The etoolbox Package

An e-TeX Toolbox for Class and Package Authors

Philipp Lehman Version 2.0a
plehman@gmx.net September 12,2010

Contents

I Introduction I
I.I About I
I. 2 License I
I. 3 Acknowledgments . . . I

2 User Commands I
2.I Definitions I
2.2 Patching 2
2.3 Protection 2
2.4 Lengths and Counters . 2
2.5 Predefined hooks 3

3 Author Commands 4
3.I Definitions 4
3.2 Expansion Control . . . 8
3.3 Hook Management . . . 8
3.4 Patching 10
3.5 Boolean Flags I2
3.6 Generic Tests I4
3.7 List Processing 22
3.8 Miscellaneous Tools . . 25

4 Revision History 26

1 Introduction

1.1 About etoolbox

The etoolbox package is a toolbox of programming facilities geared primarily towards LaTeX class and package authors. It provides LaTeX frontends to some of the new primitives provided by e-TeX as well as some generic tools which are not related to e-TeX but match the profile of this package.

1.2 License

Copyright © 2007-2010 Philipp Lehman. Permission is granted to copy, distribute and/or modify this software under the terms of the LaTeX Project Public License, version I.3. ${ }^{1}$ This package is author-maintained.

1.3 Acknowledgments

The \ifblank test of this package is based on code by Donald Arseneau.

2 User Commands

The facilities in this section are geared towards regular users as well as class and package authors.

2.1 Definitions

Inewrobustcmd $\{\langle$ command $\rangle\}[\langle$ arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
\newrobustcmd*\{〈command $\rangle\}[\langle$ arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
The syntax and behavior of this command is similar to \newcommand except that the newly defined \langle command \rangle will be robust. The behavior of this command dif-

```
I http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt
```

fers from the \DeclareRobustCommand command from the LaTeX kernel in that it issues an error rather than just an informational message if the 〈command \rangle is already defined．Since it uses e－TeX＇s low－level protection mechanism rather than the corresponding higher－level LaTeX facilities，it does not require an additional macro to implement the＇robustness＇．
\renewrobustcmd $\{\langle$ command $\rangle\}[\langle$ arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
\renewrobustcmd＊\｛〈command $\rangle\}[\langle$ arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
The syntax and behavior of this command is similar to }[\langle\) arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
\providerobustcmd＊\｛〈command $\rangle\}[\langle$ arguments $\rangle][\langle$ optarg default $\rangle]\{\langle$ replacement text $\rangle\}$
The syntax and behavior of this command is similar to \providecommand except that the newly defined \langle command \rangle will be robust．Note that this command will provide a robust definition of the \langle command〉 only if it is undefined．It will not make an already defined \langle command \rangle robust．

2．2 Patching

\backslash robustify $\{\langle$ command $\rangle\}$
Redefines a＜command〉 defined with \newcommand such that it is robust，without altering its parameters，its prefixes，or its replacement text．If the \langle command \rangle has been defined with \DeclareRobustCommand，this will be detected automatically and LaTeX＇s high－level protection mechanism will be replaced by the corresponding low－level e－TeX feature．

2．3 Protection

\protecting\｛〈code〉\}
This command applies LaTeX＇s protection mechanism，which normally requires prefixing each fragile command with \protect，to an entire chunk of arbitrary $\langle c o d e\rangle$ ．Its behavior depends on the current state of \protect．Note that the braces around the \langle code \rangle are mandatory even if it is a single token．

2．4 Length and Counter Assignments

The facilities in this section are replacements for \setcounter and \setlength which support arithmetic expressions．

\backslash defcounter $\{\langle$ counter $\rangle\}\{\langle$ integer expression $\rangle\}$

Assigns a value to a LaTeX＜counter〉 previously initialized with \newcounter．This command is similar in concept and syntax to \setcounter except for two ma－ jor differences．I）The second argument may be an \langle integer expression \rangle which will be processed with \numexpr．The 〈integer expression〉 may be any arbitrary code which is valid in this context．The value assigned to the \langle counter \rangle will be the result of that calculation．2）In contrast to \setcounter，the assignment is local by de－
fault but \defcounter may be prefixed with \global．The functional equivalent of \setcounter would be \backslash global \backslash defcounter．

\backslash deflength $\{\langle$ length $\rangle\}\{\langle$ glue expression $\rangle\}$

Assigns a value to a 〈length〉 register previously initialized with \newlength．This command is similar in concept and syntax to \setlength except that the second argument may be a \langle glue expression \rangle which will be processed with \backslash glueexpr．The〈glue expression〉 may be any arbitrary code which is valid in this context．The value assigned to the 〈length〉 register will be the result of that calculation．The assignment is local by default but \deflength may be prefixed with \global．This command may be used as a drop－in replacement for \setlength．

2．5 Predefined All－Purpose Hooks

LaTeX provides two hooks which defer the execution of code either to the begin－ ning or to the end of the document body．Any \backslash AtBeginDocument code is executed towards the beginning of the document body，after the main aux file has been read for the first time．Any \backslash AtEndDocument code is executed at the end of the docu－ ment body，before the main aux file is read for the second time．The hooks intro－ duced here are similar in concept but defer the execution of their \langle code \rangle argument to slightly different locations．The 〈code〉 may be arbitrary TeX code．Parameter characters in the \langle code \rangle argument need not be doubled．
\backslash AfterPreamble\｛〈code \rangle \}
This hook is a variant of \backslash AtBeginDocument which may be used in both the pream－ ble and the document body．When used in the preamble，it behaves exactely like \backslash AtBeginDocument．When used in the document body，it immediately executes its〈code〉 argument．\AtBeginDocument would issue an error in this case．This hook is useful to defer code which needs to write to the main aux file．

\AtEndPreamble\｛〈code〉\}

This hook differs from \AtBeginDocument in that the $\langle c o d e\rangle$ is executed right at the end of the preamble，before the main aux file（as written on the previous LaTeX pass）is read and prior to any \backslash AtBeginDocument code．Note that it is not possible to write to the aux file at this point．
\backslash AfterEndPreamble\｛ \langle code $\rangle\}$
This hook differs from \backslash AtBeginDocument in that the $\langle c o d e\rangle$ is executed at the very end of \backslash begin $\{d o c u m e n t\}$ ，after any $\backslash A t B e g i n D o c u m e n t ~ c o d e . ~ N o t e ~ t h a t ~ c o m-~$ mands whose scope has been restricted to the preamble with \＠onlypreamble are no longer available when this hook is executed．
\backslash AfterEndDocument $\{\langle$ code $\rangle\}$
This hook differs from \backslash AtEndDocument in that the \langle code \rangle is executed at the very end of the document，after the main aux file（as written on the current LaTeX pass） has been read and after any \backslash AtEndDocument code．

In a way, \AtBeginDocument code is part neither of the preamble nor the document body but located in-between them since it gets executed in the middle of the initialization sequence performed prior to typesetting. It is sometimes desirable to move code to the end of the preamble because all requested packages have been loaded at this point. \AtBeginDocument code, however, is executed too late if it is required in the aux file. In contrast to that, \backslash AtEndPreamble code is part of the preamble; \backslash AfterEndPreamble code is part of the document body and may contain printable text to be typeset at the very beginning of the document. To sum that up, LaTeX will perform the following tasks 'inside' \backslash begin\{document \}:

- Execute any \backslash AtEndPreamble code
- Start initialization for document body (page layout, default fonts, etc.)
- Load the main aux file written on the previous LaTeX pass
- Open the main aux file for writing on the current pass
- Continue initialization for document body
- Execute any \backslash AtBeginDocument code
- Complete initialization for document body
- Disable all \@onlypreamble commands
- Execute any \AfterEndPreamble code

Inside \end\{document \}, LaTeX will perform the following tasks: }

- Execute any \backslash AtEndDocument code
- Perform a final
 operation
- Close the main aux file for writing
- Load the main aux file written on the current LaTeX pass
- Perform final tests and issue warnings, if applicable
- Execute any \AfterEndDocument code

Any \backslash AtEndDocument code may be considered as being part of the document body insofar as it is still possible to perform typesetting tasks and write to the main aux file when it gets executed. \AfterEndDocument code is not part of the document body. This hook is useful to evaluate the data in the aux file at the very end of a LaTeX pass.

3 Author Commands

The facilities in this section are geared towards class and package authors.

3.1 Definitions

3.1.1 Macro Definitions

The facilities in this section are simple but frequently required shorthands which extend the scope of the \@namedef and \@nameuse macros from the LaTeX kernel.
$\backslash c s \operatorname{def}\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to the TeX primitive \def except that it takes a control sequence name as its first argument. This command is robust and corresponds to \@namedef.
\backslash csgdef $\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to the TeX primitive \gdef except that it takes a control sequence name as its first argument. This command is robust.
\backslash csedef $\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to the TeX primitive \edef except that it takes a control sequence name as its first argument. This command is robust.
\backslash csxdef $\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to the TeX primitive \xdef except that it takes a control sequence name as its first argument. This command is robust.
\protected@csedef $\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to \csedef except that LaTeX's protection mechanism is temporarily enabled. To put it in other words: this command is similar to the LaTeX kernel com-
 argument. This command is robust.
\backslash protected@csxdef\{$\{\langle$ csname $\rangle\}\langle$ arguments $\rangle\{\langle$ replacement text $\rangle\}$
Similar to \csxdef except that LaTeX's protection mechanism is temporarily enabled. To put it in other words: this command is similar to the LaTeX kernel command \protected@xdef except that it takes a control sequence name as its first argument. This command is robust.
\cslet $\{\langle$ csname $\rangle\}\{\langle$ command $\rangle\}$
Similar to the TeX primitive \let except that the first argument is a control sequence name. If \langle command \rangle is undefined, \langle csname \rangle will be undefined as well after the assignment. This command is robust and may be prefixed with \backslash global.

$\backslash 1$ etcs $\{\langle$ command $\rangle\}\{\langle$ csname $\rangle\}$

Similar to the TeX primitive \let except that the second argument is a control sequence name. If \langle csname \rangle is undefined, the 〈command \rangle will be undefined as well after the assignment. This command is robust and may be prefixed with \backslash global.

```
\csletcs{\langlecsname\rangle}{\langlecsname\rangle}
```

Similar to the TeX primitive \let except that both arguments are control sequence names. If the second \langle csname \rangle is undefined, the first \langle csname \rangle will be undefined as well after the assignment. This command is robust and may be prefixed with \global.
\backslash csuse $\{\langle$ csname $\rangle\}$
Takes a control sequence name as its argument and forms a control sequence token. This command differs from the \@nameuse macro in the LaTeX kernel in that it expands to an empty string if the control sequence is undefined.

```
\undef〈command〉
```

Clears a \langle command \rangle such that e－TeX’s $\backslash i f d e f i n e d$ and \ifcsname tests will con－ sider it as undefined．This command is robust and may be prefixed with $\backslash \mathrm{global}$ ．

```
\csundef{\langlecsname\rangle}
```

Similar to \undef except that it takes a control sequence name as its argument． This command is robust and may be prefixed with \global．
\csshow\｛〈csname〉\}
Similar to the TeX primitive \show but takes a control sequence name as its argu－ ment．If the control sequence is undefined，this command will not implicitly assign a meaning of $\backslash r e l a x$ to it．This command is robust．

3．1．2 Arithmetic Definitions

The facilities in this section permit calculations using macros rather than length registers and counters．

```
\numdef \(\langle\) command \(\rangle\{\langle\) integer expression \(\rangle\}\)
```

Similar to \edef except that the 〈integer expression〉 is processed with \numexpr． The 〈integer expression〉 may be any arbitrary code which is valid in this con－ text．The replacement text assigned to the 〈command〉 will be the result of that calculation．If the \langle command \rangle is undefined，it will be initialized to 0 before the〈integer expression〉 is processed．
\numgdef \langle command $\rangle\{\langle$ integer expression $\rangle\}$
Similar to \numdef except that the assignment is global．
\csnumdef $\{\langle$ csname $\rangle\}\{\langle$ integer expression $\rangle\}$
Similar to \numdef except that it takes a control sequence name as its first argu－ ment．
\csnumgdef $\{\langle$ csname $\rangle\}\{\langle$ integer expression $\rangle\}$
Similar to \numgdef except that it takes a control sequence name as its first argu－ ment．
\backslash dimdef \langle command $\rangle\{\langle$ dimen expression $\rangle\}$
Similar to \edef except that the 〈dimen expression〉 is processed with \dimexpr． The \langle dimen expression \rangle may be any arbitrary code which is valid in this context． The replacement text assigned to the 〈command〉 will be the result of that cal－ culation．If the \langle command \rangle is undefined，it will be initialized to $0 p t$ before the〈dimen expression〉 is processed．
\backslash dimgdef \langle command $\rangle\{\langle$ dimen expression $\rangle\}$
Similar to \dimdef except that the assignment is global．
\csdimdef $\{\langle$ csname $\rangle\}\{\langle$ dimen expression $\rangle\}$
Similar to \dimdef except that it takes a control sequence name as its first argu－ ment．
\csdimgdef $\{\langle$ csname $\rangle\}\{\langle$ dimen expression $\rangle\}$
Similar to \dimgdef except that it takes a control sequence name as its first argu－ ment．
\gluedef \langle command $\rangle\{\langle$ glue expression $\rangle\}$
Similar to \edef except that the 〈glue expression〉is processed with \glueexpr． The \langle glue expression \rangle may be any arbitrary code which is valid in this context．The replacement text assigned to the 〈command〉 will be the result of that calculation． If the \langle command \rangle is undefined，it will be initialized to Opt plus Opt minus Opt before the 〈glue expression〉 is processed．
\gluegdef \langle command $\rangle\{\langle$ glue expression $\rangle\}$
Similar to \gluedef except that the assignment is global．
\csgluedef $\{\langle$ csname $\rangle\}\{\langle$ glue expression $\rangle\}$
Similar to \gluedef except that it takes a control sequence name as its first argu－ ment．
\csgluegdef $\{\langle$ csname $\rangle\}\{\langle$ glue expression $\rangle\}$
Similar to \gluegdef except that it takes a control sequence name as its first argu－ ment．
\backslash mudef \langle command $\rangle\{\langle$ muglue expression $\rangle\}$
Similar to \edef except that the \langle muglue expression〉 is processed with \muexpr． The \langle muglue expression \rangle may be any arbitrary code which is valid in this context． The replacement text assigned to the 〈command〉 will be the result of that cal－ culation．If the \langle command \rangle is undefined，it will be initialized to 0mu before the \langle muglue expression〉 is processed．

$\backslash m u g d e f\langle$ command $\rangle\{\langle$ muglue expression $\rangle\}$

Similar to \mudef except that the assignment is global．
\csmudef $\{\langle$ csname $\rangle\}\{\langle$ muglue expression $\rangle\}$
Similar to \mudef except that it takes a control sequence name as its first argument．
\backslash csmugdef $\{\langle$ csname $\rangle\}\{\langle$ muglue expression $\rangle\}$
Similar to \mugdef except that it takes a control sequence name as its first argu－ ment．

3．2 Expansion Control

The facilities in this section are useful to control expansion in an \edef or a similar context．

\expandonce〈command〉

This command expands a 〈command \rangle once and prevents further expansion of the replacement text．This command is expandable．
\csexpandonce\｛〈csname〉\}
Similar to \expandonce except that it takes a control sequence name as its argu－ ment．

3．3 Hook Management

The facilities in this section are intended for hook management．A $\langle h o o k\rangle$ in this context is a plain macro without any parameters and prefixes which is used to collect code to be executed later．These facilities may also be useful to patch simple macros by appending code to their replacement text．For more complex patching operations，see section 3．4．All commands in this section will initialize the $\langle h o o k\rangle$ if it is undefined．

3．3．1 Appending to a Hook

The facilities in this section append arbitrary code to a hook．

```
\appto\langlehook\rangle{\langlecode\rangle}
```

This command appends arbitrary \langle code \rangle to a $\langle h o o k\rangle$ ．If the \langle code \rangle contains any parameter characters，they need not be doubled．This command is robust．

```
\gappto\langlehook\rangle{\langlecode\rangle}
```

Similar to \appto except that the assignment is global．This command may be used as a drop－in replacement for the \g＠addto＠macro command in the LaTeX kernel．

```
\eappto\langlehook\rangle{\langlecode\rangle}
```

This command appends arbitrary \langle code \rangle to a $\langle h o o k\rangle$ ．The \langle code \rangle is expanded at definition－time．Only the new \langle code \rangle is expanded，the current replacement text of the $\langle h o o k\rangle$ is not．This command is robust．

```
\xappto\langlehook\rangle{\langlecode\rangle}
```

Similar to \eappto except that the assignment is global．
\protected＠eappto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \eappto except that LaTeX＇s protection mechanism is temporarily en－ abled．

```
    \protected@xappto\langlehook\rangle{\langlecode\rangle}
```

Similar to \xappto except that LaTeX＇s protection mechanism is temporarily en－ abled．

\csappto\｛〈csname $\rangle\}\{\langle$ code $\rangle\}$

Similar to \appto except that it takes a control sequence name as its first argument．

```
\csgappto{\langlecsname\rangle}{\langlecode\rangle}
```

Similar to \gappto except that it takes a control sequence name as its first argu－ ment．
\cseappto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \eappto except that it takes a control sequence name as its first argu－ ment．
\csxappto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \xappto except that it takes a control sequence name as its first argu－ ment．

\protected＠cseappto \langle hook $\rangle\{\langle$ code $\rangle\}$

Similar to \protected＠eappto except that it takes a control sequence name as its first argument．
\backslash protected＠csxappto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \protected＠xappto except that it takes a control sequence name as its first argument．

3．3．2 Prepending to a Hook

The facilities in this section＇prepend＇arbitrary code to a hook，i．e．，the code is inserted at the beginning of the hook rather than being added at the end．

\preto \langle hook $\rangle\{\langle$ code $\rangle\}$

Similar to \appto except that the \langle code \rangle is prepended．

\gpreto〈hook〉\｛〈code〉\}

Similar to \preto except that the assignment is global．

\epreto \langle hook $\rangle\{\langle$ code $\rangle\}$

Similar to \eappto except that the $\langle c o d e\rangle$ is prepended．
\xpreto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \epreto except that the assignment is global．
\protected＠epreto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \epreto except that LaTeX＇s protection mechanism is temporarily en－ abled．

\protected＠xpreto〈hook $\{\langle$ code $\rangle\}$

Similar to \xpreto except that LaTeX＇s protection mechanism is temporarily en－ abled．
\backslash cspreto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \preto except that it takes a control sequence name as its first argument．
\csgpreto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \gpreto except that it takes a control sequence name as its first argu－ ment．
\csepreto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \epreto except that it takes a control sequence name as its first argu－ ment．
\csxpreto $\{\langle$ csname $\rangle\}\{\langle$ code $\rangle\}$
Similar to \xpreto except that it takes a control sequence name as its first argu－ ment．
\protected＠csepreto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \protected＠epreto except that it takes a control sequence name as its first argument．
\protected＠csxpreto \langle hook $\rangle\{\langle$ code $\rangle\}$
Similar to \protected＠xpreto except that it takes a control sequence name as its first argument．

3．4 Patching

The facilities in this section are useful to hook into or modify existing code．All commands presented here preserve the parameters and the prefixes of the patched〈command〉．Note that \outer commands may not be patched．Also note that the commands in this section will not automatically issue any error messages if patch－ ing fails．Instead，they take a 〈failure〉 argument which should provide suitable fallback code or an error message．Issuing \tracingpatches in the preamble will cause the commands to write debugging information to the transcript file．
\patchomd $[\langle$ prefix $\rangle]\{\langle$ command $\rangle\}\{\langle$ search $\rangle\}\{\langle$ replace $\rangle\}\{\langle$ success $\rangle\}\{\langle$ failure $\rangle\}$
This command extracts the replacement text of a＜command \rangle ，replaces \langle search \rangle with \langle replace \rangle ，and reassembles the \langle command \rangle ．The pattern match is category code agnostic and matches the first occurence of the \langle search \rangle pattern in the re－ placement text of the \langle command \rangle to be patched．Note that the patching process
involves detokenizing the replacement text of the \langle command \rangle and retokenizing it under the current category code regime after patching．The category code of the＠sign is temporarily set to II．If the replacement text of the 〈command \rangle in－ cludes any tokens with non－standard category codes，the respective category codes must be adjusted prior to patching．If the code to be replaced or inserted refers to the parameters of the 〈command〉 to be patched，the parameter characters need not be doubled．If an optional $\langle p r e f i x\rangle$ is specified，it replaces the prefixes of the \langle command \rangle ．An empty \langle prefix \rangle argument strips all prefixes from the \langle command \rangle ． The assignment is local．This command implicitly performs the equivalent of an \ifpatchable test prior to patching．If this test succeeds，the command applies the patch and executes \langle success \rangle ．If the test fails，it executes \langle failure \rangle without mod－ ifying the original \langle command \rangle ．This command is robust．
\ifpatchable\｛ \langle command $\rangle\}\{\langle$ search $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
This command executes \langle true \rangle if the \langle command \rangle may be patched with \backslash patchcmd and if the \langle search \rangle pattern is found in its replacement text，and \langle false \rangle otherwise． This command is robust．
\ifpatchable＊$\{\langle$ command $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifpatchable except that the starred variant does not require a search pattern．Use this version to check if a command may be patched with \apptocmd and \backslash pretocmd．
\apptocmd $\{\langle$ command $\rangle\}\{\langle$ code $\rangle\}\{\langle$ success $\rangle\}\{\langle$ failure $\rangle\}$
This command appends \langle code \rangle to the replacement text of a \langle command \rangle ．If the〈command〉 is a parameterless macro，it behaves like \appto from section 3．3．I．In contrast to \appto，\apptocmd may also be used to patch commands with param－ eters．In this case，it will detokenize the replacement text of the 〈command \rangle ，apply the patch，and retokenize it under the current category code regime．The category code of the＠sign is temporarily set to ir．The \langle code \rangle may refer to the parameters of the \langle command \rangle ．The assignment is local．If patching succeeds，this command executes \langle success \rangle ．If patching fails，it executes \langle failure \rangle without modifying the original \langle command \rangle ．This command is robust．
\pretocmd $\{\langle$ command $\rangle\}\{\langle$ code $\rangle\}\{\langle$ success $\rangle\}\{\langle$ failure $\rangle\}$
This command is similar to \apptocmd except that the $\langle c o d e\rangle$ is inserted at the beginning of the replacement text of the \langle command \rangle ．If the \langle command \rangle is a param－ eterless macro，it behaves like \preto from section 3．3．I．In contrast to \preto， \pretocmd may also be used to patch commands with parameters．In this case，it will detokenize the replacement text of the \langle command \rangle ，apply the patch，and reto－ kenize it under the current category code regime．The category code of the＠sign is temporarily set to iI．The \langle code \rangle may refer to the parameters of the \langle command \rangle ． The assignment is local．If patching succeeds，this command executes \langle success \rangle ． If patching fails，it executes \langle failure \rangle without modifying the original \langle command \rangle ． This command is robust．

Enables tracing for all patching commands, including \ifpatchable. The debugging information will be written to the transcript file. This is useful if the reason why a patch is not applied or \ifpatchable yields $\langle f a l s e\rangle$ is not obvious. This command must be issued in the preamble.

3.5 Boolean Flags

This package provides two interfaces to boolean flags which are completely independent of each other. The facilities in section 3.5.I are a LaTeX frontend to \backslash newif. Those in section 3.5.2 use a different mechanism.

3.5.1 TeX Flags

Since the facilities in this section are based on \newif internally, they may be used to test and alter the state of flags previously defined with \newif. They are also compatible with the boolean tests of the ifthen package and may serve as a LaTeX interface for querying TeX primitives such as \ifmmode. The \newif approach requires a total of three macros per flag.
\newbool $\{\langle$ name $\rangle\}$
Defines a new boolean flag called $\langle n a m e\rangle$. If the flag has already been defined, this command issues an error. The initial state of newly defined flags is false. This command is robust.
\providebool\{ \langle name $\rangle\}$
Defines a new boolean flag called \langle name \rangle unless it has already been defined. This command is robust.
\booltrue\{ \langle name $\rangle\}$
Sets the boolean flag $\langle n a m e\rangle$ to true. This command is robust and may be prefixed with \global. It will issue an error if the flag is undefined.
\boolfalse\{ \langle name $\rangle\}$
Sets the boolean flag 〈name〉 to false. This command is robust and may be prefixed with \backslash global. It will issue an error if the flag is undefined.
\setbool $\{\langle$ name $\rangle\}\{\langle$ value $\rangle\}$
Sets the boolean flag \langle name \rangle to $\langle v a l u e\rangle$ which may be either true or false. This command is robust and may be prefixed with \global. It will issue an error if the flag is undefined.
\backslash ifbool $\{\langle$ name $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the state of the boolean flag \langle name \rangle is true, and to \langle false \rangle otherwise. If the flag is undefined, this command issues an error. This command may be used to perform any boolean test based on plain TeX syntax, i. e., any test normally employed like this:
\iftest true\else false\fi

This includes all flags defined with \newif as well as TeX primitives such as \ifmmode．The \if prefix is omitted when using the flag or the primitive in the expression．For example：
\ifmytest true\else false\fi
\ifmmode true\else false\fi
becomes
\ifbool\｛mytest\}\{true\}\{false\}
\ifbool \｛mmode\} \{true\}\{false\}
\notbool $\{\langle$ name $\rangle\}\{\langle$ not true $\rangle\}\{\langle$ not false $\rangle\}$
Similar to \ifbool but negates the test．

3．5．2 LaTeX Flags

In contrast to the flags from section 3．5．I，the facilities in this section require only one macro per flag．They also use a separate namespace to avoid name clashes with regular macros．
\newtoggle\｛ \langle name $\rangle\}$
Defines a new boolean flag called $\langle n a m e\rangle$ ．If the flag has already been defined，this command issues an error．The initial state of newly defined flags is false．This command is robust．
\providetoggle\｛〈name〉\}
Defines a new boolean flag called \langle name \rangle unless it has already been defined．This command is robust．

\toggletrue\｛ \langle name \rangle \}

Sets the boolean flag \langle name \rangle to true．This command is robust and may be prefixed with \global．It will issue an error if the flag is undefined．

\togglefalse\｛〈name〉\}

Sets the boolean flag 〈name〉 to false．This command is robust and may be pre－ fixed with $\backslash \mathrm{global}$ ．It will issue an error if the flag is undefined．

\settoggle\｛ name \rangle \}\{〈value $\rangle\}$

Sets the boolean flag \langle name \rangle to $\langle v a l u e\rangle$ which may be either true or false．This command is robust and may be prefixed with \global．It will issue an error if the flag is undefined．
\iftoggle\｛ \langle name $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the state of the boolean flag \langle name \rangle is true，and to \langle false \rangle otherwise．If the flag is undefined，this command issues an error．

```
\nottoggle{\langlename\rangle}{\langlenot true\rangle}{\langlenot false\rangle}
```

Similar to \iftoggle but negates the test．

3．6 Generic Tests

3．6．1 Macro Tests

\ifdeff \langle control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined，and to \langle false \rangle otherwise． Note that control sequences will be considered as defined even if their meaning is \relax．This command is a LaTeX wrapper for the e－TeX primitive \ifdefined．
\ifcsdef $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdef except that it takes a control sequence name as its first argument． This command is a LaTeX wrapper for the e－TeX primitive \ifcsname．
\ifundef $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is undefined，and to \langle false \rangle otherwise． Apart from reversing the logic of the test，this command also differs from \ifdef in that commands will be considered as undefined if their meaning is $\backslash r e l a x$ ．

\ifcsundef $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$

Similar to \ifundef except that it takes a control sequence name as its first argu－ ment．This command may be used as a drop－in replacement for the \＠ifundefined test in the LaTeX kernel．
\ifdefmacro $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined and is a macro，and to \langle false \rangle otherwise．
\ifcsmacro $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefmacro except that it takes a control sequence name as its first argument．
\ifdefparam\｛〈control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined and is a macro with one or more parameters，and to \langle false \rangle otherwise．
\ifcsparam\｛ \langle csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefparam except that it takes a control sequence name as its first argument．
\ifdefprefix $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined and is a macro prefixed with \long and／or \protected，and to 〈false〉 otherwise．Note that \outer macros may not be tested．
\ifcsprefix $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefprefix except that it takes a control sequence name as its first argument．
\ifdefprotected $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined and is a macro prefixed with \backslash protected，and to \langle false \rangle otherwise．
\ifcsprotected\｛ \langle csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefprotected except that it takes a control sequence name as its first argument．
\ifdef1txprotect $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Executes \langle true \rangle if the \langle control sequence \rangle is defined and is a LaTeX protection shell， and \langle false \rangle otherwise．This command is robust．It will detect commands which have been defined with \DeclareRobustCommand or by way of a similar technique．
\ifcsltxprotect $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefltxprotect except that it takes a control sequence name as its first argument．
\ifdefempty $\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is defined and is a parameterless macro whose replacement text is empty，and to 〈false〉 otherwise．In contrast to \ifx，this test ignores the prefixes of the \langle command \rangle ．
\ifcsempty $\{\langle$ csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefempty except that it takes a control sequence name as its first argument．
\ifdefvoid\｛〈control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle control sequence \rangle is undefined，is a macro whose meaning is \relax，or is a parameterless macro whose replacement text is empty，and to〈false〉 otherwise．
\ifcsvoid\｛ \langle csname $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefvoid except that it takes a control sequence name as its first argument．
\ifdefequal $\{\langle$ control sequence $\rangle\}\{\langle$ control sequence $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Compares two control sequences and expands to \langle true \rangle if they are equal in the sense of \ifx，and to $\langle f a l s e\rangle$ otherwise．In contrast to \ifx，this test will also yield \langle false \rangle if both control sequences are undefined or have a meaning of \backslash relax．

```
\ifcsequal {\langle<csname\rangle}{\langlecsname\rangle}{\langle\true\rangle}{\langle|alse\rangle}
```

Similar to \ifdefequal except that it takes control sequence names as arguments．
\ifdefstring $\{\langle$ command $\rangle\}\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Compares the replacement text of a \langle command \rangle to a \langle string \rangle and executes \langle true \rangle if they are equal，and \langle false \rangle otherwise．Neither the \langle command \rangle nor the $\langle s t r i n g\rangle$ is expanded in the test and the comparison is category code agnostic．Control sequence tokens in the \langle string \rangle argument will be detokenized and treated as strings． This command is robust．Note that it will only consider the replacement text of the \langle command \rangle ．For example，this code
\long\def\＠gobbletwo\＃1\＃2\｛\}
\ifdefstring\｛\＠gobbletwo\}\{\}\{true\}\{false\}
would yield \langle true \rangle ．The prefix and the parameters of \＠gobbletwo are ignored．
\backslash ifcsstring $\{\langle$ csname $\rangle\}\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Similar to \ifdefstring except that it takes a control sequence name as its first argument．

3．6．2 String Tests

\ifstrequal $\{\langle$ string $\rangle\}\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Compares two strings and executes \langle true \rangle if they are equal，and \langle false \rangle otherwise． The strings are not expanded in the test and the comparison is category code agnos－ tic．Control sequence tokens in any of the \langle string \rangle arguments will be detokenized and treated as strings．This command is robust．
\ifstrempty $\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle string \rangle is empty，and to \langle false \rangle otherwise．The \langle string \rangle is not expanded in the test．
\ifblank $\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if the \langle string \rangle is blank（empty or spaces），and to \langle false \rangle otherwise． The \langle string \rangle is not expanded in the test．
\notblank $\{\langle$ string $\rangle\}\{\langle$ not true $\rangle\}\{\langle$ not false $\rangle\}$
Similar to \ifblank but negates the test．

3．6．3 Arithmetic Tests

\i fnumcomp $\{\langle$ integer expression $\rangle\}\{\langle$ relation $\rangle\}\{\langle$ integer expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Compares two integer expressions according to 〈relation〉 and expands to 〈true〉 or \langle false \rangle depending on the result．The \langle relation \rangle may be $<$ ，$>$ ，or $=$ ．Both integer expressions will be processed with \numexpr．An 〈integer expression〉 may be any arbitrary code which is valid in this context．All arithmetic expressions may contain spaces．Here are some examples：

```
\ifnumcomp{3}{>}{6}{true}{false}
\ifnumcomp{(7 + 5) / 2}{=}{6}{true}{false}
\ifnumcomp{(7+5) / 4}{>}{3*(12-10)}{true}{false}
\newcounter{countA}
\setcounter{countA}{6}
\newcounter{countB}
\setcounter{countB}{5}
\ifnumcomp{\value{countA} * \value{countB}/2}{=}{15}{true}{false}
\ifnumcomp{6/2}{=}{5/2}{true}{false}
```

Technically，this command is a LaTeX wrapper for the TeX primitive \ifnum，in－ corporating \numexpr．Note that \numexpr will round the result of all integer ex－ pressions，i．e．，both expressions will be processed and rounded prior to being com－ pared．In the last line of the above examples，the result of the second expression is 2.5 ，which is rounded to 3 ，hence \ifnumcomp will expand to \langle true \rangle ．
\ifnumequal $\{\langle$ integer expression $\rangle\}\{\langle$ integer expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \backslash ifnumcomp $\{\ldots\}\{=\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．
$\backslash i f n u m g r e a t e r\{\langle$ integer expression $\rangle\}\{\langle$ integer expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \ifnumcomp $\{. .\}.\{>\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．．．．．
\ifnumless $\{\langle$ integer expression $\rangle\}\{\langle$ integer expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \ifnumcomp $\{\ldots\}\{<\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．
$\backslash i$ fnumodd $\{\langle$ integer expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Evaluates an integer expression and expands to \langle true \rangle if the result is an odd num－ ber，and to \langle false \rangle otherwise．Technically，this command is a LaTeX wrapper for the TeX primitive \ifodd，incorporating \numexpr．
\ifdimcomp $\{\langle$ dimen expression $\rangle\}\{\langle$ relation $\rangle\}\{\langle$ dimen expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Compares two dimen expressions according to 〈relation〉 and expands to \langle true \rangle or \langle false \rangle depending on the result．The \langle relation \rangle may be $<$ ，＞，or $=$ ．Both dimen expressions will be processed with \dimexpr．A 〈dimen expression〉may be any arbitrary code which is valid in this context．All arithmetic expressions may contain spaces．Here are some examples：

```
\ifdimcomp{1cm}{=}{28.45274pt}{true}{false}
\ifdimcomp{(7pt + 5pt) / 2}{<}{2pt}{true}{false}
\ifdimcomp{(3.725pt + 0.025pt) * 2}{<}{7pt}{true}{false}
\newlength{\lengthA}
\setlength{\lengthA}{7.25pt}
\newlength{\lengthB}
\setlength{\lengthB}{4.75pt}
\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{2.75pt * 2}{true}{false}
\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{25pt / 6}{true}{false}
```

Technically，this command is a LaTeX wrapper for the TeX primitive \ifdim，incor－
porating \dimexpr．Since both \ifdimcomp and \ifnumcomp are expandable，they may also be nested：
\ifnumcomp $\{\backslash$ ifdimcomp $\{5 \mathrm{pt}+5 \mathrm{pt}\}\{=\}\{10 \mathrm{pt}\}\{1\}\{0\}\}\{>\}\{0\}\{$ true $\}\{$ false $\}$
\ifdimequal $\{\langle$ dimen expression $\rangle\}\{\langle$ dimen expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \ifdimcomp $\{\ldots\}\{=\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．
\ifdimgreater $\{\langle$ dimen expression $\rangle\}\{\langle$ dimen expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \ifdimcomp $\{\ldots\}\{>\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．
\ifdimless $\{\langle$ dimen expression $\rangle\}\{\langle$ dimen expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Alternative syntax for \ifdimcomp $\{\ldots\}\{<\}\{\ldots\}\{\ldots\}\{\ldots\}$ ．

3．6．4 Boolean Expressions

The commands in this section are replacements for the \ifthenelse command provided by the ifthen package．They serve the same purpose but differ in syntax， concept，and implementation．In contrast to \ifthenelse，they do not provide any tests of their own but serve as a frontend to other tests．Any test which satisfies certain syntactical requirements may be used in a boolean expression．
$\backslash i f b o o l \operatorname{expr}\{\langle$ expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Evaluates the \langle expression \rangle and executes \langle true \rangle if it is true，and \langle false \rangle otherwise． The 〈expression〉 is evaluated sequentially from left to right．The following ele－ ments，discussed in more detail below，are available in the 〈expression〉：the test operators togl，bool，test；the logical operators not，and，or；and the subexpres－ sion delimiter（．．．）．Spaces，tabs，and line endings may be used freely to arrange the \langle expression \rangle visually．Blank lines are not permissible in the \langle expression \rangle ．This command is robust．
\ifboolexpe\｛ \langle expression $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
An expandable version of \ifboolexpr which may be processed in an expansion－ only context，e．g．，in an \edef or in a \write operation．Note that all tests used in the＜expression〉 must be expandable，even if \ifboolexpe is not located in an expansion－only context．

\whileboolexpr\｛〈expression $\rangle\}\{\langle$ code $\rangle\}$

Evaluates the＜expression〉 like \ifboolexpr and repeatedly executes the＜code〉 while the expression is true．The \langle code \rangle may be any valid TeX or LaTeX code．This command is robust．
\unlessboolexpr $\{\langle$ expression $\rangle\}\{\langle$ code $\rangle\}$
Similar to \whileboolexpr but negates the 〈expression〉，i．e．，it keeps executing the \langle code \rangle repeatedly unless the expression is true．This command is robust．
The following test operators are available in the \langle expression \rangle ：
togl Use the togl operator to test the state of a flag defined with \newtoggle. For example:
\iftoggle\{mytoggle\}\{true\}\{false\}
becomes
\ifboolexpr\{ tog1 \{mytoggle\} \}\{true\}\{false\}
The togl operator may be used with both \ifboolexpr and \ifboolexpe.
bool Use the bool operator to perform a boolean test based on plain TeX syntax, i. e., any test normally employed like this:
\iftest true\else false\fi
This includes all flags defined with \newif as well as TeX primitives such as \ifmmode. The \if prefix is omitted when using the flag or the primitive in the expression. For example:
\ifmmode true\else false\fi
\ifmytest true\else false\fi
becomes

```
\ifboolexpr{ bool {mmode} }{true}{false}
```

\ifboolexpr\{ bool \{mytest\} \}\{true\}\{false\}

This also works with flags defined with \newbool (see § 3.5.I). In this case
\ifbool\{mybool\}\{true\}\{false\}
becomes
\ifboolexpr\{ bool \{mybool\} \}\{true\}\{false\}
The bool operator may be used with both \ifboolexpr and \ifboolexpe.
test Use the test operator to perform a test based on LaTeX syntax, i.e., any test normally employed like this:

```
\iftest{true}{false}
```

This applies to all macros based on LaTeX syntax, i. e., the macro must take a 〈true〉 and a \langle false \rangle argument and these must be the final arguments. For example:

```
\ifdef{\somemacro}{true}{false}
\ifdimless{\textwidth}{365pt}{true}{false}
\ifnumcomp{\value{somecounter}}{>}{3}{true}{false}
```

When using such tests in the \langle expression \rangle, their \langle true \rangle and \langle false \rangle arguments are omitted. For example:
\ifcsdef\{mymacro\}\{true\}\{false\}
becomes
\ifboolexpr\{ test \{\ifcsdef\{mymacro\}\} \}\{true\}\{false\}
and
\ifnumcomp \{ \value\{mycounter\}\}\{>\}\{3\}\{true\}\{false\}
becomes

```
\ifboolexpr{
    test {\ifnumcomp{\value{mycounter}}{>}{3}}
}
{true}
{false}
```

The test operator may be used with \ifboolexpr without any restrictions. It may also be used with \ifboolexpe, provided that the test is expandable. Some of the generic tests in $\S 3.6$ are robust and may not be used with \ifboolexpe, even if \ifboolexpe is not located in an expansion-only context. Use $\backslash i f b o o l e x p r$ instead if the test is not expandable.

Since \ifboolexpr and \ifboolexpe imply processing overhead, there is generally no benefit in employing them for a single test. The stand-alone tests in § 3.6 are more efficient than test, \ifbool from § 3.5.I is more efficient than bool, and \iftoggle from § 3.5.2 is more efficient than togl. The point of $\backslash i f b o o l e x p r$ and \ifboolexpe is that they support logical operators and subexpressions. The following logical operators are available in the \langle expression \rangle :
not The not operator negates the truth value of the immediately following element. You may prefix togl, bool, test, and subexpressions with not. For example:

```
\ifboolexpr{
    not bool {mybool}
}
{true}
{false}
```

will yield \langle true \rangle if mybool is false and \langle false \rangle if mybool is true, and

```
\ifboolexpr{
    not ( bool {boolA} or bool {boolB} )
}
{true}
{false}
```

will yield \langle true \rangle if both boolA and boolB are false.
and The and operator expresses a conjunction (both a and b). The $\langle\operatorname{expression}\rangle$ is true if all elements joined with and are true. For example:

```
\ifboolexpr{
    bool {boolA} and bool {boolB}
}
{true}
{false}
```

will yield \langle true \rangle if both bool tests are true. The nand operator (negated and, i.e.,
not both) is not provided as such but may be expressed by using and in a negated subexpression. For example:

```
bool {boolA} nand bool {boolB}
```

may be written as

```
not ( bool {boolA} and bool {boolB} )
```

The or operator expresses a non-exclusive disjunction (either a or b or both). The〈expression〉 is true if at least one of the elements joined with or is true. For example:

```
\ifboolexpr{
    togl {toglA} or togl {tog1B}
}
{true}
{false}
```

will yield \langle true \rangle if either togl test or both tests are true. The nor operator (negated non-exclusive disjunction, i. e., neither a nor b nor both) is not provided as such but may be expressed by using or in a negated subexpression. For example:

```
bool {boolA} nor bool {boolB}
```

may be written as

```
not ( bool {boolA} or bool {boolB} )
```

(...) The parentheses delimit a subexpression in the \langle expression \rangle. The subexpression is evaluated and the result of this evaluation is treated as a single truth value in the enclosing expression. Subexpressions may be nested. For example, the expression:

```
( bool {boolA} or bool {boolB} )
and
(bool {boolC} or bool {boolD} )
```

is true if both subexpressions are true, i. e., if at least one of boolA/boolB and at least one of boolC/boold is true. Subexpressions are generally not required if all elements are joined with and or with or. For example, the expressions

```
bool {boolA} and bool {boolB} and {boolC} and bool {boolD}
bool {boolA} or bool {boolB} or {boolC} or bool {boolD}
```

will yield the expected results: the first one is true if all elements are true; the second one is true if at least one element is true. However, when combining and and or, it is advisable to always group the elements in subexpressions in order to avoid potential misconceptions which may arise from differences between the semantics of formal boolean expressions and the semantics of natural languages. For example, the following expression

```
bool {coffee} and bool {milk} or bool {sugar}
```

is always true if sugar is true since the or operator will take the result of the
and evaluation as input. In contrast to the meaning of this expression when pronounced in English, it is not processed like this

```
bool {coffee} and ( bool {milk} or bool {sugar} )
```

but evaluated strictly from left to right:

```
( bool {coffee} and bool {milk} ) or bool {sugar}
```

which is probably not what you meant to order.

3.7 List Processing

3.7.1 User Input

The facilities in this section are primarily designed to handle user input. When building lists for internal use by a package, using the facilities in section 3.7.2 may be preferable as they allow testing if an element is in a list.
\backslash DeclareListParser $\{\langle$ command $\rangle\}\{\langle$ separator $\rangle\}$
This command defines a list parser similar to the \docsvlist command below, which is defined like this:

```
\DeclareListParser{\docsvlist}{,}
```

Note that the list parsers are sensitive to the category code of the \langle separator \rangle.
\backslash DeclareListParser* $\{\langle$ command $\rangle\}\{\langle$ separator $\rangle\}$
The starred variant of \DeclareListParser defines a list parser similar to the \forcsvlist command below, which is defined like this:
\DeclareListParser*\{\forcsvlist\}\{,\}
\docsvlist $\{\langle$ item, item, ... $\rangle\}$
This command loops over a comma-separated list of items and executes the auxiliary command \do for every item in the list, passing the item as an argument. In contrast to the \@for loop in the LaTeX kernel, \docsvlist is expandable. With a suitable definition of \do, lists may be processed in an \edef or a comparable context. You may use \listbreak at the end of the replacement text of \do to stop processing and discard the remaining items in the list. Whitespace after list separators is ignored. If an item contains a comma or starts with a space, it must be wrapped in curly braces. The braces will be removed as the list is processed. Here is a usage example which prints a comma-separated list as an itemize environment:

```
\begin{itemize}
\renewcommand*{\do}[1]{\item #1}
\docsvlist{item1, item2, {item3a, item3b}, item4}
\end{itemize}
```

Here is another example:

```
\renewcommand*{\do}[1]{* #1\MessageBreak}
\PackageInfo{mypackage}{%
```

```
Example list:\MessageBreak
\docsvlist{item1, item2, {item3a, item3b}, item4}}
```

In this example，the list is written to the log file as part of an informational mes－ sage．The list processing takes place during the \write operation．

\forcsv1ist $\{\langle h a n d l e r\rangle\}\{\langle i t e m$, item，．．．〉\}

This command is similar to \docsvlist except that \do is replaced by a $\langle h a n d l e r\rangle$ specified at invocation time．The 〈handler〉 may also be a sequence of commands， provided that the command given last takes the item as trailing argument．For example，the following code will convert a comma－separated list of items into an internal list called \mylist：
\forcsvlist\｛\1istadd\mylist\}\{item1, item2, item3\}

3．7．2 Internal Lists

The facilities in this section handle internal lists of data．An＇internal list＇in this context is a plain macro without any parameters and prefixes which is employed to collect data．These lists use a special character as internal list separator．${ }^{1}$ When processing user input in list format，see the facilities in section 3．7．I．
\1 istadd\｛〈listmacro〉\}\{〈item〉\}
This command appends an \langle item \rangle to a \langle listmacro \rangle ．A blank \langle item \rangle is not added to the list．
\listgadd\｛〈listmacro〉\}\{〈item〉\}
Similar to \listadd except that the assignment is global．
\1isteadd\｛〈listmacro〉\}\{〈item〉\}
Similar to \listadd except that the $\langle i t e m\rangle$ is expanded at definition－time．Only the new \langle item \rangle is expanded，the $\langle l i s t m a c r o\rangle$ is not．If the expanded $\langle i t e m\rangle$ is blank， it is not added to the list．
\1 istxadd \｛ 〈listmacro〉\}\{〈item>\}
Similar to \listeadd except that the assignment is global．
\1istcsadd \｛〈listcsname〉\}\{〈item〉\}
Similar to \listadd except that it takes a control sequence name as its first argu－ ment．

\1istcsgadd \｛〈listcsname $\rangle\}\{\langle i t e m\rangle\}$

Similar to \listcsadd except that the assignment is global．

I The character \｜with category code 3．Note that you may not typeset a list by saying \listname． Use \show instead to inspect the list．

```
\listcseadd{\langlelistcsname\rangle}{\langleitem\rangle}
```

Similar to \listeadd except that it takes a control sequence name as its first argu－ ment．
\1istcsxadd\｛〈listcsname〉\}\{〈item〉\}
Similar to \listcseadd except that the assignment is global．
\dolistloop\｛〈listmacro〉\}
This command loops over all items in a 〈listmacro〉 and executes the auxiliary command \do for every item in the list，passing the item as an argument．The list loop itself is expandable．You may use \listbreak at the end of the replacement text of \do to stop processing and discard the remaining items in the list．Here is a usage example which prints an internal list called \mylist as an itemize environment：
\begin\｛itemize\}
[1]\{- \#1\}
\dolistloop\｛\mylist\}
\end\｛itemize\}
\dolistcsloop \｛ \(\langle\) listcsname \(\rangle\}\)
Similar to \dolistloop except that it takes a control sequence name as its argu－ ment．
\forlistloop\｛〈handler〉\}\{〈listmacro〉\}
This command is similar to \dolistloop except that \do is replaced by a＜handler〉 specified at invocation time．The 〈handler〉 may also be a sequence of commands， provided that the command given last takes the item as trailing argument．For example，the following code will prefix all items in the internal list \mylist with
- ，count the items as the list is processed，and append the item count at the end：
\newcounter\｛itemcount\}
\begin\｛itemize\}
\forlistloop\｛ \stepcounter\｛itemcount\}
- \}\{\mylist\}
- Total：\number\value\｛itemcount\} items
\end\｛itemize\}
\forlistcsloop\｛〈handler \(\rangle\}\{\langle\) listcsname \(\rangle\}\)
Similar to \forlistloop except that it takes a control sequence name as its second argument．
\ifinlist \(\{\langle\) item \(\rangle\}\{\langle\) listmacro \(\rangle\}\{\langle\) true \(\rangle\}\{\langle\) false \(\rangle\}\)
This command executes \(\langle\) true \(\rangle\) if the \(\langle\) item \(\rangle\) is included in a \(\langle\) listmacro \(\rangle\) ，and \(\langle\) false \(\rangle\) otherwise．Note that this test uses pattern matching based on TeX＇s argument scan－ ner to check if the search string is included in the list．This means that it is usually
faster than looping over all items in the list, but it also implies that the items must not include curly braces which would effectively hide them from the scanner. In other words, this macro is most useful when dealing with lists of plain strings rather than printable data. When dealing with printable text, it is safer to use \dolistloop to check if an item is in the list as follows:
\renewcommand* \(\{\backslash\) do \(\}\) [1] \(\{\%\)
\ifstrequal \(\{\# 1\}\{\) item \(\}\)
\{item found!\listbreak\}
\{\}\}
\dolistloop\{\mylist\}
\xifinlist \(\{\langle\) item \(\rangle\}\{\langle\) listmacro \(\rangle\}\{\langle\) true \(\rangle\}\{\langle\) false \(\rangle\}\)
Similar to \ifinlist except that the \(\langle\) item \(\rangle\) is expanded prior to the test.
\ifinlistcs \(\{\langle\) item \(\rangle\}\{\langle\) listcsname \(\rangle\}\{\langle\) true \(\rangle\}\{\langle\) false \(\rangle\}\)
Similar to \ifinlist except that it takes a control sequence name as its second argument.
|xifinlistcs \(\{\langle\) item \(\rangle\}\{\langle\) listcsname \(\rangle\}\{\langle\) true \(\rangle\}\{\langle\) false \(\rangle\}\)
Similar to \xifinlist except that it takes a control sequence name as its second argument.

3.8 Miscellaneous Tools

\backslash rmntonum\{ \langle numeral $\rangle\}$
The TeX primitive \romannumeral converts an integer to a Roman numeral but TeX or LaTeX provide no command which goes the opposite way. \rmntonum fills this gap. It takes a Roman numeral as its argument and converts it to the corresponding integer. Since it is expandable, it may also be used in counter assignments or arithmetic tests:

```
\rmntonum{mcmxcv}
\setcounter{counter}{\rmntonum{CXVI}}
\ifnumless{\rmntonum{mcmxcviii}}{2000}{true}{false}
```

The \langle numeral \rangle argument must be a literal string. It will be detokenized prior to parsing. The parsing of the numeral is case-insensitive and whitespace in the argument is ignored. If there is an invalid token in the argument, \rmntonum will expand to -1 ; an empty argument will yield an empty string. Note that \backslash rmntonum will not check the numeral for formal validity. For example, both V and $V X$ would yield 5, IC would yield 99, etc.
\ifrmnum $\{\langle$ string $\rangle\}\{\langle$ true $\rangle\}\{\langle$ false $\rangle\}$
Expands to \langle true \rangle if \langle string \rangle is a Roman numeral, and to \langle false \rangle otherwise. The \langle string \rangle will be detokenized prior to performing the test. The test is case-insensitive and ignores whitespace in the \langle string \rangle. Note that $\backslash i f r m n u m$ will not check the numeral for formal validity. For example, both V and VXV will yield \langle true \rangle. Strictly
speaking, what \ifrmnum does is parse the \langle string \rangle in order to find out if it consists of characters which may form a valid Roman numeral, but it will not check if they really are a valid Roman numeral.

4 Revision History

This revision history is a list of changes relevant to users of this package. Changes of a more technical nature which do not affect the user interface or the behavior of the package are not included in the list. If an entry in the revision history states that a feature has been improved or extended, this indicates a syntactically backwards compatible modification, such as the addition of an optional argument to an existing command. Entries stating that a feature has been modified demand attention. They indicate a modification which may require changes to existing documents in some, hopefully rare, cases. The numbers on the right indicate the relevant section of this manual.
2.0a 2010-09-12
Fixed bug in \patchcmd, \apptocmd, \pretocmd 3.4
$2.0 \quad 2010-08-21$
Added \csshow 3.I.I
Added \DeclareListParser* 3.7.I
Added \forcsvlist 3.7.I
Added \forlistloop 3.7.2
Added \forlistcsloop 3.7.2
Allow testing \par in macro tests 3.6.I
Fixed some bugs
1.9 2010-04-10
Improved \letcs 3.I.I
Improved \csletcs 3.I.I
Improved \listeadd 3.7.2
Improved \listxadd 3.7.2
Added \notblank 3.6.2
Added \ifnumodd 3.6.3
Added \ifboolexpr 3.6.4
Added \ifboolexpe 3.6.4
Added \whileboolexpr 3.6.4
Added \unlessboolexpr 3.6.4
1.8 2009-08-06
Improved \deflength 2.4
Added \ifnumcomp 3.6.3
Added \ifnumequal 3.6.3
Added \ifnumgreater 3.6.3
Added \ifnumless 3.6.3
Added \ifdimcomp 3.6 .3
Added \ifdimequal 3.6.3
Added \ifdimgreater 3.6.3
Added \ifdimless 3.6.3
1.7 2008-06-28
Renamed \backslash AfterBeginDocument to \backslash AfterEndPreamble (name clash) 2.5
Resolved conflict with hyperref
Rearranged manual slightly
1.6 2008-06-22
Improved \robustify 2.2
Improved \patchcmd and \ifpatchable 3.4
Modified and improved \apptocmd 3.4
Modified and improved \pretocmd 3.4
Added \ifpatchable* 3.4
Added \tracingpatches 3.4
Added \AfterBeginDocument 2.5
Added \ifdefmacro 3.6.I
Added \ifcsmacro 3.6.I
Added \ifdefprefix 3.6.I
Added \ifcsprefix 3.6.I
Added \ifdefparam 3.6.I
Added \ifcsparam 3.6.I
Added \ifdefprotected 3.6.I
Added \ifcsprotected 3.6.I
Added \ifdefltxprotect 3.6.I
Added \ifcsltxprotect 3.6.I
Added \ifdefempty 3.6.I
Added \ifcsempty 3.6.I
Improved \ifdefvoid 3.6.I
Improved \ifcsvoid 3.6.I
Added \ifstrempty 3.6.2
Added \setbool 3.5.I
Added \settoggle 3.5.2
1.5 2008-04-26
Added \defcounter 2.4
Added \deflength 2.4
Added \ifdefstring 3.6.I
Added \ifcsstring 3.6.I
Improved \rmntonum 3.8
Added $\backslash i f r m n u m$ 3.8Added extended PDF bookmarks to this manualRearranged manual slightly

Resolved conflict with tex4ht
1.3 2007-10-08
Renamed package from elatex to etoolbox I
Renamed \newswitch to \newtoggle (name clash) 3.5.2
Renamed \provideswitch to \providetoggle (consistency) 3.5.2
Renamed \switchtrue to \toggletrue (consistency) 3.5.2
Renamed \switchfalse to \togglefalse (consistency) 3.5.2
Renamed \ifswitch to \iftoggle (consistency) 3.5.2
Renamed \notswitch to \nottoggle (consistency) 3.5.2
Added \backslash AtEndPreamble 2.5
Added \backslash AfterEndDocument 2.5
Added \backslash AfterPreamble 2.5
Added \undef 3.I.I
Added \csundef 3.I.I
Added \ifdefvoid 3.6.I
Added \ifcsvoid 3.6.I
Added \ifdefequal 3.6.I
Added \ifcsequal 3.6.I
Added \ifstrequal 3.6.2
Added \listadd 3.7.2
Added \listeadd 3.7.2
Added \listgadd 3.7.2
Added \listxadd 3.7.2
Added \listcsadd 3.7.2
Added \listcseadd 3.7.2
Added \listcsgadd 3.7.2
Added \listcsxadd 3.7.2
Added \ifinlist 3.7.2
Added $\backslash x i f i n l i s t$ 3.7.2
Added \ifinlistcs 3.7.2
Added \xifinlistcs 3.7.2
Added \dolistloop 3.7.2
Added \dolistcsloop 3.7.2
$1.2 \quad$ 2007-07-13
Renamed \patchcommand to \patchcmd (name clash) 3.4
Renamed \apptocommand to \apptocmd (consistency) 3.4
Renamed \pretocommand to \pretocmd (consistency) 3.4
Added \newbool 3.5.I
Added \providebool 3.5.I
Added \booltrue 3.5.I
Added \boolfalse 3.5.I
Added \ifbool 3.5.I
Added \notbool 3.5.I
Added \newswitch 3.5.2
Added \provideswitch 3.5.2
Added \switchtrue 3.5.2
Added \switchfalse 3.5.2
Added \ifswitch 3.5.2
Added \notswitch 3.5.2
Added \DeclareListParser 3.7.I
Added \docsvlist 3.7.I
Added \rmntonum 3.8
1.1 2007-05-28
Added \protected@csedef 3.I.I
Added \protected@csxdef 3.I.I
Added \gluedef 3.I. 2
Added \gluegdef 3.I. 2
Added \csgluedef 3.I. 2
Added \csgluegdef 3.I. 2
Added \mudef 3.I. 2
Added \mugdef 3.I. 2
Added \csmudef 3.I. 2
Added \csmugdef 3.I. 2
Added \protected@eappto 3.3.I
Added \protected@xappto 3.3.I
Added \protected@cseappto 3.3.I
Added \protected@csxappto 3.3.I
Added \protected@epreto 3.3.2
Added \protected@xpreto 3.3.2
Added \protected@csepreto 3.3.2
Added \protected@csxpreto 3.3.2
Fixed bug in \newrobustcmd 2.I
Fixed bug in \renewrobustcmd 2.I
Fixed bug in \providerobustcmd 2.I
$1.0 \quad$ 2007-05-07Initial public release

