
The LATEX3 Programming Language
A syntax proposal for TEX macro programming

The LATEX3 Project
latex-l@urz.uni-heidelberg.de

Abstract

This paper proposes a new set of programming conventions suitable for imple-
menting large scale TEX programming projects such as LATEX. (This syntax is
not suitable for either document markup, or as a style specification language.)

The main features include a systematic naming scheme for all commands, and
a systematic mechanism for controlling the expansion of arguments to functions.

The syntax is under consideration as a basis for programming within the
LATEX3 project.

This paper is based on a talk given by David Carlisle but describes the
work of several people, principally: Frank Mittelbach, Denys Duchier, Rainer
Schöpf, Chris Rowley, Michael Downes, Johannes Braams, David Carlisle and
Alan Jeffrey.

1 Introduction

This paper describes a TEX based language which is
intended to provide a more consistent and rational
programming environment for the construction of
large scale TEX macro projects such as LATEX.

Variants of this language have been in use within
the LATEX3 project since around 1990 but the syntax
specification to be outlined here should not be con-
sidered final. This is an experimental language, and
the syntax and command names may (and probably
will) change as more experience is gained with using
the language in practice.

2 Programming Interface levels for LATEX

One may identify several distinct languages that one
might want to see in a TEX based system. This
paper will only be concerned with the last of these
three.
Document Markup This language consists of the

commands that are to be embedded in the doc-
ument instance. It is generally accepted that
such a language should be essentially declar-
ative. One might consider a traditional TEX
based markup such as the LATEX2 markup as
described in [1], or alternatively one might con-
sider an SGML based markup.

One problem with more traditional TEX cod-
ing conventions is that the command names and
syntax of the TEX primitives are designed to
have a ‘natural’ syntax when used directly by
the author as document markup. In fact one
almost never uses the primitives in this way,

rather they are just used to define higher level
commands.

Designer’s Interface In order to easily translate
a (human) designer’s design specification into
a program that accepts the document instance
one would ideally like to have a declarative lan-
guage that allows the relationships and spacing
rules of the various document elements to be
easily expressed. As this language is not em-
bedded within the document text, it may take
a rather different form to the markup language
described above. For SGML based systems one
may consider the DSSSL language as playing
this role. For LATEX2, then this level was es-
sentially missing in LATEX2.09. LATEX2ε made
some improvements in this area but it is still
the case that implementing a design specifica-
tion in LATEX requires more ‘low level’ coding
than would be desired.

Programmer’s Interface This language, the sub-
ject of this paper, is the implementation lan-
guage in which the basic typesetting function-
ality is implemented, building upon the primi-
tives supplied by TEX (or a successor program).
It may also be used to implement the previous
two languages ‘within’ TEX, as in the current
LATEX system.

3 Programming language: Main Features

The language outlined in this paper aims to provide
a suitable base for coding large (and small) scale

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1001



The LATEX3 Project

projects in TEX. Its main distinguishing features
are the following.

• Consistent naming scheme for all functions, in-
cluding TEX primitives.

• Standard mechanisms for controlling argument
expansion.

• Provision of sufficiently rich set of core func-
tions for handling programming constructs such
as: sequences, sets, stacks, property lists, etc.

• White space ignored.

4 Naming Scheme

The name space is divided between Functions and
Parameters. Functions (normally) take arguments
and are executed, Parameters are usually passed as
arguments to functions. They are not directly exe-
cuted, but accessed though accessor functions.

Functions and parameters associated with a sim-
ilar function (for example accessing counters, or ma-
nipulating lists, etc.) are arranged into modules. Be-
fore giving the details of the form of the command
names, we give a few examples.

\l_tmpa_box is a local parameter (hence the l_
prefix) corresponding to a box register.

\g_tmpa_box is a global parameter (hence the
g_ prefix) corresponding to a box register.

\c_one is the constant (c_) parameter with value
one.

\cnt_add:Nn is the function which adds the
value specified by its second argument to the count
register specified by its first argument. The differ-
ent natures of the two arguments are indicated by
the :Nn suffix. The first argument must be a single
token specifying the name of the count parameter.
Such single token arguments are denoted N. The sec-
ond argument is a normal TEX ‘non-delimited argu-
ment’ which may either be a single token, or a brace
delimited token list containing an expression for the
value to be added. The n denotes such ‘normal’ ar-
gument forms.

\cnt_add:cn is similar to the above, but in this
case the the counter is specified in the first argument
by a list of tokens that expands to the name of the
count parameter.

These examples should give the basic flavour
of the scheme. Parameters are classified into local,
global or constant (there are further more technical
cases in addition to these three) and this access type
is shown by \l_, \g_ or \c_. Functions are arranged
by module (The cnt module in these cases) with a
descriptive name followed by an indication of the
type of argument to be passed.

In more detail the specification of the names is
as follows.

Functions have the following general syntax:

\〈module〉_〈description〉:〈arg-spec〉

The programmer can chose an arbitrary 〈module〉
name (consisting of letters only) a group of functions
with related functionality are then all given names
prefixed by this module name. The 〈description〉 is a
description of the functionality of the function, and
should consist of letters, and possibly _ characters.
〈arg-spec〉 describes the type of arguments as will be
described below.

The syntax of parameters is as follows:

\〈access〉_〈module〉_〈description〉_〈type〉

〈access〉 describes how the parameter can be ac-
cessed. The principal access types are constant, lo-
cal or global. As described below, some special ac-
cess types relate to TEX primitive parameters. The
meanings of 〈module〉 and 〈description〉 in the pa-
rameter syntax is the same as that for functions.
Finally 〈type〉 should denote the type of parameter,
such as cnt for count registers, etc.

Typical 〈module〉 names in the kernel include
cnt for integer count related functions, seq for func-
tions relating to sequences, box, etc. Normally addi-
tional packages adding new functionality would add
new modules as needed.

The 〈description〉 is an arbitrary name for the
function or parameter, consisting of letters, or the _
character.

Function names always end with an 〈arg-spec〉
after a final colon. This gives an indication of the
types of argument that a function takes, and pro-
vides a convenient method of naming similar func-
tions that just differ by their argument forms, as will
be explained below.

The 〈arg-spec〉 consists of a (possibly empty)
list of characters each denoting one argument that
the function takes. It is important to note that ‘ar-
gument’ here refers to the conceptual argument of
the function. The top level TEX macro that has this
name typically has no arguments. This is similar to
the existing LATEX convention where one says that
\section has an optional argument and a manda-
tory argument, whereas the TEX macro \section
actually takes no parameters at the TEX level, it
merely calls some standard LATEX internal functions
which look ahead for star forms and optional ar-
guments. The list of possible argument specifiers
includes:

n Unexpanded token (or token-list if in braces). In
other words this is a standard TEX undelimited
macro argument.

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting



The LATEX3 Programming Language A syntax proposal for TEX macro programming

o One time expanded token or token-list. In the
case of a token list then only the first token in
the list is expanded.

x Fully expanded token or token-list. Typically this
means that the argument is expanded in the
style of \edef (\def:Npx) before being passed
to the function.

c A character string used (after expansion) as a
command name. The argument (a token or
braced token list) should expand to a sequence
of characters which is then used to construct
a command name (via \csname, \cs:w). This
command token is passed as the argument to
the function.

N A single token. (Unlike n, this argument must
not be surrounded by braces). A typical ex-
ample of a command taking an N argument
is \def, in which the command being defined
must be unbraced.

O Single unbraced token that is expanded once and
passed (as a braced token list) to the function.

X Single unbraced token that is fully expanded and
passed (as a braced token list) to the function.

C A character string used as for c arguments but
the resulting command token is then expanded
(as for O) and the result passed as a braced to-
ken list to the function.

p A primitive TEX parameter specification. This
can be something simple like #1#2#3 but may
be arbitrary delimited argument syntax, such
as #1,#2\q_stop#3.

T, F These are special cases of n arguments, used
as the true and false cases in conditional tests.

D ‘Do not use’. This special case is used for TEX
primitives that are only used while bootstrap-
ping the LATEX kernel. If the TEX primitive
needs to be used in other contexts it will be
given an alternative name with a more appro-
priate argument specification.

w ‘weird’ syntax. Used for arguments that take non
standard forms, usually delimited arguments that
are needed internally to implement certain mod-
ules, and also the boolean tests of many of the
primitive \if. . . tests.
For parameters, the 〈type〉 should be from the

list of available data types (which include the prim-
itive TEX registers, but also data types built within
the system).

Possible values for 〈type〉 include:
cnt Integer valued counter.
toks Token register.
box Box register.

fcnt ‘Fake’ count register. A data type supplied by
the kernel to avoid problems with the limited
number of available count registers in (stan-
dard) TEX.

The 〈access〉 codes that are used in parameter
names include

c Constants.
l Parameters that should only be set locally.
g Parameters that should only be set globally.

5 Checking Parameter assignments

One of the advantages of having a consistent scheme
is that the system can provide more extensive error
checking and debugging facilities. For example a
function that makes a global assignment can check
that it is not passed a local parameter as argument
by checking that the name of the command to be
assigned starts with \g_. Such checking is proba-
bly too slow for production runs, but the kernel has
hooks built in to allow a format to be made in which
all functions perform this kind of check. A typical
section of code might look like

%<*check>
\def_new:Npn \toks_gset:Nn #1 {

\chk_global:N #1
\pref_global:D #1

}
%</check>
%<*!check>
\let_new:NN
\toks_gset:Nn \pref_global:D

%</!check>

The function \toks_gset:Nn takes a single token
(N) specifying a token register, and globally sets it to
the value passed in the second argument. So typical
use would be

\toks_gset \g_xxx_toks {some value}

In the normal definition, \toks_gset can be defined
just to be \let to \global, as the primitive to-
ken register does not require any explicit assignment
function. This is the %<*!check> code above. How-
ever the alternative definition first checks that the
argument passed as #1 is a global parameter and
raises an error if it is not. It does this by taking
apart the command name passed as #1 and check-
ing that it starts \g_.

6 Consistent use of accessor functions

The primitive TEX syntax for register assignments
has a very minimal syntax, and apart from box func-
tions there are no explicit functions for assignment
or use of the registers. This makes it very difficult

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1003



The LATEX3 Project

to implement alternative data types with a syntax
that is at all similar to the syntax for the primitives,
and also encourages a coding style that is very error
prone.

As noted in the example given above, The LATEX
data types are provided with explicit functions for
setting and using the parameters even when these
have essentially empty definitions. This allows for
better error checking as described above, and also al-
lows the construction of alternative data types with
a similar interface. For example the ‘fake counter’
data type mentioned previously works at the user
level just like the data type based on primitive count
registers, internally it does not use count registers
though. Typical functions in the fcnt module in-
clude:

\fcnt_new:N \l_tempa_fcnt
Declare the local parameter \l_tempa_fcnt as a
fake counter.

\fcnt_add:Nn \l_tempa_fcnt \c_thirty_two
Increment the counter by 32.

7 Expansion Control

Anyone who programs in TEX is used to the prob-
lem of arranging that arguments to functions are
suitably expanded before the function is called. A
couple of real examples copied from latex.ltx:

\global
\expandafter\expandafter\expandafter
\let
\expandafter

\reserved@a
\csname\curr@fontshape\endcsname

\expandafter
\in@
\csname sym#3\expandafter\endcsname

\expandafter{\group@list}%

The first piece of code is a global \let. The token
to be defined is obtained by expanding \reserved@a
one level. The command that it is to be let too is
obtained by fully expanding \curr@fontshape and
then using the tokens produced by that expansion to
construct a command name. This results in the mess
of interwoven \expandafter and \csname beloved
of all TEX programmers, and code that is essentially
unreadable.

A similar construction using the conventions
outlined here would be

\glet:Oc
\reserved_a: \l_current_font_shape_tlp

The command \glet:Oc is a global \let that ex-
pands its argument once, and generates a command

name out of its second argument, before making the
definition. This produces coe that is far more read-
able.

Similarly the second piece of code above pro-
duces a token list by expanding \group@list once,
and then creates a command name out of ‘sym#3’
(this is inside the definition of another fumction).
The function \in@ is called which tests if its first
argument occurs in the token list of its second argu-
ment.

Again it would be much clearer, if the above
function \in@ was called (say) \test_if_in:nn (a
function taking two normal ‘n’ arguments) and then
a variant function was defined with the appropriate
argument types and simply called as follows:

\test_if_in:co {sym#3} \group_list:

Note that apart from the lack of \expandafter the
space after } will be silently ignored.

For many common functions the kernel will pro-
vide functions with a range of argument forms, and
similarly it is expected that extension packages pro-
viding new functions will make then available in the
more common forms. However There will be occa-
sions where it is necessary to construct such a vari-
ant form.

A consistent mechanism is provided by the ker-
nel to produce functions with any argument type,
starting from a function that takes ‘normal’ TEX
delimited arguments. Suppose you have a function
\cmd:nnn that takes two arguments, and you need
to construct \cmd:cnx a variant form in which the
first argument is passed as a name of a command,
and the third argument must be fully expanded be-
fore being passed to \cmd:nnn.

One simply defines \cmd:cx as follows:

\def:Nn \cmd:cnx {\exp_args:Ncnx \cmd:nnn}

The function \exp_args:Ncnx takes as its first (N)
argument the ‘base’ function, and then grabs the
next three arguments from the token stream, acts
on the first with \csname, and the last with \edef
and then constructs a call to the base function with
suitably transformed arguments. So

\cmd:cnx {abc}{pq}{\rst\xyz}

is equivalent, but emminently more readable, to

\edef\temp{\rst\xyz}
\expandafter\cmd:nnn

\csname abc\expandafter\endcsname
\expandafter{%
\expandafter p\expandafter q%

\expandafter}%
\expandafter{\temp}

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting



The LATEX3 Programming Language A syntax proposal for TEX macro programming

A large range of argument processing functions
are provided in addition to \exp_args:Ncnx. If you
need a particular argument combination for which
a function is not provided, one may be constructed
in a simple way. For example you need to construct
\exp_args:Nxcxcxc a function that fully expands
arguments 1, 3 and 5 of a given function, and pro-
duces commands to pass as arguments 2, 4 and 6
using \csname. The definition is simply

\def:Npn \exp_args:Nxcxcxc
{\::x\::c\::x\::c\::x\::c\:::}

Similar functions, ::o etc exist for all the other ar-
gument types, and they may be strung together in
any order, terminated by \::: to create a function
which processes arguments in the desired way.

As hopefully demonstrated, the use of variant
forms greatly improves the readability of the code,
and experience shows that the longer command names
which result from the new syntax do not realy make
the process of writing the code any harder.

8 The Current Experimental Distribution

The initial implementations of a TEX format us-
ing this kind of syntax were made with an unre-
leased (and non functional) format (which pre-dates
LATEX2ε!) The current distribution consists of a
subset of the functionality of that format, converted
to run as packages on top of LATEX2ε.

The intention is to allow experienced TEX pro-
grammers to experiment on the system and to com-
ment on the interface. This means that the inter-
face will change. No part of this system, including
the names of any commands should be relied upon
as being available in a later release. Please do ex-
periment with these packages, but do not use them
for documents that you expect to keep unchanged
over a long period.

In view of the proposed experimental use for
this distribution, we currently have only converted
a few modules for use with LATEX2ε. These set up
the basic conventions, and then implement a few
basic programming constructs such as lists and se-
quences. These are really to give a flavour of the
code, and to indicate that the intention is that the
kernel provide a sufficiently rich set of programming
constructs so that packages may use them and thus
more efficiently share code, unlike the situation in
the current LATEX where every large package imple-
ments its own version of lists, stacks etc.

The current packages are:

l3names Sets up the basic naming scheme, includ-
ing naming the TEX primitives. If used with the
option [removeoldnames] then the old primi-

tive names such as \box are undefined and thus
made available for user definitions. Use of this
option might possibly break existing TEX code!

l3basics Some basic definitions that are used by the
other packages.

l3chk Functions to check (and make) definitions
(comparable to the existing \newcommand or \renewcommand).

l3tlp Token List Pointers. A basic LATEX3 data
type for storing token lists. (These are essen-
tially macros with no arguments.)

l3expan The argument expansion module discussed
in the previous section.

l3quarq A ‘quark’ is a command that is defined
to expand to itself. So it may not be directly
used (it would generate an infinite loop) but
has many uses as special markers within LATEX
code.

l3seq A module implementing the basic list and
stack data types.

l3prop Property lists are the data type for handling
key/value assignments.
The distribution also contains the TEX source

for this document, a docstrip install file and two
small test files.

References

[1] Leslie Lamport. LATEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 1994.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1005


