The HTEX3 Sources

The BTEX3 Project”

June 3, 2010

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for ITEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level IXTEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of N TEX 2¢. In time,
a I¥TEX3 format will be produced based on this code. This allows the code to be
used in BTEX 2¢ packages now while a stand-alone KTEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*Frank Mittelbach, Denys Duchier, Chris Rowley, Rainer Schopf, Johannes Braams, Michael Downes,
David Carlisle, Alan Jeffrey, Morten Hggholm, Thomas Lotze, Javier Bezos, Will Robertson, Joseph
Wright

Contents

I

1

2

II The 13names package:

Introduction to expl3 and this document

Naming functions and variables

1.0.1 Terminological inexactitude

Documentation conventions

TEX

3

4

Setting up the B TEX3 programming language

Using the modules

IIT The I3basics package: Basic Definitions

5

Predicates and conditionals
5.1 Primitive conditionals oo
5.2 Non-primitive conditionals oL,

5.3 Applications e
Control sequences

Selecting and discarding tokens from the input stream
7.1 Extending the interface o oL

7.2 Selecting tokens from delimited arguments
That which belongs in other modules but needs to be defined earlier

Defining functions

9.1 Defining new functions using primitive parameter text
9.2 Defining functions using primitive parameter text
9.3 Undefining functions oo
9.4 Copying function definitions L Lo

9.5 Internal functions

ii

A systematic naming scheme for

11

12
14
14

15

10 The innards of a function 21
11 Grouping and scanning 22

12 Checking the engine 22

IV The 13expan package: Controlling Expansion of Function

Arguments 23
13 Brief overview 23
14 Defining new variants 23

14.1 Methods for defining variants L. 24
15 Introducing the variants 25
16 Manipulating the first argument 26
17 Manipulating two arguments 27
18 Manipulating three arguments 28
19 Preventing expansion 29
20 Unbraced expansion 30
V The I3prg package: Program control structures 30
21 Conditionals and logical operations 30
22 Defining a set of conditional functions 31
23 The boolean data type 32
24 Boolean expressions 34

25 Case switches 35

iii

26 Generic loops

27 Choosing modes

28 Alignment safe grouping and scanning

29 Producing n copies

30 Sorting

30.1 Variable type and scope

VI The I13quark package: “Quarks”
31 Functions
32 Recursion

33 Constants

VII The I3token package: A token of my appreciation. ..

34 Character tokens

35 Generic tokens

36 Peeking ahead at the next token

VIII The I3int package: Integers/counters
37 Functions

38 Formatting a counter value

38.1 Internal functions

39 Variable and constants

iv

36

36

37

37

38
39

39

40

41

41

42

42

45
49

49

51

51

53
93

54

40 Conversion

IX The I3intexpr package: Integer expressions

41 Calculating and comparing integers

42 Primitive (internal) functions

X The I3skip package: Dimension and skip registers

43 Skip registers

43.1 Functions
43.2 Formatting a skip register value

43.3 Variable and constants

44 Dim registers

44.1 Functions

44.2 Variable and constants

45 Muskips

XI The 13tl package: Token Lists
46 Functions

47 Predicates and conditionals

48 Working with the contents of token lists
49 Variables and constants

50 Searching for and replacing tokens

51 Heads or tails?

56

56

56

58

59

60
60
62
62

62
62
65

65

66

66

70

72

73

74

75

XII The 13toks package: Token Registers

52 Allocation and use
53 Adding to the contents of token registers
54 Predicates and conditionals

55 Variable and constants

XIII The I13seq package: Sequences

56 Functions for creating/initialising sequences
57 Adding data to sequences

58 Working with sequences

59 Predicates and conditionals

60 Internal functions

61 Functions for ‘Sequence Stacks’

XIV The I3clist package: Comma separated lists

62 Functions for creating/initialising comma-lists

63 Putting data in

64 Getting data out

65 Mapping functions

66 Predicates and conditionals

67 Higher level functions

vi

76

77

79

80

81

81

82

83

84

85

86

86

87

88

89

90

90

91

92

68 Functions for ‘comma-list stacks’ 93

69 Internal functions 94
XV The I3prop package: Property Lists 94
70 Functions 94
71 Predicates and conditionals 97
72 Internal functions 98
XVI The 13io package: Low-level file i/o 98
73 Opening and closing streams 99

73.1 Writing to files Lo 100

73.2 Reading from files L o 101
74 Internal functions 102
75 Variables and constants 102

XVII The I3msg package: Communicating with the user 103

76 Creating new messages 103
77 Message classes 104
78 Redirecting messages 106
79 Support functions for output 107
80 Low-level functions 107
81 Kernel-specific functions 108

82 Variables and constants 109

vii

XVIII The I13box package: Boxes
83 Generic functions
84 Horizontal mode

85 Vertical mode

XIX The I3xref package: Cross references

XX The I3keyval package: Key-value parsing
86 Features of 13keyval

87 Functions for keyval processing

88 Internal functions

89 Variables and constants

XXI The I3keys package: Key—value support
90 Creating keys

91 Sub-dividing keys

91.1 Multiple choices. L Lo

92 Setting keys

92.1 Examining keys: internal representation

93 Internal functions

94 Variables and constants

110

110

113

115

116

116

117

118

119

119

122

124
125

126
127

127

129

XXII The I3calc package: Infix notation arithmetic in A TEX3130

viii

95 User functions

XXIII The I13file package: File Loading

96 Loading files

XXIV Implementation

97 I3names implementation
97.1 Internal functions o
97.2 Package loading
97.3 Catcode assignmentso L
97.4 Setting up primitive nameso
97.5 Reassignment of primitives
97.6 expl3 code switches L
97.7 Package loading
97.8 Finishing up L e

97.9 Showing memory USage v v v v v vt e e e e

98 I3basics implementation
98.1 Renaming some TEX primitives (again)
98.2 Defining functions oL
98.3 Selecting tokens L
98.4 Gobbling tokens from input L oL
98.5 Expansion control from 13expan Lo
98.6 Conditional processing and definitions
98.7 Dissecting a control sequence L Lo
98.8 Exist or free L
98.9 Defining and checking (new) functions
98.10More new definitions oL o
98.11Copying definitions oo
98.12Undefining functions oL oL Lo

ix

131

133

133

134

134
134
134
135
135
136
147
148
152
154

98.13Diagnostic wrapper functions
98.14Engine specific definitions oL oL oL
98.15Scratch functionso

98.16Defining functions from a given number of arguments

99 I3expan implementation
99.1 Internal functions and variables L L L.
99.2 Module code
99.3 General expansion Lo
99.4 Hand-tuned definitions Lo
99.5 Definitions with the ‘general’ technique
99.6 Preventing expansion Lo L e
99.7 Defining function variants oL oL Lo

99.8 Last-unbraced versions

10d3prg implementation
100.1Variables oL
100.2Module codeo
100.3Choosing modeso
100.4Producing n copieso
100.5Booleanso oL
100.6Parsing boolean expressions o000
100.7Case switch oL
100.8Sorting o e
100.9Variable type and scope Lo o

1013quark implementation

1023token implementation
102.1Documentation of internal functions
102.2Module code oL e
102.3Character tokens
102.4Generic tokenso Lo L
102.5Peeking ahead at the next token

178
178
179
179
183
184
185
185
188

189
189
189
190
191
194
196
201
203
205

206

1033int implementation
103.1Internal functions and variables
103.2Module loading and primitives definitions
103.3Allocation and setting oL
103.4Defining constants L.

103.5Scanning and conversion e
1043intexpr implementation

1043skip implementation
105.1Skip registers L
105.2Dimen registers oL oL
105.3Muskips L e e e

104d3tl implementation
106.1Functions oL L
106.2Variables and constants Lo L Lo
106.3Predicates and conditionals Lo
106.4Working with the contents of token lists
106.5Checking for and replacing tokens Lo
106.6Heads or tails? L

1013toks implementation
107.1Allocation and use
107.2Adding to token registers’ contents oL
107.3Predicates and conditionalso Lo oL,

107.4Variables and constants e

1083seq implementation
108.1Allocating and initialisation L.
108.2Predicates and conditionals oL oL
108.3Getting dataouto o
108.4Putting datain Lo L
108.5Mapping o v o o e e e e e e
108.6Manipulation Lo e
108.7Sequence stacks L e e

xi

227
227
228
228
234
236

239

244
244
248
250

251
251
256
257
262
267
270

274
274
276
278
278

285

1093clist implementation
109.1Allocation and initialisation
109.2Predicates and conditionals
109.3Retrieving data
109.4Storing data
109.5Mapping
109.6Higher level functions . . .
109.7Stack operations

11d3prop implementation
110.1Functions
110.2Predicates and conditionals

110.3Mapping functions

1113io0 implementation
111.1Variables and constants . .
111.2Stream management
111.3Immediate writing

111.4Deferred writing

112Special characters for writing

112.1Reading input

1133msg implementation
113.1Variables and constants . .
113.20utput helper functions . .
113.3Generic functions
113.4General functions
113.5Redirection functions

113.6Kernel-specific functions . .

1143box implementation
114.1Generic boxes
114.2Vertical boxes
114.3Horizontal boxes

xii

286
286
287
288
289
290
292
293

294
295
298
298

300
300
301
306
307

307
308

308
309
310
311
313
316
317

1143xref implementation

115.1Internal functions and variables

115.2Module code

11d3xref test file

1173keyval implementation

117.1Module code

117.1.1 Variables and constants

117.1.2Internal functions o

117.1.3 Properties . . .
117.1.4 Messages . . .

1183calc implementation
118.1Variables
118.2Internal functions . . .
118.3Module code

118.4Higher level commands

1193file implementation

Index

xiii

325
325
325

328

329
330
338
339
346
349

350
350
351
351
361

364

368

Part I

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the INTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

EXTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a small
number of very basic functions, all expl3 function names contain at least one underscore
to divide the module name from the descriptive name of the function. For example, all
functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no argu-
ments, this will be blank and the function name will end :. Most functions take one or
more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument though exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So So \foo:c {ArgumentOne} will act in the same way as
\foo:N \ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: the plain TEX \edef.

f The £ specifier stands for full expansion, and in contrast to z stops at the first non-
expandable item without trying to execute it.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter to
define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.

1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.

clist Comma separated list.
dim ‘Rigid’ lengths.

int Integer-valued count register.

IThe module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

num A ‘fake’ integer type using only macros. Useful for setting up allocation routines.
prop Property list.
skip ‘Rubber’ lengths.

seq ‘Sequence’: a data-type used to implement lists (with access at both ends) and
stacks.

stream An input or output stream (for reading from or writing to, respectively).
t1l Token list variables: placeholder for a token list.

toks Token register.

1.0.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to ‘variables’ and ‘functions’ as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions are
simply macros that may or mayn’t take arguments and expand to their replacement text.
Many of the common variables are also macros, and if placed into the input stream will
simply expand to their definition as well — a ‘function’ with no arguments and a ‘token
list variable’ are in truth one and the same. On the other hand, some ‘variables’ are
actually registers that must be initialised and their values set and retreived with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of ‘macros
that contain data’ and ‘macros that contain code’, and a consistent wrapper is applied
to all forms of ‘data’ whether they be macros or actually registers. This means that
sometimes we will use phrases like ‘the function returns a value’, when actually we just
mean ‘the macro expands to something’ Similarly, the term ‘execute’ might be used
in place of ‘expand’ or it might refer to the more specific case of ‘processing in TEX’s
stomach’ (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions and
need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn
\ExplSyntax0ff

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few additional
conventions: If two related functions are given with identical names but different ar-
gument specifiers, these are termed wvariants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N
\seq_new:c

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Some functions are fully expandable, which allows it to be used within an x-type argument
(in plain TEX terms, inside an \edef). These fully expandable functions are indicated in
the documentation by a star:

’ \cs_to_str:N * ‘\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Conditional (if) functions are normally defined in three variants, with T, F and TF
argument specifiers. This allows them to be used for different ‘true’/‘false’ branches,
depending on which outcome the conditional is being used to test. To indicate this
without repetition, this information is given in a shortened form:

’ \Xetex—if—engine:lfv*"\xetex_if_engine:TF (true code) (false code)

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_-
engine:F and \xetex_if_engine:TF are all available. Usually, the illustration will use
the TF variant, and so both (true code) and (false code) will be shown. The two variant
forms T and F take only (true code) and (false code), respectively. Here, the star also
shows that this function is expandable. With some minor exceptions, all conditional
functions in the expl3 modules should be defined in this way.

Variables, constants and so on are described in a similar manner:

_tmpa_tl | A ghort piece of text will describe the variable: there is no syntax illus-

tration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases, the
text will include an extra ‘TEpXhackers note’ section:

’ \token_to_str:N x ‘\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case, it
would point out that this function is the TEX primitive \string.

Part 11

The I13names package
A systematic naming scheme for TEX

3 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

¢ defines new names for all TEX primitives;
o defines catcode regimes for programming;
e provides settings for when the code is used in a format;

e provides tools for when the code is used as a package within a IXTEX 2¢ context.

4 Using the modules

The modules documented in source3 are designed to be used on top of BTEX 2 and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the TEX3 format, but work in
this area is incomplete and not included in this documentation.

As the modules use a coding syntax different from standard KTEX it provides a few
functions for setting it up.

\ExplSyntaxOn
\ExplSyntax0ff

\ExplSyntaxOn (code) \ExplSyntax0ff
Issues a catcode regime where spaces are ignored and colon and underscore are letters.
A space character may by input with ~ instead.

\ExplSyntaxNamesOn
\ExplSyntaxNames0ff

\ExplSyntaxNamesOn (code) \ExplSyntaxNamesOff
Issues a catcode regime where colon and underscore are letters, but spaces remain the
same.

\ProvidesExplPackage)

. \RequirePackage{expl3}
\ProvidesExplClass .

i A \ProvidesExplPackage {(package)}
\ProvidesExplFile {(date)} {(version)} {(description)}

The package 13names (this module) provides \ProvidesExplPackage which is a wrap-
per for \ProvidesPackage and sets up the ETEX3 catcode settings for program-
ming automatically. Similar for the relationship between \ProvidesExplClass and
\ProvidesClass. Spaces are not ignored in the arguments of these commands.

\GetIdInfo
\filename
\filenameext
\filedate
\fileversion
\filetimestamp

\f}leautho? . \RequirePackage{1l3names}

\filedescription \GetIdInfo $Id: (cvs or svn info field) $ {(description)}
Extracts all information from a CVS or SVN field. Spaces are not ignored in these fields.
The information pieces are stored in separate control sequences with \filename for the
part of the file name leading up to the period, \filenameext for the extension, \filedate
for date, \fileversion for version, \filetimestamp for the time and \fileauthor for
the author.

To summarize: Every single package using this syntax should identify itself using one of
the above methods. Special care is taken so that every package or class file loaded with
\RequirePackage or alike are loaded with usual BTEX catcodes and the XTEX3 catcode
scheme is reloaded when needed afterwards. See implementation for details. If you use
the \GetIdInfo command you can use the information when loading a package with

\ProvidesExplPackage{\filename}{\filedate}{\fileversion}{\filedescription}

Part III

The 13basics package
Basic Definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

5 Predicates and conditionals

KTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied in the (true arg) or the (false arg). These
arguments are denoted with T and F repectively. An example would be

\cs_if_free:cTF{abc} {{true code)} {{false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as ‘conditionals’; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a ‘predicate’ for the same test as described
below.

Predicates ‘Predicates’ are functions that return a special type of boolean value which
can be tested by the function \if _predicate:w or in the boolean expression parser.
All functions of this type are expandable and have names that end with _p in the
description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return ‘true’ if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\if_predicate:w \cs_if_free_p:N \1_tmpz_tl (true code) \else:
(false code) \fi:

or in expressions utilizing the boolean logic parser:

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {{false code)}

Like their branching cousins, predicate functions ensure that all underlying primi-
tive \else: or \fi: have been removed before returning the boolean true or false
values.?

For each predicate defined, a ‘predicate conditional” will also exist that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and IX¥TEX. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

5.1 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\intexpr_compare_p:nNn which is a wrapper for \if _num:w.

Certain conditionals deal with specific data types like boxes and fonts and are described
there. The ones described below are either the universal conditionals or deal with control
sequences. We will prefix primitive conditionals with \if_.

\if_true: *

\if_false: *

\or: *

\else: * |,]

\fi: N \}f_true: (true code) \else: (false code) \flf
) \if_false: (true code) \else: (false code) \fi:

\reverse_if:N x \reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).

2If defined using the interface provided.

\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. \or: is used in case switches, see [3intexpr for more.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless.

- - \if_meaning:w (arg1) (argz2) (true code) \else: (false code)
] \if _meaning:w * ‘\fi:

\if_meaning:w executes (true code) when (arg) and (args) are the same, otherwise it
executes (false code). (arg1) and (args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\fiw * \if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:

\:.Lf_charcod?:w * I\if_catcode:w (token1) (token2) (true code) \else: (false
\if _catcode:w x code) \f£i:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if:w.

- - \if_predicate:w (predicate) (true code) \else: (false code)
] \if _predicate:w * ‘\fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

’ \if_bool:N x \if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:

\:.Lf_cs_ex:?.st:N * I\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false
\if cs exist:w % code) \£i:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if _mode_horizontal:
\if_mode_vertical:
\if _mode_math:

\if _mode_inner:

* o ot

\if _mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

5.2 Non-primitive conditionals

’ \cs_if_eq _name p:NN ‘\cs_if_eq_name_p:NN (es1) (csa2)

Returns ‘true’ if (cs1) and (csq) are textually the same, i.e. have the same name, other-
wise it returns ‘false’.

\cs_if_eq_p:NN *
\cs_if_eq_p:cN
\cs_if_eq_p:Nc
\cs_if_eq_p:cc
\cs_if_eq:NNTF
\cs_if_eq:cNTF
\cs_if_eq:NcTF
\cs_if_eq:ccTF

* ot ot X X X X%

\cs_if_eq_p:NNTF (cs1) (cs2)
\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}
These functions check if {¢s1) and (cs2) have same meaning.

\cs_if_free_p:N «x
\cs_if_free_p:c «*
\cs_if_free:NTF x

\cs_if_free_p:N (cs
\cs_if free:cTF % T Pl (es)

\cs_if_free:NTF (cs) {(true code)} {(false code)}

Returns ‘true’ if (cs) is either undefined or equal to \tex_relax:D (the function that is
assigned to newly created control sequences by TEX when \cs:w ... \cs_end: is used).
In addition to this, ‘true’ is only returned if {cs) does not have a signature equal to D,
i.e., ‘do not use’ functions are not free to be redefined.

\cs_if_exist_p:N *
\cs_if_exist_p:c *
\cs_if_exist:NTF x

\cs_if_exist_p:N (cs
\cs_if_exist:cTF % T -p:N (es)

\cs_if_exist:NTF (cs) {(true code)} {(false code)}
These functions check if (cs) exists, i.e., if (c¢s) is present in the hash table and is not the
primitive \tex_relax:D.

’ \cs_if_do_not_use_p:N *"\cs_if_do_not_use_p:N (cs)

10

These functions check if (cs) has the arg spec D for ‘do not use’. There are no TF-
type conditionals for this function as it is only used internally and not expected to be
widely used. (For now, anyway.)

\chk_if_free_cs:N
\chk if free cs:c

\chk_if_free_cs:N (cs)
This function checks that (cs) is (free) according to the criteria for \cs_if_free_p:N
above. If not, an error is generated.

\chk_if_exist_cs:N
\chk_if_exist_cs:c

\chk_if_exist_cs:N (cs)
This function checks that (cs) is defined. If it is not an error is generated.

\c_true_bool
\c_false_bool

Constants that represent ‘true’ or ‘false’; respectively. Used to implement predicates.

5.3 Applications

’ \str_if eq p:nn * ‘\str_if_eq_p:nn {(string 1)} {(string2)}
Expands to ‘true’ if (string1) is the same as (strings), otherwise ‘false’. Ignores spaces
within the strings.

’ \str_if_eq_var_p:nf *"\str_if_eq_var_p:nf {(string 1)} {(string2)}

A variant of \str_if_eq_p:nn which has the advantage of obeying spaces in at least
the second argument.

6 Control sequences

\cs:w *
\cs_end: *

\cs:w (tokens) \cs_end:

This is the TEX internal way of generating a control sequence from some token list.
(tokens) get expanded and must ultimately result in a sequence of characters.

TEXhackers note: These functions are the primitives \csname and \endcsname. \cs:w is
considered weird because it expands tokens until it reaches \cs_end:.

11

\cs_show:N

\cs_show:N (cs)
\cs_show:c

\cs_show:c {{arg)}
This function shows in the console output the meaning of the control sequence (cs) or
that created by (arg).

TEXhackers note: This is TEX’s \show and associated csname version of it.

\cs_meaning:N x

i \cs_meaning:N (cs)
\cs_meaning:c %

\cs_meaning:c {(arg)}
This function expands to the meaning of the control sequence (cs) or that created by

(arg).

TEXhackers note: This is TEX’s \meaning and associated csname version of it.

7 Selecting and discarding tokens from the input
stream

The conditional processing cannot be implemented without being able to gobble and
select which tokens to use from the input stream.

\use:n *
\use:nn *
\use:nnn x
\use:nnnn *

\use:n {(arg)}
Functions that returns all of their arguments to the input stream after removing the
surrounding braces around each argument.

TEXhackers note: \use:n is TEX 2¢’s \@firstofone/\Q@iden.

\use:c {(cs)}

Function that returns to the input stream the control sequence created from its argument.
Requires two expansions before a control sequence is returned.

TEXhackers note: \use:c is ETEX 2¢’s \@nameuse.

\use:x {(expandable tokens)}

Function that fully expands its argument before passing it to the input stream. Contents
of the argument must be fully expandable.

12

TEXhackers note: LuaTgX provides \expanded which performs this operation in an expand-

able manner, but we cannot assume this behaviour on all platforms yet.

\use_none
\use_none
\use_none
\use_none
\use_none
\use_none

\use_none:
:nnnnnnnn

\use_none
\use_none

n

nn
:nnn
:nnnn
:nnnnn
nnnnnn
nnnnnnn

nnnnnnnnn

*
*
*
*
*
*
*
*
*

\use_none:n {(arg1)}
\use_none:nn {{arg1)} {({arg2)}

These functions gobble the tokens or brace groups from the input stream.

TEXhackers note: \use_none:n, \use_none:nn, \use_none:nnnn are KTEX 2¢’s \@gobble,
\@gobbletwo, and \@gobblefour.

\use_i:nn

\use_ii:nn *

*

\use_i:nn {(code1)} {(code2)}

Functions that execute the first or second argument respectively, after removing the
surrounding braces. Primarily used to implement conditionals.

TEXhackers note: These are BTEX 2¢’s \@firstoftwo and \@secondoftwo, respectively.

\use_i:nnn

*

\use_ii:nnn x
\use_iii:nnn *

\use_i:nnn {(arg1)} {(arg2)} {{args)}

Functions that pick up one of three arguments and execute them after removing the
surrounding braces.

TEXhackers note: WTEX 2¢ has only \@thirdofthree.

\use_i:nnnn x
\use_ii:nnnn x
\use_iii:nnnn x
\use_iv:nnnn x

\use_i:nnnn {(arg:1)} {(arg2)} {(args)} {(args)}

Functions that pick up one of four arguments and execute them after removing the
surrounding braces.

13

7.1 Extending the interface

’ \use_i_ii:nnn x ‘ \use_i_ii:nnn {(arg1)} {{arg2)} {{args)}
This function used in the expansion module reads three arguments and returns (without
braces) the first and second argument while discarding the third argument.

If you wish to select multiple arguments while discarding others, use a syntax like this.
Its definition is

\cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}

7.2 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w *
\use_none_delimit_by_g_stop:w *
\use_none_delimit_by_q_recursion_stop:w *

\use_none_delimit_by_q_nil:w (balanced text) \q_nil

Gobbles (balanced text). Useful in gobbling the remainder in a list structure or ter-
minating recursion.

\use_i_delimit_by_q_nil:nw *
\use_i_delimit_by_q_stop:nw *
\use_i_delimit_by_q_recursion_stop:nw *

\use_i_delimit_by_q_nil:nw {(arg)} (balanced text) \q_

Gobbles (balanced text) and executes (arg) afterwards. This can also be used to get
the first item in a token list.

\use_i_after_fi:nw {{arg)} \fi:

\use_i_after_else:nw {(arg)} \else: (balanced text) \fi:
\use_i_after_or:nw {(arg)} \or: (balanced text) \fi:
\use_i_after_orelse:nw {(arg)} \or:/\else: (balanced text)
\fi:

\use_i_after_fi:nw *
\use_i_after_else:nw *
\use_i_after_or:nw *
\use_i_after_orelse:nw x

Executes (arg) after executing closing out \fi:. \use_i_after_orelse:nw can be used
anywhere where \use_i_after_else:nw or \use_i_after_or:nw are used.

14

8 That which belongs in other modules but needs to
be defined earlier

’ \exp_after:wl x ‘\exp_after:wN (token) (tokenz)

Expands (tokeno) once and then continues processing from (token).

TEXhackers note: This is TEX’s \expandafter.

\exp_not:N %

\exp_not:N (token
\exp_not:n * P- <)

\exp_not:n {(tokens)}
In an expanding context, this function prevents (token) or (tokens) from expanding.

TEXhackers note: These are TEX’s \noexpand and e-TEX’s \unexpanded, respectively.

| \prg_do_nothing: « | This is as close as we get to a null operation or no-op.

TEXhackers note: Definition as in IMTEX’s \empty but not used for the same thing.

\iow_log:x
\iow_term:x

\iow_log:x {({message)}
\iow_shipout_x:Nn & { ge)

\iow_shipout_x:Nn (write_stream) {(message)}
Writes (message) to either to log or the terminal.

