expkvIcs

define expandable (key)=(value) macros using expkv

Jonathan P. Spratte®

2020-04-05 V0.2

Abstract

expkvics provides two small interfaces to define expandable (key)=(value) macros
using expkv. It therefore lowers the entrance boundary to expandable (key)=(value)
macros. The stylised name is expgvics but the files use expkv-cs, this is due to CTAN-
rules which don’t allow | in package names since that is the pipe symbol in *nix shells.

Contents

1 Documentation
Define Macros and Primary Keys

1.1

1.2

1.3
1.4
1.5
1.6

1.7

1.1.1
1.1.2
1.1.3

Secondary Keys

1.2.1
1.2.2

Example
Speed Considerations Lo
Useless Macros e
Bugs
License o o o e

Primary Keys e
Split. . . o
Hash

p-type Prefixes
t-type Prefixes

O O O U Ul B~ WWND NN

2 Implementation 10
The ISTEX Package o 10
22 TheGenericCode 10

2.1

Index

2.2.1
2.2.2
2.2.3
2.2.4

Secondary Key Types 20
Helper Macros i ittt 21
Assertions e 22
Messages e 22

*jspratte@yahoo.de

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs

1 Documentation

The expiv package enables the new possibility of creating (key)=(value) macros which
are fully expandable. The creation of such macros is however cumbersome for the
average user. expkvics tries to step in here. It provides interfaces to define (key)=(value)
macros without worrying too much about the implementation. In case you’re wondering
now, the cs in expyvics stands for control sequence, because def was already taken by
expkvIiDer and “control sequence” is the term D. E. Knuth used in his TgXbook for named
commands hence macros (though he also used the term “macro”). So expkvics defines
control sequences for and with expyv.

There are two different approaches supported by this package. The first is splitting
the keys up into individual arguments, the second is providing all the keys as a single
argument to the underlying macro and getting an individual (value) by using a hash.
Well, actually there is no real hash, just some markers which are parsed, but this shouldn’t
be apparent to the user, the behaviour matches that of a hash-table.

In addition to these two methods of defining a macro with primary keys a way
to define secondary keys, which can reference the primary ones, is provided. These
secondary keys don’t correspond to an argument or an entry in the hash table directly
but might come in handy for the average use case. Each macro has its own set of primary
and secondary keys.

A word of advice you should consider: If your macro doesn’t have to be expandable
(and often it doesn’t) don’t use expkvics. The interface has some overhead (though it
still can be considered fast — check subsection 1.4) and the approach has its limits in
versatility. If you don’t need to be expandable, you should consider either defining your
keys manually using expyv or using expkviper for convenience. Or you resort to another
(key)=(value) interface.

expkvics is usable as generic code and as a IXTgX package. It’ll automatically load
expkv in the same mode as well. To use it, just use one of

\usepackage{ expkv—cs} % LaTeX
\input expkv—cs % plainTeX

1.1 Define Macros and Primary Keys

All macros defined with expgvics have to be previously undefined or have the \meaning
of \relax. This is necessary as there is no way to undefine keys once they are set up
(neither expyv nor expgvics keep track of defined keys) — so to make sure there are no
conflicts only new definitions are allowed (that’s not the case for individual keys, only
for frontend macros).

1.1.1 Primary Keys

In the following descriptions there will be one argument named (primary keys). This
argument should be a (key)=(value) list where each (key) will be one primary key and
(value) the associated initial value. By default all keys are defined short, but you can
define long keys by prefixing (key) with long (e.g., long name=Jonathan P. Spratte).
You only need long if the key should be able to take a \par token. Note however that
long keys are a microscopic grain faster (due to some internals of expkvics). Only if at
least one of the keys was long the (cs) in the following defining macros will be \1long.
For obvious reasons there is no possibility to define a macro or key as \protected.

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs

\ekvcSplit

\ekvcSplitAndForward

\ekvcHash

At the moment expivics doesn’t require any internal keys, but I can’t foresee whether
this will be the case in the future as well, as it might turn out that some features I deem
useful can’t be implemented without such internal keys. Because of this, please don’t use
key names starting with EKVC| as that should be the private name space.

1.1.2 Split

The split variants will provide the key values as separate arguments. This limits the
number of keys for which this is truly useful.

\ekvcSplit(cs){(primary keys)}{(definition)}

This defines (cs) to be a macro taking one mandatory argument which should contain
a (key)=(value) list. The (primary keys) will be defined for this macro (see subsub-
section 1.1.1). The (definition) is the code that will be executed. You can access the
(value) of a (key) by using a macro parameter from #1 to #9. The order of the macro
parameters will be the order provided in the (primary keys) list (so #1 is the (value)
of the key defined first). With \ekvcSplit you can define macros using at most nine
primary keys.

\ekvcSplit(csy) csy){(primary keys)}

This defines (cs;) to be a macro taking one mandatory argument which should contain
a (key)=(value) list. You can use as many primary keys as you want with this. The
primary keys will be forwarded to (cs;) as braced arguments (as many as necessary for
your primary keys). The order of the braced arguments will be the order of your primary
key definitions.

1.1.3 Hash

The hash variants will provide the key values as a single argument in which you can access
specific values using a special macro. The implementation might be more convenient and
scale better, but it is much slower (for a primitive macro with a single key benchmarking
was almost 1.7 times slower, the root of which being the key access with \ekvcValue,
not the parsing, and for a key access using \ekvcValueFast it was still about 1.2 times
slower). So if your macro uses less than ten primary keys, you should most likely use the
split approach.

\ekvcHash{cs){(primary keys)}{(definition)}

This defines (cs) to be a macro taking one mandatory argument which should contain a
(key)=(value) list. You can use as many primary keys as you want. The primary keys
will be forwarded as a single argument containing every key to the underlying macro.
The underlying macro is defined as (definition), in which you can access the (value)
of a (key) by using \ekvcValue{(key)}{#1}.

https://github.com/Skillmon/tex_expkv-cs

\ekvcHashAndForward

\ekvcValue

\ekvcValueFast

\ekvcValueSplit

\ekvcValueSplitFast

\ekvcHashAndForward(cs){csy){(primary keys)}

This defines (cs;) to be a macro taking one mandatory argument which should contain
a (key)=(value) list. You can use as many primary keys as you want. The primary
keys will be forwarded as a single argument containing every key to the underlying
macro. For the underlying macro (cs;) is used (so this will provide the key list as a single
argument to {cs;)). In the underlying macro you can access the (value) of a (key) by
using \ekvcValue{(key)}{#1}.

\ekvcValue{(key)}(key list)}

This is a safe (but slow) way to access your keys in a hash variant. (key) is the key which’s
(value) you want to use out of the (key list). (key list) should be the key list
argument forwarded to your underlying macro by \ekvcHash or \ekvcHashAndForward.
It will be tested whether the hash function to access that (key) exists, the (key) argument
is not empty, and that the (key 1ist) really contains a (value) of that (key). This macro
needs exactly two steps of expansion.

\ekvcValueFast{(key)}{(key list)}

This behaves just like \ekvcValue, but without any safety tests. As a result this is about
1.4 times faster but will throw low level TEX errors eventually if the hash function isn’t
defined or the (key) isn’t part of the (key list) (e.g., because it was defined as a key for
another macro - all macros share the same hash function per (key)). Use it if you know
what you’re doing. This macro needs exactly three steps of expansion in the no-errors
case.

\ekvcValueSplit{(key)}{(key list)}{(next)}

If you need a specific (key) from a (key list) more than once, it'll be a good idea
to only extract it once and from then on keep it as a separate argument. Hence the
macro \ekvcValueSplit will extract one specific (key)’s value from the list and forward
the remainder of the list as the first and the (key)’s value as the second argument to
(next), so the result of this will be (next){(key list’)}{(value)} with (key list’)
the remaining list. This is almost as fast as \ekvcValue and runs the same tests. Keep in
mind that you can’t fetch for the same (key) again from (key list’) as it got removed.

\ekvcValueSplitFast{(key)}{(key list)}{(next)}

This behaves just like \ekvcValueSplit, but it won’t run the same tests, hence it is faster
but more error prone, just like the relation between \ekvcValue and \ekvcValueFast.

1.2 Secondary Keys

To remove some of the limitations with the approach that each primary key matches an
argument or hash entry, you can define secondary keys. Those have to be defined for
each macro but it doesn’t matter whether that macro was a split or a hash variant. If a
secondary key references another key it doesn’t matter whether that other key is primary
or secondary.

Secondary keys can have a prefix (like long) which are called p-type prefix and must
have a type (like meta) which are called t-type prefix. Some types might require some
p-prefixes, while others might forbid those.

\ekvcSecondaryKeys

long

meta

nmeta

alias

default

Please keep in mind that key names shouldn’t start with EKVC].

\ekvcSecondaryKeys(cs){(key)=(value), ...}

This is the front facing macro to define secondary keys. For the macro (cs) define (key)
to have definition (value). The general syntax for (key) should be

(prefix) (name)

Where (prefix) is a space separated list of optional p-type prefixes followed by one
t-type prefix. The syntax of (value) is dependent on the used t-prefix.

1.2.1 p-type Prefixes

There is only one p-prefix available, which is long.

The following key will be defined \long.

1.2.2 t-type Prefixes

If you're familiar with expgviper you'll notice that the t-type prefixes provided here
are much fewer. The expansion only concept doesn’t allow for great variety in the
auto-defined keys.

The syntax examples of the t-prefixes will show which p-prefix will be automatically
used by printing those black (1ong), which will be available in grey (1ong), and which
will be disallowed in red (long). This will be put flush right next to the syntax line.

meta (key) = {(key)=(value), ...} long

With a meta key you can set other keys. Whenever (key) is used the keys in the
(key)=(value) list will be set to the values given there. You can use the (value) given to
(key) by using #1 in the (key)=(value) list. The keys in the (key)=(value) list can be
primary and secondary ones.

nmeta (key) = {(key)=(value), ...} long

An nmeta key is like a meta key, but it doesn’t take a value, so the (key)=(value) list is
static.

alias (key) = (keyp) long

This assigns the definition of (key,) to (key). As a result (key) is an alias for (key,)
behaving just the same. Both the value taking and the NoVal version (that’s expkv slang
for a key not accepting a value) will be copied if they are defined when alias is used. Of
course, (key,) has to be defined, be it as a primary or secondary one.

default (key) = {(default)} long

If (key) is a defined value taking key, you can define a NoVal version with this that will
behave as if (key) was given (default) as its (value). Note that this doesn’t change the
initial values of primary keys set at definition time in \ekvcSplit and friends. (key) can
be a primary or secondary key.

https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv

1.3 Example

How could a documentation be a good documentation without some basic examples? Say
we want to define a small macro expanding to some character description (who knows
why this has to be expandable?). A character description will not have too many items to
it, so we use \ekvcSplit.

\ekvcSplit\character

{
name=John Doe,
age=any,
nationality=the Universe,
hobby=to exist,
type=Mister,
pronoun=He,
possessive=his,

}

{%
#1 is a #5 from #3. #6 is of #2 age and #7 hobby is #4.\par

}

Also we want to give some short cuts so that it’s easier to describe several persons.

\ekvcSecondaryKeys\character
{
alias pro = pronoun,
alias pos = possessive,
nmeta me =
{
name=Jonathan P. Spratte,
age=a young,
nationality=Germany,
hobby=\TeX\ coding,
s
meta lady =
{ type=Lady, pronoun=She, possessive=her, name=Jane Doe, #1},
nmeta paulo =
{
name=Paulo,
type=duck,
age=a young,
nationality=Brazil ,
hobby=to quack,

/
Now we can describe people using

\character{}
\character{me}
\character{paulo}
\character
{ lady={ name=Evelyn , nationality=Ireland ,age=the best, hobby=reading}}

\character
{
name=Our sun, type=star, nationality=our solar system, pro=It,
age=an old, pos=its, hobby=shining
/

As one might see, the 1ady key could actually have been an nmeta key as well, as all that
is done with the argument is using it as a (key)=(value) list.

Using xparse and forwarding arguments one can easily define (key)=(value) macros
with actual optional and mandatory arguments as well. A small nonsense example
(which should perhaps use \ekvcSplitAndForward instead of \ekvcHashAndForward
since it only uses four keys and one other argument — and isn’t expandable since it uses a
tabular environment):

\usepackage{ xparse}

\makeatletter

\NewExpandableDocumentCommand\nonsense{Of } m}{ \nonsense@a{#1}{#2}}
\ekvcHashAndForward\nonsense@a\nonsense@b

{

keyA = A,

keyB = B,

keyC = ¢,

keyD = d,
}

\newcommand=\nonsense@b|[2]

{%

\begin{ tabular}{ 111}
key & A & \ekvcValuef keyA}{#1} \\
& B & \ekveValuef keyB}{#1} \\
& C & \ekveValuef keyClH{#1} \\
& D & \ekvcValuef keyD} { #1} \\
\multicolumn{ 2}{ 1 }{ mandatory} & #2 \\
\end{ tabular}\par
}

\makeatother
And then we would be able to do some nonsense:

\nonsensef }

\nonsense[keyA=hihi J{ haha}
\nonsense[keyA=hihi, keyB=A]{ hehe}

\nonsense [keyC=huhu, keyA=hihi, keyB=A]{haha}

1.4 Speed Considerations

As already mentioned in the introduction there are some speed considerations implied if
you choose to define macros via expgvics. However the overhead isn’t the factor which
should hinder you to use expgvics if you found a reasonable use case. The key-parsing
is still faster than with most other (key)=(value) packages (see the “Comparisons”
subsection in the expkv documentation).

The speed considerations in this subsection use the first example in this documen-
tation as the benchmark. So we have seven keys and a short sentence which should be

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv

typeset. For comparisons I use the following equivalent expiviper definitions. Each result
is the average between changing no keys from their initial values and altering four. Fur-
thermore I'll compare three variants of expivics with the expiviper definitions, namely
the split example from above, a hash variant using \ekvcValue and a hash variant using
\ekvcValueFast.

\usepackage{ expkv—def}

\ekvdefinekeys{ keys}
{%
,store name = \KEYSname
,initial name = John Doe
,Store age = \KEYSage
,initial age = any
,store nationality = \KEYSnationality
,initial nationality = the Universe
,store hobby = \KEYShobby
,initial hobby = to exist
,store type = \KEYStype
,initial type = Mister
,store pronoun = \KEYSpronoun
,initial pronoun = He
,store possessive = \KEYSpossessive
,initial possessive = his
/
\newcommand=+\KEYS[1 |
{%
\begingroup
\ekvset{ keys}{#1}%
\KEYSname\ is a \KEYStype\ from \KEYSnationality. \KEYSpronoun\ is
of \KEYSage\ age and \KEYSpossessive\ hobby is \KEYShobby.%
\endgroup
/

The first comparison removes the typesetting part from all the definitions, so
that only the key parsing is compared. In this comparison the \ekvcValue and
\ekvcValueFast variants will not differ, as they are exactly the same until the key
usage. We find that the split approach is 1.4 times slower than the expivIiper setup and
the hash variants end up in the middle at 1.17 times slower.

Next we put the typesetting part back in. Every call of the macros will typeset
the sentences into a box register in horizontal mode. With the typesetting part (which
includes the accessing of values) the fastest remains the expiviper definitions, but split
is close at 1.16 times slower, followed by the hash variant with fast accesses at 1.36
times slower, and the safe hash access variant ranks in the slowest 1.8 times slower than
€XPKVIDEF.

Just in case you’re wondering now, a simple macro taking seven arguments is 30 to
40 times faster than any of those in the argument grabbing and (key)=(value) parsing
part and only 1.5 to 2.8 times faster if the typesetting part is factored in. So the real
choke isn’t the parsing.

So to summarize this, if you have a reasonable use case for expandable (key)=(value)
parsing macros you should go on and define them using expjvics. If you have a rea-
sonable use case for (key)=(value) parsing macros but defining them expandable isn’t

https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-cs

\ekvcDate
\ekvcVersion

necessary for your use you should take advantage of the greater flexibility of non-
expandable (key)=(value) setups (but if you're after maximum speed there aren’t that
many (key)=(value) parsers beating expkvics). And if you are after maximum per-
formance maybe ditching the (key)=(value) interface altogether is a good idea, but
depending on the number of arguments your interface might get convoluted.

1.5 Useless Macros

Perhaps these macros aren’t completely useless, but I figured from a user’s point of view
I wouldn’t know what I should do with these.

These two macros store the version and the date of the package/generic code.

1.6 Bugs

Of course I don’t think there are any bugs (who would knowingly distribute buggy
software as long as he isn’t a multi-million dollar corporation?). But if you find some
please let me know. For this one might find my email address on the first page or file an
issue on Github: https://github.com/Skillmon/tex_expkv-cs

1.7 License
Copyright © 2020 Jonathan P. Spratte

This work may be distributed and/or modified under the conditions of the IATEX Project
Public License (LPPL), either version 1.3c of this license or (at your option) any later
version. The latest version of this license is in the file:
http://www.latex-project.org/lppl.txt
This work is “maintained” (as per LPPL maintenance status) by
Jonathan P. Spratte.

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
http://www.latex-project.org/lppl.txt

\ekvcVersion
\ekvcDate

2 Implementation

2.1 The BTEX Package

Just like for exprv we provide a small IATEX package that sets up things such that we
behave nicely on IATEX packages and files system. It’ll \input the generic code which
implements the functionality.
. \RequirePackage{expkv}
. \def\ekvc@tmp
AV
4 \ProvidesFile{expkv-cs.tex}%
%
6 \ekvcDate\space v\ekvcVersion\space
define expandable key=val macros using expkv
1%
,)
1o \input{expkv-cs.tex}
.+ \ProvidesPackage{expkv-cs},
(%
13 \ekvcDate\space v\ekvcVersion\space
14 define expandable key=val macros using expkv’,

s]

2.2 The Generic Code

The rest of this implementation will be the generic code.

Load expyv if the package didn’t already do so — since expyv has safeguards against
being loaded twice this does no harm and the overhead isn’t that big. Also we reuse some
of the internals of expiv to save us from retyping them.

6 \input expkv

We make sure that expkv-cs.tex is only input once:
. \expandafter\ifx\csname ekvcVersion\endcsname\relax
& \else

\expandafter\endinput
2o \fi

We’re on our first input, so lets store the version and date in a macro.
.. \def\ekvcVersion{0.2}
.. \def\ekvcDate{2020-04-05}

(End definition for \ekvcVersion and \ekvcDate. These functions are documented on page 9.)

If the BXTEX format is loaded we want to be a good file and report back who we are,
for this the package will have defined \ekvc@tmp to use \ProvidesFile, else this will
expand to a \relax and do no harm.

>; \csname ekvc@tmp\endcsname
Store the category code of @ to later be able to reset it and change it to 11 for now.

. \expandafter\chardef\csname ekvc@tmp\endcsname=\catcode‘\@
> \catcode‘\@=11

\ekvc@tmp will be reused later, but we don’t need it to ever store information long-term
after expivics was initialized.

10

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs

\ekvcOkeycount We'll need to keep count how many keys must be defined for each macro in the split
variants.

s \newcount\ekvc@keycount

(End definition for \ekvc@keycount.)

\ekvc@long Some macros will have to be defined long. These two will be let to \long when this
\ekvc@any@long should be the case.

>, \def\ekvc@long{}
.5 \def\ekvc@any@long{}

(End definition for \ekvc@long and \ekvc@any@long.)

\ekvcSplitAndForward The first user macro we want to set up can be reused for \ekvcSplit. We'll split this one
up so that the test whether the macro is already defined doesn’t run twice.

:s \protected\long\def\ekvcSplitAndForward#1#2#3

o 1%
\ekv@ifdefined{\expandafter\@gobble\string#1}%

j2 {\ekvc@err@already@defined{#1}}/

33 {\ekvcSplitAndForward@{#1}{#2}{#3}}%

T

(End definition for \ekvcSplitAndForward. This function is documented on page 3.)

\ekvcSplitAndForwvarde The actual macro setting up things. We need to set some variables, forward the key
list to \ekvc@SetupSplitKeys, and afterwards define the front facing macro to call
\ekvset and put the initials and the argument sorting macro behind it. The inter-
nals \ekvc@any@long, \ekvc@initials and \ekvc@keycount will be set correctly by
\ekvc@SetupSplitKeys.

;> \protected\long\def\ekvcSplitAndForwardQ#1#2#3
s 1k
\edef\ekvc@set{\string#1}J,
\ekvc@SetupSplitKeys{#3}%
39 \ekvc@any@long\edef#1##1%
40 {h
41 \unexpanded{\ekvset}{\ekvc@set}{##11}/,
e \unexpanded\expandafter
4 {\csname ekvc@split@\the\ekvc@keycount\endcsname},
44 \unexpanded\expandafter{\ekvc@initials{}#21}/,
a5 Y
46 }

(End definition for \ekvcSplitAndForward@.)

\ekvcSplit The first half is just \ekvcSplitAndForward then we define the macro to which the
parsed key list is forwarded. There we need to allow for up to nine arguments.

- \protected\long\def\ekvcSplit#1#2#3J,
R VA
49 \ekv@ifdefined{\expandafter\@gobble\string#1}%
S0 {\ekvc@err@already@defined{#1}}/
3 Tk

\expandafter

\ekvcSplitAndForward@\expandafter#1l\csname ekvc@\string#1l\endcsname{#21}7,
4 \ifnum\ekvc@keycount=0

11

\def\ekvcO@tmp##1##{}/
6 \else
\ifnum\ekvc@keycount>9
58 \ekvc@errQ@toomany{#11}J
59 \ekvc@defarggobbler9y
60 \else
61 \expandafter\ekvc@defarggobbler\the\ekvc@keycount
62 \fi
63 \fi
64 \ekvc@any@long\expandafter
65 \def\csname ekvc@\string#l\expandafter\endcsname
66 \ekvcQtmp## 1 ##2##3##AH##DHHOHH T HH#BHHIY,
67 {#3}%
68 Y
69 }

(End definition for \ekvcSplit. This function is documented on page 3.)

\ekvcOSetupSplitkeys These macros parse the list of keys and set up the key macros. First we need to initialise
\ekvc@SetupSplitKeysCa some macros and start \ekvparse.
\ekvc@SetupSplitKeys@b . \protected\long\def\ekvc@SetupSplitKeys#1Y
\ekvc@SetupSplitKeys@c {%
72 \ekvc@keycount=0
. \def\ekvc@any@long{}%
- \def\ekvc@initials{}/,
\ekvparse\ekvc@err@value@required\ekvc@SetupSplitKeysQa{#11}/,

Then we need to step the key counter for each key. Also we have to check whether this
key has a long prefix so we initialise \ekvc@long.
;7 \protected\def\ekvc@SetupSplitKeysQa#1
s {h
; \advance\ekvc@keycount1l
8o \def\ekvc@long{}%
81 \ekvc@ifspace{#1}/,

{\ekvc@SetupSplitKeys@b#1\ekvc@stopl}y,
83 {\ekvc@SetupSplitKeys@c{#1}}/,
84 }
If there was a space, there might be a prefix. If so call the prefix macro, else call the next
step \ekvc@SetupSplitKeys@c which will define the key macro and add the key’s value
to the initials list.
ss \protected\def\ekvc@SetupSplitKeys@b#1l #2\ekvc@stop
86 {%
87 \ekv@ifdefined{ekvc@split@p@#1}J
g {\csname ekvc@split@p@#1\endcsname{#2}}%
89 {\ekvc@SetupSplitKeysQc{#1 #2}}/,
o}
The inner definition is grouped, because we don’t want to actually define the marks we
build with \csname. We have to append the value to the \ekvc@initials list here with
the correct split mark. The key macro will read everything up to those split marks and
change the value following it to the value given to the key. Additionally we’ll need a
sorting macro for each key count in use so we set it up with \ekvc@setup@splitmacro.

o \protected\long\def\ekvc@SetupSplitKeysQc#1#2,

12

\ekvc@split@p@long

\ekvc@defarggobbler

o %
o3 \begingroup
94 \edef\ekvc@tmp
95 Tk
96 \endgroup
\long\def\unexpanded{\ekvc@tmp}###1####2,
o8 \unexpanded\expandafter
99 {\csname ekvc@splitmark@\the\ekvc@keycount\endcsnamel}####3%
100 {h
101 ####2],
102 \unexpanded\expandafter
103 {\csname ekvc@splitmark@\the\ekvc@keycount\endcsnamel}{####11}7,
104 Yh

The short variant needs a bit of special treatment. The key macro will be short to throw
the correct error, but since there might be long macros somewhere the reordering of
arguments needs to be long, so for short keys we use a two step approach, first grabbing
only the short argument, then reordering.

105 \unless\ifx\ekvc@long\long

106 \let\unexpanded\expandafter

107 {\csname ekvc@\ekvc@set (#1)\endcsname\ekvc@tmp}y,

o8 \def \unexpanded{\ekvc@tmp}###i#1},

109 {h

110 \unexpanded\expandafter{\csname ekvc@\ekvc@set (#1)\endcsnamelj,
1 {####1}7,

112 Yh

113 \fi

™ \def\unexpanded{\ekvc@initials}}

115 {h

116 \unexpanded\expandafter{\ekvc@initials}%

17 \unexpanded\expandafter

118 {\csname ekvc@splitmark@\the\ekvc@keycount\endcsname{#2}}%
119 Yh

120 Y

121 \ekvc@tmp

122 \ekvlet\ekvc@set{#1}\ekvcQtmp

123 \expandafter\ekvc@setup@splitmacro\expandafter{\the\ekvc@keycountl}y,

(End definition for \ekvc@SetupSplitKeys and others.)

The long prefix lets the internals \ekvc@long and \ekvc@any@long to \long so that the
key macro will be long.

.5 \protected\def\ekvc@split@p@long

s {h

127 \let\ekvc@long\long

\let\ekvc@any@long\long
129 \ekvc@SetupSplitKeys@c
130 ¥

(End definition for \ekvc@split@p@long.)

This is needed to define a macro with 1-9 parameters programmatically. IATgX'’s
\newcommand does something similar for example.

.51 \protected\def\ekvc@defarggobbler#i{\def\ekvcOtmp##1#1##2##{##1#1}}

13

\ekvc@setup@splitmacro
\ekvc@split@1

\ekvcHashAndForward

\ekvcHashAndForward@

(End definition for \ekvc@defarggobbler.)

Since the first split macro is different from the others we manually set that one up now.
All the others will be defined as needed (always globally). The split macros just read up
until the correct split mark, move that argument into a list and reinsert the rest, calling
the next split macro afterwards.

15> \begingroup

153 \edef\ekvc@tmp

e Lk

135 \long\gdef\unexpanded\expandafter{\csname ekvc@split@l\endcsnamelj,

136 \unexpanded\expandafter{\csname ekvc@splitmark@l\endcsnamel},

- HH1HH#2HH#3Y,
158 {##3{##1}##2}Y,
139 }

10 \ekvc@tmp

11 \endgroup
1> \protected\def\ekvc@setup@splitmacro#l

PR ¥

144 \ekv@ifdefined{ekvc@split@#1}{}/,

145 Tk

146 \begingroup

147 \edef\ekvc@tmp

: {h

149 \long\gdef

150 \unexpanded\expandafter{\csname ekvc@split@#1\endcsnamely,
151 #it##t 1Y,

152 \unexpanded\expandafter{\csname ekvc@splitmark@#1\endcsnamel}’,
153 HE#H2HHH#IY,

154 Tk

- \unexpanded\expandafter

156 {\csname ekvc@split@\the\numexpr#1-1\relax\endcsnamely,
- L { {###H 2 ####3)Y,

158 Y

159 Yh

160 \ekvc@tmp

161 \endgroup

162 }%

R

(End definition for \ekvc@setup@splitmacro and \ekvc@split@1.)

\ekvcHashAndForward works just like \ekvcSplitAndForward.
.6, \protected\long\def\ekvcHashAndForward#1#2#3,

ws o {h

166 \ekv@ifdefined{\expandafter\Q@gobble\string#1}y

167 {\ekvc@err@already@defined{#1}}/

168 {\ekvcHashAndForward@{#1}{#2}{#3}}%

YRR

(End definition for \ekvcHashAndForward. This function is documented on page 4.)

This is more or less the same as \ekvcHashAndForward@. Instead of an empty group we
place a marker after the initials, we don’t use the sorting macros of split, but instead
pack all the values in one argument.

14

170 \protected\long\def\ekvcHashAndForward@#1#2#3,
g %

172 \edef\ekvc@set{\string#1}J,

- \ekvc@SetupHashKeys{#3}%

174 \ekvc@any@long\edef#1##1%

175 Lk

176 \unexpanded{\ekvset}{\ekvc@set}{##11}/,

177 \unexpanded{\ekvc@hash@pack@argument}’,

178 \unexpanded\expandafter{\ekvc@initials\ekvc@stop#2}/,
179 Y

180 ¥

(End definition for \ekvcHashAndForward@.)

\ekvcHash \ekvcHash does the same as \ekvcSplit, but has the advantage of not needing to count
arguments, so the definition of the internal macro is a bit more straight forward.
2. \protected\long\def\ekvcHash#1#2#3J,

iV
183 \ekv@ifdefined{\expandafter\@gobble\string#1}%
184 {\ekvc@err@already@defined{#1}}/,
185 4
186 \expandafter
187 \ekvcHashAndForward@\expandafter#1l\csname ekvc@\string#1l\endcsname{#21}
88 \ekvc@any@long\expandafter\def\csname ekvc@\string#1l\endcsname##1{#31}},
189 Y
0}

(End definition for \ekvcHash. This function is documented on page 3.)

\ekvc@hash@pack@argument All this macro does is pack the values into one argument and forward that to the next
macro.
101 \long\def\ekvc@hash@pack@argument#1\ekvcO@stop#2{#2{#1}}

(End definition for \ekvc@hash@pack@argument.)

\ekvceSetupHashKeys This should look awfully familiar as well, since it’s just the same as for the split keys
\ekvc@SetupHashKeys@a with a few other names here and there.

\ekvc@SetupHashKeys@b ... \protected\long\def\ekvc@SetupHashKeys#1%
s %
104 \def\ekvc@any@long{}%
\def\ekvc@initials{}%
196 \ekvparse\ekvc@err@value@required\ekvc@SetupHashKeysQa{#11}7
w7}
108 \protected\def\ekvc@SetupHashKeysQa#1,
oo %
200 \def\ekvc@long{}%
2on \ekvc@ifspace{#1}%
202 {\ekvc@SetupHashKeys@b#1\ekvc@stop}
203 {\ekvc@SetupHashKeysQc{#1}}%
EOR
205 \protected\def\ekvc@SetupHashKeys@b#1 #2\ekvc@stop
206 {%
207 \ekvQ@ifdefined{ekvc@hash@p@#1}7
208 {\csname ekvc@hash@p@#1\endcsname{#2}1}/
209 {\ekvc@SetupHashKeysQc{#1 #2}}/

15

Yes, even the defining macro looks awfully familiar. Instead of numbered we have
named marks. Still the key macros grab everything up to their respective mark and
reorder the arguments. The same quirk is applied for short keys. And instead of the
\ekvc@setup@splitmacro we use \ekvc@setup@hashmacro.

2 \protected\long\def\ekvc@SetupHashKeys@c#1#2/,
2o L
13 \begingroup
214 \edef\ekvc@tmp
215 Tk
16 \endgroup
217 \long\def\unexpanded{\ekvc@tmp}##i##1####27,
218 \unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname}####3,
219 {h
HHH#2Y,
221 \unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsnamel}{####1}7,

Yh
2 \unless\ifx\ekvc@long\long
224 \let\unexpanded\expandafter
225 {\csname ekvc@\ekvc@set (#1)\endcsname\ekvc@tmp}y,
226 \def\unexpanded{\ekvc@tmp}###i#1Y
227 {h
228 \unexpanded\expandafter{\csname ekvc@\ekvc@set (#1)\endcsnamelj,
2ao {####13}Y,
230 Yh

\fi
\def\unexpanded{\ekvc@initials}y,

VA
234 \unexpanded\expandafter{\ekvc@initials}%
235 \unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname{#2}1}/,
236 Y
. 34,
238 \ekvc@tmp
0 \ekvlet\ekvc@set{#1}\ekvc@tmp
2a0 \ekvc@setup@hashmacro{#1}%
DR

(End definition for \ekvc@SetupHashKeys, \ekvc@SetupHashKeys@a, and \ekvc@SetupHashKeys@b.)

\ekvc@hash@p@long Nothing astonishing here either.
;- \protected\def\ekvc@hash@p@long
s L
244 \let\ekvc@long\long
245 \let\ekvc@any@long\long
46 \ekvc@SetupHashKeys@c
D

(End definition for \ekvc@hash@p@long.)

\ekvc@setupChashmacro The safe hash macros will be executed inside of a \romannumeral expansion context, so
they have to insert a stop mark for that once they are done. Most of the tests which have
to be executed will already be done, but we have to play safe if the hash doesn’t show
up in the hash list. Therefore we use some \ekvc@marks and \ekvc@stop to throw errors
if the hash isn’t found in the right place. The fast variants have an easier life and just
return the correct value.

16

.2 \protected\def\ekvc@setup@hashmacro#17

276

\ekv@ifdefined{ekvc@hash@#1}{}V

\begingroup
\edef\ekvc@tmp
{h

\long\gdef
\unexpanded\expandafter{\csname ekvc@fasthash@#1\endcsnamel},
###1Y,
\unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname}y,
####2####3 \unexpanded{\ekvc@stop}’
{####2}7,
\long\gdef
\unexpanded\expandafter{\csname ekvc@safehash@#1\endcsnamel},
#H#1Y,
{h
\unexpanded\expandafter{\csname ekvc@@safehash@#1\endcsnamel}y,
####1\unexpanded{\ekvcOmark}{ }%
\unexpanded\expandafter
{h
\csname ekvc@hashmark@#1\endcsname
{\ekvc@err@missing@hash{#1} }%
\ekvc@mark{}\ekvc@stop
Yh
Y
\long\gdef
\unexpanded\expandafter{\csname ekvc@@safehash@#1\endcsnamely,
#H##1Y,
\unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname},
####2####3 \unexpanded {\ ekvcOmark }###4####57,
\unexpanded{\ekvc@stopl}’
Tk
HHHAHHHH2Y,
Y
\long\gdef\unexpanded\expandafter
{\csname ekvc@fastsplithash@#1\endcsnamel,
#H##1Y,
\unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname},
####2####3 \unexpanded{\ekvc@stopH####4,
{h
#uHA{ s 13 H{ ####21,
Yh
\long\gdef\unexpanded\expandafter
{\csname ekvc@safesplithash@#1\endcsnamel}####1,
v
\unexpanded\expandafter
{\csname ekvc@@safesplithash@#1\endcsname},
####1 \unexpanded{\ekvc@mark\ekvc@safe@f oundChash}
\unexpanded\expandafter
{k
\csname ekvc@hashmark@#1\endcsname{}%
\ekvc@mark{\ekvc@err@missing@hash{#1}\ekvc@safe@noChash}’
\ekvc@stop

17

Yh

303 Y

04 \long\gdef\unexpanded\expandafter

305 {\csname ekvc@@safesplithash@#1\endcsnamel},
306 H#it##17,

07 \unexpanded\expandafter{\csname ekvc@hashmark@#1\endcsname},
308 ####2####3 \unexpanded {\ ekvcOmark }####4####57,

. \unexpanded{\ekvc@stop}

10 Tk
311 A (HaH# 2 H# 1#### 3 \unexpanded{ \ekvc@stopl}/
312 Y

313 Yh
i \ekvc@tmp
315 \endgroup
316 }%

R

(End definition for \ekvc@setup@hashmacro.)

\ekvcValue All this does is a few consistency checks on the first argument (not empty, hash macro
exists) and then call that hash-grabbing macro that will also test whether the hash is

inside of #2 or not.

;2 \long\def\ekvcValue#1#2,

TR /A

320 \romannumeral ‘\~"@%

21 \ekv@ifdefined{ekvc@safehash@#1},

{\csname ekvc@safehash@#1\endcsname{#2}}J
{\ekvc@err@unknown®hash{#1} }J), keep this space

SR |

(End definition for \ekvcValue. This function is documented on page 4.)

\ekvcValueFast To be as fast as possible, this doesn’t test for anything, assuming the user knows best.
;-5 \long\def\ekvcValueFast#1#2{\csname ekvc@fasthash@#1\endcsname#2\ekvc@stop}

(End definition for \ekvcValueFast. This function is documented on page 4.)

\ekvcValueSplit This splits off a single version
;26 \long\def\ekvcValueSplit#1#2#3
e %
328 \ekv@ifdefined{ekvc@safesplithash@#1}%
{\csname ekvc@safesplithash@#1\endcsname{#2}{#3}}/
o {\ekvc@err@unknown@hash{#1}#3{}{#2}}/
}

(End definition for \ekvcValueSplit. This function is documented on page 4.)

\ekvc@safe@found@hash
\ekvc@safe@noChash ... \long\def\ekvc@safe@found@hash#1#2\ekvc@stop#3Y
SRR V)
334 #3{#23{#1},
SR
56 \long\def\ekvc@safe@no@hash#1#2\ekvcOmark\ekvc@safe@found@hash\ekvc@stop#3,
337 {70
#3{#2}{}%

SO

18

\ekvcValueSplitFast

\ekvcValueSplitFast@a

\ekvc@safehash@
\ekvc@fasthash@
\ekvc@safesplithash@
\ekvc@fastsplithash®@

\ekvcSecondaryKeys

(End definition for \ekvc@safe@found@hash and \ekvc@safe@no@hash.)

Again a fast approach which doesn’t provide too many safety measurements. This needs
to build the hash function and expand it before passing the results to the next control
sequence. The first step only builds the control sequence.

;20 \long\def\ekvcValueSplitFast#1#2

341 {%

342 \csname ekvc@fastsplithash@#1\endcsname#2\ekvc@stop

343 }

(End definition for \ekvcValueSplitFast. This function is documented on page 4.)

This step then expands the hash function once and passes the result to #3 which should
be a single control sequence.

1.2 \long\def\ekvcValueSplitFastQ#1#2#3},

345 {70

;46 \expandafter#3\expandafter{#1#2\ekvc@stopl}/
7 X

(End definition for \ekvcValueSplitFast@a.)

At least in the empty hash case we can provide a meaningful error message without
affecting performance by just defining the macro that would be build in that case. There
is of course a downside to this, the error will not be thrown by \ekvcValueFast in three
expansion steps. The safe hash variant has to also stop the \romannumeral expansion.
.5 \long\def\ekvc@safehash@#1{\ekvc@err@empty@hash\@gobble{} }), keep this space
29 \long\def\ekvc@fasthash@#1\ekvc@stop{\ekvc@err@empty@hash}

;5o \long\def\ekvc@safesplithash@#1#2{\ekvc@err@emptyC@hash#2{#1}{}}

51 \long\def\ekvc@fastsplithash@#1\ekvc@stop#2{\ekvc@err@emptyChash#2{#1}{}}

(End definition for \ekvc@safehash@ and others.)

The secondary keys are defined pretty similar to the way the originals are, but here
we also introduce some key types (those have a @t@ in their name) additionally to the
prefixes.

52 \protected\long\def\ekvcSecondaryKeys#1#2,

353 {o/n

54 \edef\ekvc@set{\string#1}/,

355 \ekvparse\ekvc@err@value@required\ekvcSecondaryKeysQa{#2}%

356 }

;s> \protected\def\ekvcSecondaryKeysQa#17

s Lh

450 \def\ekvc@long{}%

60 \ekvc@ifspace{#1}%

361 {\ekvcSecondaryKeys@b#1\ekvc@stop}s
362 {\ekvc@err@missing@type{#1}\@gobblel}/,
363 }

6. \protected\def\ekvcSecondaryKeys@b#1 #2\ekvc@stop
s L%

366 \ekv@ifdefined{ekvc@p@#1}Y,

367 {\csname ekvc@p@#1\endcsnamel},

368 {%

369 \ekv@ifdefined{ekvc@t@#1}/
370 {\csname ekvc@t@#1\endcsnamely,

19

- {\ekvc@err@unknown@keytype{#1}\@firstoftwo\@gobblel}y,
372 Y
373 {#2}%

}

(End definition for \ekvcSecondaryKeys. This function is documented on page 5.)

2.2.1 Secondary Key Types

\ekvcep@long The prefixes are pretty straight forward again. Just set \ekvc@long and forward to the
\ekvc@after@ptype @tQ type.
;75 \protected\def\ekvc@p@long#1,

e Lh

377 \ekvc@ifspace{#1}%

378 {%

379 \let\ekvc@long\long

380 \ekvc@after@ptype#1\ekvc@stop

381 }%

8 {\ekvc@err@missing@type{long #1}\Qgobblel}y,
383 }

5. \protected\def\ekvcQafter@ptype#l #2\ekvcOstop
3¢ {h

386 \ekv@ifdefined{ekvc@t@#1}Y

;87 {\csname ekvc@t@#1\endcsname{#2}}/,

88 {\ekvc@errQunknown@keytype{#1}\Qgobblel}’
389 }

(End definition for \ekvc@p@long and \ekvc@after@ptype.)

\ekvcotemeta The meta and nmeta key types use a nested \ekvset to set other keys in the same macro’s
\ekvc@t@nmeta (set).
\ekvc@type@meta \protected\def\ekvc@t@meta
o %
S92 \edef\ekvc@tmp{\ekvc@setl}/,
393 \expandafter\ekvc@type@meta\expandafter{\ekvc@tmp}\ekvc@long{##1}\ekvlet
394 }
s \protected\def\ekvc@tOnmeta#1y,
0 L%
397 \ekvc@assert@uot@long{nmeta #1}J,
308 \edef\ekvc@tmp{\ekvc@set}’
399 \expandafter\ekvc@type@meta\expandafter{\ekvc@tmp}{}{}\ekvletNoVal{#1}}
a0}
2. \protected\long\def\ekvc@typeC@meta#l#2#3#4#5#6
PR VA
03 #2\def\ekvc@tmp#3{\ekvset{#1}{#6}}/,
404 #4\ekvcOset{#5}\ekvc@tmp
405 }

(End definition for \ekvc@t@meta, \ekvc@t@nmeta, and \ekvc@typeCmeta.)
\ekvc@t@alias alias just checks whether there is a key and/or NoVal key defined with the target name

and \1let the key to those.

w06 \protected\def\ekvc@tQalias#1#2J,
v L%

20

408 \ekvc@assert@uot@long{alias #1}/,
409 \let\ekvc@tmp\@firstofone

410 \ekvifdefined\ekvc@set{#2}

411 %

412 \ekvletkv\ekvc@set{#1}\ekvc@set{#2}/,
413 \let\ekvc@tmp\@gobble

414 Y

415 {3

416 \ekvifdefinedNoVal\ekvc@set{#2}

417 %

28 \ekvletkvNoVal\ekvc@set{#1}\ekvc@set{#2}/,
419 \let\ekvc@tmp\@gobble

420 Y

421 {3

422 \ekvc@tmp{\ekvc@err@unknown@key{#2}}/,

423 }

(End definition for \ekvc@t@alias.)

\ekvcot@default The default key can be used to set a NoVal key for an existing key. It will just pass the
(value) to the key macro of that other key.

+22 \protected\long\def\ekvc@tQdefault#1#2},

s

426 \ekvifdefined\ekvc@set{#1}

427 {%

428 \ekvc@assert@not@long{default #1}J,
4o \edef\ekvc@tmp

430 {%

P \unexpanded\expandafter

432 {\csname\ekv@name\ekvc@set{#1}\endcsname{#2}}/,
433 Y

434 \ekvletNoVal\ekvc@set{#1}\ekvc@tmp
435 Y

436 {\ekvc@err@unknown@key{#1}}%

a7}

(End definition for \ekvc@t@default.)

2.2.2 Helper Macros

\ekvc@ifspace A test which can be reduced to an if-empty by gobbling everything up to the first space.

\ekvc@ifspace@ . \long\def\ekvcQifspace#1Y,
439 {o/n
440 \ekvc@ifspace@#1 \ekv@ifempty@B
441 \ekvQ@ifempty@false\ekv@ifemptyQ@A\ekv@ifempty@B\@firstoftwo
442 }
25 \long\def\ekvc@ifspace@#1 7, keep this space
444 {o/ﬂ
445 \ekv@ifempty@\ekv@ifempty@A
446 }

(End definition for \ekvc@ifspace and \ekvc@ifspace@.)

21

2.2.3 Assertions

\ekvc@assert@not@long Some keys don’t want to be long and we have to educate the user, so let’s throw an error
if someone wanted these to be long.

227 \long\def\ekvc@assert@uot@long#l{\ifx\ekvc@long\long\ekvc@err@no@long{#1}\fi}

(End definition for \ekvc@assert@not@long.)

2.2.4 Messages

\ekvc@err@toomany Boring unexpandable error messages.

\ekvc@err@value@required . \protected\def\ekvc@err@toomany#1Y%
\ekvc@err@missing@type .o {%
\ekvc@err@already@defined so \errmessage{expkv-cs Error: Too many keys for macro ‘\string#1’}/

a1 T
452 \protected\def\ekvc@err@value@required#1
IEER
454 \errmessage{expkv-cs Error: Missing value for key ‘\unexpanded{#1}’}%
a5}
.56 \protected\def\ekvc@err@missing@type#1,
s A%
458 \errmessage
459 {expkv-cs Error: Missing type for secondary key °\unexpanded{#1}’}J
60}
46: \protected\def\ekvc@err@noQlong#1/
462 {%
463 \errmessage
464 {expkv-cs Error: prefix ‘long’ not accepted for ¢\unexpanded{#1}’}J
45
466 \protected\def\ekvc@err@already@defined#1,
467 {%
468 \errmessage{expkv-cs Error: Macro ‘\string#l1’ already definedl}’
469 }
470 \protected\def\ekvc@err@unknown@keytype#1%
i %
472 \errmessage{expkv-cs Error: Unknown key type ‘\unexpanded{#1}’1}/
473 }
.72 \protected\def\ekvc@err@unknown@key#17
475 {0/°
476 \errmessage
477 {expkv-cs Error: Unknown key ‘\unexpanded{#1}’ for macro ‘\ekvc@set’}/
478 }

(End definition for \ekvc@err@toomany and others.)

\ekvceerr We need a way to throw error messages expandably in some contexts.
\ekvc@err@ \begingroup

s20 \edef\ekvc@err

481 {o/n

482 \endgroup

483 \unexpanded{\long\def\ekvc@err}##17,

484 {%

85 \unexpanded{\expandafter\ekvcQerr@\@firstofone}’

486 {\unexpanded\expandafter{\csname ! expkv-cs Error:\endcsnamel}##1.}/,

22

\ekvc@err@unknown@hash
\ekvc@err@empty@hash
\ekvc@err@missing@hash

487 \unexpanded{\ekv@stop}’

488 %

489 }

200 \ekvc@err

100 \def\ekvc@err@{\expandafter\ekv@gobbleto@stop}

(End definition for \ekvc@err and \ekvc@erra@.)

And here are the expandable error messages.

19> \long\def\ekvc@err@unknown@hash#1{\ekvc@err{unknown hash ‘#1°}}
405 \long\def\ekvc@err@missing@hash#1{\ekvc@err{hash ‘#1’ not found}}
s0. \long\def\ekvc@err@empty@hash{\ekvc@err{empty hash}}

(End definition for \ekvc@err@unknown@hash, \ekvc@err@empty@hash, and \ekvc@err@missing@hash.)
Now everything that’s left is to reset the category code of @.

105 \catcode ‘\@=\ekvc@tmp

23

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
alias i 5
D
default 5
E
\ekvcDate 6,9,13,21
\ekvcHash 3,181
\ekvcHashAndForward 4,164
\ekvcSecondaryKeys 5,352
\ekveSplit 3,3, 47
\ekvcSplitAndForward 3,29
\ekvcValue 4,318
\ekvcValueFast 4,325
\ekvcValueSplit 4,326
\ekvcValueSplitFast 4, 340
\ekvcVersion 6,9,13,21
\ekvifdefined 410, 426
\ekvifdefinedNoVal 416
\ekvlet 122,239, 393
\ekvletkvc..0.uu... 412
\ekvletkvNoVal 418
\ekvletNoVal 399, 434
\ekvparse 75,196, 355
\ekvset 41,176, 403
L
long o 5
M
Meta ...ttt 5
N
IMEETA & v vttt e 5
T
TgX and IATEX 2, commands:
\ekv@gobbleto@stop 491
\ekv@ifdefined 31,49, 87, 144, 166,
183, 207, 250, 321, 328, 366, 369, 386
\ekv@ifempty@ 445
\ekv@ifempty@A 441, 445
\ekv@ifempty@B 440, 441
\ekv@ifempty@false 441
\ekv@name 432
\ekv@stop 487

\ekvc@after@ptype

\ekvc@any@long 27,

39, 64, 73, 128, 174, 188, 194, 245
\ekvcO@assert@not@long

397, 408, 428, 447

\ekvc@defarggobbler 59, 61, 131
\ekvc@err 479,492, 493, 494
\ekvc@err@ 479

\ekvc@err@already@defined
32, 50,167, 184, 448
\ekvc@err@emptyQhash o
348,349, 350, 351, 492
\ekvc@err@missing@hash . 270, 300, 492
. 362,382,448
447, 461
58,448
- 323,330,492
\ekvc@errQunknown@key .. 422,436, 474
\ekvc@err@unknown@keytype

.................. 371, 388, 470
\ekvc@err@value@required

75,196, 355, 448

\ekvc@err@missing@type

\ekvc@err@no@long
\ekvc@err@toomany

\ekvc@err@unknown@hash

\ekvc@fasthash@ 348
\ekvc@fastsplithash@ ;Zg
\ekvc@hash@p@long 242
\ekvc@hash@pack@argument 177,191
\ekvc@ifspace ... 81,201,360,377,255
\ekvc@ifspace@ 438
\ekvc@initials
44,74, 114,116,178, 195, 232, 234
\ekvc@keycount 26,
43,54, 57, 61,72,79,99, 103, 118, 123
\ekvc@long 27,80, 105,

127, 200, 223, 244, 359, 379, 393, 447
\ekvcOmark
266, 271, 278, 296, 300, 308, 336

\ekvc@p@long 375
\ekvc@safe@found@hash 296,;;;
\ekvc@safe@no@hash 300,535
\ekvc@safehash@ ;Zg
\ekvc@safesplithash@ ;Zg
\ekvc@set

. 37,41,107, 110, 122, 172, 176,

225, 228, 239, 354, 392, 398, 404,
410, 412, 416, 418, 426, 432, 434, 477

\ekvc@setup@hashmacro 240, 248
\ekvc@setup@splitmacro 123,;;;
\ekvc@SetupHashKeys 173,;;;
\ekvc@SetupHashKeys@a ;;;
\ekvc@SetupHashKeys@b ;;;

203,209, 211, 246

\ekvc@SetupHashKeysQ@c

\ekvc@SetupSplitKeys 38, 70
\ekvc@SetupSplitKeys@a ;g
\ekvc@SetupSplitKeys@b ;g
\ekvc@SetupSplitKeys@c 70,155
\ekvc@split@l 132
\ekvc@split@p@long ;;g
\ekvc@stopo 82:47

85,178,191, 202, 205, 259, 271, 279,

25

287, 301, 309, 311, 325, 332, 336,
342, 346, 349, 351, 361, 364, 380, 384

\ekvc@t@alias 406
\ekvc@t@default Z;Z
\ekvcOtlmeta 5;8
\ekvcO@tOnmeta g;g
\ekvc@tmp .2,55,66,94,97,1o7i47

108, 121, 122, 131, 133, 140, 147,
160, 214, 217, 225, 226, 238, 239,
253, 314, 392, 393, 398, 399, 403,
404, 409, 413, 419, 422, 429, 434, 495

\ekvcOtype@meta 390
\ekvcHashAndForward@ . .. 168,170,;§;
\ekvcSecondaryKeys@a §E§,357
\ekvcSecondaryKeys@b 361, 364
\ekvcSplitAndForward@ 33,35, 53
\ekvcValueSplitFast@ T7344
\ekvcValueSplitFast@a 344

	Contents
	1 Documentation
	1.1 Define Macros and Primary Keys
	1.1.1 Primary Keys
	1.1.2 Split
	1.1.3 Hash

	1.2 Secondary Keys
	1.2.1 p-type Prefixes
	1.2.2 t-type Prefixes

	1.3 Example
	1.4 Speed Considerations
	1.5 Useless Macros
	1.6 Bugs
	1.7 License

	2 Implementation
	2.1 The LaTeX Package
	2.2 The Generic Code
	2.2.1 Secondary Key Types
	2.2.2 Helper Macros
	2.2.3 Assertions
	2.2.4 Messages

	Index
	A
	D
	E
	L
	M
	N
	T

