
The euclideangeometry package
Claudio Beccari

claudio dot beccari at gmail dot com

Version 0.1.2 – Last revised 2020-02-02.

Contents
1 The code 1

1.1 Checking the date of
a sufficiently recent
curve2e package 1

1.2 Service macros 3
1.3 Labelling 6
1.4 The Example environment 9
1.5 Service macros for ellipses 10
1.6 Processing lines and seg-

ments 11
1.7 Triangle special points . . 14

1.8 Other specific service
macros 16

1.9 Regular polygons and
special ellipses 20
1.9.1 Regular polygons . 20
1.9.2 The Steiner ellipse 21
1.9.3 The ellipse that is

internally tangent
to a triangle while
one of its foci is
prescribed 23

2 Comments on this package 25

Preface
This file contains the documented code of euclideangeometry. The user man-
ual source file euclideangeometry-man.tex and the readable document is
euclideangeometry.pdf; it should already be installed with your updated com-
plete TEX system installation.

Please refer to the user manual before using this package.

1 The code
1.1 Checking the date of a sufficiently recent curve2e pack-

age
This package has been already identified by the commands extracted by the
docstrip package, during the .dtx file compilation. Therefore we start pro-
viding the \GetFileInfo in case the package is used outside a “documented TEX
source”; we just provide the definition from the ltxdoc class code.

1 \makeatletter

1

2 \providecommand\GetFileInfo{}
3 \renewcommand\GetFileInfo[1]{%
4 \def\filename{#1}%
5 \def\@tempb##1 v.##2 ##3\relax##4\relax{%
6 \def\filedate{##1}\def\fileversion{##2}\def\fileinfo{##3}}%
7 \edef\@tempa{\csname ver@#1\endcsname}%
8 \expandafter\@tempb\@tempa\relax? ? \relax\relax}

But in order to make the file date comparison for loading a suitable ver-
sion of curve2e we need to strip away its date dash signs, so we define the
\cleanfiledate macro that defines a \FileDate macro with a purely numeri-
cal string, suitable for numerical comparisons; if the fetched class file is so old that
the date is not in the ISO format (for example with slashes instead of dashes) the
macro fails and the interpreter comparison algorithm produces TEX error mes-
sages.

9 \def\cleanfiledate#1-#2-#3!{\unless\ifx#3\empty
10 \edef\FileDate{#1#2#3}\else\unless\ifx#2\empty
11 \edef\FileDate{#1#2}\else\edef\FileDate{#1}\fi\fi}

In any case, if the test checks that the curve2e file date is too old; it warns the user
with an emphasised error message on the console, loading this euclideangeometry
package is stopped and the whole job aborts. The emphasised error message
appears like this:

Package curve2e too old
Be sure that your TeX installation is complete and up to date

Input of euclideangeometry is stopped and job aborted

This message should be sufficiently strong in order to avoid using this package
with a vintage version of TEX Live or MikTEX.
12 \RequirePackage{curve2e}
13 \GetFileInfo{curve2e.sty}
14 \expandafter\cleanfiledate\filedate!
15
16 \ifnum\FileDate<20200118
17 \typeout{***}
18 \typeout{Package curve2e too old}
19 \typeout{Be sure that your TeX installation is complete and up to date}
20 \typeout{***}
21 \typeout{Input of euclideangeometry stopped and job aborted}
22 \typeout{***}
23 \expandafter\@@end\fi
24

2

1.2 Service macros
The following macros are useful for typesetting the manual; but they might be
useful also for the final user; they mostly define commands that classify the various
entities of the programming language with (generally different) font families, series
and shapes; but the commands that receive the “name of an argument” enclose
this name between math angle brackets.
25 \providecommand\file{}
26 \renewcommand*\file[1]{{\normalfont\texttt{#1}}}
27 \providecommand\prog{}
28 \renewcommand*\prog[1]{{\normalfont\texttt{#1}}}
29 \newcommand*\conta[1]{\texttt{\slshape#1}}
30 \providecommand\cs{}
31 \renewcommand\cs[1]{{\normalfont\texttt{\char92#1}}}
32 \providecommand\meta{}
33 \renewcommand*\meta[1]{{\normalfont\langle\textit{#1}\rangle}}
34 \providecommand\marg{}
35 \renewcommand*\marg[1]{{\ttfamily \char123\meta{#1}\char125}}
36 \newcommand*\Marg[1]{{\normalfont\ttfamily\{#1\}}}\let\Arg\Marg
37 \providecommand\oarg{}
38 \renewcommand*\oarg[1]{{\ttfamily[\meta{#1}]}}
39 \newcommand*\Oarg[1]{{\ttfamily[#1]}}
40 \newcommand*\aarg[1]{{\ttfamily{<\meta{#1}>}}}
41 \newcommand*\Aarg[1]{{\ttfamily<#1>}}
42 \newcommand*\Bambiente[1]{\texttt{\char92begin\{#1\}}}
43 \newcommand*\Eambiente[1]{\texttt{\char92end\{#1\}}}
44 \newcommand*\garg[1]{\texttt{(\splitgarg#1,!)}}\let\parg\garg
45 \newcommand*\Garg[1]{\texttt{(#1)}}\let\Parg\Garg
46 \def\secgarg#1,{#1}
47 \def\splitgarg#1,#2!{%
48 \ifstrequal{#2}{}{\meta{#1}}{\meta{#1},\meta{\secgarg#2}}}
49 \providecommand\pack{}
50 \renewcommand*\pack[1]{{\normalfont\textsf{#1}}}
51 \providecommand\opt{}
52 \renewcommand*\opt[1]{{\normalfont\textsl{#1}}}\let\opz\opt
53 \providecommand\env{}
54 \renewcommand*\env[1]{{\normalfont\textit{\bfseries#1}}}\let\amb\env

The next commands are defined in the babel-italian module for babel; \ped
introduces a subscript in math mode, but the command may be used also in text
mode; the same holds true also for \ap that introduces a superscript. \unit is a
shorthand for attaching the units of measure in math upright roman font, with an
unbreakable space between the measure and its units; \sigla is the Italian equiv-
alent of \acronym, that avoids any conflict with other packages; \iu (alias\gei)
typesets the imaginary unit in roman font according to the ISO regulations; \eu
defines the roman type “e”, the Neper number, as a math operator; we all know
that “e” is not an operator, but it is used very often as the base of an exponential,
therefore, in math mode it is better to leave the necessary space before and after
it, without any space between it and its exponent.

3

55 \providecommand*\ped[1]{\ensuremath{_{\mathrm{#1}}}}
56 \providecommand*\ap[1]{\ensuremath{ˆ{\mathrm{#1}}}}
57 \providecommand*\unit[1]{\ensuremath{\,\mathrm{#1}}}
58 \providecommand*\sigla[1]{\textsc{\lowercase{#1}}}
59 \providecommand*\iu{\ensuremath{\mathrm{i}}}\let\gei\iu
60 \providecommand*\eu{\ensuremath{\mathop{\mathrm{e}}\nolimits}}

The next code is used to typeset the logo of ArsTEXnica logo, and the logo of
LYX; the other command \GuIT typesets equally well the guIt logo; if necessary the
\RequirePackage macro loads the xspace package; therefore these macros do not
require any special terminator of the control sequence name, because the \xspace
command takes care of the necessary space; this command avoids inserting any
space if macros are followed by any reasonable sign different form a space, such as
punctuation marks, parentheses, quotation marks, and so on.
61 \DeclareRobustCommand*{\Ars}{%
62 \textsf{\lower -.48ex\hbox{\rotatebox{-20}{A}}\kern -.3em{rs}}%
63 \kern -.05em\TeX\unskip\kern -.17em\lower -.357ex\hbox{nica}\xspace}
64
65 \DeclareRobustCommand*\LyX{%
66 L\kern-0.2em\raisebox{-0.5ex}{Y}\kern-0.2em{X}\xspace}
67
68 \definecolor{verdeguit}{rgb}{0, 0.40, 0}
69 \RequirePackage{iftex}
70 \def\GuIT{\mbox{\color{verdeguit}\def\I{\textcolor{black}{I}}%
71 \ifPDFTeX
72 \usefont{T1}{lmr}{m}{sc}
73 \else
74 \usefont{TU}{lmr}{m}{sc}
75 \fi
76 g\raisebox{-0.715ex}{\kern-0.26em u}\kern-0.13em\I\kern-0.14em t}\xspace}

The following macros \usecs and \whilenum allow the use the internal LATEX
control sequence names that contain a @ sign. They are not so useful in this
package, but they might be useful for the end user.
77 \providecommand*\usecs[1]{\csname#1\endcsname}
78 \providecommand*\whilenum[2]{\usecs{@whilenum}#1\do{#2}}

Accordingly the following two macros, and their English aliases, allow to delay the
output of a (possibly floating) object to a page of the desired parity; they are not
infallible, because the the \afterpage command defined by package afterpage
(loaded if necessary) operates on the typesetting program output routine and the
object to be delayed might be lost on the way, or might get delayed too much;
these facts take place very seldom, but are not impossible, the solution is to move
back several paragraphs the command with is argument.
79 \RequirePackage{afterpage}
80 \providecommand\supaginapari[1]{%
81 \afterpage{%
82 \ifodd\value{page}\expandafter\@firstoftwo
83 \else\expandafter\@secondoftwo

4

84 \fi{\supaginapari{#1}}{#1}
85 }
86 }\let\onevenpage\supaginapari
87 \providecommand\supaginadispari[1]{%
88 \afterpage{%
89 \ifodd\value{page}\expandafter\@secondoftwo
90 \else\expandafter\@firstoftwo
91 \fi{\supaginadispari{#1}}{#1}
92 }
93 }\let\onoddpage\supaginadispari

The following LATEX related logos are provided so as to make them coherent with
the smart final space we have discussed above. The real difference is that it is
necessary to use tue etoolbox facilities; therefore the package is (possibly) loaded.
With it we add at the end of their original definition the \xspace command. But
what is the “original definition”? Of course \TeX and \LaTeX macros are defined
within the LATEX kernel, but the user might have loaded other packages that have
redefined them; therefore these patches are applied only at the preamble end, so
if other definitions were provided by other packages loaded in the preamble, such
redefinitions are patched. Only \XeLaTeX is completely redefined, because the
other existing definitions work correctly only with OpenType fonts; with Type 1
fonts and oblique fonts (italics, slanted, etc.) the reversed “E” generally is inclined
in the wrong direction; by rotating it, instead of reflecting it, the “E” might not
be the best, but al least slants in the right direction.
94 \RequirePackage{etoolbox}
95 \AfterEndPreamble{%
96 \apptocmd{\TeX}{{}\xspace}{}{}
97 \apptocmd{\LaTeX}{{}\xspace}{}{}}
98
99 \DeclareRobustCommand*\TeXLive{\TeX\ Live\xspace}

100 \DeclareRobustCommand*\MiKTeX{MiK\TeX}
101 \DeclareRobustCommand*\MacTeX{Mac\TeX}
102 \DeclareRobustCommand*\pdfLaTeX{pdf\/\LaTeX}
103 \DeclareRobustCommand*\LuaLaTeX{Lua\LaTeX}
104 \DeclareRobustCommand*\XeLaTeX{X\ifdim\fontdimen1\font=0pt\kern-0.15em\fi
105 \lower.5ex\hbox{\rotatebox[origin=c]{180}{E}}%
106 \ifdim\fontdimen1\font=0pt\kern-0.15em\else\kern-0.275em\fi
107 \LaTeX}
108 \DeclareRobustCommand*\TikZ{Ti\emph{k}Z\xspace}
109 \DeclareRobustCommand*\TUGboat{\textsl{TUG\-boat}\xspace}

The following command is useful to output two column floats when typesetting in
twocolumn mode.

110 \renewcommand\dbltopfraction{1.}

This apparently useless command becomes useful to separate a font selection com-
mand or the \item command from the following text so as to allow hyphenation
in what follows; it is just a very innocent dirty trick, but it works.

111 \def\hz{\hskip0pt}

5

Here we have a command that allows to display some framed code; it is usable
also to display the syntax of some commands; and when doing this action the full
range of service macros at the beginning of this section play the best of their role.
The English aliases for the opening and closing environments are also provided.
Attention: do not use \\ commands to specify new lines, unless you want to
produce empty/blank lines; within this environment the source code “end of line”
characters are not treated as spaces, but are actually executed according to their
name.

112 \newenvironment{ttsintassi}{\begin{lrbox}{0}
113 \minipage{\dimexpr\linewidth-2\fboxrule-2\fboxsep}\ttfamily\obeylines}%
114 {\endminipage\end{lrbox}\center\fbox{\box0}\endcenter}
115 \let\ttsyntax\ttsintassi \let\endttsyntax\endttsintassi

The following macro probably will migrate to curve2e; meanwhile this redefinition
is useful in order to save some input and to make a more flexible macro. We used
it virtually in every picture we inserted in the user manual of this package; of
course the user does not need to have any drawing superimposed onto a red grid.
Actually the grid is useful while drawing; when the image is complete, the grid
command may be deleted or its line commented out. The purpose of this macro is
to avoid the \put command to place the grid; and since its reference point in the
original definition is arbitrary, the connection with real coordinates is very small
and might become confusing or of little help. Now the syntax is the following:

\(GraphGrid)(〈reference point or dimensions〉)(〈overall dimensions〉)

where the second argument is optional; if it is missing, the first argument contains
the 〈overall dimensions〉, otherwise it contains the lower left corner coordinate
that represent the 〈reference point〉 that an internal \put command will use to
place the grid; if no 〈reference point〉 is specified, the reference point is 0,0, and
the grid is \put with its lower left corner in the origin of the picture coordinates.

116
117 \unless\ifcsname Gr@phGrid\endcsname
118 \let\originalGraphGrid\GraphGrid
119 \RenewDocumentCommand\GraphGrid{r() d()}{%
120 \IfValueTF{#2}{\put(#1){\originalGraphGrid(#2)}}%
121 {\put(0,0){\originalGraphGrid(#1)}}}\fi

1.3 Labelling
While doing any graphical geometrical drawing it is necessary to label points,
lines, angles and other such items. Non measurable labels should be in upright
sans serif font, according to the ISO regulations, but here we are dealing witt point
identified by macros the contain their (cartesian or polar) coordinates that very
often are both labels and math variables.

Here we provide a versatile macro that can do several things. Its name is
\Pbox and it produces a box containing the label in math format. By default the
point label is typeset with the math font variant produced by command \mathsf,

6

but the macro is sufficiently versatile to allow other settings; It accepts several
optional arguments, therefore it syntax is particular:

\Pbox(〈coordinates〉)[〈alignment〉]{〈label〉}[〈diameter〉]〈?〉<〈angle〉>

where 〈coordinates〉 are the coordinates where to possibly set a black dot with
the specified 〈diameter〉; in any case it is the reference point of the 〈label〉; the
〈alignment〉 is formed by the usual letters t, b, c, l, r that can be paired in
a coherent way (for example the couple tb is evidently incoherent, as well as
lr), but in absence of this optional specification, the couple cc is assumed; most
often than not, the label position becomes such that when the user reviews the
document drafts, s/he understands immediately that s/he forgot to specify some
reasonable 〈alignment〉 codes. Think of the 〈alignment〉 letters as the position of
the reference point with respect to the the 〈label〉 optical center. The optional
〈angle〉 argument produces a rotation of the whole label by that angle; it may be
used in several circumstances, especially when the label is just text, to produce,
for example, a sideways legend. It is useful also when the labels are produced
within a rotated box, in order to counterrotate them.

The optional asterisk draws a frame around the label. Notice that the separator
between the visible or the invisible frame and the box contents varies according
the the fact the the 〈alignment〉 specification contains just one or two letter codes;
this is useful, because the diagonal position of the label should be optically equal
to the gap that exists between the reference point and the 〈label〉 box.

If the 〈diameter〉 is zero, no dot is drawn, the whole 〈label〉 is typeset with
the \mathit math font; otherwise only the first symbol of a math expression si
typeset in sans serif. The presence of subscripts makes the labels appear more
distant from their reference point; the same is true when math symbols, even
without subscripts, are used, because of the oblique nature of the math letters
alphabet.

If some text has to be printed as a label, it suffices to surround it with dollar
signs, that switch back to text mode when the default mode is the math one. With
this kind of textual labels it might be convenient to use the optional asterisk to
frame the text.

122 \providecommand\Pbox{}
123 \RenewDocumentCommand\Pbox{D(){0,0} O{cc} m O{0.5ex} s D<>{0}}{%
124 \put(#1){\rotatebox{#6}{\makebox(0,0){%
125 \dimendef\Dim=2566\relax
126 \settowidth\Dim{#2}%
127 \edef\Rapp{\fpeval{\Dim/{1ex}}}%
128 \fptest{\Rapp > 1.5}{\fboxsep=0.5ex}{\fboxsep=0.75ex}%
129 \IfBooleanTF{#5}{\fboxrule=0.4pt}{\fboxrule=0pt}%
130 \fptest{#4 = 0sp}%
131 {\makebox(0,0)[#2]{\fbox{$\relax#3\relax$}}}%
132 {\edef\Diam{\fpeval{(#4)/\unitlength}}%
133 \makebox(0,0){\circle*{\Diam}}%
134 \makebox(0,0)[#2]{\fbox{$\relax\mathsf#3\relax$}}%
135 }}}%

7

136 }\ignorespaces}

The following command, to be used always within a group, or a environment or
inside a box, works only with piecewise continuously scalable font collection, such
as, for example, the Latin Modern fonts, or with continuously scalable fonts, such
as, for example, the Times ones. They let the operator select, for the scope of
the command ,any size, even fractional so as to fine adjust the text width in the
space allowed for it; it is particularly useful with the monospaced fonts, that forbid
hyphenation, and therefore cannot be adjusted to the current line width.

137 \DeclareRobustCommand\setfontsize[2][1.2]{%
138 \linespread{#1}\fontsize{#2}{#2}\selectfont}

With OpenType fonts there should not be any problems even with math fonts;
with Type 1 fonts the only scalable fonts I know of, are the LibertinusMath fonts,
usable through the LibertinusT1math package, are also the only ones that have
8 bit encoded math fonts (256 glyph fonts), while the standard default Type 1
math fonts are just 7 bit encoded (128 glyphs fonts).

Another useful labelling command is Zbox; this command is an evolution of
a command that I been using for years in several documents of mine. It uses
some general text, not necessarily connected to a particular point of the picture
environment, as a legend; It can draw short text as a simple horizontal box, and
longer texts as a vertical box of specified width and height

Is syntax is the following:

\Zbox(〈position〉)(〈(〉)dimensions)[〈alignment〉]{〈text〉}

where 〈position〉 is where the reference point of the box has to be put in the
picture; 〈dimensions〉 are optional; if not specified, the box is a horizontal one,
and it is as wide as its contents; if it is specified, it must be a comma separated list
of two integer or fractional numbers that are the width and the height of the box;
if the height is specified as zero, the width specifies a horizontal box of that width;
〈alignment〉 is optional and is formed by one or two coherent letter codes from
the usual set t, b, c, l, r; if the 〈alignment〉 is absent, the default alignment
letters are bl, i.e. the box reference point is the bottom left corner; 〈text〉 contains
general text, even containing some math.

139
140 \def\EUGsplitArgs(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}
141
142 \providecommand\Zbox{}
143 \RenewDocumentCommand\Zbox{R(){0,0} D(){0,0} O{bl} m}{%
144 \EUGsplitArgs(#2)\ZboxX\ZboxY % separa la x e la y della scatola
145 \fboxsep=2\unitlength
146 \ifnum\ZboxX=\csuse{z@}
147 \def\ZTesto{\fbox{#4}}%
148 \else
149 \ifnum\ZboxY=\csuse{z@}
150 \def\ZTesto{\fbox{\parbox{\ZboxX\unitlength}{#4}}}%
151 \else
152 \def\ZTesto{%

8

153 \setbox2560=\hbox{\fbox{%
154 \parbox[c][\ZboxY\unitlength][c]{\ZboxX\unitlength}{#4}}}%
155 \dimen2560=\dimexpr(\ht2560 +\dp2560)/2\relax
156 \ht2560=\dimen2560\relax
157 \dp2560=\dimen2560\relax
158 \box2560%
159 }%
160 \fi
161 \fi
162 \put(#1){\makebox(0,0)[#3]{\ZTesto}}\ignorespaces}

1.4 The Example environment
Another very useful facility is the Esempio environment; it has an English alias
Example, but we suggest to use the Italian name, because it is safer in order to
avoid conflicts with other packages; this environment is very handy to typeset
a stretch of code side by side its typeset result obtained by executing it; it has
advantages and disadvantages, though. A similar environment was used to show
the examples in the The LATEX Companion; another similar environment may
be used from the tcolorbox package (by T.F. Sturm, read its documentation
by using the terminal command texdoc tcolorbox) environment tcolorbox and
using the keyword sidebyside among the options; package fancyvrb also offers a
similar environment. The critical disadvantage is that that you cannot use any of
these environments, not even this Esempio one, when typesetting a documented
TEX file, such as the one you are reading now. In facts the .dtx file has all text
lines that start with a comment character, and the code parts, to be output to a
.sty, or .cls, or whatever other file used by the TEX system to format documents,
are explicitly marked with the special delimiters %␣␣␣␣\begin{macrocode} and
%␣␣␣␣\end{macrocode}.

Therefore with those packages and with this Esempio environment the code
you want to show appears with all lines with a % at the beginning. This certainly
does not help the description of a software and this is the very reason why this
package has a separate euclideangeometry-man manual typeset with the article
class.

Nevertheless this environment makes use of the facilities of the verbatim en-
vironment.

163 \RequirePackage{verbatim}
164 \newwrite\example@out
165 \ProvideDocumentEnvironment{Esempio}{s O{\normalsize} D(){0.40}}
166 {\par\addvspace{3.0ex plus 0.8ex minus 0.5ex}\vskip -\parskip
167 \dimendef\Wboxu=2570 \dimendef\Wboxd=2572
168 \Wboxu=#3\textwidth\relax
169 \Wboxd=\dimexpr\linewidth-\columnsep-\Wboxu\relax
170 \begingroup
171 \@bsphack
172 \immediate\openout\example@out\jobname-temp.tex
173 \let\do\@makeother\dospecials\catcode‘\ˆˆM\active

9

174 \def\verbatim@processline{%
175 \immediate\write\example@out{\the\verbatim@line}}%
176 \verbatim@start\relax}%
177 {\immediate\closeout\example@out\@esphack\endgroup
178 \begin{minipage}{\textwidth}%
179 \IfBooleanTF{#1}{\begin{minipage}{\textwidth}}{\begin{minipage}{\Wboxu}}%
180 #2\relax
181 \verbatiminput{\jobname-temp.tex}
182 \end{minipage}%
183 \IfBooleanTF{#1}{\par\bigskip}{\hfill}%
184 \IfBooleanTF{#1}{\begin{minipage}{\textwidth}}{\begin{minipage}{\Wboxd}}%
185 \raggedleft
186 \input{\jobname-temp}
187 \end{minipage}
188 \end{minipage}\par
189 %\medskip
190 %\par\addvspace{3.0ex plus 0.8ex minus 0.5ex}\vskip -\parskip
191 }

1.5 Service macros for ellipses
The \ellisse has a control sequence name in Italian; it differs for just one letter
from the name ellipse English name, but we cannot use the latter one because it
may conflict with other packages loaded by the user; actually this command and
the next one are just shortcuts for executing more general commands with specific
sets of arguments. For details and syntax, please refer yourself to section 1.8

192
193 \NewDocumentCommand\ellisse{ s m m}{%
194 \IfBooleanTF{#1}%
195 {\let\fillstroke\fillpath}%
196 {\let\fillstroke\strokepath}%
197 \Sellisse{#2}{#3}%
198 }
199
200 \NewDocumentCommand\Xellisse{ s D(){0,0} O{0} m m O{} o}{%
201 \IfBooleanTF{#1}%
202 {\XSellisse*(#2)[#3]{#4}{#5}[#6][#7]}%
203 {\XSellisse(#2)[#3]{#4}{#5}[#6][#7]}%
204 }

We do not know if the following macro \polyvector may be useful for eu-
clidean geometry constructions, but it may be useful in block diagrams; it is sim-
ply a polyline where the last segment is a geometrical vector. As in polyline the
number of recursions is done until the last specified coordinate pair; recognising
that it is the last one, instead of drawing a segment, the macro draws a vector.

205
206 \def\polyvector(#1){\roundcap\def\EUGpreviouspoint{#1}\EUGpolyvector}
207 \def\EUGpolyvector(#1){%
208 \@ifnextchar({%

10

209 \segment(\EUGpreviouspoint)(#1)\def\EUGpreviouspoint{#1}\EUGpolyvector}%
210 {\VECTOR(\EUGpreviouspoint)(#1)}%
211 }

1.6 Processing lines and segments
The next macros are functional for the geometric constructions we are going to
make: finding the intersection of lines or segments, finding the lengths and ar-
guments of segments, directions, distances, distance of a point from a line or a
segment, the symmetrical point of a another one specified with respect to a given
center of symmetry; the axes of segments, the solutions of the relationship between
the semi axes of an ellipse and the semi focal distance, and so on.

Most of these commands have delimited arguments; the delimiters may be the
usual parentheses, but they may be keywords; many commands contain the key-
word to, not necessarily the last one; the arguments before such keyword may
be entered as ordered comma separated numerical couples, or comma separated
macros the containing scalar values; or they may be macros that contain the or-
dered couples representing vectors or directions; they all may be in cartesian or
polar form. Remember that such ordered couples are complex numbers, repre-
sentable by vectors applied to the origin of the axes; therefore sometimes it is
necessary that the underlying commands execute some vector differences so as to
work with generic vectors.

On the opposite the output values, i.e. the argument after that to keyword,
should be tokens that can receive a definition, in general macros, to which the
user should assign a mnemonic name; s/he should use such macros for further
computations or for drawing commands.

The first and principal command is \IntersectionOfLines and it has the
following syntax:

\IntersectionOfLines(〈point1 〉)(〈dir1 〉)and(〈point2 〉)(〈dir2 〉)to〈crossing〉

where 〈point1 〉 and 〈dir1 〉 are respectively a point of the first line and its direction,
not a second point, but the direction — it is important to stress this point; similarly
for the second line; the output is stored in the macro that identifies the 〈crossing〉
point. The directions do not need to be expressed with unit vectors, but the lines
must not be parallel or anti parallel (equal directions or differing by 180◦); the
macro contains a test that checks this anomalous situation because an intersection
at infinity or too far away (214 − 1 typographical points, approximately 5,758 m)
is of no interest; in case, no warning message is issued, the result is put to 0,0,
and the remaining computations become nonsense. It is a very unusual situation
and I never encountered it; nevertheless. . .

212
213 \def\IntersectionOfLines(#1)(#2)and(#3)(#4)to#5{\bgroup
214 \def\IntPu{#1}\def\Uu{#2}\def\IntPd{#3}\def\Ud{#4}%
215 \DirOfVect\Uu to\Du
216 \DirOfVect\Ud to\Dd
217 \XpartOfVect\Du to \a \YpartOfVect\Du to \b

11

218 \XpartOfVect\Dd to \c \YpartOfVect\Dd to \d
219 \XpartOfVect\IntPu to \xu \YpartOfVect\IntPu to \yu
220 \XpartOfVect\IntPd to \xd \YpartOfVect\IntPd to \yd
221 \edef\Den{\fpeval{-(\a*\d-\b*\c)}}%
222 \fptest{abs(\Den)<1e-5}{% almost vanishing determinant
223 \def#5{0,0}%
224 }{% Determinant OK
225 \edef\Numx{\fpeval{(\c*(\b*\xu-\a*\yu)-\a*(\d*\xd-\c*\yd))/\Den}}%
226 \edef\Numy{\fpeval{(\d*(\b*\xu-\a*\yu)-\b*(\d*\xd-\c*\yd))/\Den}}%
227 \CopyVect\Numx,\Numy to\Paux
228 \edef\x{\egroup\noexpand\edef\noexpand#5{\Paux}}\x\ignorespaces}}

The IntersectionOfSegments macro is similar but in input it contains the
end points of two segments: internally it uses \IntersectionOfLines and to do
so it has to determine the directions of both segments. The syntax is the following:

\IntersectionOfSegments(〈point11 〉)(〈point12 〉)and(〈point21 〉)(〈point22 〉)
to〈crossing〉

The 〈crossing〉 point might fall outside one or both segments. It is up to the
users to find out if the result is meaningful or nonsense. Two non parallel lines
are infinitely long in both directions and any 〈crossing〉 point is acceptable; with
segments the situation might become nonsense.

229
230 \def\IntersectionOfSegments(#1)(#2)and(#3)(#4)to#5{%
231 \SubVect#1from#2to\IoSvectu \DirOfVect\IoSvectu to\DirIoSVecu
232 \SubVect#3from#4to\IoSvectd \DirOfVect\IoSvectd to\DirIoSVecd
233 \IntersectionOfLines(#1)(\DirIoSVecu)and(#3)(\DirIoSVecd)to#5\ignorespaces}

An application of the above intersections is formed by the next two macros;
they find the axes of a couple of sides of a triangle and use their base point and
direction to identify two lines the intersection of which is the circumcenter; the
distance of one base point from the circumcenter is the radius of the circumcircle
that can be drawn with the usual macros. We have to describe the macros \AxisOf
and CircleWithCenter and we will do it in a little while. Meanwhile the syntax
of the whole macro is the following:

\ThreePointCircle〈?〉(〈vetex1 〉)(〈vertex2 〉)(〈vertex3 〉)

where the three vertices are the three points where the circle must pass, but they
identify also a triangle. Its side axes intersect in one point that by construction is
at the same distance from the three vertices, therefore it is the center of the circle
that passes through the three vertices. A sub product of the computations is the
macro \C that contains the center coordinates. If the optional asterisk is used
the whole drawing is executed, while if it is missing, only the \C macro remains
available but the user is responsible to save/copy its value into another macro; for
this reason another macro should be more easy to use; its syntax is the following:

\ThreePointCircleCenter(〈vetex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈center〉

12

where the vertices have the same meaning, but〈center〉 is the user chosen macro
that contains the center coordinates.

234
235 \NewDocumentCommand\ThreePointCircle{s d() d() d()}{%
236 \AxisOf#2and#3to\Mu\Du \AxisOf#2and#4to\Md\Dd
237 \IntersectionOfLines(\Mu)(\Du)and(\Md)(\Dd)to\C
238 \SubVect#2from\C to\R
239 \IfBooleanTF{#1}{\CircleWithCenter\C Radius\R}{}\ignorespaces}
240
241 \NewDocumentCommand\ThreePointCircleCenter{d() d() d() m}{%
242 \ThreePointCircle(#1)(#2)(#3)\CopyVect\C to#4}

There are some useful commands that help creating picture diagrams in an
easier way; for example one of the above described commands internally uses
\CircleWithCenter. It is well known that the native picture command \circle
requires the specification of the diameter but many euclideangeometry com-
mands already get the distance of two points, or the magnitude of a segment,
or similar objects that may be used as a radius, rather than the diameter; why
should we not have macros that simultaneously compute the require diameter and
draw the circle. Here there are two such macros; they are similar to one another
but their names differ in capitalisation, but also in the way they use the available
input information. The syntax is the following:

\CircleWithCenter〈center〉 Radius〈Radius〉
\Circlewithcenter〈center〉 radius〈radius〉

where in both cases 〈center〉 is a vector/ordered couple that points to the circle
center. On the contrary 〈Radius〉 is a vector obtained through previous calcula-
tions, while 〈radius〉 is a scalar containing a previously calculated length.

243 \def\CircleWithCenter#1Radius#2{\put(#1){\ModOfVect#2to\CWR
244 \circle{\fpeval{2*\CWR}}}\ignorespaces}
245 %
246 \def\Circlewithcenter#1radius#2{\put(#1){\circle{\fpeval{2*abs(#2)}}}%
247 \ignorespaces}

As announced, here we have a macro to compute the axis of a segment; given
two points P1 and P2, for example the end points of a segment, or better the end
point of the vector that goes from P1 to P2, the macro determines the segment
middle point and a second point the lays on the perpendicular at a distance equal
to half the first two points distance; this second point lays at the left of vector
P2 −P1, therefore it is important to select the right initial vector, in order to have
the second axis point on the desired side.

\AxisOf〈P1 〉 and〈P2 〉 to〈Axis1 〉〈Axis2 〉

Macros \SegmentCenter and \MiddlePointOf are alias to one another; their syn-
tax is:
\SegmentCenter(〈P1 〉)(〈P2 〉)to〈center〉
\MiddlePointOf(〈P1 〉)(〈P2 〉)to〈center〉

13

〈P1 〉, 〈p2 〉 and 〈center〉 are all vectors.
248
249 \def\AxisOf#1and#2to#3#4{%
250 \SubVect#1from#2to\Base \ScaleVect\Base by0.5to\Base
251 \AddVect\Base and#1to#3 \MultVect\Base by0,1to#4}
252
253 \def\SegmentCenter(#1)(#2)to#3{\AddVect#1and#2to\Segm
254 \ScaleVect\Segm by0.5to#3\ignorespaces}
255
256 \let\MiddlePointOf\SegmentCenter

1.7 Triangle special points
Here we have the macros to find the special points on a triangle side that are the
“foot” of special lines from one vertex to the opposite side. We already described
the circumcircle and the circumcenter, but that is a separate case, because the
circumcenter is not the intersection of special lines from one vertex to the opposite
base. The special lines we are interested in here are the height, the median, and
the bisector The macros have the same aspect \Triangle...Base, where the dots
are replaced with each of the (capitalised) special line names. Their syntaxes are
therefore very similar:

\TriangleMedianBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈M 〉
\TriangleHeightBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈H 〉
\TrinagleBisectorBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈B〉

where 〈vertex〉 contains one of the vertices coordinates, and 〈base1 〉 and 〈base2 〉
are the end points of the side opposite to that triangle vertex; 〈M 〉, metaH, and
〈B〉 are the intersections of these special lines from the 〈vertex〉 to the opposite
side; in order, they are the foot of the median, the foot of the height; the foot of
the bisector. The construction of the median foot 〈M 〉 is trivial because this foot
is the base center; the construction of the height foot is a little more complicated,
because it is necessary to find the exact direction of the perpendicular from the
vertex to the base in order to find the intersection 〈H 〉; the construction of the
bisector base implies finding the exact direction of the two sides starting at the
〈vertex〉, and taking the mean direction, which is trivial if polar coordinates are
used; at this point the bisector line is completely determined and the intersection
with the base line 〈B〉 is easily obtained.

257
258 \def\TriangleMedianBase#1on#2and#3to#4{%
259 \SubVect#1from#2to\TMBu \SubVect#1from#3to\TMBd
260 \SubVect\TMBu from\TMBd to\Base
261 \ScaleVect\Base by0.5to\TMBm\AddVect#2and\TMBm to#4\ignorespaces}
262 %
263 \def\TriangleHeightBase#1on#2and#3to#4{%
264 \SubVect#2from#3to\Base
265 \ArgOfVect\Base to\Ang \CopyVect\fpeval{\Ang+90}:1 to\Perp

14

266 \IntersectionOfLines(#1)(\Perp)and(#2)(\Base)to#4\ignorespaces}
267 %
268 \def\TriangleBisectorBase#1on#2and#3to#4{%
269 \SubVect#2from#1to\Luno \SubVect#3from#1to\Ldue
270 \SubVect#2from#3to\Base
271 \ArgOfVect\Luno to\Arguno \ArgOfVect\Ldue to\Argdue
272 \edef\ArgBis{\fpeval{(\Arguno+\Argdue)/2}}%
273 \CopyVect \ArgBis:1to \Bisect
274 \IntersectionOfLines(#2)(\Base)and(#1)(\Bisect)to#4\ignorespaces}

Having defined the previous macros, it becomes very easy to create the macros to
find thebarycenter, the orthocenter, theincenter ; for the circumcenter and the cir-
cumcircle we have already solved the question with the \ThreePointCircleCenter
and the ThreePointCircle macros; for homogeneity, we create here their aliases
with the same form as the new “center” macros. Actually, for the “circle” macros,
once the center is known, there is no problem with the circumcircle, while for the
incircle it suffices a macro to determine the distance of the incenter from one of
the triangle sides; such a macro is going to be defined in a little while; it is more
general than simply to determine the radius of the incircle.

275
276 \let\TriangleCircumcenter\ThreePointCircleCenter
277 \let\TriangleCircummcircle\ThreePointCircle

The other “center” macros are the following; they all consist in finding two
of the specific triangle lines, and finding their intersection. Therefore for the
barycenter we intersect two median lines; for the orthocenter we intersect two
height lines; for the incenter we intersect two bisector lines;

278
279 \def\TriangleBarycenter(#1)(#2)(#3)to#4{%
280 \TriangleMedianBase#1on#2and#3to\Pa
281 \TriangleMedianBase#2on#3and#1to\Pb
282 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
283 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
284 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
285
286 \def\TriangleOrthocenter(#1)(#2)(#3)to#4{%
287 \TriangleHeightBase#1on#2and#3to\Pa
288 \TriangleHeightBase#2on#3and#1to\Pb
289 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
290 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
291 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
292
293 \def\TriangleIncenter(#1)(#2)(#3)to#4{%
294 \TriangleBisectorBase#1on#2and#3to\Pa
295 \TriangleBisectorBase#2on#3and#1to\Pb
296 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
297 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
298 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}

15

1.8 Other specific service macros
And here it comes the general macro to determine the distance of a point from a
segment or from a line that contains that segment; it may be used for determining
the radius of the incenter, but it is going to be used also for other purposes. Its
syntax is the following:

\DistanceOfPoint〈point〉 from(〈P1 〉)(〈P2 〉)to〈distance〉

where 〈point〉 is a generic point; 〈P1 〉 and 〈P2 〉 are a segment end points, or two
generic points on a line; 〈distance〉 is the macro that receives the computed scalar
distance value.

299
300 \def\DistanceOfPoint#1from(#2)(#3)to#4{%
301 \SubVect#2from#3to\Base \MultVect\Base by0,1to\AB
302 \IntersectionOfLines(#1)(\AB)and(#2)(\Base)to\D
303 \SubVect#1from\D to\D
304 \ModOfVect\D to#4}

The following macros are specific to solve other little geometrical problems that
arise when creating more complicated constructions.

The \AxisFromAxisAndFocus is an unhappy name that describes the solution
of an ellipse relationship between the ellipse axes and the focal distance

a2 = b2 + c2 (1)

This relation exists between the “semi” values, but it works equally well with
the full values. Evidently a is the largest quantity and refers to the main ellipse
axis, the one that passes through the two foci; b refers to the other shorter ellipse
axis and c refers to the foci; b and c are smaller than a, but there is no specific
relationship among these two quantities It goes by itself that these statements
apply to a veritable ellipse, not to a circle, that is the special case where b = a
and c = 0.

Since to solve the above equation we have one unknown and two known data,
but we do not know what they represent, we have to assume some relationship
exist between the known data; therefore if a is known it must be entered as the
first macro argument; otherwise a is the unknown and the first Argument has to
be the smaller one among b and c. Since b andc may come from other computation
the user has a dilemma: which is the smaller one? But this is a wrong approach; of
course if the user knows which is the smaller, s/he can use the macro by entering
the data in the proper order; but the user is determining the main axis, therefore
it better that s/he uses directly the second macro \MainAxisFromAxisAndFocus
that directly computes a disregarding the order with which b and c are entered;
the macro name suggests to enter b first and c second, but it is irrelevant thanks
to the sum properties. Summarising:

• if the main axis is known use \AxisFromAxisAndFocus by entering the main
axis as the first argument; otherwise

16

•
– if it is known which is smaller among b and c, it is possible to use

\AxisFromAxisAndFocus by entering the smaller one as the first argu-
ment; otherwise

– determine the main axis by using \MainAxisFromAxisAndFocus

Their syntaxes of these two commands are basically the following:

\AxisFromAxisAndFocus〈main axis〉 and〈axis or focus〉 to〈focus or axis〉
\MainAxisFromAxisAndFocus〈axis or focus〉 and〈focus or axis〉 to〈main axis〉

but it is possible to enter the data in a different way with the first command; the
described syntax is the suggested one. Evidently 〈axis or focus〉 and 〈focus or
axis〉 imply that if you specify the focus in one of the two, you have to specify the
axis in the other one.

305
306 \def\AxisFromAxisAndFocus#1and#2to#3{%
307 \fptest{abs(#1)>abs(#2)}%
308 {\edef#3{\fpeval{sqrt(#1**2-#2**2)}}}%
309 {\edef#3{\fpeval{sqrt(#2**2+#1**2)}}}}
310
311 \def\MainAxisFromAxisAndFocus#1and#2to#3{%
312 \edef#3{\fpeval{sqrt(#2**2+#1**2)}}}

The following macros allow to determine some scalar values relative to segments;
in the second one the order of the segment end points is important, because the
computed argument refers to the vector P2 −P1. Their syntaxes are the following:

\SegmentLength(〈P1 〉)(〈P2 〉)to〈length〉
\SegmentArg(〈P1 〉)(〈P2 〉)to〈argument〉

Both 〈length〉 and 〈argument〉 are macros that contain scalar quantities; the argu-
ment is in the range −180◦ < Φ ≤ +180◦.

313
314 \def\SegmentLength(#1)(#2)to#3{\SubVect#1from#2to\Segm
315 \ModOfVect\Segm to#3}
316
317 \def\SegmentArg(#1)(#2)to#3{\SubVect#1from#2to\Segm
318 \GetCoord(\Segm)\SegmX\SegmY\edef#3{\fpeval{atand(\SegmY,\SegmX)}}%
319 \ignorespaces}

In the following sections we need some transformations, in particular the affine
shear one. The macros we define here are not for general use, but are specific for
the purpose of this package.

The fist macro shears a segment, or better a vector that goes from point P1
to point P2 with a horizontal shear factor/angle α; the origin of the vector does
not vary and remains P1 but the arrow tip of the vector is moved according to
the shear factor; in practice this shearing macro is valid only for vectors that start
from any point laying on the x axis. The shear factor α is the angle of the clock

17

wise rotation vector operator by which the vertical coordinate lines get rotated
with respect to their original position. The syntax is the following:

\ShearVect(〈P1 〉)(〈P2 〉)by〈shear〉 to〈vector〉

where 〈P1 〉 and 〈P2 〉 are the initial and final points of the vector to be sheared
with the 〈shear〉 angle, and the result is put in the output 〈vector〉

320
321 \def\ShearVect(#1)(#2)by#3to#4{%
322 \SubVect#1from#2to\AUX
323 \GetCoord(\AUX)\Aux\Auy
324 \edef\Aux{\fpeval{\Aux + #3*\Auy}}%
325 \edef\Auy{\fpeval{\Auy}}%
326 \AddVect\Aux,\Auy and#1to#4\ignorespaces}
327

Again we have another different \ScaleVector macro that takes in input the
starting and ending points of a vector, and scales the vector independently of the
initial point.

328
329 \def\ScaleVector(#1)(#2)by#3to#4{%
330 % Scala per il fattore #3 il vettore da #1 a #2
331 \SubVect#1from#2to\AUX
332 \ScaleVect\AUX by#3to\AUX
333 \AddVect\AUX and#1to#4\ignorespaces}

The following macro to draw a possibly sheared ellipse appears complicated;
but in reality it is not much different from a “normal” ellipse drawing command.
In oder to do the whole work the ellipse center is set in the origin of the axes,
therefore it is not altered by the shearing process; everything else is horizontally
sheared by the shear angle α. In particular the 12 nodes and control point that are
required by the Bézier splines that draw the four ellipse quarters. It is this mul-
titude of shearing commands that makes the macro mach longer and apparently
complicated. The syntax is the following:

\Sellisse〈?〉{〈h-axis〉}{〈v-axis〉}[〈shear〉]

where the optional asterisk is used to mark and label the Bézier spline nodes and
the control points of the possibly sheared ellipse; without the asterisk the ellipse
is drawn without any “decoration”; the optional 〈shear〉 is as usual the angle of
the sheared vertical coordinate lines; its default value is zero.

334 %
335 \NewDocumentCommand\Sellisse{s m m O{0}}{\bgroup
336 \CopyVect#2,#3to\Ptr \ScaleVect\Ptr by-1to\Pbl
337 \CopyVect#2,-#3to\Pbr \ScaleVect\Pbr by-1to\Ptl
338 \edef\Ys{\fpeval{tand{#4}}}%
339 \edef\K{\fpeval{4*(sqrt(2)-1)/3}}%
340 %
341 \ShearVect(0,0)(0,#3)by\Ys to\Pmt

18

342 \ShearVect(0,0)(0,-#3)by\Ys to\Pmb
343 \ShearVect(0,0)(#2,0)by\Ys to\Pmr
344 \ShearVect(0,0)(-#2,0)by\Ys to\Pml
345 %
346 \ShearVect(\Pmr)(\Ptr)by\Ys to\Ptr
347 \ShearVect(\Pml)(\Ptl)by\Ys to\Ptl
348 \ShearVect(\Pmr)(\Pbr)by\Ys to\Pbr
349 \ShearVect(\Pml)(\Pbl)by\Ys to\Pbl
350 %
351 \IfBooleanTF{#1}{\Pbox(\Ptr)[bl]{P_{tr}}\Pbox(\Pbl)[tr]{P_{bl}}%
352 \Pbox(\Pbr)[tl]{P_{br}}\Pbox(\Ptl)[br]{P_{tl}}%
353 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)}{}%
354 %
355 \ScaleVector(\Pmr)(\Ptr)by\K to\Crt
356 \ScaleVector(\Pmr)(\Pbr)by\K to\Crb
357 \ScaleVector(\Pml)(\Ptl)by\K to\Clt
358 \ScaleVector(\Pml)(\Pbl)by\K to\Clb
359 \ScaleVector(\Pmt)(\Ptr)by\K to\Ctr
360 \ScaleVector(\Pmt)(\Ptl)by\K to\Ctl
361 \ScaleVector(\Pmb)(\Pbr)by\K to\Cbr
362 \ScaleVector(\Pmb)(\Pbl)by\K to\Cbl
363 %
364 \IfBooleanTF{#1}{%
365 \Pbox(\Crt)[l]{C_{rt}}\Pbox(\Crb)[l]{C_{rb}}
366 \Pbox(\Clt)[r]{C_{lt}}\Pbox(\Clb)[r]{C_{lb}}
367 \Pbox(\Ctr)[b]{C_{tr}}\Pbox(\Ctl)[b]{C_{tl}}
368 \Pbox(\Cbr)[t]{C_{br}}\Pbox(\Cbl)[t]{C_{bl}}
369 %
370 \Pbox(\Pmr)[l]{P_{mr}}\Pbox(\Pmt)[b]{P_{mt}}%
371 \Pbox(\Pml)[r]{P_{ml}}\Pbox(\Pmb)[t]{P_{mb}}%
372 %
373 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)\thicklines}{}%
374 %
375 \moveto(\Pmr)
376 \curveto(\Crt)(\Ctr)(\Pmt)
377 \curveto(\Ctl)(\Clt)(\Pml)
378 \curveto(\Clb)(\Cbl)(\Pmb)
379 \curveto(\Cbr)(\Crb)(\Pmr)
380 \fillstroke
381 \egroup}
382

This user macro is used to call the \Sellisse macro with the desired parameters,
but also to act with it on order to fill or stroke the ellipse contour, and to select
some settings such as the contour line thickness, or the color of the ellipse contour
or interior. the syntax is the following:

\XSellisse〈?1 〉(〈center〉)[〈angle〉]<〈shear〉>{〈h-axis〉}{〈v
axis〉}〈?2 〉[〈settings1 〉][〈settings2 〉]

where there are two optional asterisks, 〈?1 〉 and 〈?2 〉; the first one controls the

19

coloring of the ellipse: if present the interior is filled, if absent the contour is
stroked; the second one controls the way a possibly sheared ellipse appears: if
present, the construction is shown, if absent only the final result is shown; 〈center〉
is optional: if present, the ellipse center is specified; if absent, its center is at the
origin of the picture axes; 〈angle〉 is optional with default value zero: if absent, the
ellipse is not rotated and the 〈h-axis〉 remains horizontal, while the 〈v-axis〉 remains
vertical, while if present and with a non vanishing value, the ellipse is rotated
counterclockwise the amount specified, and, of course, if the value is negative, the
rotation is clockwise. The optional parameter 〈shear〉, if present, shears the ellipse
paralle the 〈h-axis〉 direction; the 〈settings1 〉 and 〈settings2 〉 operate as described
for command \Xellisse.

383
384 \NewDocumentCommand\XSellisse{ s D(){0,0} O{0} D<>{0} m m s O{} o }%
385 {\IfBooleanTF#1{\let\fillstroke\fillpath}%
386 {\let\fillstroke\strokepath}%
387 \put(#2){\rotatebox{#3}{#8\relax
388 \IfBooleanTF{#7}{\Sellisse*{#5}{#6}[#4]}%
389 {\Sellisse{#5}{#6}[#4]}%
390 \IfValueTF{#9}{\let\fillstroke\strokepath
391 #9\Sellisse{#5}{#7}[#4]}{}}}%
392 \ignorespaces}

1.9 Regular polygons and special ellipses
We finally arrive to more complex macros used to create special polygons and
special ellipses.

1.9.1 Regular polygons

Regular polygons are not that special; it is possible to draw them by using the
\multiput or \xmultiput commands, but a single command that does everything
by itself with more built in functionalities is much handier. The new command
\RegPolygon has the following syntax:

\RegPoligon〈?〉(〈center〉){〈radius〉}{〈number〉}[〈angle〉]<〈settings〉>

where 〈?〉 is an optional asterisk; its presence means that the polygon interior is
filled, instead of the polygon contour being stroked; the 〈center〉 specification of
the polygon is optional; if it is omitted, the polygon center goes to the origin of
the picture coordinates; 〈radius〉 is the mandatory radius of the circumscribed
circle, or, in other words, the distance of each polygon vertex form the 〈center〉;
the mandatory 〈number〉 is an integer that specifies the number of polygon sides;
the first vertex that is being drawn by this command, has an angle of zero degrees
with respect to the 〈center〉; if a different initial 〈angle〉 different from zero is de-
sired, it is specified through this optional argument; possibly the angle bracketed
optional 〈setting〉 parameter may be used to specify, for example, the line thick-
ness for the contour, and/or the color for the polygon contour or interior. See

20

the documentation euclideangeometry-man.pdf for more information and usage
examples.

393
394 \NewDocumentCommand\RegPolygon{s D(){0,0} m m O{0} D<>{\relax} }{{%
395 \countdef\I=258 \I=0
396 \CopyVect#5:#3to\P
397 \CopyVect\fpeval{360/#4}:1to\R
398 \put(#2){#6\relax
399 \moveto(\P)\fpdowhile{\I < #4}%
400 {\MultVect\P by\R to\P%\GetCoord(\P)\X\Y
401 \lineto(\P)\advance\I by 1}%
402 \IfBooleanTF{#1}%
403 {\fillpath}{#6\strokepath}}}\ignorespaces}
404 %%%%%%%%%
405 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
406 \ModOfVect#1to\@tempa
407 \unless\ifdim\@tempa\p@=\z@
408 \DividE\t@X by\@tempa to\t@X
409 \DividE\t@Y by\@tempa to\t@Y
410 \fi\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

1.9.2 The Steiner ellipse

The construction of the Steiner ellipse is very peculiar; it is almost intuitive that
any triangle has infinitely many internal tangent ellipses; therefore it is necessary
to state some other constraints to find one specific ellipse out from this unlimited
set.

One such ellipse is the Steiner one, obtained by adding the constraint that the
ellipse be tangent to the median points of the triangle sides. But one thing is the
definition, and another totally different one is to find the parameters of such an
ellipse; and working with ruler and compass, it is necessary to find a procedure to
draw such an ellipse.

The construction described here and implemented with the SteinerEllipse
macro is based on the following steps, each one requiring the use of some of the
commands and/or transformations described in the previous sections.

1. Given a generic triangle (the coordinates of its three vertices) it is not nec-
essary, but it is clearer to explain, if the triangle is shifted and rotated so as
to have one of its sides horizontal, and the third vertex in the upper part of
the picture drawing. So we first perform the initial shift and rotation and
memorise the parameters of this transformation so that, at the end of the
procedure, we can put back the triangle (and its Steiner ellipse) in its orig-
inal position. Let us call this shifted and rotated triangle with the symbol
T0.

2. We transform T0 with an affine shear transformation into an isosceles triangle
T1 that has the same base and the same height as T0. We memorise the shear
“angle” so as to proceed to an inverse transformation when the following
steps are completed: let be α this shear angle; geometrically it represents

21

the angle of the sheared vertical coordinate lines with respect to the original
vertical position.

3. With another affine vertical scaling transformation we transform T1 into
an equilateral triangle T2; the ratio of the vertical transformation equals the
ratio between the T2 to the T1 heights; we memorise this ratio for the reverse
transformation at the end of the procedure.

4. The Steiner ellipse of the equilateral triangle T2 is its incircle. We are almost
done; we just have to proceed to the inverse transformations; getting back
from T2 to T1 first implies transforming the incircle of T2 into an ellipse with
its vertical axis scaled by the inverse ratio memorised in step 3.

5. The second inverse transformation by the shear angle is easy with the pas-
sage from T1 to T0, but it would be more difficult for transforming the
ellipse into the sheared ellipse. We have already defined the \Sellipse and
the \XSellipse macros that may take care of the ellipse shear transforma-
tion; we already memorised the shear angle in step 2, therefore the whole
procedure, except for putting back the triangle, is almost done.

6. Eventually we perform the last shifting and rotating transformation and the
whole construction is completed.

The new macro Steiner ellipse has therefore the following syntax:

\SteinerEllipse〈?〉(〈P1 〉)(〈P2 〉)(〈P3 〉)[〈diameter〉]

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the vertices of the triangle; 〈?〉 is an optional asterisk;
without it the maro draws only the final result, that contains only the given
triangle and its Steiner ellipse; on the opposite, if the asterisk is used the whole
construction from T0 to its Steiner ellipse is drawn; the labelling of points is done
with little dots of the default 〈diameter〉 or a specified value; by default it is a
1 pt diameter, but sometimes it would be better to use a slightly larger value
(remembering that 1 mm — about three points — is already too much). Please
refer to the documentation file euclideangeometry-man.pdf for usage examples
and suggestions.

411 %
412
413 \NewDocumentCommand\SteinerEllipse{s d() d() d() O{1}}{\bgroup
414 %
415 \IfBooleanTF{#1}{}{\put(#2)}{%
416 \CopyVect0,0to\Pu
417 \SubVect#2from#3to\Pd
418 \SubVect#2from#4to\Pt
419 \ModAndAngleOfVect\Pd to\M and\Rot
420 \MultVect\Pd by-\Rot:1 to\Pd \MultVect\Pt by-\Rot:1 to\Pt
421 \IfBooleanTF{#1}{}{\rotatebox{\Rot}}{\makebox(0,0)[bl]{%
422 \Pbox(\Pu)[r]{P_1}[#5]<-\Rot>\Pbox(\Pd)[t]{P_2}[#5]<-\Rot>
423 \Pbox(\Pt)[b]{P_3}[#5]<-\Rot>%
424 \polygon(\Pu)(\Pd)(\Pt)%
425 \edef\B{\fpeval{\M/2}}\edef\H{\fpeval{\B*tand(60)}}
426 \IfBooleanTF{#1}{\Pbox(\B,\H)[b]{H}[#5]

22

427 \polygon(\Pu)(\B,\H)(\Pd)}{}%
428 \edef\R{\fpeval{\B*tand(30)}}
429 \IfBooleanTF{#1}{\Pbox(\B,\R)[bl]{C}[#5]
430 \Circlewithcenter\B,\R radius{\R}}{}%
431 \GetCoord(\Pt)\Xt\Yt\edef\VScale{\fpeval{\Yt/\H}}
432 \IfBooleanTF{#1}{\polyline(\Pu)(\B,\Yt)(\Pd)
433 \Pbox(\B,\Yt)[b]{V}[#5]}{}%
434 \edef\Ce{\fpeval{\R*\VScale}}
435 \IfBooleanTF{#1}{\Xellisse(\B,\Ce){\R}{\Ce}
436 \Pbox(\B,\Ce)[r]{C_e}[#5]\Pbox(\B,0)[t]{B}[#5]}{}%
437 \SubVect\B,0 from\Pt to\SlMedian
438 \IfBooleanTF{#1}{\Dotline(\B,0)(\Pt){2}[1.5]}{}%
439 \ModAndAngleOfVect\SlMedian to\Med and\Alfa
440 \edef\Alfa{\fpeval{90-\Alfa}}
441 \IfBooleanTF{#1}{\Dotline(\B,\Yt)(\B,0){2}[1.5]
442 \Pbox(\fpeval{\B+\Ce*tand{\Alfa}},\Ce)[l]{C_i}[#5]
443 \VectorArc(\B,0)(\B,15){-\Alfa}
444 \Pbox(\fpeval{\B+2.5},14)[t]{\alpha}[0]}{}%
445 \edef\a{\R}\edef\b{\Ce}%
446 \CopyVect\fpeval{\B+\Ce*tand{\Alfa}},\Ce to\CI
447 \XSellisse(\CI)<\Alfa>{\R}{\Ce}
448 }}}%
449 \egroup\ignorespaces}
450 \let\EllisseSteiner\SteinerEllipse

1.9.3 The ellipse that is internally tangent to a triangle while one of
its foci is prescribed

We now are going to tackle another problem. As we said before, any triangle
has an infinite set of internally tangent circles, unless some further constraint is
specified.

Another problem of this kind is the determination and geometrical construction
of an internally tangent ellipse when one focus is specified; of course since the whole
ellipse is totally internal to the triangle, we assume that the user has already
verified that the coordinates of the focus fall inside the triangle. We are not going
to check this feature in place of the user; after all, if the user draws the triangle
within a picture image, together with the chosen focus, is suffices a glance to
verify that such focus lays within the triangle perimeter.

The geometrical construction is quite complicated, but it is described in a
paper by Estevão V. Candia on TUGboat 2019 40(3); it consists of the following
steps.

1. Suppose you have specified a triangle by means of its three vertices, and a
point inside it to play the role of a focus; it is necessary to find the other
focus and the main axis length in order to have a full description of the
ellipse.

2. To do so, it is necessary to find the focus three symmetrical points with
respect to the three sides.

23

3. The center of the three point circle through these symmetrical points is the
second focus.

4. The lines that join the second focus to the three symmetrical points of the
first focus, intersect the triangle sides in three points that result to be the
tangency points of the ellipse to the triangle.

5. Chosen one of these tangency points and computing the sum of its distances
from both foci, the total length of the ellipsis main axis is found.

6. Knowing both foci, the total inter focal distance is found, therefore equa-
tion (1) allows to find the other axis length.

7. The inclination of the focal segment gives us the the rotation to which the
ellipse is subject, and the middle point of such segment gives the ellipse
center.

8. At this point we have all the necessary elements to draw the ellipse.

We need another little macro to find the symmetrical points; if the focus F and
its symmetrical point P with respect to a side/segment, the intersection of such
segment F−P with the side is the segment middle point M ; from this property we
derive the formula P = 2M−F . Now M is also the intersection of the line passing
through F and perpendicular to the side. Therefore it is particularly simple to
compute, but its better to have available a macro that does the whole work; here
it is, but it assumes the the center of symmetry is already known:

451
452 \def\SymmetricalPointOf#1respect#2to#3{\ScaleVect#2by2to\Segm
453 \SubVect#1from\Segm to#3\ignorespaces}

And its syntax is the following:

\SymmetricalPointOf〈focus〉 respect〈symmetry center〉
to〈symmetrical point〉

where the argument names are self explanatory.
The overall macro that executes all the passages described in the above enu-

meration follows; the reader can easily recognise the various steps, since the names
of the macros are self explanatory; the Gi point names are the symmetrical ones to
the first focus F ; the Mi points are the centers of symmetry; the F ′ point is the sec-
ond focus; the Ti points are the tangency points. The macro \EllipseWithFOcus
has the following syntax:

\EllipseWithFocus〈?〉(〈P1 〉)(〈P2 〉)(〈P3 〉)(〈focus〉)

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the triangle vertices and 〈focus〉 contains the first
focus coordinates; the optional asterisk, as usual, selects the construction steps
versus the final result: no asterisk, no construction steps.

454
455 \NewDocumentCommand\EllipseWithFocus{s d() d() d() d()}{\bgroup%
456 \CopyVect#2to\Pu
457 \CopyVect#3to\Pd
458 \CopyVect#4to\Pt

24

459 \CopyVect#5to\F
460 \polygon(\Pu)(\Pd)(\Pt)
461 \Pbox(\Pu)[r]{P_1}[1.5pt]\Pbox(\Pd)[t]{P_2}[1.5pt]
462 \Pbox(\Pt)[b]{P_3}[1.5pt]\Pbox(\F)[b]{F}[1.5pt]
463 \SegmentArg(\Pu)(\Pt)to\At
464 \SegmentArg(\Pu)(\Pd)to\Ad
465 \SegmentArg(\Pd)(\Pt)to\Au
466 \IntersectionOfLines(\Pu)(\At:1)and(\F)(\fpeval{\At+90}:1)to\Mt
467 \IntersectionOfLines(\Pd)(\Ad:1)and(\F)(\fpeval{\Ad+90}:1)to\Md
468 \IntersectionOfLines(\Pd)(\Au:1)and(\F)(\fpeval{\Au+90}:1)to\Mu
469 \IfBooleanTF{#1}{\Pbox(\Mt)[br]{M_3}[1.5pt]\Pbox(\Md)[t]{M_2}[1.5pt]
470 \Pbox(\Mu)[b]{M_1}[1.5pt]}{}
471 \SymmetricalPointOf\F respect\Mu to\Gu
472 \IfBooleanTF{#1}{\Pbox(\Gu)[l]{G_1}[1.5pt]}{}
473 \SymmetricalPointOf\F respect \Md to\Gd
474 \IfBooleanTF{#1}{\Pbox(\Gd)[t]{G_2}[1.5pt]}{}
475 \SymmetricalPointOf\F respect \Mt to\Gt
476 \IfBooleanTF{#1}{\Pbox(\Gt)[r]{G_3}[1.5pt]}{}
477 \IfBooleanTF{#1}{\ThreePointCircle*(\Gu)(\Gd)(\Gt)}%
478 {\ThreePointCircle(\Gu)(\Gd)(\Gt)}
479 \CopyVect\C to\Fp \Pbox(\Fp)[l]{F’}[1.5pt]
480 \IfBooleanTF{#1}{%
481 \Dotline(\F)(\Gt){2}[1.5pt]
482 \Dotline(\F)(\Gd){2}[1.5pt]
483 \Dotline(\F)(\Gu){2}[1.5pt]}{}
484 \IntersectionOfSegments(\Pu)(\Pt)and(\Fp)(\Gt)to\Tt
485 \IntersectionOfSegments(\Pu)(\Pd)and(\Fp)(\Gd)to\Td
486 \IntersectionOfSegments(\Pd)(\Pt)and(\Fp)(\Gu)to\Tu
487 \IfBooleanTF{#1}{\Pbox(\Tu)[l]{T_1}[1.5pt]
488 \Pbox(\Td)[b]{T_2}[1.5pt]
489 \Pbox(\Tt)[tl]{T_3}[1.5pt]
490 \Dashline(\Fp)(\Gu){1}\Dashline(\Fp)(\Gd){1}\Dashline(\Fp)(\Gt){1}}{}
491 \DistanceAndDirOfVect\Fp minus\Tt to\DFp and\AFu
492 \DistanceAndDirOfVect\F minus\Tt to\DF and\AF
493 \SegmentCenter(\F)(\Fp)to\CE \Pbox(\CE)[b]{C}[1.5pt]
494 \edef\a{\fpeval{(\DFp+\DF)/2}}
495 \SegmentArg(\F)(\Fp)to\AngFocalAxis
496 \SegmentLength(\F)(\CE)to\c
497 \AxisFromAxisAndFocus\a and\c to\b
498 \Xellisse(\CE)[\AngFocalAxis]{\a}{\b}[\thicklines]
499 \VECTOR(-30,0)(120,0)\Pbox(120,0)[t]{x}[0]
500 \VECTOR(0,-20)(0,130)\Pbox(0,130)[r]{y}[0]\Pbox(0,0)[tr]{O}[1.5pt]
501 \egroup\ignorespaces}
502 \let\EllisseConFuoco\EllipseWithFocus

2 Comments on this package
In general we found very comfortable to draw ellipses and to define macros to draw
not only such shapes or filled elliptical areas, but also to create “legends” with

25

coloured backgrounds and borders; such applications found their way in other
works. But here we dealt with other geometrical problems. The accompany-
ing document euclideangeometry-man.pdf describes much clearly with examples
what you can do with the macros described in this package. In facts, this file just
describes the package macros, and it gives some ideas on how to extend the ability
of curve2e to draw geometrical diagrams. The users who would like to modify or
to add some functionalities are invited to do so; I will certainly acknowledge their
contributions and even add their names to the list of authors.

As long as I can, I enjoy playing with LATEX and its wonderful facilities; but,
taking into consideration my age, I would invite the users to consider the possibility
of assuming the maintenance of this package.

26

