
expkv
an expandable ⟨key ⟩=⟨value ⟩ implementation

Jonathan P. Spratte∗

2020-07-04 v1.4

Abstract

expkv provides a small interface for ⟨key ⟩=⟨value ⟩ parsing. The parsing macro is
fully expandable, the ⟨code ⟩ of your keys might be not. expkv is pretty fast, but
not the fastest available ⟨key ⟩=⟨value ⟩ solution (keyval is one and a half times
as fast, but not expandable and it might strip braces it shouldn’t have stripped).

Contents

1 Documentation 2
1.1 Setting up Keys . 2
1.2 Parsing Keys . 3
1.3 Miscellaneous . 4
1.3.1 Other Macros . 4
1.3.2 Bugs . 5
1.3.3 Comparisons . 6

1.4 Examples . 7
1.4.1 Standard Use-Case . 7
1.4.2 An Expandable ⟨key ⟩=⟨value ⟩Macro Using \ekvsneak 9

1.5 Error Messages . 11
1.5.1 Load Time . 11
1.5.2 Defining Keys . 11
1.5.3 Using Keys . 12

1.6 License . 12

2 Implementation 13
2.1 The LATEX Package . 13
2.2 The Generic Code . 13

Index 28
∗ .oa @p dhe yr att oj es

1

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

1 Documentation

expkv provides an expandable ⟨key ⟩=⟨value ⟩ parser. The ⟨key ⟩=⟨value ⟩ pairs should
be given as a comma separated list and the separator between a ⟨key ⟩ and the associated
⟨value ⟩ should be an equal sign. Both, the commas and the equal signs, might be of
category 12 (other) or 13 (active). To support this is necessary as for example babel turns
characters active for some languages, for instance the equal sign is turned active for
Turkish.

expkv is usable as generic code or as a LATEX package. To use it, just use one of:

\usepackage { expkv } % LaTeX
\input expkv % plainTeX

The LATEX package doesn’t do more than expkv.tex, except calling \ProvidesPackage
and setting things up such that expkv.tex will use \ProvidesFile.

In the expkv family are other packages contained which provide additional function-
ality. Those packages currently are:

expkv-def a key-defining frontend for expkv using a ⟨key ⟩=⟨value ⟩ syntax

expkv-cs define expandable ⟨key ⟩=⟨value ⟩macros using expkv

expkv-opt parse package and class options with expkv

Note that while the package names are stylised with a vertical rule, their names are all
lower case with a hyphen (e.g., expkv-def).

1.1 Setting up Keys

expkv provides a rather simple approach to setting up keys, similar to keyval. However
there is an auxiliary package named expkv-def which provides a more sophisticated
interface, similar to well established packages like pgfkeys or l3keys.

Keys in expkv (as in almost all other ⟨key ⟩=⟨value ⟩ implementations) belong to
a set such that different sets can contain keys of the same name. Unlike many other
implementations expkv doesn’t provide means to set a default value, instead we have
keys that take values and keys that don’t (the latter are called NoVal keys by expkv), but
both can have the same name (on the user level).

The following macros are available to define new keys. Those macros containing
“def” in their name can be prefixed by anything allowed to prefix \def (but don’t use
\outer, keys defined with it won’t ever be usable), prefixes allowed for \let can prefix
those with “let” in their name, accordingly. Neither ⟨set ⟩ nor ⟨key ⟩ are allowed to
be empty for new keys. ⟨set ⟩ will be used as is inside of \csname ...\endcsname and
⟨key ⟩ will get \detokenized.

\ekvdef{⟨set ⟩}{⟨key ⟩}{⟨code ⟩}

Defines a ⟨key ⟩ taking a value in a ⟨set ⟩ to expand to ⟨code ⟩. In ⟨code ⟩ you can use #1
to refer to the given value.

\ekvdef

\ekvdefNoVal{⟨set ⟩}{⟨key ⟩}{⟨code ⟩}

Defines a no value taking ⟨key ⟩ in a ⟨set ⟩ to expand to ⟨code ⟩.
\ekvdefNoVal

2

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-opt
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

\ekvlet{⟨set ⟩}{⟨key ⟩}⟨cs ⟩

Let the value taking ⟨key ⟩ in ⟨set ⟩ to ⟨cs ⟩, there are no checks on ⟨cs ⟩ enforced.

\ekvlet

\ekvletNoVal{⟨set ⟩}{⟨key ⟩}⟨cs ⟩

Let the no value taking ⟨key ⟩ in ⟨set ⟩ to ⟨cs ⟩, it is not checked whether ⟨cs ⟩ exists or
that it takes no parameter.

\ekvletNoVal

\ekvletkv{⟨set ⟩}{⟨key ⟩}{⟨set2⟩}{⟨key2⟩}

Let the ⟨key ⟩ in ⟨set ⟩ to ⟨key2⟩ in ⟨set2⟩, it is not checked whether that second key
exists.

\ekvletkv

\ekvletkvNoVal{⟨set ⟩}{⟨key ⟩}{⟨set2⟩}{⟨key2⟩}

Let the ⟨key ⟩ in ⟨set ⟩ to ⟨key2⟩ in ⟨set2⟩, it is not checked whether that second key
exists.

\ekvletkvNoVal

\ekvdefunknown{⟨set ⟩}{⟨code ⟩}

By default an error will be thrown if an unknown ⟨key ⟩ is encountered. With this macro
you can define ⟨code ⟩ that will be executed for a given ⟨set ⟩ when an unknown ⟨key ⟩
with a ⟨value ⟩ was encountered instead of throwing an error. You can refer to the given
⟨value ⟩ with #1 and to the unknown ⟨key ⟩’s name with #2 in ⟨code ⟩.1

\ekvdefunknown

\ekvdefunknownNoVal{⟨set ⟩}{⟨code ⟩}

As already explained for \ekvdefunknown, expkv would throw an error when encounter-
ing an unknown ⟨key ⟩. With this you can instead let it execute ⟨code ⟩ if an unknown
NoVal ⟨key ⟩ was encountered. You can refer to the given ⟨key ⟩ with #1 in ⟨code ⟩.

\ekvdefunknownNoVal

1.2 Parsing Keys

\ekvset{⟨set ⟩}{⟨key ⟩=⟨value ⟩,...}

Splits ⟨key ⟩=⟨value ⟩ pairs on commas. From both ⟨key ⟩ and ⟨value ⟩ up to one space
is stripped from both ends, if then only a braced group remains the braces are stripped
as well. So \ekvset{foo}{bar=baz} and \ekvset{foo}{ {bar}= {baz} } will both do
\⟨foobarcode ⟩{baz}, so you can hide commas, equal signs and spaces at the ends of
either ⟨key ⟩ or ⟨value ⟩ by putting braces around them. If you omit the equal sign
the code of the key created with the NoVal variants described in subsection 1.1 will be
executed. If ⟨key ⟩=⟨value ⟩ contains more than a single unhidden equal sign, it will be
split at the first one and the others are considered part of the value. \ekvset should be
nestable.

\ekvset

\ekvsetdef⟨cs ⟩{⟨set ⟩}

With this function you can define a shorthand macro ⟨cs ⟩ to parse keys of a specified
⟨set ⟩. It is always defined \long, but if you need to you can also prefix it with \global.
The resulting macro is a bit faster than the idiomatic definition:

\long\def⟨cs ⟩#1{\ekvset{⟨set ⟩}{#1}}

\ekvsetdef

1That order is correct, this way the code is faster.

3

https://github.com/Skillmon/tex_expkv

\ekvparse⟨cs1⟩⟨cs2⟩{⟨key ⟩=⟨value ⟩,...}

This macro parses the ⟨key ⟩=⟨value ⟩ pairs and provides those list elements which are
only keys as the argument to ⟨cs1⟩, and those which are a ⟨key ⟩=⟨value ⟩ pair to ⟨cs2⟩ as
two arguments. It is fully expandable as well and returns the parsed list in \unexpanded,
which has no effect outside of an \expanded or \edef context2. If you need control over
the necessary steps of expansion you can use \expanded around it.

\ekvbreak, \ekvsneak, and \ekvchangeset and their relatives don’t work in
\ekvparse. It is analogue to expl3’s \keyval_parse:NNn, but not with the same parsing
rules – \keyval_parse:NNn throws an error on multiple equal signs per ⟨key ⟩=⟨value ⟩
pair and on empty ⟨key ⟩ names in a ⟨key ⟩=⟨value ⟩ pair, both of which \ekvparse
doesn’t deal with.

As a small example:

\ekvparse\handlekey\handlekeyval { foo = bar , key , baz={ zzz } }

would expand to

\handlekeyval { foo } {bar }\handlekey {key }\handlekeyval {baz } { zzz }

and afterwards \handlekey and \handlekeyval would have to further handle the ⟨key ⟩.
There are no macros like these two contained in expkv, you have to set them up yourself
if you want to use \ekvparse (of course the names might differ). If you need the results
of \ekvparse as the argument for another macro, you should use \expanded as only then
the input stream will contain the output above:

\expandafter\handle\expanded {\ekvparse\k\kv { foo = bar , key , baz={ zzz } } }

would expand to

\handle\kv { foo } {bar }\k {key }\kv {baz } { zzz }

\ekvparse

.

1.3 Miscellaneous

1.3.1 Other Macros

expkv provides some other macros which might be of interest.

These two macros store the version and date of the package.\ekvVersion
\ekvDate

\ekvifdefined{⟨set ⟩}{⟨key ⟩}{⟨true ⟩}{⟨false ⟩}
\ekvifdefinedNoVal{⟨set ⟩}{⟨key ⟩}{⟨true ⟩}{⟨false ⟩}
These two macros test whether there is a ⟨key ⟩ in ⟨set ⟩. It is false if either a hash table
entry doesn’t exist for that key or its meaning is \relax.

\ekvifdefined
\ekvifdefinedNoVal

2This is a change in behaviour, previously (v0.3 and before) \ekvparse would expand in exactly two steps.
This isn’t always necessary, but makes the parsing considerably slower. If this is necessary for your application
you can put an \expanded around it and will still be faster since you need only a single \expandafter this way.

4

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

\ekvifdefinedset{⟨set ⟩}{⟨true ⟩}{⟨false ⟩}

This macro tests whether ⟨set ⟩ is defined (which it is if at least one key was defined for
it). If it is ⟨true ⟩ will be run, else ⟨false ⟩.

\ekvifdefinedset

\ekvbreak{⟨after ⟩}

Gobbles the remainder of the current \ekvset macro and its argument list and rein-
serts ⟨after ⟩. So this can be used to break out of \ekvset. The first variant will
also gobble anything that has been sneaked out using \ekvsneak or \ekvsneakPre,
while \ekvbreakPreSneak will put ⟨after ⟩ before anything that has been smuggled and
\ekvbreakPostSneak will put ⟨after ⟩ after the stuff that has been sneaked out.

\ekvbreak
\ekvbreakPreSneak
\ekvbreakPostSneak

\ekvsneak{⟨after ⟩}

Puts ⟨after ⟩ after the effects of \ekvset. The first variant will put ⟨after ⟩ after any other
tokens which might have been sneaked before, while \ekvsneakPre will put ⟨after ⟩
before other smuggled stuff. This reads and reinserts the remainder of the current
\ekvset macro and its argument list to do its job. A small usage example is shown in
subsubsection 1.4.2.

\ekvsneak
\ekvsneakPre

\ekvchangeset{⟨new-set ⟩}

Replaces the current set with ⟨new-set ⟩, so for the rest of the current \ekvset call, that
call behaves as if it was called with \ekvset{⟨new-set ⟩}. Just like \ekvsneak this reads
and reinserts the remainder of the current \ekvset macro to do its job. It is comparable
to using ⟨key ⟩/.cd in pgfkeys.

\ekvchangeset

\ekv@name{⟨set ⟩}{⟨key ⟩}
\ekv@name@set{⟨set ⟩}
\ekv@name@key{⟨key ⟩}
The names of the macros that correspond to a key in a set are build with these macros. The
default definition of \ekv@name@set is “ekv⟨set ⟩(” and the default of \ekv@name@key
is “⟨key ⟩)”. The complete name is build using \ekv@name which is equivalent to
\ekv@name@set{⟨set ⟩}\ekv@name@key{\detokenize{⟨key ⟩}}. For NoVal keys an ad-
ditional N gets appended irrespective of these macros’ definition, so their name is
\ekv⟨set ⟩(\key)N. You might redefine \ekv@name@set and \ekv@name@key locally
but don’t redefine \ekv@name!

\ekv@name
\ekv@name@set
\ekv@name@key

1.3.2 Bugs

Just like keyval, expkv is bug free. But if you find bugshidden features3 you can tell
me about them either via mail (see the first page) or directly on GitHub if you have an
account there: https://github.com/Skillmon/tex_expkv
3Thanks, David!

5

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

1.3.3 Comparisons

Comparisons of speed are done with a very simple test key and the help of the
l3benchmark package. The key and its usage should be equivalent to

\protected\ekvdef { t e s t } { height } {\def\myheight {#1} }
\ekvset { t e s t } { height = 6 }

and only the usage of the key, not its definition, is benchmarked. For the impatient,
the essence of these comparisons regarding speed and buggy behaviour is contained in
Table 1.

As far as I know expkv is the only fully expandable ⟨key ⟩=⟨value ⟩ parser. I tried
to compare expkv to every ⟨key ⟩=⟨value ⟩ package listed on CTAN, however, one might
notice that some of those are missing from this list. That’s because I didn’t get the others
to work due to bugs, or because they just provide wrappers around other packages in
this list.

In this subsubsection is no benchmark of \ekvparse and \keyval_parse:NNn con-
tained, as most other packages don’t provide equivalent features to my knowledge.
\ekvparse is slightly faster than \ekvset, but keep in mind that it does less. The same is
true for \keyval_parse:NNn compared to \keys_set:nn of expl3 (where the difference
is much bigger).

keyval is about 1.6 times faster and has a comparable feature set just a slightly different
way how it handles keys without values. That might be considered a drawback, as it
limits the versatility, but also as an advantage, as it might reduce doubled code. Keep in
mind that as soon as someone loads xkeyval the performance of keyval gets replaced by
xkeyval’s.

Also keyval has a bug, which unfortunately can’t really be resolved without breaking
backwards compatibility for many documents, namely it strips braces from the argument
before stripping spaces if the argument isn’t surrounded by spaces, also it might strip
more than one set of braces. Hence all of the following are equivalent in their outcome,
though the last two lines should result in something different than the first two:

\setkeys { foo } {bar=baz }
\setkeys { foo } {bar= {baz } }
\setkeys { foo } {bar={ baz } }
\setkeys { foo } {bar={ {baz } } }

xkeyval is roughly seventeen times slower, but it provides more functionality, e.g., it
has choice keys, boolean keys, and so on. It contains the same bug as keyval as it has to
be compatible with it by design (it replaces keyval’s frontend), but also adds even more
cases in which braces are stripped that shouldn’t be stripped, worsening the situation.

ltxkeys is over 370 times slower – which is funny, because it aims to be “[. . .] faster [. . .]
than these earlier packages [referring to keyval and xkeyval].” It needs more time to parse
zero keys than four of the packages in this comparison need to parse 100 keys. Since it
aims to have a bigger feature set than xkeyval, it most definitely also has a bigger feature
set than expkv. Also, it can’t parse \long input, so as soon as your values contain a \par,
it’ll throw errors. Furthermore, ltxkeys doesn’t strip outer braces at all by design, which,
imho, is a weird design choice. In addition ltxkeys loads catoptions which is known to
introduce bugs (e.g., see https://tex.stackexchange.com/questions/461783).

6

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://ctan.org/topic/keyval
https://github.com/Skillmon/tex_expkv
https://tex.stackexchange.com/questions/461783

l3keys is around six times slower, but has an, imho, great interface to define keys. It
strips all outer spaces, even if somehow multiple spaces ended up on either end. It offers
more features, but is pretty much bound to expl3 code. Whether that’s a drawback is up
to you. Note that this comparison uses the version contained in TEXLive 2019 (frozen)
which is a bit slower than versions starting with TEXLive 2020.

pgfkeys is around 2.7 times slower for one key, but has an enormous feature set. It has
the same or a very similar bug keyval has. The brace bug (and also the category fragility)
can be fixed by pgfkeyx, but this package was last updated in 2012 and it slows down
\pgfkeys by factor 8. Also I don’t know whether this might introduce new bugs.

kvsetkeys with kvdefinekeys is about 3.7 times slower, but it works even if commas
and equals have category codes different from 12 (just as some other packages in this list).
Else the features of the keys are equal to those of keyval, the parser has more features,
though.

options is 1.5 times slower for only a single value. It has a much bigger feature set.
Unfortunately it also suffers from the premature unbracing bug keyval has.

simplekv is hard to compare because I don’t speak French (so I don’t understand the
documentation). There was an update released on 2020-04-27 which greatly improved
the package’s performance and adds functionality so that it can be used more like most of
the other ⟨key ⟩=⟨value ⟩ packages. It has problems with stripping braces and spaces in a
hard to predict manner just like keyval. Also, while it tries to be robust against category
code changes of commas and equal signs, the used mechanism fails if the ⟨key ⟩=⟨value ⟩
list already got tokenized. Regarding unknown keys it got a very interesting behaviour.
It doesn’t throw an error, but stores the ⟨value ⟩ in a new entry accessible with \useKV.
Also if you omit ⟨value ⟩ it stores true for that ⟨key ⟩. It is around 10% faster than expkv.

yax is over twenty times slower. It has a pretty strange syntax, imho, and again a direct
equivalent is hard to define. It has the premature unbracing bug, too. Also somehow
loading yax broke options for me. The tested definition was:

\usepackage {yax }
\defactiveparameter yax {\storevalue\myheight yax : height } % key setup
\setparameter l i s t {yax } { height = 6 } % benchmarked

1.4 Examples

1.4.1 Standard Use-Case

Say we have a macro for which we want to create a ⟨key ⟩=⟨value ⟩ interface. The macro
has a parameter, which is stored in the dimension \ourdim having a default value from
its initialization. Now we want to be able to change that dimension with the width key
to some specified value. For that we’d do

\newdimen\ourdim
\ourdim=150pt
\protected\ekvdef {our } {width } {\ourdim=#1\relax }

7

https://github.com/Skillmon/tex_expkv

Table 1: Comparison of ⟨key ⟩=⟨value ⟩ packages. The packages are ordered from fastest
to slowest for one ⟨key ⟩=⟨value ⟩ pair. Benchmarking was done using l3benchmark
and the scripts in the Benchmarks folder of the git repository. The columns pi are
the polynomial coefficients of a linear fit to the run-time, p0 can be interpreted as the
overhead for initialisation and p1 the cost per key. The T0 column is the actual mean
ops needed for an empty list argument, as the linear fit doesn’t match that point well in
general. The column “BB” lists whether the parsing is affected by some sort of brace bug,
“CF” stands for category code fragile and lists whether the parsing breaks with active
commas or equal signs.

Package p1 p0 T0 BB CF Date

keyval 13.7 1.5 7.0 yes yes 2014-10-28
simplekv 18.7 5.3 17.7 yes yes 2020-04-27
expkv 22.0 3.1 10.1 no no 2020-06-21
options 24.4 12.0 20.4 yes yes 2015-03-01
pgfkeys 24.6 45.5 53.3 yes yes 2020-06-17
kvsetkeys * * 40.0 no no 2019-12-15
l3keys 92.1 32.7 38.1 no no 2020-06-18
xkeyval 257.1 173.7 164.5 yes yes 2014-12-03
yax 440.2 76.3 113.9 yes yes 2010-01-22
ltxkeys 3448.3 4470.0 5241.0 no no 2012-11-17

*For kvsetkeys the linear model used for the other packages is a poor fit, kvsetkeys
seems to have approximately quadratic run-time, the coefficients of the second degree
polynomial fit are p2 = 8.8, p1 = 36.0, and p0 = 81.8. Of course the other packages might
not really have linear run-time, but at least from 1 to 20 keys the fits don’t seem too
bad. If one extrapolates the fits for 100 ⟨key ⟩=⟨value ⟩ pairs one finds that most of them
match pretty well, the exception being ltxkeys, which behaves quadratic as well with
p2 = 29.5, p1 = 2828.9, and p0 = 6741.2.

8

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

as you can see, we use the set our here. We want the key to behave different if no value is
specified. In that case the key should not use its initial value, but be smart and determine
the available space from \hsize, so we also define

\protected\ekvdefNoVal{our } {width } {\ourdim=.9\ hsize }

Now we set up our macro to use this ⟨key ⟩=⟨value ⟩ interface

\protected\def\ourmacro#1{\begingroup\ekvset {our } {#1}\the\ourdim\endgroup }

Finally we can use our macro like in the following

\ourmacro { }\par
\ourmacro {width }\par
\ourmacro {width=5pt }\par

150.0pt
192.85382pt
5.0pt

The same key using expkv-def Using expkv-def we can set up the equivalent key using
a ⟨key ⟩=⟨value ⟩ interface, after the following we could use \ourmacro in the same
way as above. expkv-def will allocate and initialise \ourdim and define the width key
\protected for us, so the result will be exactly the same – with the exception that the
default will use \ourdim=.9\hsize\relax instead.

\input expkv−def % or \usepackage {expkv−def }
\ekvdefinekeys {our }

{
dimen width = \ourdim ,
qdefault width = .9\ hsize ,
i n i t i a l width = 150pt

}

1.4.2 An Expandable ⟨key ⟩=⟨value ⟩Macro Using \ekvsneak

Let’s set up an expandable macro, that uses a ⟨key ⟩=⟨value ⟩ interface. The problems
we’ll face for this are:

1. ignoring duplicate keys

2. default values for keys which weren’t used

3. providing the values as the correct argument to a macro (ordered)

First we need to decide which ⟨key ⟩=⟨value ⟩ parsing macro we want to do this with,
\ekvset or \ekvparse. For this example we also want to show the usage of \ekvsneak,
hence we’ll choose \ekvset. And we’ll have to use \ekvset such that it builds a parsable
list for our macro internals. To gain back control after \ekvset is done we have to put
an internal of our macro at the start of that list, so we use an internal key that uses
\ekvsneakPre after any user input.

To ignore duplicates will be easy if the value of the key used last will be put first
in the list, so the following will use \ekvsneakPre for the user-level keys. If we wanted
some key for which the first usage should be the binding one we would use \ekvsneak
instead for that key.

Providing default values can be done in different ways, we’ll use a simple approach
in which we’ll just put the outcome of our keys if they were used with default values
before the parsing list terminator.

9

https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def

Ordering the keys can be done simply by searching for a specific token for each
argument which acts like a flag, so our sneaked out values will include specific tokens
acting as markers.

Now that we have answers for our technical problems, we have to decide what our
example macro should do. How about we define a macro that calculates the sine of a
number and rounds that to a specified precision? As a small extra this macro should
understand input in radian and degree and the used trigonometric function should be
selectable as well. For the hard part of this task (expandably evaluating trigonometric
functions) we’ll use the xfp package.

First we set up our keys according to our earlier considerations and set up the user
facing macro \sine. The end marker of the parsing list will be a \sine@stop token,
which we don’t need to define and we put our defaults right before it.

\RequirePackage { xfp }
\makeatletter
\ekvdef { expex } { f } {\ekvsneakPre{\ f {#1} } }
\ekvdef { expex } {round } {\ekvsneakPre{\rnd {#1} } }
\ekvdefNoVal{ expex } { degree } {\ekvsneakPre{\deg {d} } }
\ekvdefNoVal{ expex } { radian } {\ekvsneakPre{\deg { } } }
\ekvdefNoVal{ expex } { internal } {\ekvsneakPre{\sine@rnd } }
\newcommand∗\ sine [2]

{\ekvset { expex } {#1, internal }\rnd {3}\deg {d}\ f { sin }\sine@stop {#2} }

For the sake of simplicity we defined the macro \sine with two mandatory arguments,
the first being the ⟨key ⟩=⟨value ⟩ list, the second the argument to the trigonometric
function. We could’ve used xparse’s facilities here to define an expandable macro which
takes an optional argument instead.

Now we need to define some internal macros to extract the value of each key’s last
usage (remember that this will be the group after the first special flag-token). For that
we use one delimited macro per key.

\def\sine@rnd#1\rnd#2#3\sine@stop {\sine@deg#1#3\sine@stop {#2} }
\def\sine@deg#1\deg#2#3\sine@stop {\sine@f#1#3\sine@stop {#2} }
\def\sine@f#1\ f#2#3\sine@stop {\sine@final {#2} }

After the macros \sine@rnd, \sine@deg, and \sine@f the macro \sine@final will see
\sine@final{⟨f ⟩}{⟨degree/radian ⟩}{⟨round ⟩}{⟨num ⟩}. Now \sine@final has to ex-
pandably deal with those arguments such that the \fpeval macro of xfp gets the correct
input. Luckily this is pretty straight forward in this example. In \fpeval the trigonomet-
ric functions have names such as sin or cos and the degree taking variants sind or cosd.
And since the degree key puts a d in #2 and the radian key leaves #2 empty all we have
to do to get the correct function name is stick the two together.

\newcommand∗\ sine@final [4] {\fpeval {round(#1#2(#4) ,#3) } }
\makeatother

Let’s test our macro:

\sine { } {60}\par
\sine {round=10} {60}\par
\sine { f=cos , radian } { pi }\par
\edef\myval{\sine { f=tan } {1} }\ t e x t t t {\meaning\myval}

0.866
0.8660254038
-1
macro:->0.017

10

The same macro using expkv-cs Using expkv-cs we can set up something equivalent
with a bit less code. The implementation chosen in expkv-cs is more efficient than the
example above and way easier to code for the user.

\makeatletter
\ekvcSplitAndForward\sine\sine@

{
f=sin ,
unit=d ,
round=3,

}
\ekvcSecondaryKeys\sine

{
nmeta degree={unit=d} ,
nmeta radian={unit={ } } ,

}
\newcommand∗\sine@[4] {\fpeval {round(#1#2(#4) ,#3) } }
\makeatother

The resulting macro will behave just like the one previously defined, but will have an
additional unit key, since in expkv-cs every argument must have a value taking key
which defines it.

1.5 Error Messages

expkv should only send messages in case of errors, there are no warnings and no info
messages. In this subsection those errors are listed.

1.5.1 Load Time

expkv.tex checks whether ε-TEX is available. If it isn’t, an error will be thrown using
\errmessage:

! expkv Error : e−TeX required .

1.5.2 Defining Keys

If you get any error from expkv while you’re trying to define a key, the definition will be
aborted and gobbled.

If you try to define a key with an empty set name you’ll get:

! expkv Error : empty se t name not allowed .

Similarly, if you try to define a key with an empty key name:

! expkv Error : empty key name not allowed .

Both of these messages are done in a way that doesn’t throw additional errors due to
\global, \long, etc., not being used correctly if you prefixed one of the defining macros.

11

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

1.5.3 Using Keys

This subsubsection contains the errors thrown during \ekvset. The errors are thrown
in an expandable manner by providing an undefined macro. In the following mes-
sages <key> gets replaced with the problematic key’s name, and < set > with the corre-
sponding set. If any errors during ⟨key ⟩=⟨value ⟩ handling are encountered, the entry
in the comma separated list will be omitted after the error is thrown and the next
⟨key ⟩=⟨value ⟩ pair will be parsed.

If you’re using an undefined key you’ll get:

! Undefined control sequence .
<argument> \! expkv Error :

unknown key (‘<key >’ , se t ‘<set > ’).

If you’re using a key for which only a normal version and no NoVal version is defined,
but don’t provide a value, you’ll get:

! Undefined control sequence .
<argument> \! expkv Error :

value required (‘<key >’ , se t ‘<set > ’).

If you’re using a key for which only a NoVal version and no normal version is defined,
but provide a value, you’ll get:

! Undefined control sequence .
<argument> \! expkv Error :

value forbidden (‘<key >’ , se t ‘<set > ’).

If you’re using a set for which you never executed one of the defining macros from
subsection 1.1 you’ll get a low level TEX error, as that isn’t actively tested by the parser
(and hence will lead to undefined behaviour and not be gracefully ignored). The error
will look like

! Missing \endcsname inserted .
<to be read again>

\! expkv Error : Set ‘<set >’ undefined .

1.6 License

Copyright © 2020 Jonathan P. Spratte

This work may be distributed and/or modified under the conditions of the LATEX Project
Public License (LPPL), either version 1.3c of this license or (at your option) any later
version. The latest version of this license is in the file:

http://www.latex-project.org/lppl.txt
This work is “maintained” (as per LPPL maintenance status) by

Jonathan P. Spratte.

12

http://www.latex-project.org/lppl.txt

2 Implementation

2.1 The LATEX Package

First we set up the LATEX package. That one doesn’t really do much except \inputting the
generic code and identifying itself as a package.
1 \def\ekv@tmp
2 {%
3 \ProvidesFile{expkv.tex}%
4 [\ekvDate\space v\ekvVersion\space an expandable key=val implementation]%
5 }
6 \input{expkv.tex}
7 \ProvidesPackage{expkv}%
8 [\ekvDate\space v\ekvVersion\space an expandable key=val implementation]

2.2 The Generic Code

The rest of this implementation will be the generic code.
We make sure that it’s only input once:

9 \expandafter\ifx\csname ekvVersion\endcsname\relax
10 \else
11 \expandafter\endinput
12 \fi

Check whether ε-TEX is available – expkv requires ε-TEX.
13 \begingroup\expandafter\expandafter\expandafter\endgroup
14 \expandafter\ifx\csname numexpr\endcsname\relax
15 \errmessage{expkv requires e-TeX}
16 \expandafter\endinput
17 \fi

\ekvVersion
\ekvDate

We’re on our first input, so lets store the version and date in a macro.
18 \def\ekvVersion{1.4}
19 \def\ekvDate{2020-07-04}

(End definition for \ekvVersion and \ekvDate. These functions are documented on page 4.)
If the LATEX format is loaded we want to be a good file and report back who we are,

for this the package will have defined \ekv@tmp to use \ProvidesFile, else this will
expand to a \relax and do no harm.
20 \csname ekv@tmp\endcsname

Store the category code of @ to later be able to reset it and change it to 11 for now.
21 \expandafter\chardef\csname ekv@tmp\endcsname=\catcode‘\@
22 \catcode‘\@=11

\ekv@tmp might later be reused to gobble any prefixes which might be provided to
\ekvdef and similar in case the names are invalid, we just temporarily use it here as
means to store the current category code of @ to restore it at the end of the file, we never
care for the actual definition of it.

13

https://github.com/Skillmon/tex_expkv

\@gobble
\@firstofone
\@firstoftwo

\@secondoftwo
\ekv@gobbleto@stop

\ekv@fi@gobble
\ekv@fi@firstoftwo

\ekv@fi@secondoftwo
\ekv@gobble@mark

\ekv@gobble@from@mark@to@stop

Since branching tests are often more versatile than \if...\else...\fi constructs, we
define helpers that are branching pretty fast. Also here are some other utility functions
that just grab some tokens. The ones that are also contained in LATEX don’t use the ekv
prefix. Not all of the ones defined here are really needed by expkv but are provided
because packages like expkv-def or expkv-opt need them (and I don’t want to define them
in each package which might need them).
23 \long\def\@gobble#1{}
24 \long\def\@firstofone#1{#1}
25 \long\def\@firstoftwo#1#2{#1}
26 \long\def\@secondoftwo#1#2{#2}
27 \long\def\ekv@fi@gobble\fi\@firstofone#1{\fi}
28 \long\def\ekv@fi@firstoftwo\fi\@secondoftwo#1#2{\fi#1}
29 \long\def\ekv@fi@secondoftwo\fi\@firstoftwo#1#2{\fi#2}
30 \long\def\ekv@gobbleto@stop#1\ekv@stop{}
31 \def\ekv@gobble@mark\ekv@mark{}
32 \long\def\ekv@gobble@from@mark@to@stop\ekv@mark#1\ekv@stop{}

(End definition for \@gobble and others.)
As you can see \ekv@gobbleto@stop uses a special marker \ekv@stop. The package

will use three such markers, the one you’ve seen already, \ekv@mark and \ekv@nil.
Contrarily to how for instance expl3 does things, we don’t define them, as we don’t
need them to have an actual meaning. This has the advantage that if they somehow
get expanded – which should never happen if things work out – they’ll throw an error
directly.

\ekv@ifempty
\ekv@ifempty@

\ekv@ifempty@true
\ekv@ifempty@false

\ekv@ifempty@true@F
\ekv@ifempty@true@F@gobble

\ekv@ifempty@true@F@gobbletwo

We can test for a lot of things building on an if-empty test, so lets define a really fast one.
Since some tests might have reversed logic (true if something is not empty) we also set
up macros for the reversed branches.
33 \long\def\ekv@ifempty#1%
34 {%
35 \ekv@ifempty@\ekv@ifempty@A#1\ekv@ifempty@B\ekv@ifempty@true
36 \ekv@ifempty@A\ekv@ifempty@B\@secondoftwo
37 }
38 \long\def\ekv@ifempty@#1\ekv@ifempty@A\ekv@ifempty@B{}
39 \long\def\ekv@ifempty@true\ekv@ifempty@A\ekv@ifempty@B\@secondoftwo#1#2{#1}
40 \long\def\ekv@ifempty@false\ekv@ifempty@A\ekv@ifempty@B\@firstoftwo#1#2{#2}
41 \long\def\ekv@ifempty@true@F\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1{}
42 \long\def\ekv@ifempty@true@F@gobble\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1#2%
43 {}
44 \long\def\ekv@ifempty@true@F@gobbletwo
45 \ekv@ifempty@A\ekv@ifempty@B\@firstofone#1#2#3%
46 {}

(End definition for \ekv@ifempty and others.)

\ekv@ifblank
\ekv@ifblank@

The obvious test that can be based on an if-empty is if-blank, meaning a test checking
whether the argument is empty or consists only of spaces. Our version here will be
tweaked a bit, as we want to check this, but with one leading \ekv@mark token that is to
be ignored. The wrapper \ekv@ifblank will not be used by expkv for speed reasons but
expkv-opt uses it.
47 \long\def\ekv@ifblank#1%
48 {%
49 \ekv@ifblank@#1\ekv@nil\ekv@ifempty@B\ekv@ifempty@true

14

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-opt
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-opt

50 \ekv@ifempty@A\ekv@ifempty@B\@secondoftwo
51 }
52 \long\def\ekv@ifblank@\ekv@mark#1{\ekv@ifempty@\ekv@ifempty@A}

(End definition for \ekv@ifblank and \ekv@ifblank@.)

\ekv@ifdefined We’ll need to check whether something is defined quite frequently, so why not define a
macro that does this. The following test is expandable, slower than the typical expandable
test for undefined control sequences, but faster for defined ones. Since we want to be as
fast as possible for correct input, this is to be preferred.
53 \def\ekv@ifdefined#1%
54 {%
55 \expandafter
56 \ifx\csname\ifcsname #1\endcsname #1\else relax\fi\endcsname\relax
57 \ekv@fi@secondoftwo
58 \fi
59 \@firstoftwo
60 }

(End definition for \ekv@ifdefined.)

\ekv@name
\ekv@name@set
\ekv@name@key

The keys will all follow the same naming scheme, so we define it here.
61 \def\ekv@name#1#2{\ekv@name@set{#1}\ekv@name@key{\detokenize{#2}}}
62 \def\ekv@name@set#1{ekv#1(}
63 \def\ekv@name@key#1{#1)}

(End definition for \ekv@name , \ekv@name@set , and \ekv@name@key. These functions are documented on page 5.)

\ekv@undefined@set We can misuse the macro name we use to expandably store the set-name in a single
token – since this increases performance drastically, especially for long set-names –
to throw a more meaningful error message in case a set isn’t defined. The name of
\ekv@undefined@set is a little bit misleading, as it is called in either case inside of
\csname, but the result will be a control sequence with meaning \relax if the set is
undefined, hence will break the \csname building the key-macro which will throw the
error message.
64 \def\ekv@undefined@set#1{! expkv Error: Set ‘#1’ undefined.}

(End definition for \ekv@undefined@set.)

\ekv@checkvalid We place some restrictions on the allowed names, though, namely sets and keys are not
allowed to be empty – blanks are fine (meaning set- or key-names consisting of spaces).
The \def\ekv@tmp gobbles any TEX prefixes which would otherwise throw errors. This
will, however, break the package if an \outer has been gobbled this way. I consider that
good, because keys shouldn’t be defined \outer anyways.
65 \protected\def\ekv@checkvalid#1#2%
66 {%
67 \ekv@ifempty{#1}%
68 {%
69 \def\ekv@tmp{}%
70 \errmessage{expkv Error: empty set name not allowed}%
71 }%
72 {%
73 \ekv@ifempty{#2}%
74 {%

15

75 \def\ekv@tmp{}%
76 \errmessage{expkv Error: empty key name not allowed}%
77 }%
78 \@secondoftwo
79 }%
80 \@gobble
81 }

(End definition for \ekv@checkvalid.)

\ekvifdefined
\ekvifdefinedNoVal

And provide user-level macros to test whether a key is defined.
82 \def\ekvifdefined#1#2{\ekv@ifdefined{\ekv@name{#1}{#2}}}
83 \def\ekvifdefinedNoVal#1#2{\ekv@ifdefined{\ekv@name{#1}{#2}N}}

(End definition for \ekvifdefined and \ekvifdefinedNoVal. These functions are documented on page 4.)

\ekvdef
\ekvdefNoVal

\ekvlet
\ekvletNoVal

\ekvletkv
\ekvletkvNoVal
\ekvdefunknown

\ekvdefunknownNoVal

Set up the key defining macros \ekvdef etc.
84 \protected\long\def\ekvdef#1#2#3%
85 {%
86 \ekv@checkvalid{#1}{#2}%
87 {%
88 \expandafter\def\csname\ekv@name{#1}{#2}\endcsname##1{#3}%
89 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
90 }%
91 }
92 \protected\long\def\ekvdefNoVal#1#2#3%
93 {%
94 \ekv@checkvalid{#1}{#2}%
95 {%
96 \expandafter\def\csname\ekv@name{#1}{#2}N\endcsname{#3}%
97 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
98 }%
99 }
100 \protected\def\ekvlet#1#2#3%
101 {%
102 \ekv@checkvalid{#1}{#2}%
103 {%
104 \expandafter\let\csname\ekv@name{#1}{#2}\endcsname#3%
105 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
106 }%
107 }
108 \protected\def\ekvletNoVal#1#2#3%
109 {%
110 \ekv@checkvalid{#1}{#2}%
111 {%
112 \expandafter\let\csname\ekv@name{#1}{#2}N\endcsname#3%
113 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
114 }%
115 }
116 \protected\def\ekvletkv#1#2#3#4%
117 {%
118 \ekv@checkvalid{#1}{#2}%
119 {%
120 \expandafter\let\csname\ekv@name{#1}{#2}\expandafter\endcsname
121 \csname\ekv@name{#3}{#4}\endcsname

16

122 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
123 }%
124 }
125 \protected\def\ekvletkvNoVal#1#2#3#4%
126 {%
127 \ekv@checkvalid{#1}{#2}%
128 {%
129 \expandafter\let\csname\ekv@name{#1}{#2}N\expandafter\endcsname
130 \csname\ekv@name{#3}{#4}N\endcsname
131 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
132 }%
133 }
134 \protected\def\ekvdefunknown#1#2%
135 {%
136 \ekv@checkvalid{#1}{.}%
137 {%
138 \expandafter\def\csname\ekv@name{#1}{}u\endcsname##1##2{#2}%
139 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
140 }%
141 }
142 \protected\def\ekvdefunknownNoVal#1#2%
143 {%
144 \ekv@checkvalid{#1}{.}%
145 {%
146 \expandafter\def\csname\ekv@name{#1}{}uN\endcsname##1{#2}%
147 \expandafter\ekv@defsetmacro\csname\ekv@undefined@set{#1}\endcsname{#1}%
148 }%
149 }

(End definition for \ekvdef and others. These functions are documented on page 2.)

\ekv@defsetmacro In order to enhance the speed the set name given to \ekvset will be turned into a control
sequence pretty early, so we have to define that control sequence.
150 \protected\def\ekv@defsetmacro#1#2%
151 {%
152 \ifx#1\relax
153 \edef#1##1{\ekv@name@set{#2}\ekv@name@key{\noexpand\detokenize{##1}}}%
154 \fi
155 }

(End definition for \ekv@defsetmacro.)

\ekvifdefinedset

156 \def\ekvifdefinedset#1%
157 {%
158 \ekv@ifdefined{\ekv@undefined@set{#1}}%
159 }

(End definition for \ekvifdefinedset. This function is documented on page 5.)

\ekvset Set up \ekvset, which should not be affected by active commas and equal signs. The
equal signs are a bit harder to cope with and we’ll do that later, but the active commas
can be handled by just doing two comma-splitting loops one at actives one at others.

17

That’s why we define \ekvset here with a temporary meaning just to set up the things
with two different category codes. #1 will be a ,13 and #2 will be a =13.
160 \def\ekvset#1#2{%
161 \endgroup
162 \long\def\ekvset##1##2%
163 {%
164 \expandafter\ekv@set\csname\ekv@undefined@set{##1}\endcsname
165 \ekv@mark##2#1\ekv@stop#1{}%
166 }

(End definition for \ekvset. This function is documented on page 3.)

\ekv@set \ekv@set will split the ⟨key ⟩=⟨value ⟩ list at active commas. Then it has to check whether
there were unprotected other commas and resplit there.
167 \long\def\ekv@set##1##2#1%
168 {%

Test whether we’re at the end, if so invoke \ekv@endset,
169 \ekv@gobble@from@mark@to@stop##2\ekv@endset\ekv@stop

else go on with other commas,
170 \ekv@set@other##1##2,\ekv@stop,%

and get the next active comma delimited ⟨key ⟩=⟨value ⟩ pair.
171 \ekv@set##1\ekv@mark
172 }

(End definition for \ekv@set.)

\ekv@endset \ekv@endset is a hungry little macro. It will eat everything that remains of \ekv@set
and unbrace the sneaked stuff.
173 \long\def\ekv@endset
174 \ekv@stop\ekv@set@other##1,\ekv@stop,\ekv@set##2\ekv@mark
175 ##3%
176 {##3}

(End definition for \ekv@endset.)

\ekv@eq@other
\ekv@eq@active

Splitting at equal signs will be done in a way that checks whether there is an equal sign
and splits at the same time. This gets quite messy and the code might look complicated,
but this is pretty fast (faster than first checking for an equal sign and splitting if one
is found). The splitting code will be adapted for \ekvset and \ekvparse to get the
most speed, but some of these macros don’t require such adaptions. \ekv@eq@other
and \ekv@eq@active will split the argument at the first equal sign and insert the macro
which comes after the first following \ekv@mark. This allows for fast branching based on
TEX’s argument grabbing rules and we don’t have to split after the branching if the equal
sign was there.
177 \long\def\ekv@eq@other##1=##2\ekv@mark##3##4\ekv@stop
178 {%
179 ##3##1\ekv@stop\ekv@mark##2%
180 }
181 \long\def\ekv@eq@active##1#2##2\ekv@mark##3##4\ekv@stop
182 {%
183 ##3##1\ekv@stop\ekv@mark##2%
184 }

18

(End definition for \ekv@eq@other and \ekv@eq@active.)

\ekv@set@other The macro \ekv@set@other is guaranteed to get only single ⟨key ⟩=⟨value ⟩ pairs.
185 \long\def\ekv@set@other##1##2,%
186 {%

First we test whether we’re done.
187 \ekv@gobble@from@mark@to@stop##2\ekv@endset@other\ekv@stop

If not we split at the equal sign of category other.
188 \ekv@eq@other##2\ekv@nil\ekv@mark\ekv@set@eq@other@a
189 =\ekv@mark\ekv@set@eq@active\ekv@stop

And insert the set name and the next recursion step of \ekv@set@other.
190 ##1%
191 \ekv@set@other##1\ekv@mark
192 }

(End definition for \ekv@set@other.)

\ekv@set@eq@other@a
\ekv@set@eq@other@b

The first of these two macros runs the split-test for equal signs of category active. It will
only be inserted if the ⟨key ⟩=⟨value ⟩ pair contained at least one equal sign of category
other and ##1 will contain everything up to that equal sign.
193 \long\def\ekv@set@eq@other@a##1\ekv@stop
194 {%
195 \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@set@eq@other@active@a
196 #2\ekv@mark\ekv@set@eq@other@b\ekv@stop
197 }

The second macro will have been called by \ekv@eq@active if no active equal sign was
found. All it does is remove the excess tokens of that test and forward the ⟨key ⟩=⟨value ⟩
pair to \ekv@set@pair.
198 \long\def\ekv@set@eq@other@b
199 ##1\ekv@nil\ekv@mark\ekv@set@eq@other@active@a\ekv@stop\ekv@mark
200 {%
201 \ekv@strip{##1}\ekv@set@pair
202 }

(End definition for \ekv@set@eq@other@a and \ekv@set@eq@other@b.)

\ekv@set@eq@other@active@a
\ekv@set@eq@other@active@b

\ekv@set@eq@other@active@a will be called if the ⟨key ⟩=⟨value ⟩ pair was wrongly
split on an equal sign of category other but has an earlier equal sign of category active.
##1 will be the contents up to the active equal sign and ##2 everything that remains until
the first found other equal sign. It has to reinsert the equal sign and passes things on
to \ekv@set@eq@other@active@b which calls \ekv@set@pair on the then correctly split
⟨key ⟩=⟨value ⟩ pair.
203 \long\def\ekv@set@eq@other@active@a##1\ekv@stop##2\ekv@nil\ekv@mark
204 {%
205 \ekv@set@eq@other@active@b{##1}##2=%
206 }
207 \long\def\ekv@set@eq@other@active@b##1%
208 {%
209 \ekv@strip{##1}\ekv@set@pair
210 }

19

(End definition for \ekv@set@eq@other@active@a and \ekv@set@eq@other@active@b.)

\ekv@set@eq@active
\ekv@set@eq@active@

\ekv@set@eq@active will be called when there was no equal sign of category other in
the ⟨key ⟩=⟨value ⟩ pair. It removes the excess tokens of the prior test and split-checks
for an active equal sign.
211 \long\def\ekv@set@eq@active
212 ##1\ekv@nil\ekv@mark\ekv@set@eq@other@a\ekv@stop\ekv@mark
213 {%
214 \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@set@eq@active@
215 #2\ekv@mark\ekv@set@noeq\ekv@stop
216 }

If an active equal sign was found in \ekv@set@eq@active we’ll have to pass the now
split ⟨key ⟩=⟨value ⟩ pair on to \ekv@set@pair.
217 \long\def\ekv@set@eq@active@##1\ekv@stop
218 {%
219 \ekv@strip{##1}\ekv@set@pair
220 }

(End definition for \ekv@set@eq@active and \ekv@set@eq@active@.)

\ekv@set@noeq If no active equal sign was found by \ekv@set@eq@active there is no equal sign con-
tained in the parsed list entry. In that case we have to check whether the entry is blank
in order to ignore it (in which case we’ll have to gobble the set-name which was put after
these tests by \ekv@set@other). Else this is a NoVal key and the entry is passed on to
\ekv@set@key.
221 \long\def\ekv@set@noeq##1\ekv@nil\ekv@mark\ekv@set@eq@active@\ekv@stop\ekv@mark
222 {%
223 \ekv@ifblank@##1\ekv@nil\ekv@ifempty@B\ekv@ifempty@true@F@gobble
224 \ekv@ifempty@A\ekv@ifempty@B\@firstofone
225 {\ekv@strip{##1}\ekv@set@key}%
226 }

(End definition for \ekv@set@noeq.)

\ekv@endset@other All that’s left for \ekv@set@other is the macro which breaks the recursion loop at the
end. This is done by gobbling all the remaining tokens.
227 \long\def\ekv@endset@other
228 \ekv@stop
229 \ekv@eq@other##1\ekv@nil\ekv@mark\ekv@set@eq@other@a
230 =\ekv@mark\ekv@set@eq@active\ekv@stop
231 ##2%
232 \ekv@set@other##3\ekv@mark
233 {}

(End definition for \ekv@endset@other.)

\ekvbreak
\ekvbreakPreSneak

\ekvbreakPostSneak

Provide macros that can completely stop the parsing of \ekvset, who knows what it’ll
be useful for.
234 \long\def\ekvbreak##1##2\ekv@stop#1##3{##1}
235 \long\def\ekvbreakPreSneak ##1##2\ekv@stop#1##3{##1##3}
236 \long\def\ekvbreakPostSneak##1##2\ekv@stop#1##3{##3##1}

(End definition for \ekvbreak , \ekvbreakPreSneak , and \ekvbreakPostSneak. These functions are documented
on page 5.)

20

\ekvsneak
\ekvsneakPre

One last thing we want to do for \ekvset is to provide macros that just smuggle stuff
after \ekvset’s effects.
237 \long\def\ekvsneak##1##2\ekv@stop#1##3%
238 {%
239 ##2\ekv@stop#1{##3##1}%
240 }
241 \long\def\ekvsneakPre##1##2\ekv@stop#1##3%
242 {%
243 ##2\ekv@stop#1{##1##3}%
244 }

(End definition for \ekvsneak and \ekvsneakPre. These functions are documented on page 5.)

\ekvparse Additionally to the \ekvset macro we also want to provide an \ekvparse macro, that
has the same scope as \keyval_parse:NNn from expl3. This is pretty analogue to the
\ekvset implementation, we just put an \unexpanded here and there instead of other
macros to stop the \expanded on our output.
245 \long\def\ekvparse##1##2##3%
246 {%
247 \ekv@parse##1##2\ekv@mark##3#1\ekv@stop#1%
248 }

(End definition for \ekvparse. This function is documented on page 4.)

\ekv@parse

249 \long\def\ekv@parse##1##2##3#1%
250 {%
251 \ekv@gobble@from@mark@to@stop##3\ekv@endparse\ekv@stop
252 \ekv@parse@other##1##2##3,\ekv@stop,%
253 \ekv@parse##1##2\ekv@mark
254 }

(End definition for \ekv@parse.)

\ekv@endparse

255 \long\def\ekv@endparse
256 \ekv@stop\ekv@parse@other##1,\ekv@stop,\ekv@parse##2\ekv@mark
257 {}

(End definition for \ekv@endparse.)

\ekv@parse@other

258 \long\def\ekv@parse@other##1##2##3,%
259 {%
260 \ekv@gobble@from@mark@to@stop##3\ekv@endparse@other\ekv@stop
261 \ekv@eq@other##3\ekv@nil\ekv@mark\ekv@parse@eq@other@a
262 =\ekv@mark\ekv@parse@eq@active\ekv@stop
263 ##1##2%
264 \ekv@parse@other##1##2\ekv@mark
265 }

(End definition for \ekv@parse@other.)

21

\ekv@parse@eq@other@a
\ekv@parse@eq@other@b 266 \long\def\ekv@parse@eq@other@a##1\ekv@stop

267 {%
268 \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@parse@eq@other@active@a
269 #2\ekv@mark\ekv@parse@eq@other@b\ekv@stop
270 }
271 \long\def\ekv@parse@eq@other@b
272 ##1\ekv@nil\ekv@mark\ekv@parse@eq@other@active@a\ekv@stop\ekv@mark
273 {%
274 \ekv@strip{##1}\ekv@parse@pair
275 }

(End definition for \ekv@parse@eq@other@a and \ekv@parse@eq@other@b.)

\ekv@parse@eq@other@active@a
\ekv@parse@eq@other@active@b 276 \long\def\ekv@parse@eq@other@active@a##1\ekv@stop##2\ekv@nil\ekv@mark

277 {%
278 \ekv@parse@eq@other@active@b{##1}##2=%
279 }
280 \long\def\ekv@parse@eq@other@active@b##1%
281 {%
282 \ekv@strip{##1}\ekv@parse@pair
283 }

(End definition for \ekv@parse@eq@other@active@a and \ekv@parse@eq@other@active@b.)

\ekv@parse@eq@active
\ekv@parse@eq@active@ 284 \long\def\ekv@parse@eq@active

285 ##1\ekv@nil\ekv@mark\ekv@parse@eq@other@a\ekv@stop\ekv@mark
286 {%
287 \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@parse@eq@active@
288 #2\ekv@mark\ekv@parse@noeq\ekv@stop
289 }
290 \long\def\ekv@parse@eq@active@##1\ekv@stop
291 {%
292 \ekv@strip{##1}\ekv@parse@pair
293 }

(End definition for \ekv@parse@eq@active and \ekv@parse@eq@active@.)

\ekv@parse@noeq

294 \long\def\ekv@parse@noeq
295 ##1\ekv@nil\ekv@mark\ekv@parse@eq@active@\ekv@stop\ekv@mark
296 {%
297 \ekv@ifblank@##1\ekv@nil\ekv@ifempty@B\ekv@ifempty@true@F@gobbletwo
298 \ekv@ifempty@A\ekv@ifempty@B\@firstofone
299 {\ekv@strip{##1}\ekv@parse@key}%
300 }

(End definition for \ekv@parse@noeq.)

22

\ekv@endparse@other

301 \long\def\ekv@endparse@other
302 \ekv@stop
303 \ekv@eq@other##1\ekv@nil\ekv@mark\ekv@parse@eq@other@a
304 =\ekv@mark\ekv@parse@eq@active\ekv@stop
305 ##2%
306 \ekv@parse@other##3\ekv@mark
307 {}

(End definition for \ekv@endparse@other.)

\ekv@parse@pair
\ekv@parse@pair@ 308 \long\def\ekv@parse@pair##1##2\ekv@nil

309 {%
310 \ekv@strip{##2}\ekv@parse@pair@{##1}%
311 }
312 \long\def\ekv@parse@pair@##1##2##3##4%
313 {%
314 \unexpanded{##4{##2}{##1}}%
315 }

(End definition for \ekv@parse@pair and \ekv@parse@pair@.)

\ekv@parse@key

316 \long\def\ekv@parse@key##1##2##3%
317 {%
318 \unexpanded{##2{##1}}%
319 }

(End definition for \ekv@parse@key.)
Finally really setting things up with \ekvset’s temporary meaning:

320 }
321 \begingroup
322 \catcode‘\,=13
323 \catcode‘\==13
324 \ekvset,=

\ekvchangeset Provide a macro that is able to switch out the current ⟨set ⟩ in \ekvset. This operation
is slow (by comparison, it should be slightly faster than \ekvsneak), but allows for
something similar to pgfkeys’s ⟨key ⟩/.cd mechanism. However this operation is more
expensive than /.cd as we can’t just redefine some token to reflect this, but have to
switch out the set expandably, so this works similar to the \ekvsneak macros reading
and reinserting the remainder of the ⟨key ⟩=⟨value ⟩ list.
325 \def\ekvchangeset#1%
326 {%
327 \expandafter\ekv@changeset\csname\ekv@undefined@set{#1}\endcsname\ekv@mark
328 }

(End definition for \ekvchangeset. This function is documented on page 5.)

23

\ekv@changeset This macro does the real change-out of \ekvchangeset. We introduced an \ekv@mark to
not accidentally remove some braces which we have to remove again.
329 \long\def\ekv@changeset#1#2\ekv@set@other#3#4\ekv@set#5%
330 {%
331 \ekv@gobble@mark#2\ekv@set@other#1#4\ekv@set#1%
332 }

(End definition for \ekv@changeset.)

\ekv@set@pair \ekv@set@pair gets invoked with the space and brace stripped key-name as its first
argument, the value as the second argument, and the set name as the third argument.
It builds the key-macro name and provides everything to be able to throw meaningful
error messages if it isn’t defined. \ekv@set@pair@ will space and brace strip the value
if the macro is defined and call the key-macro. Else it’ll branch into the check whether
an unknown key handler is defined for this set and that one will branch into the error
messages provided by \ekv@set@pair if it isn’t.
333 \long\def\ekv@set@pair#1#2\ekv@nil#3%
334 {%
335 \expandafter\ekv@set@pair@
336 \csname
337 \ifcsname #3{#1}\endcsname
338 #3{#1}%
339 \else
340 relax%
341 \fi
342 \endcsname
343 {#2}%
344 {%
345 \expandafter\ekv@set@pair@
346 \csname
347 \ifcsname #3{}u\endcsname
348 #3{}u%
349 \else
350 relax%
351 \fi
352 \endcsname
353 {#2}%
354 {%
355 \ekv@ifdefined{#3{#1}N}%
356 \ekv@err@noarg
357 \ekv@err@unknown
358 #3%
359 }%
360 {#1}%
361 }%
362 }
363 \long\def\ekv@set@pair@#1#2%
364 {%
365 \ifx#1\relax
366 \ekv@fi@secondoftwo
367 \fi
368 \@firstoftwo
369 {\ekv@strip{#2}#1}%
370 }

24

(End definition for \ekv@set@pair.)

\ekv@set@key Analogous to \ekv@set@pair, \ekv@set@key builds the NoVal key-macro and provides
an error-branch. \ekv@set@key@ will test whether the key-macro is defined and if so call
it, else the errors are thrown.
371 \long\def\ekv@set@key#1#2%
372 {%
373 \expandafter\ekv@set@key@
374 \csname
375 \ifcsname #2{#1}N\endcsname
376 #2{#1}N%
377 \else
378 relax%
379 \fi
380 \endcsname
381 {%
382 \expandafter\ekv@set@key@
383 \csname
384 \ifcsname #2{}uN\endcsname
385 #2{}uN%
386 \else
387 relax%
388 \fi
389 \endcsname
390 {%
391 \ekv@ifdefined{#2{#1}}%
392 \ekv@err@reqval
393 \ekv@err@unknown
394 #2%
395 }%
396 {#1}%
397 }%
398 }
399 \def\ekv@set@key@#1%
400 {%
401 \ifx#1\relax
402 \ekv@fi@secondoftwo
403 \fi
404 \@firstoftwo#1%
405 }

(End definition for \ekv@set@key.)

\ekvsetdef Provide a macro to define a shorthand to use \ekvset on a specified ⟨set ⟩. The first
macro expands \ekvset twice, such that everything which can be done up to this point
is done.
406 \protected\def\ekvsetdef#1#2%
407 {%
408 \expandafter\expandafter\expandafter
409 \ekv@setdef\expandafter\expandafter\expandafter{\ekvset{#2}{##1}}#1%
410 }

(End definition for \ekvsetdef. This function is documented on page 3.)

25

\ekv@setdef This auxiliary macro defines the shorthand macro after \ekvset got expanded as far as
possible.
411 \protected\def\ekv@setdef#1#2%
412 {%
413 \long\def#2##1{#1}%
414 }

(End definition for \ekv@setdef.)

\ekv@err
\ekv@err@

Since \ekvset is fully expandable as long as the code of the keys is (which is unlikely) we
want to somehow throw expandable errors, in our case via undefined control sequences.
415 \begingroup
416 \edef\ekv@err
417 {%
418 \endgroup
419 \unexpanded{\long\def\ekv@err}##1%
420 {%
421 \unexpanded{\expandafter\ekv@err@\@firstofone}%
422 {\unexpanded\expandafter{\csname ! expkv Error:\endcsname}##1.}%
423 \unexpanded{\ekv@stop}%
424 }%
425 }
426 \ekv@err
427 \def\ekv@err@{\expandafter\ekv@gobbleto@stop}

(End definition for \ekv@err and \ekv@err@.)

\ekv@err@common
\ekv@err@common@
\ekv@err@unknown

\ekv@err@noarg
\ekv@err@reqval

Now we can use \ekv@err to set up some error messages so that we can later use those
instead of the full strings.
428 \long\def\ekv@err@common #1#2{\expandafter\ekv@err@common@\string#2{#1}}
429 \long\def\ekv@err@common@#1‘#2’ #3.#4#5{\ekv@err{#4 (‘#5’, set ‘#2’)}}
430 \long\def\ekv@err@unknown#1#2{\ekv@err@common{unknown key}#1{#2}}
431 \long\def\ekv@err@noarg #1#2{\ekv@err@common{value forbidden}#1{#2}}
432 \long\def\ekv@err@reqval #1#2{\ekv@err@common{value required}#1{#2}}

(End definition for \ekv@err@common and others.)

\ekv@strip
\ekv@strip@a
\ekv@strip@b
\ekv@strip@c

Finally we borrow some ideas of expl3’s l3tl to strip spaces from keys and values. This
\ekv@strip also strips one level of outer braces after stripping spaces, so an input of

{abc} becomes abc after stripping. It should be used with #1 prefixed by \ekv@mark.
Also this implementation at most strips one space from both sides.
433 \def\ekv@strip#1%
434 {%
435 \long\def\ekv@strip##1%
436 {%
437 \ekv@strip@a
438 ##1%
439 \ekv@nil
440 \ekv@mark#1%
441 #1\ekv@nil{}%
442 \ekv@stop
443 }%
444 \long\def\ekv@strip@a##1\ekv@mark#1##2\ekv@nil##3%
445 {%

26

446 \ekv@strip@b##3##1##2\ekv@nil
447 }%
448 \long\def\ekv@strip@b##1#1\ekv@nil
449 {%
450 \ekv@strip@c##1\ekv@nil
451 }%
452 \long\def\ekv@strip@c\ekv@mark##1\ekv@nil##2\ekv@stop##3%
453 {%
454 ##3{##1}%
455 }%
456 }
457 \ekv@strip{ }

(End definition for \ekv@strip and others.)
Now everything that’s left is to reset the category code of @.

458 \catcode‘\@=\ekv@tmp

27

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

E
\ekvbreak . 5, 234
\ekvbreakPostSneak 5, 234
\ekvbreakPreSneak 5, 234
\ekvchangeset 5, 325
\ekvDate 4, 4, 8, 18
\ekvdef . 2, 84
\ekvdefNoVal 2, 84
\ekvdefunknown 3, 84
\ekvdefunknownNoVal 3, 84
\ekvifdefined 4, 82
\ekvifdefinedNoVal 4, 82
\ekvifdefinedset 5, 156
\ekvlet . 3, 84
\ekvletkv . 3, 84
\ekvletkvNoVal 3, 84
\ekvletNoVal 3, 84
\ekvparse . 4, 245
\ekvset 3, 160, 324, 409
\ekvsetdef 3, 406
\ekvsneak . 5, 237
\ekvsneakPre 5, 237
\ekvVersion 4, 4, 8, 18

N
\noexpand . 153

T
TEX and LATEX2ε commands:

\@firstofone 23, 41, 42, 45, 224, 298, 421
\@firstoftwo 23, 40, 59, 368, 404
\@gobble 23, 80
\@secondoftwo 23, 36, 39, 50, 78
\ekv@changeset 327, 329
\ekv@checkvalid 65,
86, 94, 102, 110, 118, 127, 136, 144

\ekv@defsetmacro 89,
97, 105, 113, 122, 131, 139, 147, 150

\ekv@endparse 251, 255
\ekv@endparse@other 260, 301
\ekv@endset 169, 173
\ekv@endset@other 187, 227
\ekv@eq@active . 177, 195, 214, 268, 287

\ekv@eq@other . . 177, 188, 229, 261, 303
\ekv@err 415, 429
\ekv@err@ 415
\ekv@err@common 428
\ekv@err@common@ 428
\ekv@err@noarg 356, 428
\ekv@err@reqval 392, 428
\ekv@err@unknown 357, 393, 428
\ekv@fi@firstoftwo 23
\ekv@fi@gobble 23
\ekv@fi@secondoftwo . . 23, 57, 366, 402
\ekv@gobble@from@mark@to@stop . .

. 23, 169, 187, 251, 260
\ekv@gobble@mark 23, 331
\ekv@gobbleto@stop 23, 427
\ekv@ifblank 47
\ekv@ifblank@ 47, 223, 297
\ekv@ifdefined 53, 82, 83, 158, 355, 391
\ekv@ifempty 33, 67, 73
\ekv@ifempty@ 33, 52
\ekv@ifempty@A 35, 36,
38, 39, 40, 41, 42, 45, 50, 52, 224, 298

\ekv@ifempty@B 35, 36, 38, 39,
40, 41, 42, 45, 49, 50, 223, 224, 297, 298

\ekv@ifempty@false 33
\ekv@ifempty@true 33, 49
\ekv@ifempty@true@F 33
\ekv@ifempty@true@F@gobble . . 33, 223
\ekv@ifempty@true@F@gobbletwo 33, 297
\ekv@mark 31,
32, 52, 165, 171, 174, 177, 179, 181,
183, 188, 189, 191, 195, 196, 199,
203, 212, 214, 215, 221, 229, 230,
232, 247, 253, 256, 261, 262, 264,
268, 269, 272, 276, 285, 287, 288,
295, 303, 304, 306, 327, 440, 444, 452

\ekv@name 5, 61, 82, 83, 88, 96,
104, 112, 120, 121, 129, 130, 138, 146

\ekv@name@key 5, 61, 153
\ekv@name@set 5, 61, 153
\ekv@nil 49, 188, 195, 199, 203, 212,
214, 221, 223, 229, 261, 268, 272,
276, 285, 287, 295, 297, 303, 308,
333, 439, 441, 444, 446, 448, 450, 452

28

\ekv@parse 247, 249, 256
\ekv@parse@eq@active . . . 262, 284, 304
\ekv@parse@eq@active@ 284, 295
\ekv@parse@eq@other@a

. 261, 266, 285, 303
\ekv@parse@eq@other@active@a . . .

. 268, 272, 276
\ekv@parse@eq@other@active@b . . . 276
\ekv@parse@eq@other@b 266
\ekv@parse@key 299, 316
\ekv@parse@noeq 288, 294
\ekv@parse@other . . 252, 256, 258, 306
\ekv@parse@pair . . . 274, 282, 292, 308
\ekv@parse@pair@ 308
\ekv@set 164, 167, 174, 329, 331
\ekv@set@eq@active 189, 211, 230
\ekv@set@eq@active@ 211, 221
\ekv@set@eq@other@a 188, 193, 212, 229
\ekv@set@eq@other@active@a

. 195, 199, 203
\ekv@set@eq@other@active@b 203
\ekv@set@eq@other@b 193

\ekv@set@key 225, 371
\ekv@set@key@ 373, 382, 399
\ekv@set@noeq 215, 221
\ekv@set@other

. 170, 174, 185, 232, 329, 331
\ekv@set@pair 201, 209, 219, 333
\ekv@set@pair@ 335, 345, 363
\ekv@setdef 409, 411
\ekv@stop 30, 32, 165, 169, 170,
174, 177, 179, 181, 183, 187, 189,
193, 196, 199, 203, 212, 215, 217,
221, 228, 230, 234, 235, 236, 237,
239, 241, 243, 247, 251, 252, 256,
260, 262, 266, 269, 272, 276, 285,
288, 290, 295, 302, 304, 423, 442, 452

\ekv@strip 201, 209, 219,
225, 274, 282, 292, 299, 310, 369, 433

\ekv@strip@a 433
\ekv@strip@b 433
\ekv@strip@c 433
\ekv@tmp 1, 69, 75, 458
\ekv@undefined@set . 64, 89, 97, 105,
113, 122, 131, 139, 147, 158, 164, 327

29

	Contents
	1 Documentation
	1.1 Setting up Keys
	1.2 Parsing Keys
	1.3 Miscellaneous
	1.3.1 Other Macros
	1.3.2 Bugs
	1.3.3 Comparisons

	1.4 Examples
	1.4.1 Standard Use-Case
	1.4.2 An Expandable <key>=<value> Macro Using \ekvsneak

	1.5 Error Messages
	1.5.1 Load Time
	1.5.2 Defining Keys
	1.5.3 Using Keys

	1.6 License

	2 Implementation
	2.1 The LaTeX Package
	2.2 The Generic Code

	Index
	E
	N
	T

