
The expl3 package and philosophy∗

The LATEX3 Project†

2009/06/01

Abstract

This paper gives a brief introduction to a new set of programming conventions
that have been designed to meet the requirements of implementing large scale TEX
macro programming projects such as LATEX.
The main features of the system described are:

• classification of the macros (or, in LATEX terminology, commands) into LATEX
functions and LATEX parameters, and also into modules containing related
commands;

• a systematic naming scheme based on these classifications;
• a simple mechanism for controlling the expansion of a function’s arguments.

This system is being used as the basis for TEX programming within the LATEX3
project. Note that the language is not intended for either document mark-up or
style specification.
An earlier description of the LATEX3 programming language is available from http:
//www.latex-project.org/papers.

1 Introduction

This paper describes the conventions for a TEX-based programming language which is
intended to provide a more consistent and rational environment for the construction of
large scale systems, such as LATEX, using TEX macros.

Variants of this language have been in use by The LATEX3 Project Team since around 1990
but the syntax specification to be outlined here should not be considered final. This is
an experimental language thus many aspects, such as the syntax conventions and naming
schemes, may (and probably will) change as more experience is gained with using the
language in practice.

The next section shows where this language fits into a complete TEX-based document
processing system. We then describe the major features of the syntactic structure of
command names, including the argument specification syntax used in function names.
∗This file has version number 1381, last revised 2009/06/01.
†Frank Mittelbach, Denys Duchier, Chris Rowley, Rainer Schöpf, Johannes Braams, Michael Downes,

David Carlisle, Alan Jeffrey, Morten Høgholm, Thomas Lotze, Javier Bezos, Will Robertson, Joseph
Wright

1

http://www.latex-project.org/papers
http://www.latex-project.org/papers

The practical ideas behind this argument syntax will be explained, together with the
semantics of the expansion control mechanism and the interface used to define variant
forms of functions. The paper also discusses some advantages of the syntax for parameter
names.

As we shall demonstrate, the use of a structured naming scheme and of variant forms
for functions greatly improves the readability of the code and hence also its reliability.
Moreover, experience has shown that the longer command names which result from the
new syntax do not make the process of writing code significantly harder (especially when
using a reasonably intelligent editor).

The final section gives some details of our plans to distribute parts of this system. Al-
though the paper is now a little dated, more general information concerning the work of
the LATEX3 Project can be found in Ref. [4].

2 Languages and interfaces

It is possible to identify several distinct languages related to the various interfaces that
are needed in a TEX-based document processing system. This section looks at those we
consider most important for the LATEX3 system.

Document mark-up This comprises those commands (often called tags) that are to
embedded in the document (the .tex file).
It is generally accepted that such mark-up should be essentially declarative. It may
be traditional TEX-based mark-up such as LATEX2ε, as described in [3] and [2], or
a mark-up language defined via sgml or xml.
One problem with more traditional TEX coding conventions (as described in [1]) is
that the names and syntax of TEX’s primitive formatting commands are ingeniously
designed to be ‘natural’ when used directly by the author as document mark-up or in
macros. Ironically, the ubiquity (and widely recognised superiority) of logical mark-
up has meant that such explicit formatting commands are almost never needed in
documents or in author-defined macros. Thus they are used almost exclusively by
TEX programmers to define higher-level commands; and their idiosyncratic syntax
is not at all popular with this community. Moreover, many of them have names
that could be very useful as document mark-up tags were they not pre-empted as
primitives (e.g., \box or \special).

Designer interface This relates a (human) typographic designer’s specification for a
document to a program that ‘formats the document’. It should ideally use a declar-
ative language that facilitates expression of the relationship and spacing rules spec-
ified for the layout of the various document elements.
This language is not embedded in document text and it will be very different in form
to the document mark-up language. For sgml-based systems the dsssl language
may come to play this role. For LATEX, this level was almost completely missing
from LATEX2.09; LATEX2ε made some improvements in this area but it is still the
case that implementing a design specification in LATEX requires far more ‘low-level’
coding than is acceptable.

2

Programmer interface This language is the implementation language within which
the basic typesetting functionality is implemented, building upon the primitives of
TEX (or a successor program). It may also be used to implement the previous two
languages ‘within’ TEX, as in the current LATEX system.

Only the last of these three interfaces is covered by this paper, which describes a system
aimed at providing a suitable basis for coding large scale projects in TEX (but this should
not preclude its use for smaller projects). Its main distinguishing features are summarised
here.

• A consistent naming scheme for all commands, including TEX primitives.

• The classification of commands as LATEX functions or LATEX parameters, and also
their division into modules according to their functionality.

• A simple mechanism for controlling argument expansion.

• Provision of a set of core LATEX functions that is sufficient for handling programming
constructs such as queues, sets, stacks, property lists.

• A TEX programming environment in which, for example, all white space is ignored.

3 The naming scheme

The naming conventions for this programming language distinguish between functions
and parameters. Functions can have arguments and they are executed. Parameters can
be assigned values and they are used in arguments to functions; they are not directly exe-
cuted but are manipulated by mutator and accessor functions. Functions and parameters
with a related functionality (for example accessing counters, or manipulating token-lists,
etc.) are collected together into a module.

Note that all these terms are only LATEX terminology and are not, for example, intended
to indicate that the commands have these properties when considered in the context of
basic TEX or in any more general programming context.

3.1 Examples

Before giving the details of the naming scheme, here are a few typical examples to indicate
the flavour of the scheme; first some parameter names.

\l_tmpa_box is a local parameter (hence the l_ prefix) corresponding to a
box register.
\g_tmpa_int is a global parameter (hence the g_ prefix) corresponding to an
integer register (i.e., a TEX count register).
\c_empty_toks is the constant (c_) token register parameter that is for ever
empty.

3

Now here is an example of a typical function name.
\seq_push:Nn is the function which puts the token list specified by its second argument
onto the stack specified by its first argument. The different natures of the two arguments
are indicated by the :Nn suffix. The first argument must be a single token which ‘names’
the stack parameter: such single-token arguments are denoted N. The second argument is
a normal TEX ‘undelimited argument’, which may either be a single token or a balanced,
brace-delimited token list (which we shall here call a braced token list): the n denotes
such a ‘normal’ argument form. The name of the function indicates it belongs to the seq
module.

3.2 Formal syntax of the conventions

We shall now look in more detail at the syntax of these names.
The syntax of parameter names is as follows:

\〈access〉_〈module〉_〈description〉_〈type〉

The syntax of function names is as follows:

\〈module〉_〈description〉:〈arg-spec〉

3.3 Modules and descriptions

The syntax of all names contains

〈module〉 and 〈description〉:

these both give information about the command.
A module is a collection of closely related functions and parameters. Typical module
names include int for integer parameters and related functions, seq for sequences and box
for boxes.
Packages providing new programming functionality will add new modules as needed; the
programmer can choose any unused name, consisting of letters only, for a module.
The description gives more detailed information about the function or parameter, and
provides a unique name for it. It should consist of letters and, possibly, _ characters.
As a semi-formalized concept the letter g is sometimes used to prefix certain parts of
the 〈description〉 to mark the function as “globally acting”, e.g., \int_set:Nn is a local
operation while \int_gset:Nn is a global operation. This of course goes hand in hand
with when to use \l_ and \g_ variable prefixes.

3.4 Parameters: access and type

The 〈access〉 part of the name describes how the parameter can be accessed. Parameters
are primarily classified as local, global or constant (there are further, more technical,
classes). This access type appears as a code at the beginning of the name; the codes used
include:

4

c constants (global parameters whose value should not be changed);

g parameters whose value should only be set globally;

l parameters whose value should only be set locally.

The 〈type〉 will normally (except when introducing a new data-type) be in the list of
available data-types; these include the primitive TEX data-types, such as the various
registers, but to these will be added data-types built within the LATEX programming
system.
Here are some typical data-type names:

int integer-valued count register;

tl token list variables: placeholders for token lists;

toks token register;

box box register;

skip ‘rubber’ lengths;

dim ‘rigid’ lengths;

num A ‘fake’ integer type using only macros. Useful for setting up allocation routines;

seq ‘sequence’: a data-type used to implement lists (with access at both ends) and stacks;

prop property list;

clist comma separated list;

stream an input or output stream (for reading from or writing to, respectively);

bool either true or false.

When the 〈type〉 and 〈module〉 are identical (as often happens in the more basic modules)
the 〈module〉 part is often omitted for aesthetic reasons.

3.5 Functions: basic argument specifications

Function names end with an 〈arg-spec〉 after a colon. This gives an indication of the types
of argument that a function takes, and provides a convenient method of naming similar
functions that differ only in their argument forms (see the next section for examples).
The 〈arg-spec〉 consists of a (possibly empty) list of characters, each denoting one argu-
ment of the function. It is important to understand that ‘argument’ here refers to the
effective argument of the LATEX function, not to an argument at the TEX-level. Indeed,
the top level TEX macro that has this name typically has no arguments. This is an ex-
tension of the existing LATEX convention where one says that \section has an optional
argument and a mandatory argument, whereas the TEX macro \section actually has
zero parameters at the TEX level, it merely calls an internal LATEX command which in
turn calls others that look ahead for star forms and optional arguments.
All functions have a base form with arguments using one of the following argument
specifiers.

5

n Unexpanded token or braced token list.
This is a standard TEX undelimited macro argument.

N Single token (unlike n, the argument must not be surrounded by braces).
A typical example of a command taking an N argument is \cs_set, in which the
command being defined must be unbraced.

p Primitive TEX parameter specification.
This can be something simple like #1#2#3, but may use arbitrary delimited argu-
ment syntax such as: #1,#2\q_stop#3. This is used when defining functions.

T,F These are special cases of n arguments, used for the true and false code in conditional
commands.

There are two other specifiers with more general meanings:

D This means: Do not use. This special case is used for TEX primitives and other
commands that are provided for use only while bootstrapping the LATEX kernel. If
the TEX primitive needs to be used in other contexts it will be given an alternative,
more appropriate, name with a useful argument specification. The argument syntax
of these is often weird, in the sense described next.

w This means that the argument syntax is ‘weird’ in that it does not follow any
standard rule. It is used for functions with arguments that take non standard
forms: examples are TEX-level delimited arguments and the boolean tests needed
after certain primitive \if. . . commands.

In case of n arguments that consist of a single token the surrounding braces can be
omitted in nearly all situations—functions that force the use of braces even for single
token arguments are explicitly mentioned. For example, \seq_gpush:Nn is a function
that takes two arguments, the first is a single token (the sequence) and the second may
consist of several tokens surrounded by braces.
This concept of argument specification makes it easy to read the code and should be
followed when defining new functions.

4 Expansion control

Let’s take a look at some typical operations one might want to perform. Suppose we
maintain a stack of open files and we use the stack \g_io_file_name_seq to keep track
of them (io is the input-output file module). The basic operation here is to push a name
onto this stack which could be done by the operation

\seq_gpush:Nn
\g_io_file_name_seq
{#1}

where #1 is the filename. In other words, this operation would push the file name as is.
However, we might face a situation where the filename is stored in a register of some sort,
say \l_io_curr_file_tl. In this case we want to retrieve the value of the register. If
we simply use

6

\seq_gpush:Nn
\g_io_file_name_seq
\l_io_curr_file_tl

we will not get the value of the register pushed onto the stack, only the register name
itself. Instead a suitable number of \exp_after:wN would be necessary (together with
extra braces) to change the order of execution, i.e.

\exp_after:wN
\seq_gpush:Nn

\exp_after:wN
\g_io_file_name_seq

\exp_after:wN
{\l_io_curr_file_tl}

The above example is probably the simplest case but already shows how the code changes
to something difficult to understand. Furthermore there is an assumption in this: That
the storage bin reveals its contents after exactly one expansion. Relying on this means
that you cannot do proper checking plus you have to know exactly how a storage bin
acts in order to get the correct number of expansions. Therefore LATEX3 provides the
programmer with a general scheme that keeps the code compact and easy to understand.
To denote that some argument to a function needs special treatment one just uses different
letters in the argument part of the function to mark the desired behavior. In the above
example one would write

\seq_gpush:NV
\g_io_file_name_seq
\l_io_curr_file_tl

to achieve the desired effect. Here the V is for “retrieve the value of the register” (the
second argument) before passing it to the base function.
The following letters can be used to denote special treatment of arguments before passing
it to the base function:

c Character string used as a command name.
The argument (a token or braced token list) must, when fully expanded, pro-
duce a sequence of characters which is then used to construct a command name
(via \csname, \endcsname). This command name is the single token that is passed
to the function as the argument. Hence

\seq_gpush:cV {g_file_name_stack} \l_tmpa_tl

is equivalent to

\seq_gpush:NV \g_file_name_stack \l_tmpa_tl.

V Value of a register.
This means that the register in question is returned, be it an integer, a length type
register, a macro storage register or similar. The value is returned to the function
as a braced token list.

7

v Value of a register, constructed from a character string used as a command name.
This is a combination of c and V which first constructs a control sequence from the
argument and then returns the value.

x Fully-expanded token or braced token list.
This means that the argument is expanded as in the replacement text of an \edef,
and the expansion is passed to the function as a braced token list. This means that
expansion takes place until only unexpandable tokens are left.

o One-level-expanded token or braced token list.
This means that the argument is expanded one level, as by \expandafter, and the
expansion is passed to the function as a braced token list. Note that if the original
argument is a braced token list then only the first token in that list is expanded.

f Almost the same as the x type except here the token list is expanded fully until the
first unexpandable token is found and the rest is left unchanged. Note that if this
function finds a space at the beginning of the argument it will gobble it and not
expand the next argument.

4.1 Simpler means better

Anyone who programs in TEX is frustratingly familiar with the problem of arranging that
arguments to functions are suitably expanded before the function is called. To illustrate
how expansion control can bring instant relief to this problem we shall consider two
examples copied from latex.ltx.

\global\expandafter\let
\csname\cf@encoding \string#1\expandafter\endcsname
\csname ?\string#1\endcsname

This first piece of code is in essence simply a global \let whose two arguments firstly
have to be constructed before \let is executed. The #1 is a control sequence name such
as \textcurrency. The token to be defined is obtained by concatenating the characters
of the current font encoding stored in \cf@encoding, which has to be fully expanded,
and the name of the symbol. The second token is the same except it uses the default
encoding ?. The result is a mess of interwoven \expandafter and \csname beloved of
all TEX programmers, and the code is essentially unreadable.

Using the conventions and functionality outlined here, the task would be achieved with
code such as this:

\cs_gset_eq:cc {\cf@encoding \string #1}
{?\string #1}

The command \cs_gset_eq:cc is a global \let that generates command names out of
both of its arguments before making the definition. This produces code that is far more
readable and more likely to be correct first time.

8

Here is the second example.

\expandafter
\in@

\csname sym#3%
\expandafter

\endcsname
\expandafter

{%
\group@list}%

This piece of code is part of the definition of another function. It first produces two
things: a token list, by expanding \group@list once; and a token whose name comes
from ‘sym#3’. Then the function \in@ is called and this tests if its first argument occurs
in the token list of its second argument.
Again we can improve enormously on the code. First we shall rename the function \in@
according to our conventions. A function such as this but taking two normal ‘n’ arguments
might reasonably be named \seq_test_in:Nn; thus the variant function we need will be
defined with the appropriate argument types and its name will be \seq_test_in:cV.
Now this code fragment will be simply:

\seq_test_in:cV {sym#3} \l_group_seq

Note that, in addition to the lack of \expandafter, the space after the } will be silently
ignored since all white space is ignored in this programming environment.

4.2 New functions from old

For many common functions the LATEX3 kernel will provide variants with a range of
argument forms, and similarly it is expected that extension packages providing new
functions will make them available in the all the commonly needed forms.
However, there will be occasions where it is necessary to construct a new such variant
form; therefore the expansion module provides a straightforward mechanism for the cre-
ation of functions with any required argument type, starting from a function that takes
‘normal’ TEX undelimited arguments.
To illustrate this let us suppose you have a ‘base function’ \demo_cmd:nnn that takes
three normal arguments, and that you need to construct the variant \demo_cmd:cnx, for
which the first argument is used to construct the name of a command, whilst the third
argument must be fully expanded before being passed to \demo_cmd:nnn. To produce
the variant form from the base form, simply use this:

\cs_generate_variant:Nn \demo_cmd:nnn {cnx}

This defines the variant form so that you can then write, for example:

\demo_cmd:cnx {abc} {pq} {\rst \xyz }

9

rather than . . . well, something like this!

\def \tempa {{pq}}%
\edef \tempb {\rst \xyz}%
\expandafter

\demo@cmd:nnn
\csname abc%

\expandafter
\expandafter

\expandafter
\endcsname

\expandafter
\tempa

\expandafter
{%

\tempb
}%

Another example: you may wish to declare a function \demo_cmd_b:xcxcx, a variant of
an existing function \demo_cmd_b:nnnnn, that fully expands arguments 1, 3 and 5, and
produces commands to pass as arguments 2 and 4 using \csname. The definition you
need is simply

\cs_generate_variant:Nn
\demo_cmd_b:nnnnn {xcxcx}

This extension mechanism is written so that if the same new form of some existing
command is implemented by two extension packages then the two definitions will be
identical and thus no conflict will occur.

5 Parameter assignments and accessor functions

5.1 Checking assignments

One of the advantages of having a consistent scheme is that the system can provide more
extensive error-checking and debugging facilities. For example, an accessor function that
makes a global assignment of a value to a parameter can check that it is not passed the
name of a local parameter as that argument: it does this by checking that the name
starts with \g_.

Such checking is probably too slow for normal use, but the code can have hooks built in
that allow a format to be made in which all functions perform this kind of check.

A typical section of the source1 for such code might look like this (recall that all white
space is ignored):

1This code uses the docstrip system described in [2], Section 14.3.

10

%<*!check>
\cs_new_eq:NN

\toks_gset:Nn \tex_global:D
%</!check>
%<*check>
\cs_new_nopar:Npn

\toks_gset:Nn #1
{
\chk_global:N #1
\tex_global:D #1
}

%</check>

In the above code the function \toks_gset:Nn takes a single token (N) specifying a token
register, and globally sets it to the value passed in the second argument.

A typical use of it would be:

\toks_gset:Nn \g_xxx_toks {<some value>}

In the normal definition, \toks_gset:Nn can be simply \let to \global because the
primitive TEX token register does not require any explicit assignment function: this is
done by the %<*!check> code above.

The alternative definition first checks that the argument passed as #1 is the name of a
global parameter and raises an error if it is not. It does this by taking apart the command
name passed as #1 and checking that it starts \g_.

5.2 Consistency

The primitive TEX syntax for register assignments has a very minimal syntax and, apart
from box functions, there are no explicit functions for assigning values to these registers.

This makes it impossible to implement alternative data-types with a syntax that is both
consistent and at all similar to the syntax for the primitives; moreover, it encourages a
coding style that is very error prone.

As in the \toks_gset:Nn example given above, all LATEX data-types are provided with
explicit functions for assignment and for use, even when these have essentially empty
definitions. This allows for better error-checking as described above; it also allows the
construction of further data-types with a similar interface, even when the implementation
of the associated functions is very complex.

For example, the ‘fake-integer’ (num) data-type mentioned above will appear at the LATEX
programming level to be exactly like the data-type based on primitive count registers;
however, internally it makes no use of count registers. Typical functions in this module
are illustrated here.

\num_new:N \l_tmpa_num

11

This declares the local parameter \l_example_num as a fake-counter.

\num_add:Nn \l_example_num \c_thirty_two

This increments the value of this fake-counter by 32.

6 The experimental distribution

The initial implementations of a LATEX programming language using this kind of syntax
remain unreleased (and not completely functional); they partly pre-date LATEX2ε! The
planned distribution will provide a subset of the functionality of those implementations,
in the form of packages to be used on top of LATEX2ε.

The intention is to allow experienced TEX programmers to experiment with the system
and to comment on the interface. This means that the interface will change. No part
of this system, including the name of anything, should be relied upon as being available
in a later release. Please do experiment with these packages, but do not use them for
code that you expect to keep unchanged over a long period.

In view of the intended experimental use for this distribution we shall, in the first instance,
produce only a few modules for use with LATEX2ε. These will set up the conventions and
the basic functionality of, for example, the expansion mechanism; they will also implement
some of the basic programming constructs, such as token-lists and sequences. They are
intended only to give a flavour of the code: the full LATEX3 kernel will provide a very rich
set of programming constructs so that packages can efficiently share code, in contrast
with the situation in the current LATEX where every large package must implement its
own version of queues, stacks, etc., as necessary.

At time of writing the expl3 bundle consists of the following modules.

This distribution will also contain the LATEX source for the latest version of this document,
a docstrip install file and three small test files.

l3basics This contains the basic definition modules used by the other packages.

l3box Primitives for dealing with boxes.

l3calc A re-implementation of the LATEX2ε package calc package in expl3 that provides
extended methods for numeric and dimensional calculations and assignments.

l3chk A module that provides functionality comparable to LATEX’s \newcommand and
\renewcommand, and also the extra level of checking for ensure internal consistency
in the code.

l3clist Methods for manipulating comma-separated token lists.

l3expan This is the argument expansion module discussed above.

l3int This implements the integer data-type int.

l3io A module providing low level input and output functions.

12

l3keyval A re-implementation of the LATEX2ε package keyval; provides low-level macros
for dealing with lists of the form { key1=val1 , key2=val2 }.

l3messages/l3msg Communicating with the user.

l3names This sets up the basic naming scheme and renames all the TEX primitives. If
it is loaded with the option [removeoldnames] then the old primitive names such
as \box become undefined and are thus available for user definition. Caution: use
of this option will certainly break existing TEX code!

l3num This implements the ‘fake integer’ datatype num.

l3precom A ‘pre-compilation’ module that provides functions dealing with pointer cre-
ation and handling, and using external files to record the state of the current defi-
nitions.

l3prg Program control structures such as boolean data type bool, generic do-while loops,
case-switches, sorting routines and stepwise loops.

l3prop This implements the data-type for ‘property lists’ that are used, in particular,
for storing key/value pairs.

l3quark A ‘quark’ is a command that is defined to expand to itself! Therefore they
must never be expanded as this will generate infinite recursion; they do however
have many uses, e.g., as special markers and delimiters within code.

l3seq This implements data-types such as queues and stacks.

l3skip Implements the ‘rubber length’ datatype skip and the ‘rigid length’ datatype
dim.

l3tl This implements a basic data-type, called a token-list variable (tl var.), used for
storing named token lists: these are essentially TEX macros with no arguments.

l3token Analysing token lists and token streams, including peeking ahead to see what’s
coming next and inspecting tokens to detect which kind they are.

l3toks A data-type corresponding to TEX’s primitive token registers.

l3xref Data structure for low-level document cross-referencing. This provided the foun-
dation for Heiko Oberdiek’s zref package.

References

[1] Donald E Knuth The TEXbook. Addison-Wesley, Reading, Massachusetts, 1984.

[2] Goossens, Mittelbach and Samarin. The LATEX Companion. Addison-Wesley, Reading,
Massachusetts, 1994.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[4] Frank Mittelbach and Chris Rowley. ‘The LATEX3 Project’. TUGboat, Vol. 18, No. 3,
pp. 195–198, 1997.

13

6.1 expl3 implementation

Well, it’s not complicated :)

<*package>

1 \ProvidesExplPackage
2 {\filename}{\filedate}{\fileversion}{\filedescription}

We already loaded l3names at the beginning of the dtx file.

The l3chk package is omitted since it is only used for conditional processing with full
error-checking turned on. Most users will generally not need to do this, and we haven’t
set it up yet, anyway.

Fundamentals:

3 \RequirePackage{
4 l3basics,
5 l3expan,
6 l3tl,
7 l3num,
8 l3intexpr,
9 l3quark,

10 l3seq,
11 l3toks,
12 l3int,
13 l3prg,
14 l3clist,
15 l3token,
16 l3io,
17 l3prop,
18 l3msg,
19 l3skip,
20 }

All the rest:

21 \RequirePackage{
22 l3box,
23 l3keyval,
24 l3precom,
25 l3calc,
26 l3xref,
27 l3file
28 }

</package>

14

	1 Introduction
	2 Languages and interfaces
	3 The naming scheme
	3.1 Examples
	3.2 Formal syntax of the conventions
	3.3 Modules and descriptions
	3.4 Parameters: access and type
	3.5 Functions: basic argument specifications

	4 Expansion control
	4.1 Simpler means better
	4.2 New functions from old

	5 Parameter assignments and accessor functions
	5.1 Checking assignments
	5.2 Consistency

	6 The experimental distribution
	References
	6.1 expl3 implementation

