for the above functions.

25

Part IV

The 13expan package
Controlling Expansion of Function
Arguments

13 Brief overview

The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only those
that are used within the I#TEX3 kernel or otherwise seem to be of general interest are
implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

14 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ module.
They all look alike, an example would be \exp_args:NNo. This function has three ar-
guments, the first and the second are a single tokens the third argument gets expanded
once. If \seq_gpush:No wouldn’t be defined the example above could be coded in the
following way:

\exp_args:NNo\seq_gpush:Nn
\g_file_name_stack
\1_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_new_nopar:Npn\seq_gpush:No{\exp_args:NNo\seq_gpush:Nn}

26

Providing variants in this way in style files is uncritical as the \cs_new_nopar:Npn func-
tion will silently accept definitions whenever the new definition is identical to an already
given one. Therefore adding such definition to later releases of the kernel will not make
such style files obsolete.

The steps above may be automated by using the function \cs_generate_variant:Nn,
described next.

14.1 Methods for defining variants

\cs_generate_variant:Nn (parent control sequence)

’ \cs_generate_variant:Nn‘ {(variant argument specifier)}

The (parent control sequence) is first separated into the (base name) and (original) ar-
gument specifier. The (variant) is then used to modify this by replacing the beginning
of the (original) with the (variant). Thus the (variant) must be no longer than the
(original) argument specifier. This new specifier is used to create a modified function
which will expand its arguments as required. So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV }
\cs_generate_variant:Nn \foo:Nn { cV }

would generate the functions \foo:NV and \foo:cV in the same way. \cs_generate_-
variant:Nn can only be applied if the (parent control sequence) is already defined. If the
(parent control sequence) is protected then the new sequence will also be protected. The
variants are generated globally.

Internal functions

’ \cs_generate_internal variant:n ‘\cs_generate_internal_variant:n {(args)}

Defines the appropriate \exp_args:N({args) function, if necessary, to perform the ex-
pansion control specified by (args).

27

15 Introducing the variants

The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore it is usually best to follow the following guidelines
when defining new functions that are supposed to come with variant forms:

¢ Arguments that might need expansion should come first in the list of arguments to
make processing faster.

e Arguments that should consist of single tokens should come first.

e Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed very fast.

o In general n, x, and o (if not in the last position) will need special processing which
is not fast and not expandable, i.e., functions of this type may not work correctly
in arguments that are itself subject to x expansion. Therefore it is best to use the
“expandable” functions (i.e., those that contain only ¢, N, o or £ in the last position)
whenever possible.

The V type returns the value of a register, which can be one of t1, num, int, skip, dim,
toks, or built-in TEX registers. The v type is the same except it first creates a control
sequence out of its argument before returning the value. This recent addition to the
argument specifiers may shake things up a bit as most places where o is used will be
replaced by V. The documentation you are currently reading will therefore require a fair
bit of re-writing.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. Let’s pretend we want to set \aaa
equal to the control sequence stemming from turning b \1_tmpa_tl b into a control
sequence. Furthermore we want to store the execution of it in a (toks) register. In
this example we assume \1_tmpa_t1l contains the text string lur. The straight forward
approach is

\toks_set:No \1_tmpa_toks {\cs_set_eq:Nc \aaa {b \1_tmpa_tl b}}

Unfortunately this only puts \exp_args:NNc \cs_set_eq:NN \aaa {b \1_tmpa_tl b}
into \1_tmpa_toks and not \cs_set_eq:NwN \aaa = \blurb as we probably wanted.
Using \toks_set:Nx is not an option as that will die horribly. Instead we can do a

\toks_set:Nf \1_tmpa_toks {\cs_set_eq:Nc \aaa {b \1_tmpa_tl b}}

28

which puts the desired result in \1_tmpa_toks. It requires \toks_set:Nf to be defined
as

\cs_set_nopar:Npn \toks_set:Nf {\exp_args:NNf \toks_set:Nn}

If you use this type of expansion in conditional processing then you should stick to using
TF type functions only as it does not try to finish any \if... \fi: itself!

16 Manipulating the first argument

’ \exp_args:No *" \exp_args:No (funct) (argi) (args2) ...

The first argument of (funct) (i.e., (arg1)) is expanded once, the result is surrounded by
braces and passed to (funct). (funct) may have more than one argument—all others are
passed unchanged.

\exp_args:Nc *
\exp_args:cc *

\exp_args:Nc (funct) (arg:) (argz) ...

The first argument of (funct) (i.e., (arg;)) is expanded until only characters remain. (An
internal error occurs if something else is the result of this expansion.) Then the result is
turned into a control sequence and passed to (funct) as the first argument. (funct) may
have more than one argument—all others are passed unchanged.

In the :cc variant, the (funct) control sequence itself is constructed (with the same
process as described above) before (argq) is turned into a control sequence and passed
as its argument.

\exp_args:NV *
| |

\exp_args:NV (funct) (register)

The first argument of (funct) (i.e., (register)) is expanded to its value. By value we mean
a number stored in an int or num register, the length value of a dim, skip or muskip
register, the contents of a toks register or the unexpanded contents of a t1 var. register.
The value is passed onto (funct) in braces.

’ \exp_args:Nv * ‘ \exp_args:Nv (funct) {{register)}

Like the V type except the register is given by a list of characters from which a control
sequence name is generated.

’ \exp_args:Nx ‘ \exp_args:Nx (funct) (arg1) (arg2) ...

The first argument of (funct) (i.e., {arg1)) is fully expanded until only unexpandable
tokens remain, the result is surrounded by braces and passed to (funct). (funct) may

29

have more than one argument—all others are passed unchanged. As mentioned before,
this type of function is relatively slow.

’ \exp_args:Nf * ‘ \exp_args:Nf (funct) (arg:) (argz2) ...

The first argument of (funct) (i.e., (arg1)) undergoes full expansion until the first unex-
pandable token is encountered, the result is surrounded by braces and passed to (funct).
(funct) may have more than one argument—all others are passed unchanged. Beware of
its special behavior as explained above.

17 Manipulating two arguments

\exp_args:NNx
\exp_args:Nnx
\exp_args:Ncx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:Nnx (funct) (arg1) (arg2) ...
The above functions all manipulate the first two arguments of (funct). They are all slow
and non-expandable.

\exp_args:NNo
\exp_args:NNc
\exp_args:NNv
\exp_args:NNV
\exp_args:NNf
\exp_args:Nno
\exp_args:NnV
\exp_args:Nnf
\exp_args:Noo
\exp_args:Noc
\exp_args:Nco
\exp_args:Ncf
\exp_args:Ncc
\exp_args:Nff
\exp_args:Nfo
\exp_args:NVV

e S S D S . e S S i i

*

\exp_args:NNo (funct) (arg:) (argz) ...
These are the fast and expandable functions for the first two arguments.

30

18 Manipulating three arguments

So far not all possible functions are provided and even the selection below may be reduced
in the future as far as the non-expandable functions are concerned.

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNnx
NNox
Nnnx
Nnox
Noox
Ncnx
Ncex

\exp_args:Nnnx (funct) (arg1) (argz2) (args) ...

All the above

functions are non-expandable.

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNoo
NNno
Nnno
Nnnc
Nooo
Nccc
NcNc
NcNo
Ncco

b D D D D R S S S S

\exp_args:NNoo (funct) (arg1) {(arg2) (args) ...

These are the fast and expandable functions for the first three arguments.

19 Preventing expansion

\exp_not:N
\exp_not:c
\exp_not:n

\exp_not:N (token)
\exp_not:n {(token list)}

This function will prohibit the expansion of (token) in situation where (token) would
otherwise be replaced by it definition, e.g., inside an argument that is handled by the x

convention.

TEXhackers note: \exp_not:N is the primitive \noexpand renamed and \exp_not:n is the

e-TEX primitive \unexpanded.

31

\exp_not:o
\exp_not:f

\exp_not:o {(token list)}

Same as \exp_not:n except (token list) is expanded once for the o type and for the £
type the token list is expanded until an unexpandable token is found, and the result of
these expansions is then prohibited from being expanded further.

\exp_not:V

\exp_not:V (register)
\exp_not:v

\exp_not:v {(token list)}

The value of (register) is retrieved and then passed on to \exp_not :n which will prohibit
further expansion. The v type first creates a control sequence from (token list) but is
otherwise identical to V.

’ \exp_stop_£: ‘(fexpanﬂon) ... \exp_stop_f:

This function stops an f type expansion. An example use is one such as

\tl_set:Nf \1_tmpa_tl {
\if _case:w \1_tmpa_int
\or: \use_i_after_orelse:nw {\exp_stop_f: \textbullet}
\or: \use_i_after_orelse:nw {\exp_stop_f: \textendash}
\else: \use_i_after_fi:nw {\exp_stop_f: else-item}
\fi:
}

This ensures the expansion in stopped right after finishing the conditional but without
expanding \textbullet etc.

TEXhackers note: This function is a space token but it is better to distinguish this expansion
stopping token from a desired space token when writing code.

20 Unbraced expansion

\exp_last_unbraced:Nf
\exp_last_unbraced:NV
\exp_last_unbraced:No
\exp_last_unbraced:Nv
\exp_last_unbraced:NcV
\exp_last_unbraced:NNV
\exp_last_unbraced:NNo
\exp_last_unbraced:NNNV
\exp_last_unbraced:NNNo

\exp_last_unbraced:NV (token) (variable name)

32

There are a small number of occasions where the last argument in an expansion run
must be expanded unbraced. These functions should only be used inside functions, not
for creating variants.

Part V

The 13prg package
Program control structures

21 Conditionals and logical operations

Conditional processing in ITEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The typical states
returned are (true) and (false) but other states are possible, say an (error) state for
erroneous input, e.g., text as input in a function comparing integers.

XTREX3 has two primary forms of conditional flow processing based on these states. One
type is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if _predicate:w or in functions to be described below. The other type is
the kind of functions choosing a particular argument from the input stream based on the
result of the testing as in \cs_if_free:NTF which also takes one argument (the N) and
then executes either (true) or (false) depending on the result. Important to note here is
that the arguments are executed after exiting the underlying \if...\fi: structure

22 Defining a set of conditional functions

\prg_return_true:

\prg_return_false: | Tyege functions exit conditional processing when used in con-

33

junction with the generating functions listed below.

\prg_set_conditional:Nnn
\prg_set_conditional:Npnn
\prg_new_conditional:Nnn
\prg_new_conditional:Npnn
\prg_set_protected_conditional:Nnn
\prg_set_protected_conditional:Npnn
\prg_new_protected_conditional:Nnn
\prg_new_protected_conditional:Npnn
\prg_set_eq_conditional:NNn

o \prg_set_conditional:Nnn (test) (conds) (code)
\prg_new_eq_conditional:NNn

\prg_set_conditional:Npnn (test) (param) (conds) (code)

This defines a conditional (base function) which upon evaluation using \prg_return_true:
and \prg_return_false: to finish branches, returns a state. Currently the states are

either (true) or (false) although this can change as more states may be introduced, say

an (error) state. (conds) is a comma separated list possibly consisting of p for denoting

a predicate function returning the boolean (true) or (false) values and TF, T and F for the

functions that act on the tokens following in the input stream. The :Nnn form implicitly

determines the number of arguments from the function being defined whereas the :Npnn

form expects a primitive parameter text.

An example can easily clarify matters here:

\prg_set_conditional:Nnn \foo_if_bar:NN {p,TF,T} {
\if_meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF, \foo_if_bar:NNT but
not \foo_if_bar:NNF (because F is missing from the (conds) list). The return statements
take care of resolving the remaining \else: and \fi: before returning the state. There
must be a return statement for each branch, failing to do so will result in an error if that
branch is executed.

34

23 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditonal \bool_ functions are expandable and expect the input to also be fully ex-
pandable (which will generally mean being constructed from predicate functions, possibly
nested).

\bool_new:N
\bool new:c

\bool_new:N (bool)
Define a new boolean variable. The initial value is {false). A boolean is actually just
either \c_true_bool or \c_false_bool.

\bool_set_true:N
\bool_set_true:c
\bool_set_false:N
\bool _set_false:c
\bool_gset_true:N
\bool_gset_true:c
\bool_gset_false:N
\bool_gset_false:c

\bool_gset_false:N (bool)
Set (bool) either (true) or (false). We can also do this globally.

\bool_set_eq:NN
\bool_set_eq:Nc
\bool_set_eq:cN
\bool_set_eq:cc
\bool_gset_eq:NN
\bool_gset_eq:Nc
\bool_gset_eq:cN

\bool_gset_eq:cc \bool_set_eq:NN (bool1) (boolsz)

35

Set (booly) equal to the value of (bools).

\bool_if_p:N *
\bool_if :NTF x
\bool_}f_p:c * | \bool_if :NTF (bool) {(true)} {(false)}
\bool_if:cTF * \bool_if_p:N (bool)
Test the truth value of (bool) and execute the (true) or (false) code. \bool_if_p:N is
a predicate function for use in \if_predicate:w tests or \bool_if :nTF-type functions
described below.

\bool_while_do:Nn
\bool_while_do:cn
\bool_until_do:Nn
\bool until do:cn
\bool_do_while:Nn
\bool_do_while:cn
\bool_do_until:Nn

i \bool_while_do:Nn (bool) {(code)}
\bool_do_until:cn

\bool_until_do:Nn (bool) {({code)}

The ‘while’ versions execute (code) as long as the boolean is true and the ‘until’ versions
execute (code) as long as the boolean is false. The while_do functions execute the body
after testing the boolean and the do_while functions executes the body first and then
tests the boolean.

24 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate functions
and boolean variables, return boolean (true) or (false). It supports the logical operations
And, Or and Not as the well-known infix operators &&, || and !. In addition to this,
parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n {1=1} &&

(
\int_compare_p:n {2=3} ||
\int_compare_p:n {4=4} ||
\int_compare_p:n {1=\error} ¥, is skipped

) &&

! (\int_compare_p:n {2=4})

is a valid boolean expression. Note that minimal evaluation is carried out whenever
possible so that whenever a truth value cannot be changed anymore, the remainding

36

tests within the current group are skipped.

\bool_yfTP:n * | \bool_if :nTF {(boolean expression)} {(true)}
\bool_if:nTF {(false)>

The functions evaluate the truth value of (boolean expression) where each predicate is
separated by && or | | denoting logical ‘And’ and ‘Or’ functions. (and) denote grouping
of sub-expressions while ! is used to as a prefix to either negate a single expression or a
group. Hence

\bool_if_p:n{
\int_compare_p:n {1=1} &&
(
\int_compare_p:n {2=3} ||
\int_compare_p:n {4=4} ||
\int_compare_p:n {1=\error} ¥ is skipped
) &&
! (\int_compare_p:n {2=43})
}

from above returns (true).

Logical operators take higher precedence the later in the predicate they appear. “(z) ||
(y) && (2z)” is interpreted as the equivalent of “(z) OR [(y) AND (z)]” (but now we have
grouping you shouldn’t write this sort of thing, anyway).

’ \bool_not_p:n * ‘\bool_not_p:n {(boolean expression)}
Longhand for writing ! ({boolean expression)) within a boolean expression. Might not
stick around.

’ \bool_xor_p:nn x ‘\bool_xor_p:nn {(boolean expression)} {(boolean expression)}

Implements an ‘exclusive or’ operation between two boolean expressions. There is no
infix operation for this.

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

\bool_set:Nn (bool) {(boolean expression)}
Sets (bool) to the logical outcome of evaluating (boolean expression).

37

25 Case switches

\prg_case_int:nnn {(integer expr)} {
{(integer expr1)} {(code:)}
{(integer expr2)} {({code2)}

- {(integer exprn)} {(coden)}
’ \prg_case_int:nnn x ‘} {(else case)}

This function evaluates the first (integer expr) and then compares it to the values found
in the list. Thus the expression

\prg_case_int:nnn{2%5}{
{56}{Small} {4+6}{Medium} {-2*%10}{Negative}
}Other}

evaluates first the term to look for and then tries to find this value in the list of values.
If the value is found, the code on its right is executed after removing the remainder of
the list. If the value is not found, the (else case) is executed. The example above will
return “Medium”.

The function is expandable and is written in such a way that £ style expansion can take
place cleanly, i.e., no tokens from within the function are left over.

\prg_case_int:nnn {(dim expr)} {
{(dim expr1)} {(code)}
{(dim expr2)} {(code2)}

- {(dim exprn)} {({code,)}
’ \prg_case_dim:nnn * ‘} {(else case)}

This function works just like \prg_case_int:nnn except it works for (dim) registers.

\prg_case_str:nnn {(string)} {
{(string1)} {{code1)}
{(string2)} {(code2)}

{(stringn)} {{code,,)}
’ \prg_case_str:nnn x ‘} {else case)}

This function works just like \prg_case_int :nnn except it compares strings. Each string
is evaluated fully using x style expansion.

The function is expandable® and is written in such a way that f style expansion can take
place cleanly, i.e., no tokens from within the function are left over.

\prg_case_t1:Nnn (t var.) {
(tl var.1) {(code1)} (tlvar.2) {{(code2)} ... (tl var.,)

{{code)}
’ \prg_case_tl:Nnn * ‘} {(else case)}

3Provided you use pdfTeX v1.30 or later

38

This function works just like \prg_case_int :nnn except it compares token list variables.

The function is expandable* and is written in such a way that f style expansion can take
place cleanly, i.e., no tokens from within the function are left over.

26 Generic loops

\bool_while_do:nn
\bool_until_do:nn
\bool_do_while:nn

\bool_while_do:nn {(boolean expression)} {{code)}
\bool_do_until:nn - < P))

\bool_until_do:nn {(boolean expression)} {(code)}

The ‘while’ versions execute the code as long as (boolean expression) is true and the ‘until’
versions execute (code) as long as (boolean expression) is false. The while_do functions
execute the body after testing the boolean and the do_while functions executes the body
first and then tests the boolean.

27 Choosing modes

\mode_if_vertical_p: *
\mode_if_vertical:TF *

\mode_if_vertical:TF {(true code)} {(false code)}

Determines if TEX is in vertical mode or not and executes either (true code) or (false
code) accordingly.

\mode_if_horizontal_p: *
\mode_if_horizontal:TF %

\mode_if_horizontal:TF {(true code)} {(false code)}

Determines if TEX is in horizontal mode or not and executes either (true code) or (false
code) accordingly.

\mode_if_inner_p: x

\mode_if_inner:TF x \mode_if_inner:TF {(true code)} {{false code)}
Determines if TEX is in inner mode or not and executes either (true code) or (false code)
accordingly.

\mode_if_math_p: *
\mode_if_math:TF x

\mode_if _math:TF {(true code)} {(false code)}
Determines if TEX is in math mode or not and executes either (true code) or (false code)
accordingly.

4Provided you use pdfTeX v1.30 or later

39

TEXhackers note: This version will choose the right branch even at the beginning of an
alignment cell.

28 Alignment safe grouping and scanning

’ \scan_align_safe_stop : ‘ \scan_align_safe_stop:

This function gets TEX on the right track inside an alignment cell but without destroying
any kerning.

\group_align_safe_begin:
\group_align_safe_end:

\group_align_safe_begin: (...) \group_align_safe_end:

Encloses (...) inside a group but is safe inside an alignment cell. See the implementation
of \peek_token_generic:NNTF for an application.

29 Producing n copies

There are often several different requirements for producing multiple copies of something.
Sometimes one might want to produce a number of identical copies of a sequence of
tokens whereas at other times the goal is to simulate a for loop as known from most real
programming languages.

’ \prg_replicate:nn * ‘\prg_replicate:nn {(number)} {(arg)}
Creates (number) copies of (arg). Note that it is expandable.

- - \prg_stepwise_function:nnnN {(start)} {(step)}
’ \prg_stepw1se_funct10n:nnnN * ‘{(end)} (function)

This function performs (action) once for each step starting at (start) and ending once
(end) is passed. (function) is placed directly in front of a brace group holding the current
number so it should usually be a function taking one argument.

- — \prg_stepwise_inline:nnnn {(start)} {(step)} {(end)}
’ \prg_stepwise_inline:nnnn ‘{(actz’on)}

Same as \prg_stepwise_function:nnnN except here (action) is performed each time

40

with ##1 as a placeholder for the number currently being tested. This function is not
expandable and it is nestable.

\prg_stepwise_variable:nnnn {(start)} {(step)} {(end)}

’ \prg_stepwise_variable:nnnNn ‘(temp—va’r) {{action)}

Same as \prg_stepwise_inline:nnnn except here the current value is stored in
(temp-var) and the programmer can use it in (action). This function is not expand-
able.

30 Sorting

’ \prg_quicksort:n ‘\prg_quicksort:n { {(item1)} {(item2)} ... {(item n)} }
Performs a Quicksort on the token list. The comparisons are performed by the
function \prg_quicksort_compare:nnTF which is up to the programmer to define.
When the sorting process is over, all items are given as argument to the function
\prg_quicksort_function:n which the programmer also controls.

\prg_quicksort_function:n

B \prg_quicksort_function:n {(element)}
\prg_quicksort_compare:nnTF

\prg_quicksort_compare:nnTF {(element1)} {(elements)}

The two functions the programmer must define before calling \prg_quicksort:n. As
an example we could define

\cs_set_nopar:Npn\prg_quicksort_function:n #1{{#1}}
\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2#3#4 {\int_compare:nNnTF{#1}>{#23}}

Then the function call
\prg_quicksort:n {876234520%}

would return {0}{2}{2}{3}{4}{5}{6}{7}{8}. An alternative example where one sorts
a list of words, \prg_quicksort_compare:nnTF could be defined as

\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2 {
\int_compare:nNnTF{\tl_compare:nn{#1}{#2}}>\c_zero }

41

30.1 Variable type and scope

’ \prg_variable get_scope:N * ‘\prg_variable_get_scope:N (variable)

Returns the scope (g for global, blank otherwise) for the (variable).

’ \prg_variable_get_type:N x ‘\prg_variable_get_type:N (variable)

Returns the type of (variable) (t1, int, etc.)

30.2 Mapping to variables

’ \prg_new_map_functions:Nn ‘\prg_new_map_functions:Nn (token) {{name)}

Creates a family of mapping functions which can be applied to a token list, dividing
the list up at each occurance of the (token). The functions defined will be

e \(name)_map_function:NN
e \(name)_map_function:nN
e \(name)_map_inline:Nn

e \(name)_map_inline:nn

o \(name)_map_break:

Of these, the inline functions are not expandable but the other functions can be used in
expansion contexts. The use of each function is best illustrated by the \clist_map_. ..
family defined by IATEX3 itself for mapping to comma-separated lists. An error will be
raised if the (name) has already been used to generate a family of mapping functions.
All of the definitions are created globally.

’ \prg_set_map_functions:Nn ‘\prg_set_map_functions:Nn (token) {{name)}

Creates a family of mapping functions which can be applied to a token list, dividing
the list up at each occurance of the (token). The functions defined will be

~

e \(name)_map_function:NN
e \(name)_map_function:nN

e \(name)_map_inline:Nn

42

e \(name)_map_inline:nn

e \(name)_map_break:

Of these, the inline functions are not expandable but the other functions can be used
in expansion contexts. The use of each function is best illustrated by the \clist_map_-
... family defined by BTEX3 itself for mapping to comma-separated lists. Any existing
defintions for the (name) will be overwritten. All of the definitions are created globally.

Part VI

The 13quark package
“Quarks”

A special type of constants in IATEX3 are ‘quarks’. These are control sequences that
expand to themselves and should therefore NEVER be executed directly in the code.
This would result in an endless loop!

They are meant to be used as delimiter is weird functions (for example as the stop token
(i-e., \q_stop). They also permit the following ingenious trick: when you pick up a token
in a temporary, and you want to know whether you have picked up a particular quark,
all you have to do is compare the temporary to the quark using \if_meaning:w. A set
of special quark testing functions is set up below. All the quark testing functions are
expandable although the ones testing only single tokens are much faster.

By convention all constants of type quark start out with \q_.

The documentation needs some updating.

31 Functions

’ \quark_new:N ‘\quark_new:N (quark)
Defines (quark) to be a new constant of type quark.

\quark_if_no_value_p:n *
\quark_if_no_value:nTF x
\quark_if_no_value_p:N *
\quark_if _no_value:NTF x

\quark_if_no_value:nTF {(token list)} {(true code)} {(false
code)}
\quark_if_no_value:NTF (¢ var.) {(true code)} {(false code)}

This tests whether or not (token list) contains only the quark \q_no_value.

43

If (token list) to be tested is stored in a token list variable use \quark_if_no_value:NTF,
or \quark_if_no_value:NF or check the value directly with \if_meaning:w. All those
cases are faster then \quark_if_no_value:nTF so should be preferred.’

TgXhackers note: But be aware of the fact that \if _meaning:w can result in an overflow
of TEX’s parameter stack since it leaves the corresponding \fi: on the input until the whole
replacement text is processed. It is therefore better in recursions to use \quark_if_no_value:NTF
as it will remove the conditional prior to processing the T or F case and so allows tail-recursion.

\quark_if _nil_p:N

*
\quark_if nil:NTF x

\quark_if_nil:NTF (token) {(true code)} {(false code)}
This tests whether or not (token) is equal to the quark \g_nil.

This is a useful test for recursive loops which typically has \q_nil as an end marker.

\quark_if nil_p:n
\quark_if nil:nTF
\quark_if nil_p:V
\quark_if _nil:VTF
\quark_if _nil_p:o
\quark_if _nil:oTF

b D S I

\quark_if_nil:nTF {(tokens)} {(true code)} {(false code)}
This tests whether or not (tokens) is equal to the quark \q_nil.

This is a useful test for recursive loops which typically has \g_nil as an end marker.

32 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below.

| \g_recursion_tail | This quark is appended to the data structure in question and
appears as a real element there. This means it gets any list separators around it.

| \g_recursion_stop | This quark is added after the data structure. Its purpose is to

make it possible to terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N x
\quark_if_recursion_tail_stop:n =*

]]] \quark_if_recursion_tail_stop:n {(list element)}
\quark_if_recursion_tail_stop:o =

\quark_if_recursion_tail_stop:N (list element)

5Clarify semantic of the “n” case ... i think it is not implement according to what we originally

intended /FMi

44

This tests whether or not (list element) is equal to \q_recursion_tail and then ex-
its, i.e., it gobbles the remainder of the list up to and including \q_recursion_stop
which must be present.

If (list element) is not under your complete control it is advisable to use the n. If you
wish to use the N form you must ensure it is really a single token such as if you have

\tl_set:Nn \1_tmpa_tl { (list element) }

\quark_if_recursion_tail_stop_do:nn
{(list element)} {(post action)}
\quark_if_recursion_tail_stop_do:Nn

(list element) {(post action)}

\quark_if_recursion_tail_stop_do:Nn *
\quark_if_recursion_tail_stop_do:nn *

\quark_if_recursion_tail_stop_do:on

Same as \quark_if_recursion_tail_stop:N except here the second argument is ex-
ecuted after the recursion has been terminated.

33 Constants

The canonical ‘missing value quark’ that is returned by certain functions

to denote that a requested value is not found in the data structure.

This constant is used as a a marker in parameter text. This allows a scanning
function to find the end of some input string.

This constant represent the nil pointer in pointer structures.

Delimits the end of the computation for purposes of error recovery.

Used in parameter text when we need a scanning boundary that is distinct
from \q_stop.

Part VII

The 13token package

45

A token of my appreciation...

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TEX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such will have two primary function
categories: \token for anything that deals with tokens and \peek for looking ahead in
the token stream.

Most of the time we will be using the term ‘token’ but most of the time the function
we’re describing can equally well by used on a control sequence as such one is one token
as well.

We shall refer to list of tokens as tlists and such lists represented by a single control
sequence is a ‘token list variable’ t1 var. Functions for these two types are found in the
[3tl module.

34 Character tokens

\char_set_catcode:nn
\char_set_catcode:w
\char_value_catcode:n
\char_value_catcode:w
\char_show_value_catcode:n
\char_show_value_catcode:w

\char_set_catcode:nn {(char number)} {(number)}
\char_set_catcode:w (char) = (number)
\char_value_catcode:n {{char number)}
\char_show_value_catcode:n {(char number)}

\char_set_catcode:nn sets the category code of a character, \char_value_catcode:n
returns its value for use in integer tests and \char_show_value_catcode:n pausing the
typesetting and prints the value on the terminal and in the log file. The :w form should
be avoided. (Will: should we then just not mention it?)

\char_set_catcode is more usefully abstracted below.

TEXhackers note: \char_set_catcode:w is the TEX primitive \catcode renamed.

46

\char_make_escape:n
\char_make_begin_group:n
\char_make_end_group:n
\char_make_math_shift:n
\char_make_alignment:n
\char_make_end_line:n
\char_make_parameter:n
\char_make_math_superscript:n
\char_make_math_subscript:n
\char_make_ignore:n
\char_make_space:n
\char_make_letter:n
\char_make_other:n

char_make_active:n
\ - - \char_make_letter:n {(character number)}

\char_make_letter:n {64}
\char_make_letter:n {‘\@}

\char_make_comment:n
\char_make_invalid:n

Sets the catcode of the character referred to by its (character number).

\char_make_escape:N
\char_make_begin_group:N
\char_make_end_group:N
\char_make_math_shift:N
\char_make_alignment:N
\char_make_end_line:N
\char_make_parameter:N
\char_make_math_superscript:N
\char_make_math_subscript:N
\char_make_ignore:N
\char_make_space:N
\char_make_letter:N
\char_make_other:N
\char_make_active:N

\char make comment:N \char_make_letter:N {(character)}

\char_make_letter:N @
\char_make_letter:N \%

\char_make_invalid:N

Sets the catcode of the (character), which may have to be escaped.

TEXhackers note: \char_make_other:N is ITEX 2¢’s \@makeother.

47

\char_set_lccode:nn
\char_set_lccode:w
\char_value_lccode:n
\char_value_lccode:w
\char_show_value_lccode:n
\char_show_value_lccode:w

\char_set_lccode:nn {(char)} {(number)}
\char_set_lccode:w (char) = (number)
\char_value_lccode:n {(char)}
\char_show_value_lccode:n {(char)}

Set the lower caser representation of (char) for when (char) is being converted in
\tl_to_lowercase:n. As above, the :w form is only for people who really, really know
what they are doing.

TEXhackers note: \char_set_lccode:w is the TEX primitive \1ccode renamed.

\char_set_uccode:nn
\char_set_uccode:w
\char_value_uccode:n

\char value uccode:w \char_set_uccode:nn {(char)} {(number)}

\char_set_uccode:w {(char) = (number)
\char_value_uccode:n {(char)}
\char_show_value_uccode:n {(char)}

\char_show_value_uccode:n

\char_ show_value uccode:w

Set the uppercase representation of (char) for when (char) is being converted in
\tl_to_uppercase:n. As above, the :w form is only for people who really, really know
what they are doing.

TEXhackers note: \char_set_uccode:w is the TEX primitive \uccode renamed.

\char_set_sfcode:nn
\char_set_sfcode:w
\char_value_sfcode:n
\char_value_sfcode:w
\char_show_value_sfcode:n
\char_show_value_sfcode:w

\char_set_sfcode:nn {(char)} {(number)}
\char_set_sfcode:w (char) = (number)
\char_value_sfcode:n {(char)}
\char_show_value_sfcode:n {(char)}

Set the space factor for (char).

TgXhackers note: \char_set_sfcode:w is the TEX primitive \sfcode renamed.

48

\char_set_mathcode:nn
\char_set_mathcode:w
\char_gset_mathcode:nn
\char_gset_mathcode:w
\char_value_mathcode:n
\char_value_mathcode:w
\char_show_value_mathcode:n
\char_show_value_mathcode:w

\char_set_mathcode:nn {(char)} {(number)}
\char_set_mathcode:w (char) = (number)
\char_value_mathcode:n {(char)}
\char_show_value_mathcode:n {(char)}

Set the math code for (char).

TEXhackers note: \char_set_mathcode:w is the TEX primitive \mathcode renamed.

35 Generic tokens

’ \token_new:Nn ‘\token_neW:Nn (token1) {(tokenz)}
Defines (tokeni) to globally be a snapshot of (tokens). This will be an implicit repre-
sentation of (tokens).

\c_group_begin_token
\c_group_end_token
\c_math_shift_token
\c_alignment_tab_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token
\c_letter_token
\c_other_char_token
\c_active_char_token

Some useful constants. They have category codes 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, and 13
respectively. They are all implicit tokens.

\token_if_group_begin_p:N %
\token_if_group_begin:NTF %

\token_if_group_begin:NTF (token) {(true)} {(false)}

Check if (token) is a begin group token.

\token_if_group_end_p:N *
\token_if_group_end:NTF % \token_if_group_end:NTF (token) {(true)} {(false)}

49

Check if (token) is an end group token.

\token_if_math_shift_p:N x
\token_if_math_shift:NTF x

\token_if_math_shift:NTF (token) {(true)} {(false)}

Check if (token) is a math shift token.

\token_if_alignment_tab_p:N %
\token_if_alignment_tab:NTF x

\token_if_aligment_tab:NTF (token) {(true)} {(false)}

Check if (token) is an aligment tab token.

\token_if_parameter_p:N =
\token_if_parameter:NTF =%

\token_if_parameter:NTF (token) {(true)} {(false)}

Check if (token) is a parameter token.

\token_if_math_superscript_p:N
\token_if_math_superscript:NTF

\token_if_math_superscript:NTF (token) {(true)} {(false)}

Check if (token) is a math superscript token.

\token_if_math_subscript_p:N *
\token_if_math_subscript:NTF x

\token_if_math_subscript:NTF (token) {(true)} {(false)}

Check if (token) is a math subscript token.

\token_if_space_p:N %
\token_if_space:NTF x \token_if_space:NTF (token) {(true)} {(false)}

Check if (token) is a space token.

\token_if_letter_p:N %
\token_if_letter:NTF

\token_if_letter:NTF (token) {(true)} {(false)}

Check if (token) is a letter token.

\token_if_other_char_p:N x
\token_if_other_char:NTF «x

\token_if_other_char:NTF (token) {(true)} {(false)}

50

Check if (token) is an other char token.

\token_if_active_char_p:N %
\token_if_active_char:NTF * \token_if_active_char:NTF (token) {(true)} {(false)}

Check if (token) is an active char token.

\token_if_eq_meaning_p:NN %
\token_if_eq_meaning:NNTF * \token_if_eq_meaning:NNTF (tokeni) (tokena){(true)} {(false)}

Check if the meaning of two tokens are identical.

\token_if_eq_catcode_p:NN %
\token_if_eq_catcode:NNTF *

\token_if_eq_catcode:NNTF (tokeni) (tokena){(true)} {(false)}

Check if the category codes of two tokens are equal. If both tokens are control sequences
the test will be true.

\token_if_eq_charcode_p:NN *
\token_if_eq_charcode:NNTF *

\token_if_eq_catcode:NNTF (tokeni1) (token2){(true)} {(false)}

Check if the character codes of two tokens are equal. If both tokens are control sequences
the test will be true.

\token_if_macro_p:N %
\token_if_macro:NTF x

\token_if_macro:NTF (token) {(true)} {(false)}

Check if (token) is a macro.

\token_if_cs_p:N =%
\token_if_cs:NTF *

\token_if_cs:NTF (token) {(true)} {(false)}

Check if (token) is a control sequence or not. This can be useful for situations where
the next token in the input stream is being looked at and you want to determine what
should be done to it.

\token_if_expandable_p:N x
\token_if_expandable:NTF x

\token_if_expandable:NTF (token) {(true)} {(false)}

Check if (token) is expandable or not. Note that (token) can very well be an active
character.

ol

The next set of functions here are for picking apart control sequences. Sometimes it is
useful to know if a control sequence has arguments and if so, how many. Similarly its
status with respect to \long or \protected is good to have. Finally it can be very useful
to know if a control sequence is of a certain type: Is this (toks) register we're trying to
to something with really a (toks) register at all?

\token_if_long_macro_p:N x
\token_if_long_macro:NTF x

\token_if_long_macro:NTF (token) {(true)} {(false)}

Check if (token) is a “long” macro.

\token_if_protected_macro_p:N %
\token_if_protected_macro:NTF *

\token_if_long_macro:NTF (token) {(true)} {(false)}

Check if (token) is a “protected” macro. This test does not return (true) if the macro is
also “long”, see below.

\token_}f_protected_long_macro_p:N * \token_if_protected_long_macro:NTF (token) {(true)}
\token_if_protected_long_macro:NTF x {false)}

Check if (token) is a “protected long” macro.

\token_if_chardef_p:N x
\token_if_chardef:NTF x

\token_if_chardef:NTF (token) {(true)} {(false)}

Check if (token) is defined to be a chardef.

\token_if_mathchardef_p:N %
\token_if_mathchardef:NTF *

\token_if_mathchardef :NTF (token) {(true)} {(false)}

Check if (token) is defined to be a mathchardef.

\token_if_int_register_p:N x
\token_if_int_register:NTF x

\token_if_int_register:NTF (token) {(true)} {(false)}

Check if (token) is defined to be an integer register.

\token_if_dim_register_p:N

*
\token_if_dim_register:NIF *

\token_if_dim_register:NTF (token) {(true)} {(false)}

92

Check if (token) is defined to be a dimension register.

\token_if_skip_register_p:N x
\token_if_skip_register:NTF x \token_if_skip_register:NTF (token) {(true)} {(false)}

Check if (token) is defined to be a skip register.

\token_if_toks_register_p:

N %
\token_if_toks_register:NTF x \token_if_toks_register:NTF (token) {(true)} {(false)}

Check if (token) is defined to be a toks register.

\token_get_prefix_spec:N *
\token_get_arg_spec:N *
\token_get_replacement_spec:N %

\token_get_arg_spec:N (token)

If token is a macro with definition \cs_set:Npn\next #1#2{x‘#1--#2’y}, the prefix
function will return the string \long, the arg function returns the string #1#2 and the
replacement function returns the string x‘#1--#2’y. If (foken) isn’t a macro, these
functions return the \scan_stop: token.

If the arg_spec contains the string ->, then the spec function will produce incorrect
results.

35.1 Useless code: because we can!

\token_if_primitive_p:N =
\token_if_primitive:NTF =%

\token_if_primitive:NTF (token) {(true)} {(false)}

Check if (token) is a primitive. Probably not a very useful function.

36 Peeking ahead at the next token

\1_peek_token
\g_peek_token
\1_peek_search_token

Some useful variables. Initially they are set to 7.

\peek_after:NN
\peek_gafter:NN

\peek_after:NN (function)(token)
Assign (token) to \1_peek_token and then run (function) which should perform some

93

sort of test on this token. Leaves (token) in the input stream. \peek_gafter:NN does
this globally to the token \g_peek_token.

TEXhackers note: This is the primitive \futurelet turned into a function.

\peek_meaning:NTF
\peek_meaning_ignore_spaces:NTF
\peek_meaning_remove:NTF

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning:NTF (token) {(true)} {(false)}

\peek_meaning:NTF checks (by using \if_meaning:w) if (ftoken) equals the next to-
ken in the input stream and executes either (true code) or (false code) accordingly.
\peek_meaning_remove:NTF does the same but additionally removes the token if found.
The ignore_spaces versions skips blank spaces before making the decision.

TEXhackers note: This is equivalent to BTEX 2¢’s \@ifnextchar.

\peek_charcode:NTF
\peek_charcode_ignore_spaces:NIF
\peek_charcode_remove:NTF

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode:NTF (token) {(true)} {(false)}

Same as for the \peek_meaning:NTF functions above but these use \if_charcode:w
to compare the tokens.

\peek_catcode:NTF
\peek_catcode_ignore_spaces:NTF
\peek_catcode_remove:NTF
\peek_catcode_remove_ignore_spaces:NTF \peek_catcode:NTF (token) {(true)} {(false)}

Same as for the \peek_meaning:NTF functions above but these use \if_catcode:w to
compare the tokens.

\peek_token_generic:NNTF
\peek_token_remove_generic:NNTF \peek_token_generic:NNTF (token)(function) {(true)} {(false)}

\peek_token_generic:NNTF looks ahead and checks if the next token in the input stream
is equal to (token). It uses (function) to make that decision. \peek_token_remove_generic:NNTF

o4

does the same thing but additionally removes (token) from the input stream if it is found.
This also works if (token) is either \c_group_begin_token or \c_group_end_token.

\peek_execute_branches_meaning:
\peek_execute_branches_charcode:
\peek_execute_branches_catcode:

\peek_execute_branches_meaning:

These functions compare the token we are searching for with the token found (after
optional ignoring of specific tokens). They come in the usual three versions when TEX is
comparing tokens: meaning, character code, and category code.

Part VIII

The 13int package
Integers/counters

37 Integer values

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, =, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (‘int expr’).

37.1 Integer expressions

’ \int_eval:n * ‘\int_eval:n {(integer expression)}

Evaluates the (integer expression), expanding any integer and token list variables within
the (expression) to their content (without requiring \int_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 5+ 4 *x3 - (3 +4*x5) 1}

and

\tl_new:N \l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \1l_my_int

\int\set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3+ 4 x5) }

%)

both evaluate to —6. The {(integer expression)} may contain the operators +, -, * and
/, along with parenthesis (and). After two expansions, \int_eval:n yields a (integer
donation) which is left in the input stream. This is not an (internal integer), and therefore
requires suitable termination if used in a TEX-style integer assignment.

’ \int_abs:n * ‘\int_abs:n {

(integer expression)}
Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

’ \int_div_round:nn *"\int_div_round:nn {(intezpr1)} {{intexpra)}

Evaluates the two (integer expressions) as described earlier, then calculates the result of
dividing the first value by the second, rounding any remainder. Note that division using /
is identical to this function. The result is left in the input stream as a (integer denotation)
after two expansions.

’ \int_div_truncate:nn * \int_div_truncate:nn {(intexpri)} {(intexpra)}

Evaluates the two (integer expressions) as described earlier, then calculates the result
of dividing the first value by the second, truncating any remainder. Note that division
using / rounds the result. The result is left in the input stream as a (integer denotation)
after two expansions.

\int_max:nn *

.) \int_max:nn {(intexpri)} {(intexpra)}
\int_min:nn *

\int_min:nn {(intexpri)} {(intexpra)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expan-
sions.

’ \int_mod:nn * ‘\int_mod:nn {(intexpr1)} {({intexpra)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is left in the input stream
as an (integer denotation) after two expansions.

37.2 Integer variables

\int_new:N
\int_new:c

\int_new:N (integer)
Creates a new (inter) or raises an error if the name is already taken. The declaration is

96

global. The (integer) will initially be equal to 0.

\int_set_eq:NN
\int_set_eq:cN
\int_set_eq:Nc
\int_set_eq:cc

\int_set_eq:NN (integerl) (integer 2)
Sets the content of (integer!) equal to that of (integer 2). This assignment is restricted
to the current TEX group level.

\int_gset_eq:NN
\int_gset_eq:cN
\int_gset_eq:Nc
\int_gset_eq:cc

\int_gset_eq:NN (integerl) (integer2)
Sets the content of (integer!) equal to that of (integer2). This assignment is global and
so is not limited by the current TEX group level.

\int_add:Nn
\int_add:cn

\int_add:Nn (integer) {(integer expression)}
Adds the result of the (integer expression) to the current content of the (integer). This
assignment is local.

\int_gadd:Nn
\int_gadd:cn

\int_gadd:Nn (integer) {(integer expression)}
Adds the result of the (integer expression) to the current content of the (integer). This
assignment is global.

\int_decr:N
\int_decr:c

\int_decr:N (integer)

Decreases the value stored in (integer) by 1 within the scope of the current TEX group.

\int_gdecr:N
\int_gdecr:c

\int_incr:N (integer)

Decreases the value stored in (integer) by 1 globally (i.e. not limited by the current group
level).

\int_incr:N
\int_incr:c

\int_incr:N (integer)

Increases the value stored in (integer) by 1 within the scope of the current TEX group.

\int_gincr:N
\int_gincr:c

\int_incr:N (integer)

Increases the value stored in (integer) by 1 globally (i.e. not limited by the current group

o7

level).

\int_set:Nn
\int_set:cn

\int_set:Nn (integer) {(integer expression)}
Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n). This assignment is restricted to the current TEX group.

\int_gset:Nn
\int_gset:cn

\int_gset:Nn (integer) {(integer expression)}
Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n). This assignment is global and is not limited to the current

TEX group level.

\int_sub:Nn
\int_sub:cn

\int_sub:Nn (integer) {(integer expression)}
Subtracts the result of the (integer expression) to the current content of the (integer).
This assignment is local.

\int_gsub:Nn
\int_gsub:cn

\int_gsub:Nn (integer) {(integer expression)}
Subtracts the result of the (integer expression) to the current content of the (integer).
This assignment is global.

\int_zero:N
\int_zero:c

\int_zero:N (integer)
Sets (integer) to 0 within the scope of the current TEX group.

\int_gzero:N
\int_gzero:c

\int_gzero:N (integer)
Sets (integer) to 0 globally, i.e. not restricted by the current TEX group level.

\int_show:N
\int_show:c

\int_show:N (integer)
Displays the value of the (integer) on the terminal.

\int_use:N «*
\int_use:c *

\int_use:N (integer)

Recovers the content of a (integer) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(integer) is required (such as in the first and third arguments of \int_compare :nNnTF).

98

37.3 Comparing integer expressions

\int_compare_p:nNn

{(intezpr1)} (relation) {(intexprs2)}
\int_compare :nNnTF
. {(intexpr1)} (relation) {{intexpra)}
\int_compare:nNnTF * {(true code)} {(false code)}

\int_compare_p:nNn *

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

The branching versions then leave either (true code) or (false code) in the input stream,
as appropriate to the truth of the test and the variant of the function chosen. The logical
truth of the test is left in the input stream by the predicate version.

\int_compare_p:n
{ (intexpr1) (relation) (intexpr2) ¥}
\int_compare:nTF
] { (intezprl) (relation) (intexpr2) }
\int_compare:nTF * {(true code)} {(false code)}
This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

\int_compare_p:n *

Equal =or ==
Greater than or equal to =>
Greater than

Less than or equal to =<
Less than <

Not equal !

The branching versions then leave either (true code) or {false code) in the input stream,
as appropriate to the truth of the test and the variant of the function chosen. The logical
truth of the test is left in the input stream by the predicate version.

\int_if_even_p:n *
\int_if_even:nTF x

\int_if odd_p:n « \int_if_odd_p:n {(integer expression)}

. . \int_if_odd:nTF {(integer expression)}

\int_if_odd:nJF * {(true code)} {(false code)}
This function first evaluates the (integer expression) as described for \int_eval:n. It
then evaluates if this is odd or even, as appropriate. The branching versions then leave

99

either (true code) or (false code) in the input stream, as appropriate to the truth of the
test and the variant of the function chosen. The logical truth of the test is left in the
input stream by the predicate version.

- —— \int_do_while:nNnn
’ \int_do_while:nNnn x ‘ {(intezpr1)} (relation) {(intexpr2)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

; — \int_do_until:nNnn
’ \int_do_until:nNnn * ‘ {(intezpr1)} (relation) {(intexpr2)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

- - - \int_until_do:nNnn
’ \int_until_do:nNnn + ‘ {(intezpr1)} (relation) {(intexpr2)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the re-
lationship between the two (integer expressions) as described for \int_compare :nNnTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

. . - \int_while_do:nNnn {(intexpr1)} (relation)
’ \int_while_do:nNnn * ‘{(intempm)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the re-
lationship between the two (integer expressions) as described for \int_compare:nNnTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

- - \int_do_while:nNnn

’ \int_do_while:nn x ‘ { (intexpri) (relation) (intexpr2) } {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

- - \int_do_until:nn

’ \int_do_until:nn * ‘ { (intexprl) (relation) (intexpr2) } {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nTF, and then places the (code) in the input stream if the (relation) is false.

60

After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

\int_until_do:nn

’ \int_until do:nn * ‘ { (intexprl) (relation) (intexpr2) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare:nTF. If the
test is false then the (code) will be inserted into the input stream again and a loop will
occur until the (relation) is true.

int_while_do: nt 1 lati int 2
’ \int_while doimn * ‘}zzl()d_g;}l e_do:nn { (intexprl) (relation) (intexpr2) }

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare:nTF. If the
test is true then the (code) will be inserted into the input stream again and a loop will
occur until the (relation) is false.

37.4 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

’ \int_to_arabic:n * ‘\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

\int_to_alph:n *
\int_to_Alph:n *

\int_to_alph:n {(integer expression)}

Evaluates the (integer expression) and converts the result into a series of letters, which
are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order. Thus

\int_to_alph:n { 1 }

places a in the input stream,

\int_to_alph:n { 26 }

is represented as z and

\int_to_alph:n { 27 }

61

is converted to ‘aa’. For conversions using other alphabets, use \int_convert_to_-
symbols:nnn to define an alphabet-specific function. The basic \int_to_alph:n and
\int_to_Alph:n functions should not be modified.

’ \int_to_binary:n * ‘\int_to_binary:n {(integer expression)}
Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

’ \int_to_hexadecimal:n * ‘\int_to_binary:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Upper case letters are used for digits
beyond 9.

’ \int_to_octal:n x ‘

\int_to_octal:n {(integer expression)}
Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream.

\int_to_roman:n x
\int_to_Roman:n x

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The numerals
are letters with category code 11 (letter).

’ \int_to_symbol:n * ‘\int_to_symbol:n {(integer expression)}

Calculates the value of the (integer expression) and places the symbol representation
of the result in the input stream. The list of symbols used is equivalent to IMTEX 2¢’s
\@fnsymbol set.

37.5 Converting from other formats

’ \int_from_alph:n * ‘\int_from_alpa:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are treated using the English alphabet only, with ‘a’ equal to
1 through to ‘z’ equal to 26. Either lower or upper case letters may be used. This is the
inverse function of \int_to_alph:n.

’ \int_from binary:n % ‘\int_from_binary:n {(binary number)}

62

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream.

’ \int_from_hexadecimal:n x ‘\int_from_binary:n {(hezadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters.

’ \int_from_octal:n * ‘\int_from_octal:n {{octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream.

’ \int_from_roman:n * ‘\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this
in the input stream. The (roman numeral) may be in upper or lower case; if the numeral
is not valid then the resulting value will be —1.

37.6 Low-level conversion functions

As well as the higher-level functions already documented, there are a series of lower-level
functions which can be used to carry out generic conversions. These are used to create
the higher-level versions documented above.

- \int_convert_from_base_ten:nn {(integer expression)}
’ \int_convert_from_base_ten:nn * ‘ {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher ‘digits’ are represented by the upper case letters from the
English alphabet (with normal category codes). The maximum (base) value is 36.

. \int_convert_to_base_ten:nn {(number)}
’ \int_convert_to_base_ten:nn * ‘ {(base)}

Converts the (number) in (base) into the appropriate value in base 10. The (number)
should consist of digits and letters (either lower or upper case), plus optionally a leading
sign. The maximum (base) value is 36.

\int_convert_to_symbols:nnn
{(integer expression)} {(total symbols)}
(value to symbol mapping)

’ \int_convert_to_symbols:nnn x ‘

63

This is the low-level function for conversion of an (integer expression) into a symbolic
form (which will often be letters). The (total symbols) available should be given as an
integer expression. Values are actually converted to symbols according to the (value to
symbol mapping). This should be given as (total symbols) pairs of entries, a number and
the appropriate symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1 {
\int_convert_to_sybols:nnn {#1} { 26 }
{

0 N O O W N

D N T T e T o S e N e N T e T e T T e T e T N S SO S S
=
W
L I s s T T e B e B R e 2T el s A s m R)
D T N S S e N T T T N e Y N S S S ST S R
N< M 8 gy OO0 oB B KWK BFMR HOQLQO T M
R s i s e T s s i A e B B e B A AL R

64

38 Variables and constants

\1_tmpa_int
\1_tmpb_int
\1_tmpc_int
\g_tmpa_int
\g_tmpb_int

Scratch register for immediate use. They are not used by conditionals
or predicate functions.

\int_const:Nn
\int_const:cn

\int_const:Nn (integer) {(integer expression)}
Creates a new constant (integer) or raises an error if the name is already taken. The

65

value of the (integer) will be set globally to the (integer expression).

The maximum value that can be stored as an integer.

\c_minus_one

\c_zero

\c_one

\c_two

\c_three

\c_four

\c_five

\c_six

\c_seven

\c_eight

\c_nine

\c_ten

\c_eleven

\c_twelve

\c_thirteen
\c_fourteen
\c_fifteen

\c_sixteen
\c_thirty_two
\c_hundred_one
\c_twohundred_fifty_five
\c_twohundred_fifty_six
\c_thousand
\c_ten_thousand
\c_ten_thousand_one
\c_ten_thousand_two
\c_ten_thousand_three
\c_ten_thousand_four
\c_twenty_thousand

Integer values used with primitive tests and assignments:

self-terminating nature makes these more convenient and faster than literal numbers.

| \c_max_register_int ‘hdaxhnunlrnunberofregmtmx.

38.1 Internal functions

’ \int_to_roman:w x ‘\int_to_roman:w (

integer) (space) or (non-expandable token)

Converts (integer) to it lowercase roman representation. Note that it produces a string

of letters with catcode 12.

66

TEXhackers note: This is the TEX primitive \romannumeral renamed.

\int_roman_lcuc_mapping:Nnn (roman__char) {{licr)}
{(LICR)}

\int_to_roman_lcuc:NN (roman__char) (char)

\int_roman_lcuc_mapping:Nnn

\int_to_roman_lcuc:NN

\int_roman_lcuc_mapping:Nnn specifies how the roman numeral (roman__ char) (i, v,
x, 1, ¢, d, or m) should be interpreted when converting the number. (licr) is the lower case
and (LICR) is the uppercase mapping. \int_to_roman_lcuc:NN is a recursive function
converting the roman numerals.

\int_convert_number_with_rule:nnN
\int_symbol_math_conversion_rule:n

. . \int_convert_number_with_rule:nnN {(int1)} {(int2)}
\int_symbol_text_conversion_rule:n

(function)

\int_convert_number_with_rule:nnN converts (int;) into letters, symbols, whatever
as defined by (function). (int2) denotes the base number for the conversion.

\%f_l.lum:w * |\if_num:w (numbery) (rel) (numbers) (true) \else: (false)
\if_int_compare:w x \fi:

Compare two integers using (rel), which must be one of =, < or > with category code 12.
The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w * \if_case:w (number) (caseo) \or: (casei) \or: ... \else:

\or: * | (default) \fi:
Selects a case to execute based on the value of (number). The first case ((caseq)) is
executed if (number) is 0, the second ({case)) if the (number) is 1, etc. The (number)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\int_value:w (integer)
\int_value:w (tokens) (optional space)
Expands (tokens) until an (integer) is formed. One space may be gobbled in the process.

’ \int_value:w * ‘

TEXhackers note: This is the TEX primitive \number.

67

\int_eval:w *
\int_eval_end:

\int_eval:w (int ezpr) \int_eval_end:

Evaluates (integer expression) as described for \int_eval:n. The evalution stops when
an unexpandable token with category code other than 12 is read or when \int_eval_-
end: isreached. The latter is gobbled by the scanner mechanism: \int_eval_end: itself
is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \numexpr.

\if_int_odd:w (tokens) (true) \else: (false) \fi:

\if_int_odd:w (number) (true) \else: (false) \fi:

Expands (tokens) until a non-numeric tokens is found, and tests whether the resulting
(number) is odd. If so, (true code) is executed. The \else: branch is optional.

’ \if _int_odd:w * ‘

TgXhackers note: This is the TEX primitive \ifodd.

Part IX

The 13skip package
Dimension and skip registers

KTEX3 knows about two types of length registers for internal use: rubber lengths (skips)
and rigid lengths (dims).

39 Skip registers

39.1 Functions

\skip_new:N
\skip_new:c

\skip_new:N (skip)
Defines (skip) to be a new variable of type skip.

TEXhackers note: \skip_new:N is the equivalent to plain TEX’s \newskip.

68

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\skip_zero:N (skip)
Locally or globally reset (skip) to zero. For global variables the global versions should be
used.

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

\skip_set:Nn (skip) {(skip value)}
These functions will set the (skip) register to the (length) value.

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn \skip_add:Nn (skip) {(length)}
These functions will add to the (skip) register the value (length). If the second argument
is a (skip) register too, the surrounding braces can be left out.

\skip_sub:Nn
\skip_gsub:Nn

\skip_gsub:Nn (skip) {(length)}
These functions will subtract from the (skip) register the value (length). If the second
argument is a (skip) register too, the surrounding braces can be left out.

\skip_use:N
\skip_use:c

\skip_use:N (skip)
This function returns the length value kept in (skip) in a way suitable for further pro-
cessing.

TEXhackers note: The function \skip_use:N could be implemented directly as the TEX prim-
itive \tex_the:D which is also responsible to produce the values for other internal quantities.
We have chosen to use individual functions for counters, dimensions etc. to allow checks and to
make the code more self-explanatory.

\skip_show:N
\skip_show:c

\skip_show:N (skip)
This function pauses the compilation and displays the length value kept in (skip) in the
console output and log file.

TEXhackers note: The function \skip_show:N could be implemented directly as the TEX
primitive \tex_showthe:D which is also responsible to produce the values for other internal

69

quantities. We have chosen to use individual functions for counters, dimensions etc. to allow
checks and to make the code more self-explanatory.

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n
\skip_vertical:N

\skip_vertical:c \skip_horizontal:N (skip)

\skip_horizontal:n {(length)}
The hor functions insert (skip) or (length) with the TEX primitive \hskip. The vertical
variants do the same with \vskip. The n versions evaluate (length) with \skip_eval:n.

\skip_vertical:n

\skip_if_infinite_glue_p:n
\skip_if_infinite_glue:nTF

\skip_if_infinite_glue:nTF {(skip)} {(true)} {(false)}

Checks if (skip) contains infinite stretch or shrink components and executes either (true)
or (false). Also works on input like 3pt plus .5in.

\skip_split_finite_else_action:nnNN {(skip)} {(action)}

’ \skip_split_finite_else_action:nnNN ‘(dz’mevm) (dimen)

Checks if (skip) contains finite glue. If it does then it assigns (dimeni) the stretch
component and (dimens) the shrink component. If it contains infinite glue set (dimeny)
and (dimens) to zero and execute #2 which is usually an error or warning message of
some sort.

’ \skip_eval:n * ‘\skip_eval:n {(skip expression)}

Evaluates the (skip expression), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\tl_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (glue denotation) after two expansions. This will be expressed in points (pt), and
will require suitable termination if used in a TEX-style assignment as it is not an (internal
glue).

70

39.2 Formatting a skip register value

39.3 Variable and constants

Constant that denotes the maximum value which can be stored in a

(skip) register.

] \c_zero_skip

‘ Constants denoting a zero skip.

\1_tmpa_skip
\1_tmpb_skip
\1_tmpc_skip
\g_tmpa_skip
\g_tmpb_skip

Scratch register for immediate use.

40 Dim registers

40.1 Functions

\dim_new:N
\dim_new:c

\dim_new:N (dim)

Defines (dim) to be a new variable of type dim.

TEXhackers note: \dim_new:N is the equivalent to plain TEX’s \newdimen.

\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

\dim_zero:N (dim)

Locally or globally reset (dim) to zero. For global variables the global versions should be

71

used.

\dim_set:Nn
\dim set:Nc
\dim set:cn
\dim_gset:Nn
\dim_gset:Nc
\dim_gset:cn
\dim_gset:cc

\dim_set:Nn (dim) {(dim value)}
These functions will set the (dim) register to the (dim value) value.

\dim_set_max:Nn
\dim_set _max:cn

\dim_set_max:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the {dimension) to the larger of these two value. This assignment is local to the

current TEX group.

\dim_gset_max:Nn
\dim_gset_max:cn

\dim_gset_max:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the larger of these two value. This assignment is global.

\dim_set_min:Nn
\dim_set min:cn

\dim_set_min:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the smaller of these two value. This assignment is local to
the current TEX group.

\dim_gset_min:Nn
\dim_gset_min:cn

\dim_gset_min:Nn (dimension) {(dimension expression)}
Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the smaller of these two value. This assignment is global.

\dim_add:Nn
\dim add:Nc
\dim_ add:cn
\dim_gadd:Nn

\dim_gadd:Ch |\gip add:Nn (dim) {(length)}
These functions will add to the (dim) register the value (length). If the second argument

72

is a (dim) register too, the surrounding braces can be left out.

\dim_sub:Nn
\dim_sub:Nc
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn \dim_gsub:Nn (dim) {(length)}
These functions will subtract from the (dim) register the value (length). If the second
argument is a (dim) register too, the surrounding braces can be left out.

\dim_use:N
\dim_use:c

\dim_use:N (dim)
This function returns the length value kept in (dim) in a way suitable for further pro-
cessing.

TEXhackers note: The function \dim_use:N could be implemented directly as the TEX prim-
itive \tex_the:D which is also responsible to produce the values for other internal quantities.
We have chosen to use individual functions for counters, dimensions etc. to allow checks and to
make the code more self-explanatory.

\dim_show:N
\dim_show:c

\dim_show:N (dim)
This function pauses the compilation and displays the length value kept in (skip) in the
console output and log file.

TEXhackers note: The function \dim_show:N could be implemented directly as the TEX primi-
tive \tex_showthe:D which is also responsible to produce the values for other internal quantities.
We have chosen to use individual functions for counters, dimensions etc. to allow checks and to
make the code more self-explanatory.

’ \dim_eval:n * ‘\dim_eval:n {(dimension expression)}

Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1l_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (dimension denotation) after two expansions. This will be expressed
in points (pt), and will require suitable termination if used in a TEX-style assignment as
it is not an (internal dimension).

\if_dim:w (dimen1) (rel) (dimens) (true) \else: (false) \fi:
Compare two dimensions. It is recommended to use \dim_eval:w to correctly evaluate
and terminate these numbers. (rel) is one of <, = or > with catcode 12.

73

TEXhackers note: This is the TEX primitive \ifdim.

\dim_compare_p:n {{{dim expr.1) (rel) (dim expr.2))}

A \dim_compare:nTF {{(dim expr.1) (rel) (dim expr.2))}
\dim_compare:nTF * (true code) (false code)

Evaluates (dim expr.1) and (dim expr.s) and then carries out a comparison of the re-

sulting lengths using C-like operators:

\dim_compare_p:n *

Less than < Less than or equal <=
Greater than > Greater than or equal >=
Equal == or = Not equal 1=

Based on the result of the comparison either the (true code) or (false code) is executed.
Both dimension expressions are evaluated fully in the process. Note the syntax, which
allows natural input in the style of

\dim_compare_p:n {2.54cm != \1_tmpb_int}

A single equals sign is available as comparator (in addition to those familiar to C users)
as standard TEX practice is to compare values using =.

\d%m_compare:nlflnﬂ' * \dim_compare:nNnTF {(dim expr)} (rel) {(dim expr)}
\dim_compare_p:nNn * Ltrue)y {(false)}

These functions test two dimension expressions against each other. They are both eval-
uated by \dim_eval:n. Note that if both expressions are normal dimension variables as
in

\dim_compare:nNnTF \1_temp_dim < \c_zero_skip {negative}{non-negative}

you can safely omit the braces.

These functions are faster than the n variants described above but do not support an
extended set of relational operators.

TEXhackers note: This is the TEX primitive \ifdim turned into a function.

\dim_while_do:nNnn
\dim_until_do:nNnn
\dim_do_while:nNnn
\dim_do_until:nNnn

\dim_while_do:nNnn (dim expr) (rel) (dim expr) (code)
\dim_while_do:nNnn tests the dimension expressions and if true performs (code) repeat-
edly while the test remains true. \dim_do_while:nNnn is similar but executes the body
first and then performs the check, thus ensuring that the body is executed at least once.
The ‘until’ versions are similar but continue the loop as long as the test is false.

74

40.2 Variable and constants

Constant that denotes the maximum value which can be stored in a (dim)
register.

Set of constants denoting useful values.

\1_tmpa_dim
\1_tmpb_dim
\1_tmpc_dim
\1_tmpd_dim
\g_tmpa_dim
\g_tmpb_dim

Scratch register for immediate use.

41 Muskips

’ \muskip_new:N ‘\muskip_new:N (muskip)

TgXhackers note: Defines (muskip) to be a new variable of type muskip. \muskip_new:N is
the equivalent to plain TEX’s \newmuskip.

\muskip_set:Nn
\muskip_gset:Nn

\muskip_set:Nn (muskip) {(muskip value)}
These functions will set the (muskip) register to the (length) value.

\muskip_add:Nn
\muskip_gadd:Nn

\muskip_add:Nn (muskip) {(length)}
These functions will add to the (muskip) register the value (length). If the second argu-
ment is a (muskip) register too, the surrounding braces can be left out.

\muskip_sub:Nn
\muskip_gsub:Nn

\muskip_gsub:Nn (muskip) {(length)}
These functions will subtract from the (muskip) register the value (length). If the second
argument is a (muskip) register too, the surrounding braces can be left out.

’ \muskip_use:N ‘\muskip_use:N (muskip)
This function returns the length value kept in (muskip) in a way suitable for further
processing.

()

TEXhackers note: See note for \dim_use:N.

’ \muskip_show:N ‘\muskip_show:N (muskip)
This function pauses the compilation and displays the length value kept in (muskip) in
the console output and log file.

Part X

The 13tl package
Token Lists

IXTREX3 stores token lists in variables also called ‘token lists’. Variables of this type get
the suffix t1 and functions of this type have the prefix t1. To use a token list variable
you simply call the corresponding variable.

Often you find yourself with not a token list variable but an arbitrary token list which
has to undergo certain tests. We will also prefix these functions with t1. While token
list variables are always single tokens, token lists are always surrounded by braces.

42 Functions

\tl_new:N
\tl_new:c
\tl new:Nn
\tl new:cn
\tl_new:Nx

\tl_new:Nn (¢l var.) {(initial token list)}

Defines (tl var.) globally to be a new variable to store a token list. (initial token list) is
the initial value of (¢! var.). This makes it possible to assign values to a constant token
list variable.

The form \t1l_new:N initializes the token list variable with an empty value.

’ \t1_const:Nn ‘\tl_const:Nn (tl var.) {(token list)}
Defines (¢l var.) as a global constant expanding to (token list). The name of the constant
must be free when the constant is created.

\tl_use:N

\t1_use:c \tl_use:N (i var.)
Function that inserts the (¢l var.) into the processing stream. Instead of \tl_use:N

76

simply placing the (¢ var.) into the input stream is also supported. \tl_use:c will
complain if the (¢l var.) hasn’t been declared previously!

\tl_show:N
\tl_ShOWfC \tl_show:N (& var.)
\tl_show:n \tl_show:n {(token list)}

Function that pauses the compilation and displays the (¢ var.) or (token list) on the
console output and in the log file.

\tl_set:Nn
\tl set:Nc
\tl set:NV
\tl_set:No
\tl_set:Nv
\tl_set:Nf
\tl_set:Nx
\tl set:cn
\tl_set:co
\tl_set:cV
\tl _set:cx
\tl_gset:Nn
\tl_gset:Nc
\tl_gset:No
\tl_gset:NV
\tl_gset:Nv
\tl_gset:Nx
\tl_gset:cn

\t1_gset:cx \tl_set:Nn (tl var.) {(token list)}
Defines (tl war.) to hold the token list (token list). Global variants of this command
assign the value globally the other variants expand the (token list) up to a certain level
before the assignment or interpret the (token list) as a character list and form a control
sequence out of it.

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear:N (tl var.)
The (¢l var.) is locally or globally cleared. The c variants will generate a control sequence
name which is then interpreted as (¢l var.) before clearing.

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_clear_new:N (i var.)

7

These functions check if (¢l var.) exists. If it does it will be cleared; if it doesn’t it will
be allocated.

\tl_put_left:Nn
\tl_put_left:NV
\tl_put_left:No
\tl_put_left:Nx
\tl_put_left:cn
\tl_put_left:cV
\tl_put_left:co

\tl_put_left:Nn (t var.) {(token list)}
These functions will append (token list) to the left of (¢l var.). (token list) might be
subject to expansion before assignment.

\tl_put_right:Nn
\tl_put_right:NV
\tl_put_right:No
\tl_put_right:Nx
\tl_put_right:cn
\tl_put_right:cV
\tl_put_right:co

\tl_put_right:Nn (tl var.) {(token list)}
These functions append (token list) to the right of (¢l var.).

\tl_gput_left:Nn
\tl_gput_left:No
\tl_gput_left:NV
\tl_gput_left:Nx
\tl_gput_left:cn
\tl_gput_left:co
\tl_gput_left:cV

\tl_gput_left:Nn (tl var.) {(token list)}
These functions will append (token list) globally to the left of (¢ var.).

\tl_gput_right:Nn
\tl_gput_right:No
\tl_gput_right:NV
\tl_gput_right:Nx
\tl_gput_right:cn
\tl_gput_right:co
\tl_gput_right:cV

\tl_gput_right:Nn (tl var.) {(token list)}
These functions will globally append (token list) to the right of (¢ var.).

A word of warning is appropriate here: Token list variables are implemented as macros
and as such currently inherit some of the peculiarities of how TEX handles #s in the
argument of macros. In particular, the following actions are legal

78

\tl_set:Nn \1_tmpa_t1{##1}
\tl_put_right:Nn \1_tmpa_t1{##2}
\tl_set:No \1_tmpb_t1{\1_tmpa_tl ##3}

x type expansions where macros being expanded contain #s do not work and will not
work until there is an \expanded primitive in the engine. If you want them to work you
must double #s another level.

\tl_set_eq:NN
\tl_set_eq:Nc
\tl_set_eq:cN
\tl_set_eq:cc
\tl_gset_eq:NN
\tl_gset_eq:Nc
\tl_gset_eq:cN
\tl_gset_eq:cc

\tl_set_eq:NN (tl var.1) (tl var.2)
Fast form for \t1l_set:No (t war.1) {{tl var.2)}
when (¢l var. 3) is known to be a variable of type t1.

\tl_to_str:N
\tl_to_str:c

\tl_to_str:N (¢ var.)
This function returns the token list kept in (¢ var.) as a string list with all characters
catcoded to ‘other’.

’ \tl_to_str:n ‘\tl_to_str:n {(token list)}
This function turns its argument into a string where all characters have catcode ‘other’.

TgXhackers note: This is the e-TEX primitive \detokenize.

’ \tl _rescan:nn ‘\tl_rescan:nn {{catcode setup)} {(token list)}

Returns the result of re-tokenising (token list) with the catcode setup (and whatever other
redefinitions) specified. This is useful because the catcodes of characters are ‘frozen’ when
first tokenised; this allows their meaning to be changed even after they’ve been read as
an argument. Also see \t1l_set_rescan:Nnn below.

TEXhackers note: This is a wrapper around e-TEX’s \scantokens.

79

\tl_set_rescan:Nnn
\tl_set_rescan:Nno
\tl_set_rescan:Nnx
\tl_gset_rescan:Nnn
\tl_gset_rescan:Nno
\tl_gset_rescan:Nnx

\tl_set_rescan:Nnn (tl var.) {(catcode setup)} {(token list)}
Sets (tl var.) to the result of re-tokenising (token list) with the catcode setup (and what-
ever other redefinitions) specified.

TEXhackers note: This is a wrapper around e-TEX’s \scantokens.

43 Predicates and conditionals

\tl_if_empty_p:N %

\t1l_if_empty_p:c * \tl_if_empty_p:N (¢l var.)

This predicate returns ‘true’ if (¢l var.) is ‘empty’ i.e., doesn’t contain any tokens.

\tl_if_empty:NTF %
\tl_if_ empty:cTF =%

\tl_if_empty:NTF (¢l var.) {(true code)} {(false code)}
Execute (true code) if (tl var.) is empty and (false code) if it contains any tokens.

\tl_if_eq_p:NN
\tl_if_eq_p:cN
\tl_if_eq_p:Nc
\tl_if_eq_p:cc

b D S

\tl_if_eq_p:NN (& var.1) (¢l var.s)
Predicate function which returns ‘true’ if the two token list variables are identical and
‘false’ otherwise.

\tl_if_eq:NNTF
\tl_ if_eq:cNTF
\tl_ if_eq:NcTF
\tl_ if_eq:ccTF

b S S

\tl_if_eq:NNTF (t var.1) (tl var.2) {(true code)} {(false code)}
Execute (true code) if (¢l var.) holds the same token list as (tl var.3) and (false code)
otherwise.

\tl_if_empty_p:n *
\tl_if_empty_p:V =
\tl_if_empty_p:o =
\tl_if_empty:nIF
\tl_if_empty:VIF
\tl_if_empty:oTF

\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

80

Execute (true code) if (token list) doesn’t contain any tokens and (false code) otherwise.

\tl_if_eq:nnTF (token list1) {(token list2)} {{true code)}
’\tl_if_eq:nnZE‘ {Udke%od@} < H P >

Tests if (token list1) and (token list2) both in respect of character codes and category
codes. Either the (true code) or (false code) in the input stream, as appropriate to the
truth of the test and the variant of the function chosen.

\tl_if_blank_p:n
\tl_if blank:nTF
\tl_if_blank_p:V
\tl_if_blank_p:o
\tl_if blank:VTF
\tl_if blank:oTF

S S S

\tl_if_blank:nTF {(token list)} {(true code)} {(false code)}
Execute (true code) if (token list) is blank meaning that it is either empty or contains
only blank spaces.

\tl_if_single_p:n %
\tl_if_single:nTF %
\tl_if_single_p:N x

\t1_if single:NTF \tl_if_single:NTF {(¢ var.)} {(true code)} {(false code)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}
Conditional returning true if the token list or the contents of the tl var. consists of a single
token only.

’6

Note that an input of ‘space’® returns (true) from this function.

\tl_to_lowercase:n

\tl_to_uppercase:n \tl_to_lowercase:n {(token list)}

\tl_to_lowercase:n converts all tokens in (token list) to their lower case representation.
Similar for \t1_to_uppercase:n.

TEXhackers note: These are the TEX primitives \lowercase and \uppercase renamed.

44 Working with the contents of token lists

\tl_map_function:nN %

\t1_map_function:NN \tl_map_function:nN {(token list)} (function)

\tl_map_function:NN (¢l var.) (function)

\tl_map_function:cN

SBut remember any number of consequtive spaces are read as a single space by TEX.

81

Runs through all elements in a (token list) from left to right and places {function) in
front of each element. As this function will also pick up elements in brace groups, the
element is returned with braces and hence (function) should be a function with a :n
suffix even though it may very well only deal with a single token.

This function uses a purely expandable loop function and will stay so as long as (function)
is expandable too.

\tl_map_inline:nn
\tl_map_inline:Nn

o \tl_map_inline:nn {(token list)} {(inline function)}
\tl_map_inline:cn

\tl_map_inline:Nn (tl var.) {(inline function)}
Allows a syntax like \t1_map_inline:nn {(token list)} {\token_to_str:N ##1}. This
renders it non-expandable though. Remember to double the #s for each level.

\tl_map_variable:nNn
\tl_map_variable:NNn

\tl_map_variable:nNn {(token list)} {(temp) {{action)}
\tl_map_variable:cNn -1map- {)3 (temp))

\tl_map_variable:NNn (tl var.) (temp) {{action)}

Assigns (temp) to each element on (token list) and executes (action). As there is an
assignment in this process it is not expandable.

TEXhackers note: This is the KTEX2 function \@tfor but with a more sane syntax. Also it
works by tail recursion and so is faster as lists grow longer.

’ \t1l_map_break: ‘\tl_map_break:

For breaking out of a loop. Must not be nested inside a primitive \if structure.

\tl_reverse:n
\tl_reverse:V
\tl_reverse:o

\t1 reverse:N \tl_reverse:n {(tokeni)(tokens)...(token,)}

\tl_reverse:N (¢l var.)
Reverse the token list (or the token list in the (¢ var.)) to result in (token,). .. (token o) (token1).
Note that spaces in this token list are gobbled in the process.

Note also that braces are lost in the process of reversing a (¢l var.). That is,
\tl_set:Nn \1_tmpa_tl {a{bcd}e} \tl_reverse:N \1_tmpa_tl
will result in ebcda. This behaviour is probably more of a bug than a feature.

\tl_elt_count:n
\tl_elt_count:V
\tl_elt_count:o

\tl_elt_count:n {(token list)}
\tl_elt_count:N

\tl_elt_count:N (¢l var.)
Returns the number of elements in the token list. Brace groups encountered count as one
element. Note that spaces in this token list are gobbled in the process.

*
*
*
*

82

45 Variables and constants

’ \c_job_name_t1 ‘ Constant that gets the ‘job name’ assigned when TEX starts.

TEXhackers note: This is the new name for the primitive \jobname. It is a constant that is
set by TEX and should not be overwritten by the package.

\c_empty_tl | copgtant that is always empty.

TEXhackers note: This was named \@empty in KTEX2 and \empty in plain TEX.

\c_space_tl | 5 space token contained in a token list (compare this with \char_-

space_token). For use where an explicit space is required.

\1_tmpa_t1l
\1_tmpb_tl
\g_tmpa_tl
\g_tmpb_t1

or predicate functions.

Scratch register for immediate use. They are not used by conditionals

However, it is important to note that you should never rely on

such scratch variables unless you fully control the code used between setting them and
retrieving their value. Calling code from other modules, or worse allowing arbitrary user
input to interfere might result in them not containing what you expect. In that is the
case you better define your own scratch variables that are tight to your code by giving

them suitable names.

’ \1_tl_replace_tl ‘ Internal register used in the replace functions.

\1_kernel_testa_tl
\1_kernel_testb_tl

Registers used for conditional processing if the engine doesn’t

\1_kernel_tmpa_tl
\1_kernel_tmpb_tl

support arbitrary string comparison. Not for use outside the kernel code!

Scratch registers reserved for other places in kernel code. Not for

use outside the kernel code!

’ \g_tl_inline_level_

int ‘ Internal register used in the inline map functions.

83

46 Searching for and replacing tokens

\tl_if_in:NnTF
\tl_if in:cnTF
\tl if in:nnTF
\tl if in:VnTF
\tl if in:onTF

\tl_if_in:NnTF (¢ var.) {(item)} {(true code)} {(false code)}

Function that tests if (item) is in (¢l var.). Depending on the result either (true code) or
(false code) is executed. Note that (item) cannot contain brace groups nor #g tokens.

\tl_replace_in:Nnn
\tl_replace_in:cnn
\tl_greplace_in:Nnn
\tl_greplace_in:cnn

\tl_replace_in:Nnn (¢ var.) {{item1)} {(item2)}

Replaces the leftmost occurrence of (item 1) in (tl var.) with (item o) if present, otherwise
the (¢l var.) is left untouched. Note that (item) cannot contain brace groups nor #g
tokens, and (item) cannot contain #g tokens.

\tl_replace_all_in:Nnn
\tl_replace_all_in:cnn
\tl_greplace_all_in:Nnn
\tl_greplace_all_in:cnn

\tl_replace_all_in:Nnn (tl var.) {(item1)} {(item2)}

Replaces all occurrences of (item1) in (¢l var.) with (items). Note that (item) can-
not contain brace groups nor #¢ tokens, and (items) cannot contain #g tokens.

\tl_remove_in:Nn
\tl_remove_in:cn
\tl_gremove_in:Nn
\tl_gremove_in:cn

\tl_remove_in:Nn (tl var.) {(item)}

Removes the leftmost occurrence of (item) from (¢l var.) if present. Note that (item)
cannot contain brace groups nor #¢ tokens.

\tl_remove_all_in:Nn
\tl_remove_all_in:cn
\tl_gremove_all_in:Nn
\tl_gremove_all_in:cn

\tl_remove_all_in:Nn (# var.) {(item)}

Removes all occurrences of (item) from (tl var.). Note that (item) cannot contain brace

groups nor #g tokens.

84

47 Heads or tails?

Here are some functions for grabbing either the head or tail of a list and perform some

tests on it.

\tl_head:
\tl_head:
\tl_head:
\tl_tail:
\tl tail:
\tl_tail:
\tl_tail:
\tl_head_i:n
\tl_head_iii:n
\tl _ head_iii:f
\tl_head:w
\tl_tail:w
\tl_head_i:w x
\tl_head_iii:w x

Hh g < B < <B

b D D D D R s S S SRS S

\tl_head:n { (tokeni)(tokens)...(tokeny) }
\tl_tail:n { (tokeni)(tokens)...(tokeny) }
\tl_head:w (tokeni)(tokens)...(tokeny) \q_stop

These functions return either the head or the tail from a list of tokens, thus in
the above example \tl_head:n would return (token;) and \tl_tail:n would return
(tokens)...(tokeny). \tl_head_iii:n returns the first three tokens. The :w versions
require some care as they expect the token list to be delimited by \q_stop.

TEXhackers note: These are the Lisp functions car and cdr but with ETEX3 names.

\tl_if_head_eq_meaning_p:nN %
\tl_if_head_eq_meaning:nNTF %

\tl_if_head_eq_meaning:nNTF {(token list)} (token)
{(true)} {(false)}

Returns (true) if the first token in (token list) is equal to (token) and (false) otherwise.
The meaning version compares the two tokens with \if _meaning:w.

\tl_if_head_eq_charcode_p:nN *
\tl_if_head_eq_charcode_p:fN *
\tl_if_head_eq_charcode:nNTF %
\tl_if_head_eq_charcode:fNTF *

\tl_if_head_eq_charcode:nNTF {(token list)} (token)
{(true)} {(false)}

Returns (true) if the first token in (token list) is equal to (token) and (false) otherwise.
The meaning version compares the two tokens with \if _charcode:w but it prevents ex-
pansion of them. If you want them to expand, you can use an f type expansion first

85

(define \t1_if_head_eq_charcode:fNTF or similar).

\tl_:?.f_head_eq_catcodejp:nN * \tl_if_head_eq_catcode:nNTF {(token list)} (token)
\tl_if_head_eq_catcode:nNTF x Ltrue)t {(false)}

Returns (true) if the first token in (token list) is equal to (token) and (false) other-
wise. This version uses \if_catcode:w for the test but is otherwise identical to the
charcode version.

Part XI

The 13toks package
Token Registers

There is a second form beside token list variables in which IKXTEX3 stores token lists,
namely the internal TEX token registers. Functions dealing with these registers got the
prefix \toks_. Unlike token list variables we have an accessing function as one can see
below.

The main difference between (toks) (token registers) and (¢ var.) (token list variable) is
their behavior regarding expansion. While (¢ wvars) expand fully (i.e., until only unex-
pandable tokens are left) inside an argument that is subject to expansion (i.e., denoted
by x) (toks)’s expand always only up to one level, i.e., passing their contents without
further expansion.

There are fewer restrictions on the contents of a token register over a token list variable.
So while (token list) is used to describe the contents of both of these, bear in mind that
slightly different lists of tokens are allowed in each case. The best (only?) example is
that a (toks) can contain the # character (i.e., characters of catcode 6), whereas a (tl
var.) will require its input to be sanitised before that is possible.

If you're not sure which to use between a (¢l var.) or a (toks), consider what data you're
trying to hold. If you're dealing with function parameters involving #, or building some
sort of data structure then you probably want a (toks) (e.g., 13prop uses (toks) to store
its property lists).

If you’re storing ad-hoc data for later use (possibly from direct user input) then usually
a (tl var.) will be what you want.

48 Allocation and use

\toks_new:N
\toks_new:c \toks_new:N (toks)

86

Defines (toks) to be a new token list register.

TgXhackers note: This is the BTEX3 allocation for what was called \newtoks in plain TEX.

\toks_use:N
\toks_use:c

\toks_use:N (toks)

Accesses the contents of (toks). Contrary to token list variables (toks) can’t be access
simply by calling them directly.

TEXhackers note: Something like \the (toks).

\toks_set:N
\toks_set:N
\toks_set:N
\toks_set:N
\toks_set:N
\toks_set:N

\toks_set:c
\toks_set:c

\toks_set:c
\toks _set:c

n
v
v
o
X
£

\toks _set:cn

(@)

\toks_set:cV

v
X
£

\toks_set:Nn (toks) {(token list)}

Defines (toks) to hold the token list (token list).

TEXhackers note: \toks_set:Nn could have been specified in plain TEX by (toks)
list)} but all other functions have no counterpart in plain TEX.

\toks_gset
\toks_gset
\toks_gset
\toks_gset
\toks_gset:
\toks_gset:
\toks_gset:
\toks_gset:

:Nn
NV
:No
:Nx

cn
cV
co
cx

\toks_gset:Nn (toks) {(token list)}

Defines (toks) to globally hold the token list (token list).

\toks_set_eq:NN
\toks_set_eq:cN
\toks_set_eq:Nc
\toks_set_eq:cc

\toks_set_eq:NN (toksi) (tokss)

87

{(token

Set (toks1) to the value of (tokss). Don’t try to use \toks_set:Nn for this purpose if
the second argument is also a token register.

\toks_gset_eq:NN
\toks_gset_eq:cN
\toks_gset_eq:Nc

\toks_gset_eq:cc \toks_gset_eq:NN (toks1) (tokss)

The (toks1) globally set to the value of (tokss). Don’t try to use \toks_gset :Nn for this
purpose if the second argument is also a token register.

\toks_clear:N
\toks _clear:c
\toks_gclear:N
\toks_gclear:c

\toks_clear:N (toks)
The (toks) is locally or globally cleared.

\toks_use_clear:N
\toks_use_clear:c
\toks_use_gclear:N
\toks_use_gclear:c

\toks_use_clear:N (toks)

Accesses the contents of (toks) and clears (locally or globally) it afterwards. Actually
the clearing operation is done in a way that does not prohibit the access of the following
tokens in the input stream with functions stored in the token register. In other words this
function is not exactly the same as calling \toks_use:N (toks) \toks_clear:N (toks) in
sequence.

\toks_show:N
\toks_show:c

\toks_show:N (toks)
Displays the contents of (toks) in the terminal output and log file. # signs in the (toks)
will be shown doubled.

TgXhackers note: Something like \showthe (toks).

88

49 Adding to the contents of token registers

\toks_put_left
\toks_put_left
\toks_put_left
\toks_put_left
\toks_put_left:
\toks_put_left:
\toks_put_left:

:Nn
NV
:No
:Nx

cn
cV
co

\toks_put_left:Nn (toks) {(token list)}

These functions will append (token list) to the left of (toks). Assignment is done locally.
If possible append to the right since this operation is faster.

\toks_gput_left
\toks_gput_left
\toks_gput_left
\toks_gput_left

\toks_gput_left:
\toks_gput_left:
\toks_gput_left:

:Nn
NV
:No
:Nx
cn
cV
co

\toks_gput_left:Nn (toks) {(token list)}

These functions will append (token list) to the left of (toks). Assignment is done globally.
If possible append to the right since this operation is faster.

\toks_put_right
\toks_put_right
\toks_put_right
\toks_put_right

\toks_put_right:
\toks_put_right:
\toks_put_right:

:Nn
NV
:No
:Nx
cV
cn
co

\toks_put_right:Nn (toks) {(token list)}

These functions will append (token list) to the right of (toks). Assignment is done locally.

’ \toks_put_right:Nf ‘\toks_put_right:Nf (toks)y {(token list)}
Variant of the above. :Nf is used by template.dtx and will perhaps be moved to that

package.

\toks_gput_right
\toks_gput_right
\toks_gput_right
\toks_gput_right

\toks_gput_right:
\toks_gput_right:
\toks_gput_right:

:Nn
:NV
:No
:Nx
cn
cV
co

\toks_gput_right:Nn (toks) {(token list)}

89

These functions will append (token list) to the right of (toks). Assignment is done glob-

ally.

50 Predicates and conditionals

\toks_if_empty_p:N %
\toks_if_empty:NTF *
\toks_if_empty_p:c *

\toks_if_empty:cTF x \toks_if_empty:NTF (toks) {(true code)} {(false code)}

Expandable test for whether (toks) is empty.

\toks_if_eq:NNTF
\toks_if eq:NcTF
\toks_if eq:cNTF
\toks_if_eq:ccTF
\toks_if_eq_p:NN
\toks_if_eq_p:cN
\toks_if_eq_p:Nc
\toks_if_eq_p:cc

b D D S T o

\toks_if_eq:NNTF (toksi) (toks2) {(true code)} {(false code)}

Expandably tests if (toks) and (tokss) are equal.

51 Variable and constants

| \c_empty_toks ‘Conmantthatiszﬂwaysenqmy

\1_tmpa_toks
\1_tmpb_toks
\1_tmpc_toks
\g_tmpa_toks
\g_tmpb_toks
\g_tmpc_toks

Scratch register for immediate use. They are not used by conditionals

or predicate functions.

’ \1_tl_replace_toks ‘ A placeholder for contents of functions replacing contents of

strings.

90

Part XII

The 13seq package
Sequences

KTEX3 implements a data type called ‘sequences’. These are special token lists that can
be accessed via special function on the ‘left’. Appending tokens is possible at both ends.
Appended token lists can be accessed only as a union. The token lists that form the
individual items of a sequence might contain any tokens except two internal functions
that are used to structure sequences (see section internal functions below). It is also
possible to map functions on such sequences so that they are executed for every item on
the sequence.

All functions that return items from a sequence in some (¢ var.) assume that the (¢
var.) is local. See remarks below if you need a global returned value.

The defined functions are not orthogonal in the sense that every possible variation possible
is actually available. If you need a new variant use the expansion functions described in
the package 13expan to build it.

Adding items to the left of a sequence can currently be done with either something like
\seq_put_left:Nn or with a “stack” function like \seq_push:Nn which has the same
effect. Maybe one should therefore remove the “left” functions totally.

52 Functions for creating/initialising sequences

\seq_new:N
\seq_new:c

\seq_new:N (sequence)
Defines (sequence) to be a variable of type seq.

\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

\seq_clear:N (sequence)
These functions locally or globally clear (sequence).

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_clear_new:N (sequence)

91

These functions locally or globally clear (sequence) if it exists or otherwise allocates it.

\seq_set_eq:NN
\seq_set_eq:cN
\seq_set_eq:Nc
\seq_set_eq:cc

\seq_gset_eq:N
\seq_gset_eq:c
\seq_gset_eq:N
\seq_gset_eq:c

N
N
C

C

\seq_set_eq:NN (seq1) (seq2)
Function that locally makes (seq;) identical to (seqs).

\seq_gset_eq:NN (seq1) (seq2)

Function that globally makes (seq;) identical to (seq3).

\seq_concat: NN
\seq_concat:cc
\seq_gconcat:N
\seq_gconcat:c

N
C
NN
cc

\seq_concat:NNN (seq1) (seq2) (seqs)
\seq_gconcat :NNN (seq1) (seq2) (seqs)

Function that conatenates (seqa) and (seqs) and locally or globally assigns the result to

(seq1).

53 Adding data to sequences

\seq_put_left
\seq_put_left
\seq_put_left
\seq_put_left
\seq_put_left:
\seq_put_left:
\seq_put_left:

:Nn
NV
:No
:Nx

cn
cV
co

\seq_put_left:Nn (sequence) (token list)

Locally appends (token list) as a single item to the left of (sequence). (token list) might
get expanded before appending according to the variant.

\seq_put_right
\seq_put_right
\seq_put_right
\seq_put_right

\seq_put_right:
\seq_put_right:
\seq_put_right:

:Nn
NV
:No
:Nx
cn
cV
co

\seq_put_right:Nn (sequence) (token list)

92

Locally appends (token list) as a single item to the right of (sequence). (token list) might
get expanded before appending according to the variant.

\seq_gput_left
\seq_gput_left
\seq_gput_left
\seq_gput_left
\seq_gput_left:
\seq_gput_left:
\seq_gput_left:

:Nn
NV
:No
:Nx

cn
cV
co

\seq_gput_left:Nn (sequence) (token list)

Globally appends (token list) as a single item to the left of (sequence).

\seq_gput_right
\seq_gput_right
\seq_gput_right
\seq_gput_right

\seq_gput_right:
\seq_gput_right:
\seq_gput_right:

:Nn
:NV
:No
:Nx
cn
cV
co

\seq_gput_right:Nn (sequence) (token list)

Globally appends (token list) as a single item to the right of (sequence).

54 Working with sequences

\seq_get :NN
\seq_get:cN

\seq_get:NN (sequence) (il var.)

Functions that locally assign the left-most item of (sequence) to the token list variable (¢
var.). Ttem is not removed from (sequence)! If you need a global return value you need
to code something like this:

\seq_get:NN (sequence) \1_tmpa_tl
\tl_gset_eq:NN (global tl var.) \1_tmpa_tl

But if this kind of construction is used often enough a separate function should be pro-

vided.

\seq_map_variable:NNn
\seq_map_variable:cNn

\seq_map_variable:NNn (sequence) (¢l var.) {(code using tl
var.)}

93

Every element in (sequence) is assigned to (¢l var.) and then (code using tl var.) is exe-
cuted. The operation is not expandable which means that it can’t be used within write
operations etc. However, this function can be nested which the others can’t.

\seq_map_function:NN
\seq_map_function:cN

\seq_map_function:NN (sequence) (function)

This function applies (function) (which must be a function with one argument) to every
item of (sequence). (function) is not executed within a sub-group so that side effects can
be achieved locally. The operation is not expandable which means that it can’t be used
within write operations etc.

In the current implementation the next functions are more efficient and should be pre-
ferred.

\seq_map_inline:Nn
\seq_map_inline:cn

\seq_map_inline:Nn (sequence) {(inline function)}

Applies (inline function) (which should be the direct coding for a function with one
argument (i.e. use #1 as the place holder for this argument)) to every item of (sequence).
(inline function) is not executed within a sub-group so that side effects can be achieved
locally. The operation is not expandable which means that it can’t be used within write
operations etc.

\seq_map_break:
\seq_map_break:n

These functions are used to break out of a mapping function at the
point of execution. (Please do not put ‘\q_stop’ inside a (seq) that uses these functions.)

\seq_show:N
\seq_show:c

\seq_show:N (sequence)
Function that pauses the compilation and displays (seq) in the terminal output and in
the log file. (Usually used for diagnostic purposes.)

\seq_display:N
\seq_display:c

\seq_display:N (sequence)
As with \seq_show:N but pretty prints the output one line per element.

\seq_remove_duplicates:N
\seq_gremove_duplicates:N

\seq_gremove_duplicates:N (seq)

Function that removes any duplicate entries in (seq).

94

55 Predicates and conditionals

\seq_if_empty_p:N x
\seq_if_empty_p:c %

\seq_if_empty_p:N (sequence)
This predicate returns ‘true’ if (sequence) is ‘empty’ i.e., doesn’t contain any items. Note
that this is ‘false’ even if the (sequence) only contains a single empty item.

\seq_if_empty:NTF
\seq_if_empty:cTF

\seq_if_empty:NTF (sequence) {(true code)} {(false code)}
Set of conditionals that test whether or not a particular (sequence) is empty and if so
executes either (true code) or (false code).

\seq_if_in:NnTF
\seq_if_in:NVIF
\seq_if_in:cnTF
\seq_if_in:cVIF

\seq_%f_%n:coTiF \seq_if_in:NnTF (sequence) {(item)} {{true code)} {(false
\seq_if_in:cxTF code)}

Functions that test if (item) is in (sequence). Depending on the result either (true code)
or (false code) is executed.

56 Internal functions

’ \seq_if_empty_err:N ‘\seq_if_empty_err:N (sequence)
Signals an I4TEX3 error if (sequence) is empty.

’ \seq_pop_aux:nnNN ‘\seq_pop_aux:nnNN (assign1) {assign2) (sequence) (il var.)
Function that assigns the left-most item of (sequence) to (¢l var.) using (assigni) and
assigns the tail to (sequence) using (assigns). This function could be used to implement
a global return function.

\seq_get_aux:w
\seq_pop_aux:w
\seq_put_aux:Nnn
\seq_put_aux:w

Functions used to implement put and get operations. They are
not for meant for direct use.

\seq_elt:w
\seq_elt_end:

Functions (usually used as constants) that separates items within
a sequence. They might get special meaning during mapping operations and are not
supposed to show up as tokens within an item appended to a sequence.

95

57 Functions for ‘Sequence Stacks’

Special sequences in ITEX3 are ‘stacks’ with their usual operations of ‘push’, ‘pop’, and
‘top’. They are internally implemented as sequences and share some of the functions (like
\seq_new:N etc.)

\seq_push:Nn
\seq_push:NV
\seq_push:No
\seq_push:cn
\seq_gpush:Nn
\seq_gpush:NV
\seq_gpush:No
\seq_gpush:Nv

\seq_gpush:cn \seq_push:Nn (stack) {(token list)}
Locally or globally pushes (token list) as a single item onto the (stack).

\seq_pop:NN
\seq_pop:cN
\seq_gpop:NN
\seq_gpop:cN \seq_pop:NN (stack) (tl var.)

Functions that assign the top item of (stack) to (¢l var.) and removes it from (stack)!

\seq_top:NN
\seq_top:cN

\seq_top:NN (stack) (tl var.)
Functions that locally assign the top item of {stack) to the (tl var.). Ttem is not removed
from (stack)!

Part XIII

The 13clist package
Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of
the sequence. This gives an ordered list which can then be utilised with the \clist_-
map_function:NN function. Comma Comma lists cannot contain empty items, thus

\clist_new:N \1l_my_clist

\clist_put_right:Nn \1_my_clist { }
\clist_if_empty:NTF \1l_my_clist { true } { false }

96

will leave true in the input stream.

58 Functions for creating/initialising comma-lists

\clist_new:N
\clist_new:c

\clist_new:N (comma list)
Creates a new (comma list) or raises an error if the name is already taken. The declaration
is global. The (comma list) will initially contain no entries.

\clist_set_eq:NN
\clist_set_eq:cN
\clist_set_eq:Nc
\clist_set_eq:cc

\clist_set_eq:NN (comma listl) (comma list2)
Sets the content of (comma list1) equal to that of (comma list2). This assignment is
restricted to the current TEX group level.

\clist_gset_eq:NN
\clist_gset_eq:cN
\clist_gset_eq:Nc
\clist_gset_eq:cc

\clist_gset_eq:NN (comma listl) (comma list2)
Sets the content of (comma list1) equal to that of (comma list2). This assignment is
global and so is not limited by the current TEX group level.

\clist_clear:N
\clist_clear:c

\clist_clear:N (comma list)
Clears all entries from the (comma list) within the scope of the current TEX group.

\clist_gclear:N
\clist_gclear:c

\clist_gclear:N (comma list)
Clears all entries from the (comma list) globally.

\clist_clear_new:N
\clist_clear new:c
\clist_gclear_new:N
\clist_gclear_new:c

\clist_clear_new:N (comma-list)

These functions locally or globally clear (comma-list) if it exists or otherwise allocates
it.

97

59 Putting data in

\clist_put_left:Nn
\clist_put_left:NV
\clist_put_left:No
\clist_put_left:Nx
\clist_put_left:cn
\clist_put_left:cV
\clist_put_left:co

\clist_put_left:Nn (comma list) {{entry)}
Adds (entry) onto the left of the (comma list). The assignment is restricted to the current

TEX group.

\clist_gput_left:Nn
\clist_gput_left:NV
\clist_gput_left:No
\clist_gput_left:Nx
\clist_gput_left:cn
\clist_gput_left:cV
\clist_gput_left:co

\clist_gput_left:Nn (comma list) {{entry)}
Adds (entry) onto the left of the (comma list). The assignment is global.

\clist_put_right:Nn
\clist_put_right:NV
\clist_put_right:No
\clist_put_right:Nx
\clist_put_right:cn
\clist_put_right:cV
\clist_put_right:co

\clist_put_right:Nn (comma list) {{entry)}
Adds (entry) onto the right of the {(comma list). The assignment is restricted to the
current TEX group.

\clist_gput_right:Nn
\clist_gput_right:NV
\clist_gput_right:No
\clist_gput_right:Nx
\clist_gput_right:cn
\clist_gput_right:cV
\clist_gput_right:co

\clist_gput_right:Nn (comma list) {{entry)}

Adds (entry) onto the right of the (comma list). The assignment is global.

98

60 Getting data out

\clist_use:N *
\clist_use:c *

\clist_use:N (comma list)

Recovers the content of a (comma list) and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. This function is
intended mainly for use when a (comma list) is being saved to an auxiliary file.

\clist_show:N

\clist_show:c \clist_show:N (clist)
Function that pauses the compilation and displays (clist) in the terminal output and in
the log file. (Usually used for diagnostic purposes.)

\clist_display:N
\clist_display:c

\clist_display:N (comma list)
Displays the value of the {comma list) on the terminal.

\clist_get:NN
\clist_get:cN

\clist_get:NN (comma-list) (tl var.)

Functions that locally assign the left-most item of (comma-list) to the token list variable
(tl var.). Item is not removed from (comma-list)! If you need a global return value you
need to code something like this:

\clist_get:NN (comma-list) \1_tmpa_t1
\tl_gset_eq:NN (global tl var.) \1_tmpa_t1l

But if this kind of construction is used often enough a separate function should be pro-

vided.

61 Mapping functions

We provide three types of mapping functions, each with their own strengths. The
\clist_map_function:NN is expandable whereas \clist_map_inline:Nn type uses ##1
as a placeholder for the current item in (clist). Finally we have the \clist_map_variable:NNn
type which uses a user-defined variable as placeholder. Both the _inline and _variable

99

versions are nestable.

\clist_map_function:NN
\clist_map_function:Nc
\clist_map_function:cN
\clist_map_function:cc
\clist_map_function:nN
\clist_map_function:nc

* o o X X X

\clist_map_function:NN (comma list) (function)

Applies (function) to every (entry) stored in the (comma list). The (function) will receive
one argument for each iteration. The (entries) in the (comma list) are supplied to the
(function) reading from the left to the right. These function may be nested.

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

\clist_map_inline:Nn (comma list) {(inline function)}

Applies (inline function) to every (entry) stored within the (comma list). The (inline
function) should consist of code which will receive the (entry) as #1. One inline map-
ping can be nested inside another. The (entries) in the (comma list) are supplied to the
(function) reading from the left to the right.

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

\clist_map_variable:NNn (comma-list) (temp-var) {{action)}

Assigns (temp-var) to each element in (clist) and then executes (action) which should
contain (temp-var). As the operation performs an assignment, it is not expandable.

TEXhackers note: These functions resemble the KTEX 2¢ function \@for but does not borrow

the somewhat strange syntax.

’ \clist_map_break: *"\clist_map_break:

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed. This will normally take place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist

{

\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }

{

% Do something useful

100

Use outside of a \clist_map_... scenario will lead low level TEX errors.

62 Predicates and conditionals

\clist_if_empty_p:N x
\clist_if_empty_p:c *
\clist_if_empty:NTF x

\clist_if_empt N (clist
\clist_if_empty:cTF % -4 _enpty_p:N {clist)

\clist_if_empty:NTF (clist) {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items). The branching versions then
leave either (true code) or (false code) in the input stream, as appropriate to the truth
of the test and the variant of the function chosen. The logical truth of the test is left in
the input stream by the predicate version.

\clist_if_eq_p:NN
\clist_if_eq_p:Nc
\clist_if_eq_p:cN
\clist_if_eq_p:cc
\clist_if_eq:NNTF
\clist_if_ eq:NcTF
\clist_if_eq:cNTF
\clist_if_eq:ccTF

\clist_if_eq_p:NN {(clist1)
\clist_if_eq:NNTF {(clist:)
{(false code)}
Compares the content of two (comma lists) and is logically true if the two contain the
same list of entries in the same order. The branching versions then leave either (true
code) or (false code) in the input stream, as appropriate to the truth of the test and the
variant of the function chosen. The logical truth of the test is left in the input stream by
the predicate version.

(clist2)}
(clist2)} {(true code)}

b D D S R e o

}{
{

\clist_if_in:NnTF
\clist_if in:NVTF
\clist if in:NoTF
\clist if in:cnTF
\clist_if in:cVTF

] = \clist_if_in:NnTF (clist) {(entry)} {(true code)}
\clist_if_in:coTF

{(false code)}
Tests if the (entry) is present in the (comma list) as a discrete entry. The (entry) cannot
contain the tokens {, } or # (assuming the usual TEX category codes apply). Either the
(true code) or (false code) in the input stream, as appropriate to the truth of the test
and the variant of the function chosen.

101

63 Higher level functions

\clist_concat:NNN

\clist_concat:cce \clist_concat:NNN (clistl) (clist2) (clist3)
Concatenates the content of (comma list2) and (comma list3) together and saves the
result in (comma list1). (comma list2) will be placed at the left side of the new comma
list. This operation is local to the current TEX group and will remove any existing content
in (comma list1).

\clist_gconcat:NNN

\clist_gconcat:cce \clist_gconcat:NNN (clistl) (clist2) (clist3)
Concatenates the content of (comma list2) and (comma list3) together and saves the
result in (comma list1). (comma list2) will be placed at the left side of the new comma
list. This operation is global and will remove any existing content in (comma list1).

] \clist_remove_duplicates:N ‘

\clist_remove_duplicates:N (comma list)

Removes duplicate entries from the (comma list), leaving left most entry in the (comma
list). The removal is local to the current TEX group.

’ \clist_gremove_duplicates:N ‘\clist_gremove_duplicates:N (comma list)

Removes duplicate entries from the (comma list), leaving left most entry in the (comma
listy. The removal is applied globally.

’ \clist_remove_element:Nn ‘\clist_remove_element:Nn (comma list) {{entry)}

Removes each occurrence of (entry) from the (comma list), where (entry) cannot contain
the tokens {, } or # (assuming normal TEX category codes). The removal is local to the

current TEX group.

’ \clist_gremove_element:Nn ‘\clist_gremove_element:Nn (comma list) {(entry)}

Removes each occurrence of (entry) from the (comma list), where (entry) cannot con-

tain the tokens {, } or # (assuming normal TEX category codes). The removal applied
globally.

102

64 Functions for ‘comma-list stacks’

Special comma-lists in N TEX3 are ‘stacks’ with their usual operations of ‘push’, ‘pop’, and
‘top’. They are internally implemented as comma-lists and share some of the functions
(like \clist_new:N etc.)

\clist_push:Nn
\clist_push:NV
\clist_push:No
\clist_push:cn
\clist_gpush:Nn
\clist_gpush:NV
\clist_gpush:No
\clist_gpush:cn

\clist_push:Nn (stack) {(token list)}
Locally or globally pushes (token list) as a single item onto the (stack). (token list) might
get expanded before the operation.

\clist_pop:NN
\clist_pop:cN
\clist_gpop:NN
\clist_gpop:cN \clist_pop:NN (stack) (il var.)
Functions that assign the top item of (stack) to the token list variable (¢l var.) and
removes it from (stack)!

\clist_top:NN
\clist_top:cN

\clist_top:NN (stack) (tl var.)
Functions that locally assign the top item of (stack) to the token list variable (¢l var.).
Item is not removed from (stack)!

65 Internal functions

’ \clist_if_empty_err:N ‘\clist_if_empty_err:N (comma-list)

Signals an IXTEX3 error if (comma-list) is empty.

’ \clist_pop_aux:nnNN ‘\clist_pop_aux:nnNN (assign1) (assignz) (comma-list) (tl var.)
Function that assigns the left-most item of (comma-list) to (tl var.) using (assign,) and

103

assigns the tail to (comma-list) using (assign o). This function could be used to implement
a global return function.

\clist_get_aux:w
\clist_pop_aux:w
\clist_pop_auxi:w
\clist_put_aux:NNnnNn

Functions used to implement put and get operations. They are not for meant for direct
use.

Part XIV

The 13prop package
Property Lists

ETEX3 implements a data structure called a ‘property list” which allows arbitrary infor-
mation to be stored and accessed using keywords rather than numerical indexing.

A property list might contain a set of keys such as name, age, and ID, which each have
individual values that can be saved and retrieved.

66 Functions

\prop_new:N
\prop_new:c

\prop_new:N (prop)
Defines (prop) to be a variable of type (prop).

\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

\prop_clear:N (prop)

104

These functions locally or globally clear (prop).

\prop_put
\prop_put
\prop_put
\prop_put
\prop_put
\prop_put
\prop_put:
\prop_put:
\prop_gput
\prop_gput
\prop_gput
\prop_gput
\prop_gput

\prop_gput:
\prop_gput:

:Nnn
:Nno
:NnV
:NVn
:NVV
:Nnx

cnn
cnx

:Nnn
:NVn
:Nno
:NnV
:Nnx
cnn
ccx

\prop_put:Nnn (prop) {(key)} {(token list)}

Locally or globally associates (token list) with (key) in the (prop) (prop). If (key) has
already a meaning within (prop) this value is overwritten.

The (key) must not contain unescaped # tokens but the (token list) may.

’ \prop—gPUt—if—neW:Nnn"\prop_gput_if_new:Nnn (prop) {({key)} {(token list)}

Globally associates (token list) with (key) in the (prop) (prop) but ouly if (key) has
so far no meaning within (prop). Silently ignored if (key) is already set in the (prop).

\prop_get:
\prop_get:
\prop_get:
\prop_get:
\prop_gget
\prop_gget
\prop_gget
\prop_gget

NnN
NVN
cnN
cVN
:NnN
:NVN
:cnN
:cVN

\prop_get :NnN (prop) {(key)} (¢l var.)

If (info) is the information associated with (key) in the (prop) (prop) then the token
list variable (tl var.) gets (info) assigned. Otherwise its value is the special quark

105

\gq_no_value. The assignment is done either locally or globally.

\prop_set_eq:NN
\prop_set_eq:cN
\prop_set_eq:Nc
\prop_set_eq:cc
\prop_gset_eq:NN
\prop_gset_eq:cN
\prop_gset_eq:Nc
\prop_gset_eq:cc

\prop_set_eq:NN (propi) (propz)

A fast assignment of (prop)s.

’ \prop_get_gdel:NnN ‘\prop_get_gdel:NnN (prop) {(key)} (il var.)

Like \prop_get :NnN but additionally removes (key) (and its (info)) from (prop).

\prop_del:Nn
\prop_del:NV
\prop_gdel:Nn
\prop_gdel:NV

\prop_del:Nn (prop) {(key)}

Locally or globally deletes (key) and its (info) from (prop) if found. Otherwise does

nothing.

\prop_map_function:NN
\prop_map_function:cN
\prop_map_function:Nc
\prop_map_function:cc

b R . I

\prop_map_function:NN (prop) (function)

Maps (function) which should be a function with two arguments ((key) and (info)) over
every (key) (info) pair of (prop). Property lists do not have any intrinsic “order” when
stored. As a result, you should not expect any particular order to apply when using these
mapping functions, even with newly-created properly lists.

\prop_map_inline:Nn
\prop_map_inline:cn

\prop_map_inline:Nn (prop) {(inline function)}

Just like \prop_map_function:NN but with the function of two arguments supplied as
inline code. Within (inline function) refer to the arguments via #1 ((key)) and #2 ({info)).
Nestable. Property lists do not have any intrinsic “order” when stored. As a result, you
should not expect any particular order to apply when using these mapping functions,
even with newly-created properly lists.

\prop_map_inline:Nn (prop) {

’ \prop_map_break: ‘ ... \(break test):T {\prop_map_break:} }

106

For breaking out of a loop. To be used inside TF-type functions as shown in the example

above.

\prop_show:N
\prop_show:c

\prop_show:N (prop)

Pauses the compilation and shows (prop) on the terminal output and in the log file.

\prop_display:N
\prop_display:c

\prop_display:N (prop)

As with \prop_show:N but pretty prints the output one line per property pair.

67 Predicates and conditionals

\prop_if_empty_p:N
\prop_if_empty_p:c

\prop_if_empty_p:N (prop) {(true code)} {(false code)}

Predicates to test whether or not a particular (prop) is empty.

\prop_if_empty:NTF *
\prop_if_empty:cTF *

\prop_if_empty:NTF (prop) {(true code)} {(false code)}

Set of conditionals that test whether or not a particular (prop) is empty.

\prop_if_eq_
\prop_if_eq_
\prop_if_eq_
\prop_if_eq_
\prop_if_eq:
\prop_if_eq:
\prop_if_eq:
\prop_if_eq:

p:NN
p:cN
p:Nc
p:cc
NNTF
cNTF
NcTF
ccTF

L S S S T

\prop_if_eq:NNF (propi) (propz2) {{false code)}

Execute (false code) if (prop1) doesn’t hold the same token list as (props). Only expand-
able for new versions of pdfTEX.

\prop_if_in:
\prop_if_in:
\prop_if_in:
\prop_if_in:
\prop_if_in:

NnTF
NVTF
NoTF
cnTF
ccTF

\prop_if_in:NnTF (prop) {(key)} {(true code)} {{false code)}

Tests if (key) is used in (prop) and then either executes (true code) or (false code).

107

68 Internal functions

\q_prop Quark used to delimit property lists internally.

\prop_put_aux:w
\prop_put_if_new_aux:w

Internal functions implementing the put operations.

\prop_get_aux:w
\prop_gget_aux:w
\prop_get_del_aux:w
\prop_del_aux:w

Internal functions implementing the get and delete operations.

N\

prop_if_in_aux:w | Internal function implementing the key test operation.

’ \prop_map_function_aux:w ‘ Internal function implementing the map operations.

| \g_prop_inline_level_int | Integer used in internal name for function used inside

\prop_map_inline:NN.

’ \prop_split_aux:Nnn ‘\prop_split_aux:Nnn (prop) (key) (cmd)

Internal function that invokes (c¢md) with 3 arguments: 1st is the beginning of (prop)
before (key), 2nd is the value associated with (key), 3rd is the rest of (prop) after (key).
If there is no key (key) in (prop), then the 2 arg is \q_no_value and the 3rd arg is empty;
otherwise the 3rd argument has the two extra tokens (key) \q_no_value at the end.

This function is used to implement various get operations.

Part XV

The 13font package
“Fonts”

This module covers basic font loading commands. Functions are provided to load font
faces and extract various properties from them.

Some features within are specific XfIEX and LuaTgX; such functions will be explicitly
noted.

This module is currently a work in progress as we incorporate INTEX 2¢’s font loading
into expl3. The successor to the NFSS will provide (backwards compatible) user-level
functions for font selection.

108

69 Functions

\font_set:Nnn
\font_gset:Nnn
\font_set:cnn
\font_gset:cnn

\font_set:Nnn (font cs) {(font name)} {(font size)}

Defines (cs) as a command to select the font defined by (font name) at the (font size).
If the (font size) is empty, the font will be loaded at its design size, which is usually
specified by the font designer. For fonts without a typical design size, this will usually
be 10 pt.

\font_set_eq:NN
\font_gset_eq:NN

\font_set_eq:NN (font cs1) (font cs2)
Copies (font cs2) into (font cs1).

\font_set_to_current:N
\font_gset_to_current:N

\font_set_to_current:N (font cs)

Sets (font cs) to the font that is currently selected.

\font_if_null_p:N x
\font_if_null:NTF x

\font_if_null:NTF (font cs) {(true)} {(false)}
Conditional to switch whether the control sequence is the ‘null font’.

\font_suppress_not_found_error:

\font_suppress_not_found_error:
\font_enable_not_found_error:

\font_enable_not_found_error:

Not available in pdfTEX. In LuaTeX or XeTeX, the error when a font is selected but
does not exist can be toggled with these two commands. The non-existance of a font can
then be tested with the \font_if_null_p:N conditional.

Part XVI

The I13box package
Boxes

There are three kinds of box operations: horizontal mode denoted with prefix \hbox_,
vertical mode with prefix \vbox_, and the generic operations working in both modes with
prefix \box_.

109

70 Generic functions

\box_new:N
\box_new:c

\box_new:N (boz)
Defines (bozx) to be a new variable of type box.

TgXhackers note: \box_new:N is the equivalent of plain TEX’s \newbox.

\if_hbox:N
\if_vbox:N

\if box empty:N \if_hbox:N (boz) (true code)\else: (false code)\fi:

\if_box_empty:N (boz) (true code)\else: (false code)\fi:
\if_hbox:N and \if_vbox:N check if (boz) is an horizontal or vertical box resp.
\if_box_empty:N tests if (box) is empty (void) and executes code according to the test
outcome.

TEXhackers note: These are the TEX primitives \ifhbox, \ifvbox and \ifvoid.

\box_if_horizontal_p:N
\box_if_horizontal_p:c
\box_if_horizontal:NTF
\box_if_horizontal:cTF

\box_if_horizontal:NTF (boz) {(true code)} {(false code)}

Tests if (box) is an horizontal box and executes (code) accordingly.

\box_if_vertical_p:N
\box_if_vertical_p:c
\box_if_vertical:NTF
\box_if_vertical:cTF

\box_if_vertical:NTF (bozx) {(true code)} {(false code)}

Tests if (box) is a vertical box and executes (code) accordingly.

\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:NTF
\box_if_empty:cTF

\box_if_empty:NTF (boz) {(true code)} {(false code)}
Tests if (box) is empty (void) and executes code according to the test outcome.

TEXhackers note: \box_if_empty:NTF is the KTEX3 function name for \ifvoid.

110

\box_set_eq:NN
\box_set_eq:cN
\box_set_eq:Nc
\box_set_eq:cc
\box_set_eq_clear:NN
\box_set_eq_clear:cN
\box_set_eq_clear:Nc
\box_set_eq_clear:cc

\box_set_eq:NN (boz1) (bozxs)

Sets (box1) equal to (bozs). The _clear versions eradicate the contents of (boxsy) after-
wards.

\box_gset_eq:NN
\box_gset_eq:cN
\box_gset_eq:Nc
\box_gset_eq:cc
\box_gset_eq_clear:NN
\box_gset_eq_clear:cN
\box_gset_eq_clear:Nc
\box_gset_eq_clear:cc

\box_gset_eq:NN (boz1) (boza)

Globally sets (boxi) equal to (boxs). The _clear versions eradicate the contents of
(box o) afterwards.

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

\box_set_to_last:N (boz)
Sets (bozx) equal to the previous box \1_last_box and removes \1_last_box from the
current list (unless in outer vertical or math mode).

\box_move_right:nn
\box_move_left:nn
\box_move_up:nn
\box_move_down:nn

\box_move_left:nn {(dimen)} {(box function)}
Moves (box function) (dimen) in the direction specified. (boz function) is either an

111

operation on a box such as \box_use:N or a “raw” box specification like \vbox:n{xyz}.

\box_clear:N
\box_clear:c
\box_gclear:N
\box_gclear:c

\box_clear:N (boz)
Clears (boz) by setting it to the constant \c_void_box. \box_gclear:N does it globally.

\box_use:N
\box_use:c
\box_use_clear:N

\box_use:N (boz)
\box_use_clear:c

\box_use_clear:N (boz)
\box_use:N puts a copy of (box) on the current list while \box_use_clear:N puts the
box on the current list and then eradicates the contents of it.

TEXhackers note: \box_use:N and \box_use_clear:N are the TEX primitives \copy and \box
with new (descriptive) names.

\box_ht:N
\box_ht:c
\box_dp:N
\box_dp:c
\box_wd:N
\box_wd:c \box_ht:N (boz)

Returns the height, depth, and width of (boz) for use in dimension settings.

TEXhackers note: These are the TEX primitives \ht, \dp and \wd.

\box_set_dp:Nn
\box_set_dp:cn

\box_set_dp:Nn (boz) {(dimension expression)}
Set the depth(below the baseline) of the (box) to the value of the {(dimension
expression)}. This is a local assignment.

\box_set_ht:Nn
\box_set_ht:cn

\box_set_ht:Nn (bozx) {(dimension expression)}
Set the height(above the baseline) of the (box) to the value of the {(dimension
expression)}. This is a local assignment.

\box_set_wd:Nn
\box_set_wd:cn

\box_set_wd:Nn (box) {(dimension expression)}

Set the width of the (bozx) to the value of the {({dimension expression)}. This is a local

112

assignment.

\box_show:N
\box_show:c

\box_show:N (boz)
Writes the contents of (box) to the log file.

TEXhackers note: This is the TEX primitive \showbox.

\c_empty_box
\1_tmpa_box
\1_tmpb_box

\c_empty_box is the constantly empty box. The others are scratch boxes.

\1_last_box

\1_last_box is more or less a read-only box register managed by the engine. It denotes
the last box on the current list if there is one, otherwise it is void. You can set other
boxes to this box, with the result that the last box on the current list is removed at the
same time (so it is with variable with side-effects).

71 Horizontal mode

\hbox:n {(contents)}

Places a hbox of natural size.

\hbox_set:Nn
\hbox_set:cn
\hbox_gset :Nn
\hbox_gset:cn

\hbox_set:Nn (bozx) {(contents)}
Sets (bozx) to be a horizontal mode box containing (contents). It has it’s natural size.
\hbox_gset :Nn does it globally.

\hbox_set_to_wd:Nnn
\hbox set to wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

\hbox_set_to_wd:Nnn (boz) {(dimen)} {{contents)}

113

Sets (box) to contain (contents) and have width (dimen). \hbox_gset_to_wd:Nn does it
globally.

\hbox_to_wd:nn

\hbox_to_wd:nn {(dimen)} (contents
\hbox_to_zero:n < ¥ A)

\hbox_to_zero:n (contents)

Places a (bozx) of width (dimen) containing (contents). \hbox_to_zero:n is a shorthand
for a width of zero.

\hbox_overlap_left:n
\hbox_overlap_right:n

\hbox_overlap_left:n (contents)

Places a (boz) of width zero containing (contents) in a way the it overlaps with sur-
rounding material (sticking out to the left or right).

\hbox_set_inline_begin:N
\hbox_set_inline_begin:c
\hbox_set_inline_end:
\hbox_gset_inline_begin:N
\hbox_gset_inline_begin:c

o \hbox_set_inline_begin:N (boz) (contents)
\hbox_gset_inline_end:

\hbox_set_inline_end:

Sets (bozx) to contain (contents). This type is useful for use in environment definitions.

\hbox_unpack:N
\hbox_unpack:c
\hbox_unpack_clear:N
\hbox_unpack_clear:c

\hbox_unpack:N (boz)

\hbox_unpack:N unpacks the contents of the (box) register and \hbox_unpack_clear:N
also clears the (box) after unpacking it.

TEXhackers note: These are the TEX primitives \unhcopy and \unhbox.

72 Vertical mode

\vbox:n {(contents)}

Places a vbox of natural size with baseline equal to the baseline of the last object in

114

the box, i.e., if the last object is a line of text the box has the same depth as that line;
otherwise the depth will be zero.

\vbox_top:n {{contents)}

Same as \vbox:n except that the reference point will be at the baseline of the first object
in the box not the last.

\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

\vbox_set:Nn (bozx) {(contents)}

Sets (boz) to be a vertical mode box containing (contents). It has its natural size and
the reference point will be at the baseline of the last object in the box. \vbox_gset:Nn
does it globally.

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

\vbox_set_top:Nn (bozx) {{contents)}

Sets (box) to be a vertical mode box containing (contents). It has its natural size (usually
a small height and a larger depth) and the reference point will be at the baseline of the
first object in the box. \vbox_gset_top:Nn does it globally.

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn
\vbox_gset_to_ht:ccn

\vbox_set_to_ht:Nnn (boz) {(dimen)} {{contents)}

Sets (box) to contain (contents) and have total height (dimen). \vbox_gset_to_ht:Nn
does it globally.

\vbox_set_inline_begin:N
\vbox_set_inline_end:
\vbox_gset_inline_begin:N

O \vbox_set_inline_begin:N (boz) (contents)
\vbox_gset_inline_end:

\vbox_set_inline_end:

Sets (boz) to contain (contents). This type is useful for use in environment definitions.

’ \vbox_set_split_to_ht:NNn ‘\vbox_set_split_to_ht:NNn (boz1) (boxa) {(dimen)}

Sets (box1) to contain the top (dimen) part of (boxs).

115

TEXhackers note: This is the TEX primitive \vsplit.

\vbox_to_ht:nn

\vbox_to_ht:nn {(dimen)} (contents)
\vbox_to_zero:n

\vbox_to_zero:n (contents)
Places a (box) of size (dimen) containing (contents).

\vbox_unpack:N
\vbox_unpack:c
\vbox_unpack_clear:N
\vbox_unpack_clear:c

\vbox_unpack:N (boz)

\vbox_unpack:N unpacks the contents of the (boz) register and \vbox_unpack_clear:N
also clears the (boz) after unpacking it.

TEXhackers note: These are the TEX primitives \unvcopy and \unvbox.

Part XVII

The 13io package
Low-level file i/o

Reading and writing from file streams is handled in IXTEX3 using functions with prefixes
\iow_... (file reading) and \ior_... (file writing). Many of the basic functions are
very similar, with reading and writing using the same syntax and function concepts. As
a result, the reading and writing functions are documented together where this makes
sense.

As TEX is limited to 16 input streams and 16 output streams, direct use of the streams
by the programmer is not supported in KTEX3. Instead, an internal pool of streams is
maintained, and these are allocated and deallocated as needed by other modules. As a
result, the programmer should close streams when they are no longer needed, to release
them for other processes.

Reading from or writing to a file requires a (stream) to be used. This is a csname which
refers to the file being processed, and is independent of the name of the file (except of
course that the file name is needed when the file is opened).

116

73 Opening and closing streams

\iow_new:N
\iow_new:c
\ior_new:N
\ior_new:c \iow_new:N (stream)

Reserves the name (stream) for use in accessing a file stream. This operation does not
open a raw TEX stream, which is handled internally using a pool and is should not be
accessed directly by the programmer.

\iow_open:Nn
\iow_open:cn
\ior_open:Nn

i \iow_open:Nn (stream) {(file name)}
\ior_open:cn

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing (\iow_...) or reading (\ior_...) using (stream) as the
csname by which the file is accessed. If (stream) was already open (for either writing or
reading) it is closed before the new operation begins. The (stream) is available for access
immediately after issuing an open instruction. The (stream) will remain allocated to (file
name) until a close instruction is given or at the end of the TEX run.

Opening a file for writing will clear any existing content in the file (i.e. writing is not
additive). As the total number of writing streams is limited, it may well be best to save
material to be written to an intermediate storage format (for example a token list or
toks), and to write the material in one ‘shot’ from this variable. In this way the file
stream is only required for a limited time.

\iow_close:N
\iow_close:c
\ior_close:N

i \iow_close:N (stream)
\ior_close:c

\ior_close:N (stream)

Closes (stream), freeing up one of the underlying TEX streams for reuse. Streams should
always be closed when they are finished with as this ensures that they remain available
to other programmers (the resources here are limited). The name of the (stream) will be
freed at this stage, to ensure that any further attempts to write to it result in an error.

\iow_open_streams:
\iow_open_streams:

\iow_open_streams:
Displays a list of the file names associated with each open stream: intended for tracking
down problems.

117

73.1 Writing to files

\iow_now:Nx
\iow_now:Nn

\iow_now:Nx (stream) {(tokens)}

\iow_now:Nx immediately writes the expansion of (tokens) to the output (stream). If
the (stream) is not open output goes to the terminal. The variant \iow_now:Nn writes
out (tokens) without any further expansion.

TgXhackers note: These are the equivalent of TEX’s \immediate\write with and without
expansion control.

\iow_log:n
\iow_log:x
\iow_term:n
\iow_term:x

\iow_log:x {(tokens)}

These are dedicated functions which write to the log (transcript) file and the terminal,
respectively. They are equivalent to using \iow_now:N(n/x) to the streams \c_iow_-
log_stream and \c_iow_term_stream. The writing takes place immediately.

\iow_now_buffer_safe:Nn
\iow_now_buffer_safe:Nx

\iow_now_buffer_safe:Nn (stream) {(tokens)}

Immediately write (tokens) expanded to (stream), with every space converted into a
newline. This mean that the file can be read back without the danger that very long
lines overflow TEX’s buffer.

\iow_now_when_avail:Nn
\iow_now_when_avail:cn
\iow_now_when_avail:Nx
\iow_now_when_avail:cx

\iow_now_when_avail:Nn (stream) {(tokens)}

If (stream) is open, writes the (tokens) to the (stream) in the same manner as \iow_-
now:N(n/x). If the (stream) is not open, the (tokens) are simply thrown away.

\iow_shipout:Nx
\iow_shipout:Nn

\iow_shipout:Nx (stream) {(tokens)}
Write (tokens) to (stream) at the point at which the current page is finished. The (tokens)
are either written unexpanded (\iow_shipout:Nn) or expanded only at the point that

118

the function is used (\iow_shipout:Nx), i.e. no expansion takes place when writing to
the file.

\iow_shipout_x:Nx
\iow_shipout_x:Nn

\iow_shipout_x:Nx (stream) {(tokens)}

Write (tokens) to (stream) at the point at which the current page is finished. The (tokens)
are expanded at the time of writing in addition to any expansion at the time of use of
the function. This makes these functions suitable for including material finalised during
the page building process (such as the page number integer).

TEXhackers note: These are the equivalent of TEX’s \write with and without expansion
control at point of use.

’\1ow_new11ne. * | \iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in a \iow_now:Nn call).

\iow_char:N \(char)

\iow_char:N \%

Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

| \iow_char:N x |

\iow_now:Nx \g_my_stream { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in a \iow_-
now:Nn call).

73.2 Reading from files

\ior_to:NN
\ior_gto:NN

\ior_to:NN (stream) (token list variable)

Functions that reads one or more lines (until an equal number of left and right braces
are found) from the input stream (stream) and places the result locally or globally into
the (token list variable). If (stream) is not open, input is requested from the terminal.

\ior_if_eof_p:N «x
\ior_if_eof :NTF x

\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a (stream) has been reached during a reading operation. The test will
also return a true value if the (stream) is not open or the (file name) associated with a
(stream) does not exist at all.

119

74 Internal functions

\iow_raw_new:
\iow_raw_new:
\ior_raw_new:
\ior_raw_new:

o =20 =

\iow_raw_new:N (stream)

Creates a new low-level (stream) for use in subsequent functions. As allocations are made
using a pool do not use this function!

TEXhackers note: This is N TEX 2¢’s \newwrite.

\if_eof:w (stream) (true code) \else: (false code) \fi:

Tests if the end of (stream) has been reached during a reading operation.

TEXhackers note: This is the primitive \ifeof.

75 Variables and constants

[\c_io_streams_t1 | A jigt of the positions available for stream allocation (numbers 0
to 15).

\c_iow_term_stream
\c_ior_term_stream
\c_iow_log_stream
\c_ior_log_stream

Fixed stream numbers for accessing to the log and the terminal.
The reading and writing values are the same but are provided so that the meaning is
clear.

\g_iow_streams_prop
\g_ior_streams_prop

Allocation records for streams, linking the stream number to
the current name being used for that stream.

\g_iow_tmp_stream

\g_ior_tmp_stream |{jsoq when creating new streams at the TEX level.

\1_iow_stream_int
\1_ior_stream_int

Number of stream currently being allocated.

120

Part XVIII

The 13msg package
Communicating with the user

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I3msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by 13msg to create messages divides the process into two distinct parts.
Named messages are created in the first part of the process; at this stage, no decision
is made about the type output that the message will produce. The second part of the
process is actually producing a message. At this stage a choice of message class has to
be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available. First,
the messages can be altered later without needing details of where they are used in the
code. This makes it possible to alter the language used, the detail level and so on.
Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

76 Creating new messages

All messages have to be created before they can be used. Inside the message text, spaces
are not ignored. A space where TEX would normally gobble one can be created using
\ , and a new line with \\. New lines may have ‘continuation’ text added by the output
system.

\msg_new:nnnn
\msg_new:nnn

\msg_set :nnnn \msg_new:nnnn {(module)} {(message)} {(text)}

\msg_set:nnn L(more text)}
Creates new (message) for (module) to produce (text) initially and {more teat) if requested
by the user. (text) and (more text) can use up to four macro parameters (#1 to #4), which
are supplied by the message system. At the point where (message) is printed, the material
supplied for #1 to #4 will be subject to an x-type expansion.

An error will be raised by the new functions if the message already exists: the set
functions do not carry any checking. For messages defined using \msg_new:nnn or \msg_-
set:nnn BTEX3 will supply a standard (more text) at the point the message is used, if
this is required.

121

77 Message classes

Creating message output requires the message to be given a class.

\msg_class_new:nn
\msg_class_set:nn

\msg_class_new:nn {(class)} {(code)}
Creates new (class) to output a message, using (code) to process the message text. The
(class) should be a text value, while the (code) may be any arbitrary material.

The module defines several common message classes. The following describes the stan-
dard behaviour of each class if no redirection of the class or message is active. In all cases,
the message may be issued supplying 0 to 4 arguments. The code will ensure that there
an no errors if the number of arguments supplied here does not match the number in the
definition of the message (although of course the sense of the message may be impaired).

\msg_fatal :nnxxxx
\msg_fatal:nnxxx
\msg_fatal :nnxx

\msg_fatal:nnx \msg_fatal:nnxxxx {(module)} {(name)} {(arg one)}

\msg_fatal:nn {(arg two)} {(arg three)} {(arg four)}
Issues (module) error message (name), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run will halt.

\ISg_error :nnxxxx
\ISg_error :nnxxx
\ISg_error:nnxx

\mSg_error:mnx \msg_error:nnxxxx {(module)} {(name)} {{arg one)}

\msg_error:nn {{arg two)} {(arg three)} {(arg four)}
Issues (module) error message (name), passing (arg one) to (arg four) to the text-creating
functions.

TEXhackers note: The standard output here is similar to \PackageError.

\msg_warning:nnxxxx
\msg_warning:nnxxx
\msg_warning:nnxx

\msg_warning:nnx \msg_warning:nnxxxx {(module)} {(name)} {{arg one)}

\msg_warning:nn {{arg two)} {(arg three)} {({arg four)}
Prints (module) message (name) to the terminal, passing (arg one) to (arg four) to the
text-creating functions.

TgXhackers note: The standard output here is similar to \PackageWarningNoLine.

122

\msg_info:nnxxxx
\msg_info:nnxxx
\msg_info:nnxx

\msg_info:nnx \msg_info:nnxxxx {(module)} {(name)} {(arg one)}

\msg_info:nn {{arg two)} {(arg three)} {{arg four)}
Prints (module) message (name) to the log, passing (arg one) to (arg four) to the text-
creating functions.

TgXhackers note: The standard output here is similar to \PackageInfoNoLine.

\msg_log:nnxxxx
\msg_log:nnxxx
\msg_log:nnxx

\msg_log:nnx \msg_log:nnxxxx {(module)} {(name)} {{arg one)}

\msg_log:nn {{arg two)} {(arg three)} {({arg four)}
Prints (module) message (name) to the log, passing (arg one) to (arg four) to the text-
creating functions. No continuation text is added.

\msg_trace :nnxxxx
\msg_trace:nnxxx
\msg_trace:nnxx

\msg_trace:nnx \msg_trace:nnxxxx {(module)} {(name)} {({arg one)}

\msg_trace:nn {{arg two)} {(arg three)} {{arg four)}
Prints (module) message (name) to the log, passing (arg one) to {arg four) to the text-
creating functions. No continuation text is added.

\msg_none : NNXXXX
\msg_none :nnxxx
\msg_none:nnxx

\msg_none :nnx \msg_none:nnxxxx {(module)} {(name)} {(arg one)}

\msg_none:nn {({arg two)} {(arg three)} {(arg four)}
Does nothing: used for redirecting other message classes. Gobbles arguments given.

78 Redirecting messages

’ \msg_redirect_class:nn ‘\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of {class two). Multiple redirections are possible. Redirection to a missing

123

class or infinite loops will raise errors when the messages are used, rather than at the
point of redirection.

: \msg_redirect_module:nnn {(module)} {(class one)}
’ \msg_redirect_module:nnn ‘{(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection.

TgXhackers note: This function can be used to make some messages ‘silent’ by default. For
example, all of the trace messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { trace } { none }

’ \msg_redirect_name:nnn ‘\msg_redirect_name:nnn {{module)} {{message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class)
of messages.

TgXhackers note: This function can be used to make a selected message ‘silent’ without
changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

79 Support functions for output

’ \msg_line_context:

‘ \msg_line_context:
Prints the text specified in \c_msg_on_line_t1 followed by the current line in the current
input file.

TEXhackers note: This is similar to the text added to messages by EXTEX 2¢’s \PackageWarning
and \PackageInfo.

124

’ \msg_line_number: \msg_line_number:

Prints the current line number in the current input file.

\msg_newline:
\msg_two_newlines:

\msg_newline:

Print one or two newlines with no continuation information.

80 Low-level functions

The low-level functions do not make assumptions about module names. The output
functions here produce messages directly, and do not respond to redirection.

\msg_generic_new:nnn
\msg_generic_new:nn
\msg_generic_set:nnn
\msg_generic_set:nn

\msg_generic_new:nnn {(name)} {(text)} {{more text)}

Creates new message (name) to produce (text) initially and (more text) if requested
by the user. (text) and (more text) can use up to four macro parameters (#1 to #4),
which are supplied by the message system. Inside (text) and (more text) spaces are not
ignored.

\msg_direct_interrupt:xxxxx {(first line)} {(text)}

’\msg_direct_interrupt:XXXXX ‘ {{continuation)} {(last line)} {(more text)}

Executes a TEX error, interrupting compilation. The (first line) is displayed followed
by (text) and the input prompt. (more text) is displays if requested by the user. If (more
text) is blank a default is supplied. Each line of (text) (broken with \\) begins with
(continuation) and finishes off with (last line). (last line) has a period appended to it;
do not add one yourself.

\msg_direct_log:xx
\msg_direct_term:xx

\msg_direct_log:xx {(text)} {(continuation)}
Prints (text) to either the log or terminal. New lines (broken with \\) start with
(continuation).

125

81 Kernel-specific functions

\msg_kernel_new:nnn
\msg_kernel_set:nnnn
\msg_kernel_set:nnn

\msg_kernel_new:nnnn

\msg_kernel_new:nnnn {(divsion)} {(name)} {(text)}
{(more text)}

Creates new kernel mess

age (name) to produce (text) initially and (more text) if re-

quested by the user. (text) and (more text) can use up to four macro parameters (#1
to #4), which are supplied by the message system. Kernel messages are divided into
(divisions), roughly equivalent to the INTEX 2¢ package names used.

\msg_kernel_fatal:nnxxxx
\msg_kernel_fatal:nnxxx
\msg_kernel fatal :nnxx
\msg_kernel_fatal:nnx

\msg_kernel_fatal:nnxx {(division)} {(name)} {(arg one)}

\msg_kernel_fatal:nn {{arg two)} {(arg three)} {({arg four)}

Issues kernel error message (name) for (division), passing (arg one) to (arg four) to
the text-creating functions. The TEX run then halts. Cannot be redirected.

\msg_kernel_error:nn

\msg_kernel_error :nnxxxx
\msg_kernel error:nnxxx
\msg_kernel_error:nnxx
\msg_kernel_error:nnx

\msg_kernel_error:nnxx {(division)} {(name)} {{arg one)}

{{arg two)} {(arg three)} {(arg four)}

Issues kernel error message (name) for (division), passing (arg one) to (arg four) to
the text-creating functions. Cannot be redirected.

\msg_kernel_warning:
\msg_kernel_warning:
\msg_kernel_warning:
\msg_kernel_warning:

\msg_kernel_warning:

NNXXXX

NNXXX

nnxx

nnx \msg_kernel_warning:nnxx {(division)} {(name)} {(arg one)}
nn {(arg two)} {{arg three)} {(arg four)}

Prints kernel message (name) for (division) to the terminal, passing (arg one) to {arg

126

four) to the text-creating functions.

\msg_kernel_info:nnxxxx
\msg_kernel_info:nnxxx
\msg_kernel_info:nnxx
\msg_kernel_info:nnx
\msg_kernel_info:nn

\msg_kernel_info:nxx {(division)} {(name)} {({arg one)}

{{arg two)} {(arg three)} {{arg four)}

Prints kernel message (name) for (division) to the log, passing (arg one) to {(arg four) to

the text-creating functions.

] \msg_kernel_bug:x ‘

\msg_kernel_bug:x {(text)}

Short-cut for ‘This is a LaTeX bug: check coding’ errors.

’ \msg_fatal _text:n ‘\msg_fatal_text:n {(package)}
Prints ‘Fatal (package) error’ for use in error messages.

82 Variables and constants

\c_msg_error_tl
\c_msg_warning_tl
\c_msg_info_tl

Simple headers for errors. Although these are marked as con-

stants, they could be changed for printing errors in a different language.

\c_msg_coding_error_text_tl
\c_msg_fatal_text_tl
\c_msg_help_text_tl
\c_msg_kernel_bug_text_tl

\c_msg_no_info_text_tl
\c_msg_return_text_tl

\c_msg_kernel_bug_more_text_tl

Various pieces of text for use in messages, which

are not changed by the code here although they could be to alter the language. Although
these are marked as constants, they could be changed for printing errors in a different

language.

| \c_msg_on_line_t1 | pq ¢ fine’ phrase for line numbers. Although marked as a
constant, they could be changed for printing errors in a different language.

\c_msg_text_prefix_tl
\c_msg_more_text_prefix_tl

Header information for storing the ‘paths’ to parts of

a message. Although these are marked as constants, they could be changed for printing

127

errors in a different language.

\1_msg_class_tl
\1_msg_current_class_tl
\1_msg_current_module_tl

Information about message method, used for filtering.

| \1_msg_names_clist | of all of the message names defined.

\1_msg_redirect_classes_prop
\1_msg_redirect_names_prop

Re-direction lists containing the class of message to

convert an different one.

| \1_msg_redirect_classes_clist | g0 that filtering does not loop.

Part XIX

The 13xref package
Cross references

’ \xref_set_label:n ‘\xref_set_label:n {(name)}

Sets a label in the text. Note that this function does not do anything else than setting
the correct labels. In particular, it does not try to fix any spacing around the write node;
this is a task for the galley2 module.

’ \xref_new:nn ‘\xref_new:nn {(type)} {{value)}

Defines a new cross reference type (type). This defines the token list variable
\1_xref_curr_{type)_tl with default value (value) which gets written fully expanded
when \xref_set_label:n is called.

’ \xref_deferred new:nn ‘\xref_deferred_new:nn {(type)} {({value)}

Same as \xref_new:n except for this one, the value written happens when TEX ships out
the page. Page numbers use this one obviously.

’ \xref_get_value:nn x ‘\xref_get_value:nn {{type)} {(name)}

128

Extracts the cross reference information of type (type) for the label (name). This opera-
tion is expandable.

Part XX

The 13keyval package
Key-value parsing

A key—value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree s

where each key—value pair is separated by a comma from the rest of the list, and each
key—value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

This module provides the low-level machinery for processing arbitrary key—value lists.
The 13keys module provides a higher-level interface for managing run-time settings using
key—value input, while other parts of IZTEX3 also use key—value input based on I3keyval
(for example the xtemplate module).

83 Features of 13keyval

As I3keyval is a low-level module, its functions are restricted to converting a (keyval list)
into keys and values for further processing. Each key and value (or key alone) has to be
processed further by a function provided when I3keyval is called. Typically, this will be
via one of the \KV_process. .. functions:

\KV_process_space_removal_sanitize:NNn
\my_processor_function_one:n
\my_processor_function_two:nn
{ <keyval list> }

The two processor functions here handle the cases where there is only a key, and where
there is both a key and value, respectively.

I3keyval parses key—value lists in a manner that does not double # tokens or expand any
input. The module has processor functions which will sanitize the category codes of =
and , tokens (for use in the document body) as well as faster versions which do not do

129

this (for use inside code blocks). Spaces can be removed from each end of the key and
value (again for the document body), again with faster code to be used where this is
not necessary. Values which are wrapped in braces will have exactly one set removed,
meaning that

key = {value here},
and
key = value here,

are treated as identical (assuming that space removal is in force). 13keyval

84 Functions for keyval processing

The 13keyval module should be accessed wvia a small set of external functions. These
correctly set up the module internals for use by other parts of KTEX3.

In all cases, two functions have to be supplied by the programmer to apply to the items
from the <keyval list> after I3keyval has separated out the entries. The first function
should take one argument, and will receive the names of keys for which no value was
supplied. The second function should take two arguments: a key name and the associated
value.

\KV_process_space_removal_sanitize:NNn

’ \KV_process_space_removal_sanitize:NNn ‘ (functiony) (functions) {(keyval list)}

Parses the (keyval list) splitting it into keys and associated values. Spaces are removed
from the ends of both the key and value by this function, and the category codes of
non-braced = and , tokens are normalised so that parsing is ‘category code safe’. After
parsing is completed, (function) is used to process keys without values and (function o)
deals with keys which have associated values.

\KV_process_space_removal_no_sanitize:NNn
(function1) (functions) {(keyval list)}

] \KV_process_space_removal_no_sanitize:NNn ‘

Parses the (keyval list) splitting it into keys and associated values. Spaces are removed
from the ends of both the key and value by this function, but category codes are not nor-
malised. After parsing is completed, (functioni) is used to process keys without values
and (functionq) deals with keys which have associated values.

\KV_process_no_space_removal_no_sanitize:NNn

’ \KV_process_no_space_removal_no_sanitize:NNn ‘ (function,) (functions) {(keyval list)}

130

Parses the (keyval list) splitting it into keys and associated values. Spaces are not re-
moved from the ends of the key and value, and category codes are not normalised. After
parsing is completed, (function) is used to process keys without values and (function o)
deals with keys which have associated values.

| \1_KV_remove_one_level_of_braces_bool |ppis hoolean controls whether or not one
level of braces is stripped from the key and value. The default value for this boolean
is true so that exactly one level of braces is stripped. For certain applications it is
desirable to keep the braces in which case the programmer just has to set the boolean
false temporarily. Only applicable when spaces are being removed.

85 Internal functions

The remaining functions provided by I3keyval do not have any protection for nesting of
one call to the module inside another. They should therefore not be called directly by
other modules.

’ \KV_parse_no_space_removal_no_sanitize:n ‘\KV_parse_no_space_removal_no_sanitize:n {({keyval ls

Parses the keys and values, passing the results to \KV_key_no_value_elt:n and \KV_-
key_value_elt:nn as appropriate. Spaces are not removed in the parsing process and
the category codes of = and , are not normalised.

’ \KV_parse_space_removal _no_sanitize:n ‘\KV_parse_space_removal_no_sanitize:n {{keyval list)}

Parses the keys and values, passing the results to \KV_key_no_value_elt:n and \KV_-
key_value_elt:nn as appropriate. Spaces are removed in the parsing process from the
ends of the key and value, but the category codes of = and , are not normalised.

’ \KV_parse_space_removal_sanitize:n ‘

\KV_parse_space_removal_sanitize:n {(keyval list)}

Parses the keys and values, passing the results to \KV_key_no_value_elt:n and \KV_-
key_value_elt:nn as appropriate. Spaces are removed in the parsing process from the
ends of the key and value and the category codes of = and , are normalised at the outer
level (i.e. only unbraced tokens are affected).

\KV_key_no_value_elt:n

\KV k 1 1t \KV_key_no_value_elt:n {(key)}
_key_value_elt:nn

\KV_key_value_elt:n {(key)} {(value)}

Used by \KV_parse... functions to further process keys with no values and keys with
values, respectively. The standard definitions are error functions: the programmer should
provide appropriate definitions for both at point of use.

131

86 Variables and constants

| \c_KV_single_equal_sign_t1 | Constant token list to make finding = faster.

\1_KV_tmpa_t1l
\1_KV_tmpb_t1 Scratch token lists.

\1_KV_parse_tl
\1_KV_currkey_tl
\1_KV_currval_tl

Token list variables for various parts of the parsed input.

Part XXI

The 13keys package
Key—value support

The key—value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. For the user, the system normally results in
input of the form

\PackageControlMacro{
key-one = value one,
key-two = value two

}
or

\PackageMacro [
key-one = value one,
key-two = value two

J{argument}.

For the programmer, the original keyval package gives only the most basic interface for
this work. All key macros have to be created one at a time, and as a result the kvoptions
and xkeyval packages have been written to extend the ease of creating keys. A very
different approach has been provided by the pgfkeys package, which uses a key—value list
to generate keys.

The [3keys package is aimed at creating a programming interface for key—value controls
in TEX3. Keys are created using a key—value interface, in a similar manner to pgfkeys.
Each key is created by setting one or more properties of the key:

132

\keys_define:nn { module }
key-one .code:n = code including parameter #1,
key-two .tl_set:N = \1_module_store_tl

X

These values can then be set as with other key—value approaches:

\keys_set:nn { module }
key-one = value one,
key-two = value two

}

At a document level, \keys_set:nn is used within a document function. For ITEX 2¢,
a generic set up function could be created with

\newcommand*\SomePackageSetup [1]{/,
\@nameuse{keys_set :nn}{module}{#1}%
}

or to use key—value input as the optional argument for a macro:

\newcommand*\SomePackageMacro [2] [1{%
\begingroup
\@nameuse{keys_set :nn}{module}{#1}%
% Main code for \SomePackageMacro
\endgroup
}

The same concepts using xparse for INTEX3 use:

\DeclareDocumentCommand \SomePackageSetup { m } {
\keys_set:nn { module } { #1 }
}
\DeclareDocumentCommand \SomePackageMacro { o m } {
\group_begin:
\keys_set:nn { module } { #1 }
% Main code for \SomePackageMacro
\group_end:
}

Key names may contain any tokens, as they are handled internally using \t1_to_str:n.
As will be discussed in section 88, it is suggested that the character ‘/’ is reserved for
sub-division of keys into logical groups. Macros are not expanded when creating key
names, and so

\tl_set:Nn \1_module_tmp_tl { key }
\keys_define:nn { module } {
\1_module_tmp_tl .code:n = code

}

will create a key called \1_module_tmp_t1, and not one called key.

133

87 Creating keys

’ \keys_define:nn ‘\keys_define:nn {(module)} {(keyval list)}

Parses the (keyval list) and defines the keys listed there for (module). The (module)
name should be a text value, but there are no restrictions on the nature of the text. In
practice the (module) should be chosen to be unique to the module in question (unless
deliberately adding keys to an existing module).

The (keyval list) should consist of one or more key names along with an associated key
property. The properties of a key determine how it acts. The individual properties are
described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule } {
keyname .code:n = Some~code~using-~#1,
keyname .value_required:

}

where the properties of the key begin from the . after the key name.

The \keys_define:nn function does not skip spaces in the input, and does not check
the category codes for , and = tokens. This means that it is intended for use with code
blocks and other environments where spaces are ignored.

.bool_set:N
.bool_gset:N

(key) .bool_set:N = (bool)

Defines (key) to set (bool) to (value) (which must be either true or false). Here, (bool)
is a ATEX3 boolean variable (i.e. created using \bool_new:N). If the variable does not
exist, it will be created at the point that the key is set up.

(key) .choice:

Sets (key) to act as a multiple choice key. Each valid choice for (key) must then be
created, as discussed in section 88.1.

.choice_code:n
.choice_code:x

(key) .choice_code:n = (code)

Stores (code) for use when .generate_choices:n creates one or more choice sub-keys of
the current key. Inside {code), \1_keys_choice_t1 contains the name of the choice made,
and \1_keys_choice_int is the position of the choice in the list given to .generate_-
choices:n. Choices are discussed in detail in section 88.1.

.code:n
.code:x

(key) .code:n = (code)
Stores the (code) for execution when (key) is called. The (code) can include one parameter

134

(#1), which will be the (value) given for the (key). The .code:x variant will expand (code)
at the point where the (key) is created.

.default:n
.default:V

(key) .default:n = (default)
Creates a (default) value for (key), which is used if no value is given. This will be used
if only the key name is given, but not if a blank (value) is given:

\keys_define:nn { module } {
key .code:n = Hello #1,
key .default:n = World

}

\keys_set:nn { modulel} {
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

TgXhackers note: The (default) is stored as a token list variable, and therefore should not
contain unescaped # tokens.

.dim_set:N
.dim_set:c
.dim_gset:N
.dim_gset:c

(key) .dim_set:N = (dimension)

Sets (key) to store the value it is given in (dimension). Here, (dimension) is a BTEX3
dim variable (i.e. created using \dim_new:N) or a IATEX2c dimen (i.e created using
\newdimen). If the variable does not exist, it will be created at the point that the key is
set up.

.fp_set:N
.fp_set:c
.fp_gset:N
.fp_gset:c

(key) .fp_set:N = (floating point)

Sets (key) to store the value it is given in (floating point). Here, (floating point) is a
IATEX3 fp variable (i.e. created using \fp_new:N). If the variable does not exist, it will
be created at the point that the key is set up.

’ -generate_choices:n ‘(key) .generate_choices:n = (comma list)

Makes (key) a multiple choice key, accepting the choices specified in (comma list). Each

135

choice will execute code which should previously have been defined using . choice_code:n
or .choice_code:x. Choices are discussed in detail in section 88.1.

.int_set:N
.int_set:c
.int_gset:N
.int_gset:c

(key) .int_set:N = (integer)

Sets (key) to store the value it is given in (integer). Here, (integer) is a WTEX3 int vari-
able (i.e. created using \int_new:N) or a KTEX 2¢ count (i.e created using \newcount).
If the variable does not exist, it will be created at the point that the key is set up.

.meta:n
.meta:x

(key) .meta:n = (multiple keys)

Makes (key) a meta-key, which will set {multiple keys) in one go. If (key) is given with a
value at the time the key is used, then the value will be passed through to the subsidiary
(keys) for processing (as #1).

.skip_set:N
.skip_set:c
.skip_gset:N
.skip_gset:c

(key) .skip_set:N = (skip)

Sets (key) to store the value it is given in (skip), which is created if it does not already
exist. Here, (skip) is a TEX3 skip variable (i.e. created using \skip_new:N) or a
KTEX 2¢ skip (i.e created using \newskip). If the variable does not exist, it will be
created at the point that the key is set up.

.tl_set:N
.tl_set:c
.tl_set_x:N
.tl_set_x:c
.t1l_gset:N
.tl_gset:c
.tl_gset_x:N
.tl_gset_x:c

(key) .tl_set:N = (token list variable)

Sets (key) to store the value it is given in (token list variable), which is created if it does
not already exist. Here, (token list variable) is a WTEX3 t1 variable (i.e. created using
\tl_new:N) or a ITEX 2¢ macro with no arguments (i.e. created using \newcommand or
\def). If the variable does not exist, it will be created at the point that the key is set
up. The x variants perform an x expansion at the time the (value) passed to the (key) is
saved to the (token list variable).

.value_forbidden:
.value_required:

(key) .value_forbidden:

Flags for forbidding and requiring a (value) for (key). Giving a (value) for a (key) which

136

has the .value_forbidden: property set will result in an error. In the same way, if a
(key) has the .value_required: property set then a (value) must be given when the
(key) is used.

88 Sub-dividing keys

When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { module / subgroup } {
key .code:n = code

}
or to the key name:

\keys_define:nn { module } {
subgroup / key .code:n = code

}

As illustrated, the best choice of token for sub-dividing keys in this way is ‘/’. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name module/subgroup/key.

As will be illustrated in the next section, this subdivision is particularly relevant to
making multiple choices.

88.1 Multiple choices
Multiple choices are created by setting the .choice: property:

\keys_define:nn { module } {
key .choice:

}

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of the
choice or the position of the choice in the list of choices. Here, the keys can share the same
code, and can be rapidly created using the .choice_code:n and .generate_choices:n
properties:

\keys_define:nn { module } {
key .choice_code:n ={

137

You~gave~choice~‘\int_use:N \1_keys_choice_t1’’,~
which~is~in~position-~
\int_use:N\1_keys_choice_int\space
in~the~list.

},

key .generate_choices:n = {
choice-a, choice-b, choice-c

}

}

Following common computing practice, \1_keys_choice_int is indexed from 0 (as an
offset), so that the value of \1_keys_choice_int for the first choice in a list will be zero.
This means that \1_keys_choice_int can be used directly with \if_case:w and so on.

\1_keys_choice_int
\1_keys_choice_tl

Inside the code block for a choice generated using .generate_-
choice:, the variables \1_keys_choice_t1l and \1_keys_choice_int are available to
indicate the name of the current choice, and its position in the comma list. The position
is indexed from 0.

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { module } {
key .choice:n,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

It is possible to mix the two methods, but manually-created choices should not use \1_-
keys_choice_tl or \1_keys_choice_int. These variables do not have defined behaviour
when used outside of code created using .generate_choices:n (i.e. anything might
happen!).

89 Setting keys

\keys_set:nn
\keys_set:nV
\keys_set:nv

\keys_set:nn {(module)} {(keyval list)}
Parses the (keyval list), and sets those keys which are defined for (module). The behaviour
on finding an unknown key can be set by defining a special unknown key: this will be

138

illustrated later. In contrast to \keys_define:nn, this function does check category
codes and ignore spaces, and is therefore suitable for user input.

If a key is not known, \keys_set:nn will look for a special unknown key for the same
module. This mechanism can be used to create new keys from user input.

\keys_define:nn { module } {
unknown .code:n =
You~tried~to~set~key~’\1_keys_path_tl’~to~’#1’

| _keys_key_t1 | yypep processing an unknown key, the name of the key is available

as \1_keys_key_tl. Note that this will have been processed using \t1l_to_str:N. The
value passed to the key (if any) is available as the macro parameter #1.

89.1 Examining keys: internal representation

. . \keys_if_exist:nnTF {(module)} {(key)} {(true code)}
’ \keys_1f_ex1st:nnﬂ" {(false code)}

Tests if (key) exists for (module), i.e. if any code has been defined for (key).

TEXhackers note: The function works by testing for the existence of the internal function
\keys > (module)/(key).cmd:n.

’ \keys_show:nn ‘ \keys_show:nn {(module)} {(key)}
Shows the internal representation of a (key).

TEXhackers note: Keys are stored as functions with names of the format \keys > (module)/(key).cmd:n.

90 Internal functions

’ \keys_bool_set:Nn ‘\keys_bool_set:Nn (bool) {(scope)}

Creates code to set (bool) when (key) is given, with setting using (scope) (empty or g for
local or global, respectively). (bool) should be a WTEX3 boolean variable.

’ \keys_choice_code_store:x ‘\keys_choice_code_store:x (code)

139

Stores (code) for later use by .generate_code:n.

’ \keys_choice_make: ‘\keys_choice_make:

Makes (key) a choice key.

’ \keys_choices_generate:n ‘\keys_choices_generate:n {(comma list)}

Makes (comma list) choices for (key).

’ \keys_choice_find:n ‘\keys_choice_find:n {{choice)}
Searches for (choice) as a sub-key of (key).

\keys_cmd_set:nn

\keys_cmd_set :nx \keys_cmd_set:nn {({path)} {(code)}
Creates a function for (path) using (code).

\keys_default_set:n
\keys_default_set:V

Sets (default) for (key).

\keys_default_set:n {(default)}

\keys_define_elt:n

\keys_define_elt:nn \keys_define_elt:nn {(key)} {(value)}
Processing functions for key—value pairs when defining keys.

’ \keys_define_key:n ‘\keys_define_key:n {(key)}
Defines (key).

’ \keys_execute: ‘\keys_execute:

Executes (key) (where the name of the (key) will be stored internally).

’ \keys_execute_unknown: ‘ \keys_execute_unknown:

Handles unknown (key) names.

. . \keys_if_value_requirement:nTF {(requirement)}
’ \keys_if_value_requirement:nTF x ‘ {true code)} {(false code)}

140

Check if (requirement) applies to (key).

\keys_meta_make:n
\keys_meta_make:x

\keys_meta_make:n {(keys)}
Makes (key) a meta-key to set (keys).

’ \keys_property_find:n ‘\keys_property_find:n {<k6y>}

Separates (key) from (property).

\keys_property_new:nn
\keys_property_new_arg:nn

\keys_property_new:nn {(property)} {(code)}

Makes a new (property) expanding to (code). The arg version makes properties with
one argument.

’ \keys_property_undefine:n ‘\keys_property_undefine:n {(property)}

Deletes (property) of (key).

\keys_set_elt:n
\keys_set_elt:nn

\keys_set_elt:nn {(key)} {(value)}
Processing functions for key—value pairs when setting keys.

\keys_tmp:w \keys_tmp:w (args)

Used to store (code) to execute a (key).

’ \keys_value_or_default:n ‘\keys_value_or_default:n {(value)}

Sets \1_keys_value_t1 to (value), or (default) if (value) was not given and if (default)
is available.

’ \keys_value_requirement:n ‘\keys_value_requirement:n {(requirement)}

Sets (key) to have (requirement) concerning (value).

\keys_variable_set:NnNN
\keys_variable_set:cnNN

\keys_variable_set:NnNN (var) (type) (scope) (erpansion)

Sets (key) to assign (value) to (variable). The (scope) (blank for local, g for global)
and (type) (tl, int, etc.) are given explicitly.

141

91 Variables and constants

\c_keys_root_tl

\c_keys_properties_root_tl

The root paths for keys and properties, used to gen-

erate the names of the functions which store these items.

\c_keys_value_forbidden_tl
\c_keys_value_required_tl

Marker text containers: by storing the values the code

can make comparisons slightly faster.

’ \1_keys_choice_code_t1l

Used to transfer code from storage when making multiple

choices.

\1_keys_module_t1l
\1_keys_path_tl
\1_keys_property_tl

Various key paths need to be stored. These are flexible items

that are set during the key reading process.

| \1_keys_no_value bool | A yarker for ‘no value’ as key input.

] \1_keys_value_tl ‘

may be # tokens.

Part XXII

Holds the currently supplied value, in a token register as there

The 13file package
File Loading

92 Loading files

In contrast to the 13io module, which deals with the lowest level of file management, the
[3file module provides a higher level interface for handling file contents. This involves
providing convenient wrappers around many of the functions in 13io to make them more

generally accessible.

142

It is important to remember that TEX will attempt to locate files using both the operating
system path and entries in the TEX file database (most TEX systems use such a database).
Thus the ‘current path’ for TEX is somewhat broader than that for other programs.

| \g_file_current name_t1 | oy iaing the name of the current LaTeX file. This vari-
able should not be modified: it is intended for information only. It will be equal to
\c_job_name_t1 at the start of a I¥TEX run and will be modified each time a file is read
using \file_input:n.

\file_if_exist:nTF
\file if exist:VTF

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}
Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n). The branching versions then leave either (true
code) or (false code) in the input stream, as appropriate to the truth of the test and the
variant of the function chosen.

\file_input:n
\file_input:V

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IATEX source. All files read are recorded for information
and the file name stack is updated by this function.

’ \file_path_include:n ‘\file_path_include:n {(path)?}

Adds (path) to the list of those used to search for files by the \file_input:n and \file_-
if _exist:n function. The assignment is local.

’ \file_path_remove:n ‘

\file_path_remove:n {(path)}
Removes (path) from the list of those used to search for files by the \file_input:n and
\file_if_exist:n function. The assignment is local.

\file 1i8t: |\fi1¢ 1ist:

This function will list all files loaded using \file_input:n in the log file.

Part XXIII

The 13fp package

143

Floating point arithmetic

93 Floating point numbers

A floating point number is one which is stored as a mantissa and a separate exponent.
This module implements arithmetic using radix 10 floating point numbers. This means
that the mantissa should be a real number in the range 1 < |z| < 10, with the exponent
given as an integer between —99 and 99. In the input, the exponent part is represented
starting with an e. As this is a low-level module, error-checking is minimal. Numbers
which are too large for the floating point unit to handle will result in errors, either from
TEX or from ETEX. The ETEX code does not check that the input will not overflow,
hence the possibility of a TEX error. On the other hand, numbers which are too small
will be dropped, which will mean that extra decimal digits will simply be lost.

When parsing numbers, any missing parts will be interpreted as zero. So for example
\fp_set:Nn \1_my_fp { }
\fp_set:Nn \1_my_fp { . }
\fp_set:Nn \1_my_fp { - }

will all be interpreted as zero values without raising an error.

Operations which give an undefined result (such as division by 0) will not lead to errors.
Instead special marker values are returned, which can be tested for using fr example
\fp_if_undefined:N(TF). In this way it is possible to work with asymptotic functions
without first checking the input. If these special values are carried forward in calculations
they will be treated as 0.

Floating point numbers are stored in the fp floating point variable type. This has a
standard range of functions for variable management.

93.1 Constants

The value of the base of natural numbers, e.

A floating point variable with permanent value 1: used for speeding up

some comparisons.

The value of .

’ \c_undefined_fp ‘ A special marker floating point variable representing the result of
an operation which does not give a defined result (such as division by 0).

A permanently zero floating point variable.

144

93.2 Floating-point variables

\fp_new:N
\fp_new:c

\fp_new:N (floating point variable)

Creates a new (floating point variable) or raises an error if the name is already taken.
The declaration global. The (floating point) will initially be set to +0.000000000e0 (the
zero floating point).

\fp_const:Nn
\fp_const:cn

\fp_const:Nn (floating point variable) {({value)}
Creates a new constant (floating point variable) or raises an error if the name is already
taken. The value of the (floating point variable) will be set globally to the (value).

\fp_set_eq:NN
\fp_set_eq:cN
\fp_set_eq:Nc
\fp_set_eq:cc

\fp_set_eq:NN (fp varl) (fp var2)
Sets the value of (floating point variablel) equal to that of (floating point variable2).
This assignment is restricted to the current TEX group level.

\fp_gset_eq:NN
\fp_gset_eq:cN
\fp_gset_eq:Nc
\fp_gset_eq:cc

\fp_gset_eq:NN (fp varl) (fp var2)
Sets the value of (floating point variablel) equal to that of (floating point variable2).
This assignment is global and so is not limited by the current TEX group level.

\fp_zero:N
\fp_zero:c

\fp_zero:N (floating point variable)
Sets the (floating point variable) to +0.000000000e0 within the current scope.

\fp_gzero:N
\fp_gzero:c

\fp_gzero:N (floating point variable)
Sets the (floating point variable) to +0.000000000e0 globally.

\fp_set:Nn
\fp_set:cn

\fp_set:Nn (floating point variable) {{value)}
Sets the (floating point variable) variable to (value) within the scope of the current TEX

145

group.

\fp_gset:Nn
\fp_gset:cn

\fp_gset:Nn (floating point variable) {(value)}
Sets the (floating point variable) variable to (value) globally.

\fp_set_from_dim:Nn
\fp_set_from_dim:cn

\fp_set_from_dim:Nn (floating point variable) {(dimexpr)}

Sets the (floating point variable) to the distance represented by the (dimension expression)
in the units points. This means that distances given in other units are first converted to
points before being assigned to the (floating point variable). The assignment is local.

\fp_gset_from_dim:Nn
\fp_gset_from_dim:cn

\fp_gset_from_dim:Nn (floating point variable) {(dimexpr)}

Sets the (floating point variable) to the distance represented by the (dimension expression)
in the units points. This means that distances given in other units are first converted to
points before being assigned to the (floating point variable). The assignment is global.

\fp_use:N %
\fp_use:c *

\fp_use:N (floating point variable)

Inserts the value of the (floating point variable) into the input stream. The value will
be given as a real number without any exponent part, and will always include a decimal
point. For example,

\fp_new:Nn \test
\fp_set:Nn \test { 1.234 e 5 }
\fp_use:N \test

will insert ‘12345.00000° into the input stream. As illustrated, a floating point will
always be inserted with ten significant digits given. Very large and very small values will
include additional zeros for place value.

\fp_show:N
\fp_show:c

\fp_show:N (floating point variable)
Displays the content of the (floating point variable) on the terminal.

93.3 Conversion to other formats

It is useful to be able to convert floating point variables to other forms. These functions
are expandable, so that the material can be used in a variety of contexts. The \fp_use:N

146

function should also be consulted in this context, as it will insert the value of the floating
point variable as a real number.

\fp_to_dim:N *

\fp_to_dim:c % \fp_to_dim:N (floating point variable)

Inserts the value of the (floating point variable) into the input stream converted into a
dimension in points.

\fp_to_int:N x
\fp_to_int:c =

\fp_to_int:N (floating point variable)
Inserts the integer value of the (floating point variable) into the input stream. The decimal
part of the number will not be included, but will be used to round the integer.

\fp_to_tl:N %
\fp_to_tl:c %

\fp_to_t1:N (floating point variable)
Inserts a representation of the {floating point variable) into the input stream as a token
list. The representation follows the conventions of a pocket calculator:

Floating point value Representation

1.234000000000e0 1.234
-1.234000000000e0 -1.234
.234000000000e3 1234
.234000000000e13 1234e13
.234000000000e-1 0.1234
.234000000000e-2 0.01234
.234000000000e-3 1.234e-3

e

Notice that trailing zeros are removed in this process, and that numbers which do not
require a decimal part do not include a decimal marker.

93.4 Rounding floating point values

The module can round floating point values to either decimal places or significant figures
using the usual method in which exact halves are rounded up.

\fp_round_figures:Nn
\fp_round_figures:cn

\fp_round_figures:Nn (floating point variable) {(target)}

147

Rounds the (floating point variable) to the (target) number of significant figures (an
integer expression). The rounding is carried out locally.

\fp_ground_figures:Nn
\fp_ground_figures:cn

\fp_ground_figures:Nn (floating point variable) {(target)}

Rounds the (floating point variable) to the (target) number of significant figures (an
integer expression). The rounding is carried out globally.

\fp_round_places:Nn
\fp_round_places:cn

\fp_round_places:Nn (floating point variable) {(target)}
Rounds the (floating point variable) to the (target) number of decimal places (an integer
expression). The rounding is carried out locally.

\fp_ground_places:Nn
\fp_ground_places:cn

\fp_ground_places:Nn (floating point variable) {(target)}

Rounds the (floating point variable) to the (target) number of decimal places (an in-
teger expression). The rounding is carried out globally.

93.5 Tests on floating-point values

\fp_if_undefined_p:N (fized-point)
3 B \fp_if_undefined:NTF (fized-point)
\fp_if_undefined:NTF * {(true code)} {{false code)}

\fp_if_undefined_p:N x

Tests if (floating point) is undefined (i.e. equal to the special \c_undefined_fp vari-
able). The branching versions then leave either (true code) or (false code) in the input
stream, as appropriate to the truth of the test and the variant of the function chosen.
The logical truth of the test is left in the input stream by the predicate version.

\fp_if_zero_p:N «x

\fp_if_zero_p:N (fized-point
\fp_if_zero:NTF x P> - p:ll (fized-point)

\fp_if_zero:NTF (fized-point) {(true code)} {(false code)}

Tests if (floating point) is equal to zero (i.e. equal to the special \c_zero_fp variable).
The branching versions then leave either (true code) or (false code) in the input stream,
as appropriate to the truth of the test and the variant of the function chosen. The logical
truth of the test is left in the input stream by the predicate version.

\fp_compare :nNnTF
{(floating point1)} (relation) {(floating point2)}
’ \fp_compare :nNnTF ‘ {({true code)} {(false code)}
This function compared the two (floating point) values, which may be stored as fp vari-
ables, using the (relation):

148

Equal
Greater than
Less than

NV

Either (true code) or (false code) is then left in the input stream, as appropriate to the
truth of the test and the variant of the function chosen. The tests treat undefined floating
points as zero as the comparison is intended for real numbers only.

93.6 Unary operations

The unary operations alter the value stored within an fp variable.

\fp_abs:N
\fp_abs:c

\fp_abs:N (floating point variable)
Converts the (floating point variable) to its absolute value, assigning the result within
the current TEX group.

\fp_gabs:N
\fp_gabs:c

\fp_gabs:N (floating point variable)
Converts the (floating point variable) to its absolute value, assigning the result globally.

\fp_neg:N
\fp_neg:c

\fp_neg:N (floating point variable)
Reverse the sign of the (floating point variable), assigning the result within the current

TEX group.

\fp_gneg:N
\fp_gneg:c

\fp_gneg:N (floating point variable)
Reverse the sign of the (floating point variable), assigning the result globally.

93.7 Arithmetic operations
Binary arithmetic operations act on the value stored in an fp, so for example

\fp_set:Nn \1_my_fp { 1.234 }
\fp_sub:Nn \1_my_fp { 5.678 }

149

sets \1_my_£p to the result of 1.234 — 5.678 (i.e. —4.444).

\fp_add:Nn
\fp_add:cn

\fp_add:Nn (floating point) {(value)}
Adds the (value) to the (floating point), making the assignment within the current TEX
group level.

\fp_gadd:Nn

\fp_gadd:cn \fp_gadd:Nn (floating point) {{value)}
Adds the (value) to the (floating point), making the assignment globally.

\fp_sub:Nn

\fp_sub:cn \fp_sub:Nn (floating point) {(value)}
Subtracts the (value) from the (floating point), making the assignment within the current
TEX group level.

\fp_gsub:Nn
\fp_gsub:cn

\fp_gsub:Nn (floating point) {(value)}
Subtracts the (value) from the {floating point), making the assignment globally.

\fp_mul:Nn
\fp_mul:cn

\fp_mul:Nn (floating point) {(value)}
Multiples the (floating point) by the (value), making the assignment within the current
TEX group level.

\fp_gmul:Nn
\fp_gmul:cn

\fp_gmul:Nn (floating point) {(value)}
Multiples the (floating point) by the (value), making the assignment globally.

\fp_div:Nn
\fp_div:cn

\fp_div:Nn (floating point) {(value)}

Divides the (floating point) by the (value), making the assignment within the current TEX
group level. If the (value) is zero, the (floating point) will be set to \c_undefined_fp.The
assignment is local.

\fp_gdiv:Nn
\fp_gdiv:cn

\fp_gdiv:Nn (floating point) {{value)}
Divides the (floating point) by the (value), making the assignment globally. If the (value)
is zero, the (floating point) will be set to \c_undefined_fp. The assignment is global.

150

93.8 Power operations

\fp_pow:Nn
\fp_pow:cn

\fp_pow:Nn (floating point) {(value)}

Raises the (floating point) to the given (value), which should be a positive real number or
a negative integer. Mathematically invalid operations such as 0° will give set the (floating
point) to to \c_undefined_fp. The assignment is local.

\fp_gpow:Nn
\fp_gpow:cn

\fp_gpow:Nn (floating point) {(value)}

Raises the (floating point) to the given (value), which should be a positive real number or
a negative integer. Mathematically invalid operations such as 0° will give set the (floating
point) to to \c_undefined_fp. The assignment is global.

93.9 Exponential and logarithm functions

\fp_exp:Nn
\fp_exp:cn

\fp_exp:Nn (floating point) {(value)}
Calculates the exponential of the (value) and assigns this to the (floating point). The
assignment is local.

\fp_gexp:Nn
\fp_gexp:cn

\fp_gexp:Nn (floating point) {(value)}
Calculates the exponential of the (value) and assigns this to the (floating point). The
assignment is global.

\fp_ln:Nn
\fp_ln:cn

\fp_ln:Nn (floating point) {({value)}
Calculates the natural logarithm of the (value) and assigns this to the (floating point).
The assignment is local.

\fp_gln:Nn

\fp_gln:cn \fp_gln:Nn (floating point) {(value)}
Calculates the natural logarithm of the (value) and assigns this to the (floating point).
The assignment is global.

151

93.10 Trigonometric functions

The trigonometric functions all work in radians. They accept a maximum input value of
100000000, as there are issues with range reduction and very large input values.

\fp_sin:cn \fp_sin:Nn (floating point) {(value)}

Assigns the sine of the (value) to the (floating point). The (value) should be given in
radians. The assignment is local.

\fp_gsin:Nn
\fp_gsin:cn

\fp_gsin:Nn (floating point) {{value)}
Assigns the sine of the (value) to the (floating point). The (value) should be given in
radians. The assignment is global.

\fp_cos:Nn
\fp_cos:cn

\fp_cos:Nn (floating point) {(value)}
Assigns the cosine of the (value) to the (floating point). The (value) should be given in
radians. The assignment is local.

\fp_gcos:Nn
\fp_gcos:cn

\fp_gcos:Nn (floating point) {{value)}
Assigns the cosine of the (value) to the (floating point). The (value) should be given in
radians. The assignment is global.

\fp_tan:Nn
\fp_tan:cn

\fp_tan:Nn (floating point) {(value)}
Assigns the tangent of the (value) to the (floating point). The (value) should be given in
radians. The assignment is local.

\fp_gtan:Nn
\fp_gtan:cn

\fp_gtan:Nn (floating point) {{value)}
Assigns the tangent of the (value) to the (floating point). The (value) should be given in
radians. The assignment is global.

93.11 Notes on the floating point unit
As calculation of the elemental transcendental functions is computationally expensive

compared to storage of results, after calculating a trigonometric function, exponent,
etc. the module stored the result for reuse. Thus the performance of the module for

152

repeated operations, most probably trigonometric functions, should be much higher than
if the values were re-calculated every time they were needed.

Anyone with experience of programming floating point calculations will know that this is
a complex area. The aim of the unit is to be accurate enough for the likely applications
in a typesetting context. The arithmetic operations are therefore intended to provide ten
digit accuracy with the last digit accurate to +1. The elemental transcendental functions
may not provide such high accuracy in every case, although the design aim has been to
provide 10 digit accuracy for cases likely to be relevant in typesetting situations. A
good overview of the challenges in this area can be found in J.-M. Muller, Elementary
functions: algorithms and implementation, 2nd edition, Birkhduer Boston, New York,
USA, 2006.

The internal representation of numbers is tuned to the needs of the underlying TEX
system. This means that the format is somewhat different from that used in, for example,
computer floating point units. Programming in TEX makes it most convenient to use a
radix 10 system, using TEX count registers for storage and taking advantage where
possible of delimited arguments.

Part XXIV

The 13luatex package
LuaTgX-specific functions

94 Breaking out to Lua

The LuaTEX engine provides access to the Lua programming language, and with it access
to the ’internals’ of TEX. In order to use this within the framework provided here, a family
of functions is available. When used with pdfTEX or XqITEXthese will raise an error: use
\engine_if_luatex:T to avoid this. Details of coding the LuaTEX engine are detailed
in the LuaTEX manual.

\lua_now:n *
\lua_now:x *

\lua_now:n {(token list)}

The (token list) is first tokenized by TgEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter for processing. Each
\lua_now:n block is treated by Lua as a separate chunk. The Lua interpreter will execute
the (Lua input) immediately, and in an expandable manner.

TgXhackers note: \lua_now:x is the LuaTgX primitive \directlua renamed.

153

\lua_shipout:n
\lua_shipout:x

\lua_shipout:x {(token list)}

The (token list) is first tokenized by TgEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current page
is finalised (i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the (Lua input) during the page-building routine:
no TEX expansion of the (Lua input) will occur at this stage.

TEXhackers note: At a TEX level, the (Lua input) is stored as a ‘whatsit’.

\lua_shipout_x:n
\lua_shipout_x:x

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TgEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current page
is finalised (7.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the (Lua input) during the page-building routine:
the (Lua input) is expanded during this process in addition to any expansion when the
argument was read. This makes these functions suitable for including material finalised
during the page building process (such as the page number).

TEXhackers note: \lua_sjhipout_x:n is the LuaTgX primitive \latelua named using the
ETEX3 scheme.

At a TEX level, the (Lua input) is stored as a ‘whatsit’.

95 Category code tables

As well as providing methods to break out into Lua, there are places where additional
ETEX3 functions are provided by the LuaTgX engine. In particular, LuaTEX provides
category code tables. These can be used to ensure that a set of category codes are in
force in a more robust way than is possible with other engines. These are therefore used
by \ExplSyntaxOn and ExplSyntaxOff when using the LuaTEX engine.

] \cctab_new:N ‘

\cctab_new:N (category code table)
Creates a new category code table, initially with the codes as used by IniTEX.

\cctab_gset:Nn (category code table)
{{category code set up)}
Sets the (category code table) to apply the category codes which apply when the prevailing

\cctab_gset:Nn
g

154

regime is modified by the (category code set up). Thus within a standard code block the
starting point will be the code applied by \c_code_cctab. The assignment of the table
is global: the underlying primitive does not respect grouping.

’ \cctab_begin:N ‘ \cctab_begin:N (category code table)

Switches the category codes in force to those stored in the (category code table). The
prevailing codes before the function is called are added to a stack, for use with \cctab_-
end:.

\cctab_end: \cctab_end:

Ends the scope of a (category code table) started using \cctab_begin:N, retuning the
codes to those in force before the matching \cctab_begin:N was used.

| \c_code_cctab | Category code table for the code environment. This does not include
setting the behaviour of the line-end character, which is only altered by \ExplSyntaxOn.

| \c_document_cctab | Category code table for a standard IXTEX document. This does
not include setting the behaviour of the line-end character, which is only altered by
\ExplSyntax0ff.

| \c_initex_cctab | Category code table as set up by IniTEX.

] \c_other_cctab ‘
(other).

Category code table where all characters have category code 12

| \c_string_cctab | Category code table where all characters have category code 12
(other) with the exception of spaces, which have category code 10 (space).

Part XXV

Implementation

96 I3names implementation

This is the base part of IXTEX3 defining things like catcodes and redefining the TEX
primitives, as well as setting up the code to load expl3 modules in BTEX 2¢.

155

96.1 Internal functions

\ExplSyntaxStatus

\ExplSyntaxPopStack

\ExplSyntaxStack Functions used to track the state of the catcode regime.
\@pushfilename

\Gpopfilename |R, definitions of ETEX’s file-loading functions to support \ExplSyntax.

96.2 Bootstrap code

The very first thing to do is to bootstrap the IniTEX system so that everything else will
actually work. TEX does not start with some pretty basic character codes set up.

1 (*lpackage)

> \catcode ‘\{ = 1 \relax
; \catcode ‘\} = 2 \relax
4 \catcode ‘\# = 6 \relax

5 \catcode ‘\~ = 7 \relax
s (/!package)

Tab characters should not show up in the code, but to be on the safe side.

7 (*Ipackage)
s \catcode ‘\""I = 10 \relax
o (/!package)

For LuaTgX the extra primitives need to be enabled before they can be use. No
\ifdefined yet, so do it the old-fashioned way. The primitive \strcmp is simulated
using some Lua code, which currently has to be applied to every job as the Lua code
is not part of the format. Thanks to Taco Hoekwater for this code. The odd \csname
business is needed so that the later deletion code will work.

10 (*Ipackage)
11 \begingroup\expandafter\expandafter\expandafter\endgroup
1> \expandafter\ifx\csname directlua\endcsname\relax

13 \else

1 \directlua

15 {

16 tex.enableprimitives(’’,tex.extraprimitives ())
17 lua.bytecode[1] = function ()

18 function strcmp (A, B)

19 if A == B then

20 tex.write("0")

21 elseif A < B then

156

38

39

40

42

43

tex.write("-1")
else
tex.write("1")
end
end
end
lua.bytecode[1] ()
}
\everyjob\expandafter
{\csname tex_directlua:D\endcsname{lua.bytecode[1]()}}
\long\edef\pdfstrcmp#1#27

{k
\expandafter\noexpand\csname tex_directlua:D\endcsname
{h
strcmp (%
"\noexpand\luaescapestring{#1}",%
"\noexpand\luaescapestring{#2}"J,
Vh
Y
}

\fi

(/'package)

When loaded as a package this can all be handed off to other IMTEX 2¢ code.

(*package)

; \def\@tempad{/,

\def\@tempa{}/
\RequirePackage{luatex}/
\RequirePackage{pdftexcmds}
\let\pdfstrcmp\pdf@strcmp

}
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname directlua\endcsname\relax

\else

\expandafter\Qtempa

\fi

(/package)

XHATEX calls the primitive \strcmp, so there needs to be a check for that too.

s7 \begingroup\expandafter\expandafter\expandafter\endgroup

\expandafter\ifx\csname pdfstrcmp\endcsname\relax
\let\pdfstrcmp\strcmp

\fi

96.3 Requirements

Currently, the code requires the e-TpX primitives and functionality equivalent to
\pdfstrcmp. Any package which provides the later will provide the former, so the test

157

can be done only for \pdfstrcmp.

s \begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname pdfstrcmp\endcsname\relax
(*package)

\PackageError{1l3names}{Required primitive not found: \protect\pdfstrcmp}

62

o

3

64

65

¥

}

LaTeX3 requires the e-TeX primitives and
\string\pdfstrcmp.\MessageBreak

These are available in engine versions: \MessageBreak

- pdfTeX 1.30 \MessageBreak

- XeTeX 0.9994 \MessageBreak

- LuaTeX 0.60 \MessageBreak

or later. \MessageBreak

\MessageBreak

Loading of 13names will abort!

(/package)

(*Ipackage)
\newlinechar‘\""J\relax
\errhelp{’

}

LaTeX3 requires the e-TeX primitives and
\string\pdfstrcmp. ~~J
These are available in engine versions: ~7J
- pdfTeX 1.30 ~7J
- XeTeX 0.9994 ~7J
- LuaTeX 0.60 ~7J
or later. ~7J
For pdfTeX and XeTeX the ’-etex’ command-line switch is also
needed.”"J
-J
Format building will abort!

> (/!package)

\expandafter\endinput

4 \fi

96.4 Catcode assignments

Catcodes for begingroup, endgroup, macro parameter, superscript, and tab, are all as-

signed before the start of the documented code. (See the beginning of 13names.dtx.)

Reason for \endlinechar=32 is that a line ending with a backslash will be interpreted
as the token \, which seems most natural and since spaces are ignored it works as we

intend elsewhere.

Before we do this we must however record the settings for the catcode regime as it was

when we start changing it.

158

s (¥initex | package)

9% \protected\edef\ExplSyntax0ff{

o7 \unexpanded{\ifodd \ExplSyntaxStatus\relax
oz \def\ExplSyntaxStatus{0}

99 }

100 \catcode 126=\the \catcode 126 \relax
101 \catcode 32=\the \catcode 32 \relax

102 \catcode 9=\the \catcode 9 \relax

103 \endlinechar =\the \endlinechar \relax
04 \catcode 95=\the \catcode 95 \relax

105 \catcode 58=\the \catcode 58 \relax

105 \catcode 124=\the \catcode 124 \relax
107 \catcode 38=\the \catcode 38 \relax

108 \catcode 94=\the \catcode 94 \relax

109 \catcode 34=\the \catcode 34 \relax

110 \noexpand\fi

111 }

112 \catcodel126=10\relax % tilde is a space char.
113 \catcode32=9\relax % space is ignored

114 \catcode9=9\relax % tab also ignored

115 \endlinechar=32\relax 7% endline is space
116 \catcode95=11\relax % underscore letter
117 \catcode58=11\relax % colon letter

118 \catcodel24=12\relax Y% vert bar, other

119 \catcode38=4\relax % ampersand, alignment token
120 \catcode34=12\relax % doublequote, other
121 \catcode94=7\relax % caret, math superscript

96.5 Setting up primitive names

Here is the function that renames TEX’s primitives.

Normally the old name is left untouched, but the possibility of undefining the original
names is made available by docstrip and package options. If nothing else, this gives a
way of checking what ‘old code’ a package depends on. ..

If the package option ‘removeoldnames’ is used then some trick code is run after the end
of this file, to skip past the code which has been inserted by ITEX 2¢ to manage the file
name stack, this code would break if run once the TEX primitives have been undefined.
(What a surprise!) The option has been temporarily disabled.

To get things started, give a new name for \let.

122 \let \tex_let:D \let
123 (/initex | package)

and now an internal function to possibly remove the old name: for the moment.
124 <*initex)

125 \long \def \name_undefine:N #1 {

159

126 \tex_let:D #1 \c_undefined

128 (/initex)

120 (*package)

130 \DeclareOption{removeoldnames}{
131 \long\def\name_undefine:N#1{
132 \tex_let:D#1\c_undefined}}

133 \DeclareOption{keepoldnames}{
12 \long\def\name_undefine:N#1{}}

135 \ExecuteOptions{keepoldnames}

136 \ProcessOptions
7 (/package)

The internal function to give the new name and possibly undefine the old name.

138 (*initex | package)

130 \long \def \name_primitive:NN #1#2 {
140 \tex_let:D #2 #1

141 \name_undefine:N #1

12 }

96.6 Reassignment of primitives

In the current incarnation of this package, all TEX primitives are given a new name of the
form \tex_oldname:D. But first three special cases which have symbolic original names.
These are given modified new names, so that they may be entered without catcode tricks.

143 \name_primitive:NN \ \tex_space:D
14 \name_primitive:NN \/ \tex_italiccor:D
1s \name_primitive:NN \- \tex_hyphen:D

Now all the other primitives.

116 \name_primitive:NN \let \tex_let:D

147 \name_primitive:NN \def \tex_def:D

us \name_primitive:NN \edef \tex_edef:D

120 \name_primitive:NN \gdef \tex_gdef:D

150 \name_primitive:NN \xdef \tex_xdef:D

151 \name_primitive:NN \chardef \tex_chardef:D
15> \name_primitive:NN \countdef \tex_countdef:D
153 \name_primitive:NN \dimendef \tex_dimendef:D
152 \name_primitive:NN \skipdef \tex_skipdef:D
155 \name_primitive:NN \muskipdef \tex_muskipdef :D
156 \name_primitive:NN \mathchardef \tex_mathchardef :D
157 \name_primitive:NN \toksdef \tex_toksdef:D

160

155 \name_primitive:NN \futurelet \tex_futurelet:D

150 \name_primitive:NN \advance \tex_advance:D

160 \name_primitive:NN \divide \tex_divide:D

160 \name_primitive:NN \multiply \tex_multiply:D
12 \name_primitive:NN \font \tex_font:D

16 \name_primitive:NN \fam \tex_fam:D

16+ \name_primitive:NN \global \tex_global:D

165 \name_primitive:NN \long \tex_long:D

166 \name_primitive:NN \outer \tex_outer:D

17 \name_primitive:NN \setlanguage \tex_setlanguage:D
16¢ \name_primitive:NN \globaldefs \tex_globaldefs:D
160 \name_primitive:NN \afterassignment \tex_afterassignment:D
170 \name_primitive:NN \aftergroup \tex_aftergroup:D
171 \name_primitive:NN \expandafter \tex_expandafter:D
172 \name_primitive:NN \noexpand \tex_noexpand:D
173 \name_primitive:NN \begingroup \tex_begingroup:D
174 \name_primitive:NN \endgroup \tex_endgroup:D
175 \name_primitive:NN \halign \tex_halign:D

176 \name_primitive:NN \valign \tex_valign:D

177 \name_primitive:NN \cr \tex_cr:D

175 \name_primitive:NN \crcr \tex_crcr:D

170 \name_primitive:NN \noalign \tex_noalign:D

150 \name_primitive:NN \omit \tex_omit:D

151 \name_primitive:NN \span \tex_span:D

122 \name_primitive:NN \tabskip \tex_tabskip:D

152 \name_primitive:NN \everycr \tex_everycr:D

12+ \name_primitive:NN \if \tex_if:D

155 \name_primitive:NN \ifcase \tex_ifcase:D

155 \name_primitive:NN \ifcat \tex_ifcat:D

157 \name_primitive:NN \ifnum \tex_ifnum:D

155 \name_primitive:NN \ifodd \tex_ifodd:D

150 \name_primitive:NN \ifdim \tex_ifdim:D

100 \name_primitive:NN \ifeof \tex_ifeof:D

101 \name_primitive:NN \ifhbox \tex_ifhbox:D

102 \name_primitive:NN \ifvbox \tex_ifvbox:D

103 \name_primitive:NN \ifvoid \tex_ifvoid:D

104 \name_primitive:NN \ifx \tex_ifx:D

105 \name_primitive:NN \iffalse \tex_iffalse:D

106 \name_primitive:NN \iftrue \tex_iftrue:D

107 \name_primitive:NN \ifhmode \tex_ifhmode:D

10 \name_primitive:NN \ifmmode \tex_ifmmode:D

190 \name_primitive:NN \ifvmode \tex_ifvmode:D

200 \name_primitive:NN \ifinner \tex_ifinner:D

200 \name_primitive:NN \else \tex_else:D

202 \name_primitive:NN \fi \tex_fi:D

203 \name_primitive:NN \or \tex_or:D

204 \name_primitive:NN \immediate \tex_immediate:D
205 \name_primitive:NN \closeout \tex_closeout:D
20 \name_primitive:NN \openin \tex_openin:D

207 \name_primitive:NN \openout \tex_openout:D

161

\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
 \name_primitive:
215 \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
+ \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
s \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
+ \name_primitive:
\name_primitive:
\name_primitive:
’ \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
+ \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\read

\write

\closein
\newlinechar
\input

\endinput
\inputlineno
\errmessage
\message

\show

\showthe
\showbox
\showlists
\errhelp
\errorcontextlines
\tracingcommands
\tracinglostchars
\tracingmacros
\tracingonline
\tracingoutput
\tracingpages
\tracingparagraphs
\tracingrestores
\tracingstats
\pausing
\showboxbreadth
\showboxdepth
\batchmode
\errorstopmode
\nonstopmode
\scrollmode

\end

\csname
\endcsname
\ignorespaces
\relax

\the

\mag

\language

\mark

\topmark
\firstmark
\botmark
\splitfirstmark
\splitbotmark
\fontname
\escapechar
\endlinechar
\mathchoice
\delimiter

162

\tex_read:D
\tex_write:D
\tex_closein:D
\tex_newlinechar:D
\tex_input:D
\tex_endinput:D
\tex_inputlineno:D
\tex_errmessage:D
\tex_message:D
\tex_show:D
\tex_showthe:D
\tex_showbox:D
\tex_showlists:D
\tex_errhelp:D

\tex_errorcontextlines:D
\tex_tracingcommands:D
\tex_tracinglostchars:D

\tex_tracingmacros:D
\tex_tracingonline:D
\tex_tracingoutput:D
\tex_tracingpages:D

\tex_tracingparagraphs:D
\tex_tracingrestores:D

\tex_tracingstats:D
\tex_pausing:D

\tex_showboxbreadth:D

\tex_showboxdepth:D
\tex_batchmode:D
\tex_errorstopmode:D
\tex_nonstopmode:D
\tex_scrollmode:D
\tex_end:D
\tex_csname:D
\tex_endcsname:D
\tex_ignorespaces:D
\tex_relax:D
\tex_the:D
\tex_mag:D
\tex_language:D
\tex_mark:D
\tex_topmark:D
\tex_firstmark:D
\tex_botmark:D

\tex_splitfirstmark:D

\tex_splitbotmark:D
\tex_fontname:D
\tex_escapechar:D
\tex_endlinechar:D
\tex_mathchoice:D
\tex_delimiter:D

262

263

264

265

266

297

298

s \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
7 \name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
\name_primitive:
> \name_primitive:
\name_primitive:
\name_primitive:
s \name_primitive:
\name_primitive:
\name_primitive:
\name_primitiv