The etoolbox package
An e-TeX toolbox for class and package authors

Philipp Lehman Version 1.5
plehman@gmx.net April 26, 2008

Contents

1 Introduction I 3 Author commands 4
.1 About. I 3.1 Definitions 4
1.2 License 1 3.2 Expansion control 7
1.3 Feedback I 3.3 Hook management . . . 7
1.4 Acknowledgments 2 3.4 Patching 9

2 Usercommands 2 3.5 Generictests 10
2.1 Definitions 2 3.6 Boolean switches 12
2.2 Patching 2 3.7 List processing 13
2.3 Lengths and counters 2 3.8 Miscellaneous tools . . 16
2.4 Predefined hooks 3 4 Revision history 16

1 Introduction

1.1 About

The etoolbox package is a toolbox of programming facilities geared primarily
towards LaTeX class and package authors. It provides LaTeX frontends to some
of the new primitives provided by e-TeX as well as some generic tools which are
not related to e-TeX but match the profile of this package. The package is work
in progress. Note that the initial versions of this package were released under the
name elatex.

1.2 License

Copyright © 20072008 Philipp Lehman. Permission is granted to copy, distribute
and/or modify this software under the terms of the LaTeX Project Public License,
version 1.3.} This package is author-maintained.

1.3 Feedback and contributions

I started to work on this package when I found myself implementing the same
tools and shorthands I had employed in previous LaTeX packages for yet another
package. For the most part, the facilities provided by etoolbox address my needs
as a package author and future development is likely to be guided by these needs
as well. Please note that I will not be able to address any feature requests. However,
I am open to contributions by other class and package authors, provided that the
contributed code is sufficiently generic, matches the profile of this package, and
may be added to the package without requiring significant adaption.

1 http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/
mailto:plehman@gmx.net
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

1.4 Acknowledgments

The \ifblank test of this package is based on code by Donald Arseneau.
2 User commands

The facilities in this section are geared towards regular users as well as class and
package authors.

2.1 Definitions

\newrobustcmd{(command)} [(arguments)] [(optarg default)]{ (replacement text)}
\newrobustcmd+{(command)} [(arguments)] [(optarg default)1{(replacement text)}

The syntax and behavior of this command is similar to \newcommand except that
the newly defined (command) will be robust. This command differs from the
\DeclareRobustCommand command from the LaTeX kernel in that it issues an er-
ror rather than just an informational message if the (command) is already defined.
Since it uses e-TeX’s low-level protection mechanism rather than the correspond-
ing higher-level LaTeX facilities, it also does not require an additional macro to
implement the ‘robustness’. This command itself is also robust.

\renewrobustcmd{(command)} [(arguments)][(optarg default)]{(replacement text)}
\renewrobustcmd*{(command)} [(arguments)] [(optarg default)1{(replacement text)}

The syntax and behavior of this command is similar to \ renewcommand except that
the redefined (command) will be robust. This command itself is also robust.

\providerobustcmd{(command)} [(arguments)] [(optarg default)]{ (replacement text)}
\providerobustcmd«{(command)} [(arguments)] [(optarg default)1{(replacement text)}

The syntax and behavior of this command is similar to \providecommand except
that a newly defined (command) will be robust. Note that this command only
provides a robust definition if the (command) is undefined. It will not make an
already defined (command) robust. This command itself is robust.

2.2 Patching
\robustify{{command)}

Modifies an already defined (command) such that it is robust without altering its
parameters, its prefixes, or its replacement text. If the (command) has been defined
with \DeclareRobustCommand, this will be detected automatically. LaTeX’s high-
level protection mechanism will be replaced by the corresponding low-level e-TeX
facility in this case. This command is robust and may only be used in the document
preamble.

2.3 Length and counter assignments

The facilities in this section are replacements for \setcounter and \setlength
which support arithmetic expressions.

\defcounter{(counter)}{(integer expression)}

Assigns a value to a LaTeX (counter) previously initialized with \newcounter. This
command is similar in concept and syntax to \setcounter except for two ma-
jor differences. 1) The second argument may be an (integer expression) which will
be processed with \numexpr. The (integer expression) may be any arbitrary code
which is valid in this context. The value assigned to the (counter) will be the result
of that calculation. 2) In contrast to \setcounter, the assignment is local by de-
fault but \defcounter may be prefixed with \global. The functional equivalent
of \setcounter would be \global\defcounter.

\deflength{(length)}{(dimen expression)}

Assigns a value to a (length) register previously initialized with \newlength. This
command is similar in concept and syntax to \setlength except that the second
argument may be a (dimen expression) which will be processed with \dimexpr.
The (dimen expression) may be any arbitrary code which is valid in this context.
The value assigned to the (length) register will be the result of that calculation.
The assignment is local by default but \deflength may be prefixed with \global.
This command may be used as a drop-in replacement for \setlength.

2.4 Predefined all-purpose hooks

LaTeX provides two hooks which defer the execution of code either to the begin-
ning or the end of the document body. The \AtBeginDocument code is executed at
the beginning of the document body, after the main aux file has been read for the
first time. The \AtEndDocument code is executed at the end of the document body,
before the main aux file is read for the second time. The hooks introduced here are
similar in concept but defer the execution of their (code) argument to slightly differ-
ent locations. The (code) may be arbitrary TeX code. Macro parameter characters
in the (code) argument need not be doubled.

\AtEndPreamble{{(code)}

This hook differs from \AtBeginDocument in that the (code) is executed right at
the end of the preamble, before the main aux file (as written during the previous
LaTeX pass) is read and prior to any \AtBeginDocument code. It is sometimes
desirable to defer code to the end of the preamble because all requested packages
have been loaded at this point. Code deferred with \AtBeginDocument, however,
is executed too late if it is required in the aux file.

\AfterkndDocument{(code)}

This hook differs from \AtEndDocument in that the (code) is executed at the very
end of the document, after the main aux file (as written during the current LaTeX
pass) has been read and after any \AtEndDocument code. This hook is useful if a
package needs to evaluate any data in the aux file at the end of a LaTeX run.

\AfterPreamble{(code)}

This hook is a variant of \AtBeginDocument which may be used in both the pream-

ble and the document body. When used in the preamble, it behaves exactely like
\AtBeginDocument. When used in the document body, it immediately executes its
(code) argument (\AtBeginDocument issues an error in this case).

3 Author commands

The facilities in this section are geared towards class and package authors.
3.1 Definitions
3.1.1 Macro definitions

The facilities in this section are simple but frequently required shorthands which
extend the scope of the \@namedef and \@nameuse macros from the LaTeX kernel.

\csdef{(csname)} (arguments){(replacement text)}

Similar to the TeX primitive \def except that it takes a control sequence name as
its first argument. This command is robust and corresponds to \@namedef.

\csgdef{(csname)}(arguments){ (replacement text)}

Similar to the TeX primitive \gdef except that it takes a control sequence name as
its first argument. This command is robust.

\csedef{(csname)}(arguments){ (replacement text)}

Similar to the TeX primitive \edef except that it takes a control sequence name as
its first argument. This command is robust.

\csxdef{(csname)} (arguments){(replacement text)}

Similar to the TeX primitive \xdef except that it takes a control sequence name as
its first argument. This command is robust.

\protected@csedef{(csname)} (arguments){(replacement text)}

Similar to \csedef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@edef except that it takes a control sequence name as its first
argument. This command is robust.

\protected@csxdef{(csname)} (arguments){(replacement text)}

Similar to \csxdef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@xdef except that it takes a control sequence name as its first
argument. This command is robust.

\cslet{(csname)}{(command)}

Similar to the TeX primitive \let except that the first argument is a control se-
quence name. This command is robust and may be prefixed with \global.

\Tetcs{(command)}{(csname)}

Similar to the TeX primitive \let except that the second argument is a control
sequence name. This command is robust and may be prefixed with \global.

\csletcs{(csname)}{(csname)}

Similar to the TeX primitive \let except that both arguments are control sequence
names. This command is robust and may be prefixed with \global.

\csuse{(csname)}

Takes a control sequence name as its argument and forms a control sequence token.
This command differs from the \@nameuse macro from the LaTeX kernel in that it
expands to an empty string if the control sequence is undefined.

\undef(command)

Clears a (command) such that e-TeX’s \ifdefined and \ifcsname tests will con-
sider it as undefined. This command is robust and may be prefixed with \global.

\csundef{(csname)}

Similar to \undef except that it takes a control sequence name as its argument.
This command is robust and may be prefixed with \global.

3.1.2 Arithmetic definitions

The facilities in this section permit calculations using macros rather than length
registers and counters.

\numdef(command) { (integer expression)}

Similar to \edef except that the (integer expression) is processed with \numexpr.
The (integer expression) may be any arbitrary code which is valid in this context.
The replacement text assigned to the (command) will be the result of that cal-
culation. If the (command) is undefined, it will be initialized to ‘0’ before the
(integer expression) is processed.

\numgde f(command){ (integer expression)}
Similar to \numdef except that the assignment is global.
\csnumdef{(csname) }{(integer expression)}

Similar to \numdef except that it takes a control sequence name as its first argu-
ment.

\csnumgdef{(csname) }{ (integer expression)}

Similar to \numgdef except that it takes a control sequence name as its first argu-
ment.

\dimdef(command){(dimen expression)}

Similar to \edef except that the (dimen expression) is processed with \dimexpr.

The (dimen expression) may be any arbitrary code which is valid in this context.
The replacement text assigned to the (command) will be the result of that cal-
culation. If the (command) is undefined, it will be initialized to ‘Opt’ before the
(dimen expression) is processed.

\dimgdef(command){(dimen expression)}
Similar to \dimdef except that the assignment is global.
\csdimdef{(csname)}{(dimen expression)}

Similar to \dimdef except that it takes a control sequence name as its first argu-
ment.

\csdimgdef{(csname)}{(dimen expression)}

Similar to \dimgdef except that it takes a control sequence name as its first argu-
ment.

\gluedef(command){(glue expression)}

Similar to \edef except that the (glue expression) is processed with \glueexpr.
The (glue expression) may be any arbitrary code which is valid in this context. The
replacement text assigned to the (command) will be the result of that calculation.
If the (command) is undefined, it will be initialized to ‘Opt plus Opt minus Opt’
before the (glue expression) is processed.

\gluegdef(command){(glue expression)}
Similar to \gluedef except that the assignment is global.
\csgluedef{(csname)}{(glue expression)}

Similar to \gluedef except that it takes a control sequence name as its first argu-
ment.

\csgluegdef{(csname)}{(glue expression)}

Similar to \gluegdef except that it takes a control sequence name as its first argu-
ment.

\mudef(command){(muglue expression)}

Similar to \edef except that the (muglue expression) is processed with \muexpr.
The (muglue expression) may be any arbitrary code which is valid in this context.
The replacement text assigned to the (command) will be the result of that cal-
culation. If the (command) is undefined, it will be initialized to ‘Omu’ before the
(muglue expression) is processed.

\mugdef(command) { (muglue expression)}
Similar to \mudef except that the assignment is global.
\csmudef{(csname)}{ (muglue expression)}

Similar to \mudef except that it takes a control sequence name as its first argument.

\csmugdef{(csname) }{ (muglue expression)}

Similar to \mugdef except that it takes a control sequence name as its first argu-
ment.

3.2 Expansion control

The facilities in this section are useful to control expansion in an \edef or a similar
context.

\expandonce(command)

This command expands (command) once and prevents further expansion of the
replacement text.

\csexpandonce{(csname)}

Similar to \expandonce except that it takes a control sequence name as its argu-
ment.

\protecting{(code)}

This command applies LaTeX’s protection mechanism, which normally requires
prefixing each fragile command with \protect, to an entire chunk of arbitrary
(code). Its behavior depends on the current state of \protect. Note that the braces
around the (code) are mandatory even if it is a single token.

3.3 Hook management

The facilities in this section are intended for hook management. A (hook) in this
context is a plain macro without any parameters and prefixes which is used to
collect code to be executed later. These facilities may also be useful to patch simple
macros by appending code to their replacement text. For more complex patching
operations, see section 3.4. All commands in this section will initialize the (hook)
if it is undefined.

3.3.1 Appending to a hook
The facilities in this section append arbitrary code to a hook.
\appto(hook){(code)}

This command appends arbitrary (code) to a (hook). If the (code) contains any
parameter characters, they need not be doubled. This command is robust.

\gappto(hook){(code)}

Similar to \appto except that the assignment is global. This command may be used
as a drop-in replacement for the \g@addto@macro command in the LaTeX kernel.

\eappto(hook){(code)}

This command appends arbitrary (code) to a (hook). The (code) is expanded at
definition-time. Only the new (code) is expanded, the current replacement text of
the (hook) is not. This command is robust.

\xappto(hook){(code)}
Similar to \eappto except that the assignment is global.
\protected@eappto(hook){(code)}

Similar to \eappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xappto(hook){{code)}

Similar to \xappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\csappto{(csname)}{(code)}
Similar to \appto except that it takes a control sequence name as its first argument.
\csgappto{(csname)}{(code)}

Similar to \gappto except that it takes a control sequence name as its first argu-
ment.

\cseappto{(csname)}{(code)}

Similar to \eappto except that it takes a control sequence name as its first argu-
ment.

\csxappto{(csname)}{(code)}

Similar to \xappto except that it takes a control sequence name as its first argu-
ment.

\protected@cseappto(hook){{code)}

Similar to \protected@eappto except that it takes a control sequence name as its
first argument.

\protected@csxappto(hook){(code)}

Similar to \protected@xappto except that it takes a control sequence name as its
first argument.

3.3.2 Prepending to a hook

The facilities in this section ‘prepend’ arbitrary code to a hook, i.e., the code is
inserted at the beginning of the hook rather than being added at the end.

\preto(hook){(code)}
Similar to \appto except that the (code) is prepended.
\gpreto(hook){{(code)}

Similar to \preto except that the assignment is global.

\epreto(hook){(code)}

Similar to \eappto except that the (code) is prepended.
\xpreto(hook){(code)}

Similar to \epreto except that the assignment is global.
\protected@epreto(hook){(code)}

Similar to \epreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xpreto(hook){(code)}

Similar to \xpreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\cspreto{(csname)}{(code)}
Similar to \preto except that it takes a control sequence name as its first argument.
\csgpreto{(csname)}{(code)}

Similar to \gpreto except that it takes a control sequence name as its first argu-
ment.

\csepreto{(csname)}{(code)}

Similar to \epreto except that it takes a control sequence name as its first argu-
ment.

\csxpreto{(csname)}{(code)}

Similar to \xpreto except that it takes a control sequence name as its first argu-
ment.

\protected@csepreto(hook){(code)}

Similar to \protected@epreto except that it takes a control sequence name as its
first argument.

\protected@csxpreto(hook){(code)}

Similar to \protected@xpreto except that it takes a control sequence name as its
first argument.

3.4 Patching

The facilities in this section are useful to hook into or modify existing code. All
commands presented here preserve the parameters and the prefixes of the patched
(command). Note that the patching process involves detokenizing the replacement
text of the (command) and retokenizing it under the current category code regime
after patching. The category code of ‘@’ is temporarily set to 11. If the replacement
text of the (command) includes any tokens with non-standard category codes, the
respective category codes must be adjusted prior to patching. If the code to be

replaced or inserted refers to the parameters of the (command) to be patched, the
parameter characters need not be doubled when invoking one of the commands
below. Note that \outer commands may not be patched.

\patchcmd[(prefix) 1{(command) }{(search) }{ (replace)}{ (success) }{ (failure) }

This command extracts the replacement text of a (command), replaces (search)
with (replace), and reassembles the (command). The pattern match is category
code agnostic and matches the first occurence of the (search) pattern in the re-
placement text of the (command) to be patched. If an optional (prefix) is specified,
it replaces the prefixes of the (command). An empty (prefix) strips all prefixes
from the (command). This command executes (success) if patching succeeds, and
(failure) otherwise. It is robust and may only be used in the document preamble.
The assignment is local.

\ifpatchable{(command)}{(search)}{(true)}{(false)}

This command executes (true) if the (command) is defined and the (search) pattern
is found in its replacement text, and (false) otherwise. This command is robust and
may only be used in the document preamble.

\apptocmd{(command)}{(code)}

This command appends (code) to the replacement text of a (command). In con-
trast to the \appto command from section 3.3.1, this one may be used to patch
commands with an arbitrary number of parameters. The (code) may refer to the
parameters of the (command) in this case. This command is robust and may only
be used in the document preamble. The assignment is local.

\pretocmd{(command)}{(code)}

This command is similar to \apptocmd except that the (code) is ‘prepended, i.e.,
inserted at the beginning of the replacement text of the (command). In contrast to
the \preto command from section 3.3.1, this one may be used to patch commands
with an arbitrary number of parameters. The (code) may refer to the parameters
of the (command) in this case. This command is robust and may only be used in
the document preamble. The assignment is local.

3.5 Generic tests
\ifdef{(command)}{(true)}{(false)}

A LaTeX wrapper for the e-TeX primitive \ifdefined. This command expands
to (true) if the (command) is defined, and to (false) otherwise. Note that the
(command) is considered as defined even if its meaning is \ relax.

\1ifundef{(command)}{(true)}{(false)}

Expands to (true) if the (command) is undefined, and to (false) otherwise. Apart
from reversing the logic of the test, this command also differs from \ifdef in that
the (command) is considered as undefined if its meaning is \ relax.

IO

\1ifcsdef{(csname)}{(true)}{(false)}

A LaTeX wrapper for the e-TeX primitive \ifcsname. This command expands to
(true) if (csname) is defined, and to (false) otherwise. Note that (csname) is con-
sidered as defined even if its meaning is \ relax.

\ifcsundef{(csname)}{(true)}{(false)}

Expands to (true) if (csname) is undefined, and to (false) otherwise. Apart from
reversing the logic of the test, this command also differs from \ifcsdef in that
the (csname) is considered as undefined if its meaning is \relax. This command
may be used as a drop-in replacement for the \@ifundefined test in the LaTeX
kernel.

\1ifdefvoid{(command)}{(true)}{(false)}

Expands to (true) if the (command) is undefined, its meaning is \relax, or its
replacement text is empty, and to (false) otherwise.

\ifcsvoid{(csname)}{(true)}{(false)}

Similar to \ifdefvoid except that it takes a control sequence name as its first
argument.

\ifdefequal{(command)}{{command)}{(true)}{(false)}

Compares two commands and expands to (true) if they are equal in the sense of
the TeX primitive \ifx, and to (false) otherwise. In contrast to \1fx, this test will
also yield (false) if both commands are undefined or have a meaning of \relax.

\ifcsequal{(csname)}{(csname)}{(true)}{(false)}
Similar to \ifdefequal except that it takes control sequence names as arguments.
\ifdefstring{(command)}{(string) }{(true)}{{false)}

Compares the replacement text of a (command) to a (string) and executes (true)
if they are equal, and (false) otherwise. Neither the (command) nor the (string)
is expanded in the test and the comparison is category code agnostic. Control
sequence tokens in the (string) argument will be detokenized and treated as strings.
This command is robust. Note that it will only consider the replacement text of the
(command). For example, this code

\long\def\@gobbletwo#1#2{}
\ifdefstring{\@gobbletwo}{}{true}{false}

would yield (true). The prefix and the parameters of \@gobbletwo are ignored.
\ifcsstring{(csname)}{(string)}{(true)}{(false)}

Similar to \ifdefstring except that it takes a control sequence name as its first
argument.

I1

\ifstrequal{(string) }{(string)}{(true)}{(false)}

Compares two strings and executes (true) if they are equal, and (false) otherwise.
The strings are not expanded in the test and the comparison is category code agnos-
tic. Control sequence tokens in any of the (string) arguments will be detokenized
and treated as strings. This command is robust.

\1ifblank{(string)}{(true)}{{false)}

Expands to (true) if the (string) is blank (empty or spaces), and to (false) otherwise.
The (string) is not expanded in the test.

3.6 Boolean switches

This package provides two interfaces to boolean switches which are completely
independent of each other. The facilities in section 3.6.1 are a LaTeX frontend to
\newif. Those in section 3.6.2 use a different mechanism.

3.6.1 TeX switches

Since the facilities in this section are based on \newif internally, they may be used
to test and alter the state of switches previously defined with \newif. They are also
compatible with the boolean tests of the ifthen package. The \newif approach
requires a total of three macros per switch.

\newboo1{(name)}

Defines a new boolean switch called (name). If the switch has already been defined,
this command issues an error. The initial state of newly defined switches is false.
This command is robust.

\providebool{(name)}

Defines a new boolean switch called (name) unless it has already been defined.
This command is robust.

\booltrue{(name)}

Sets the boolean switch (name) to true. This command is robust and may be
prefixed with \global. It will issue an error if the switch is undefined.

\boolfalse{(name)}

Sets the boolean switch (name) to false. This command is robust and may be
prefixed with \global. It will issue an error if the switch is undefined.

\ifbool{(name)}{(true)}{(false)}

Expands to (true) if the state of the boolean switch (name) is true, and to (false)
otherwise. If the switch is undefined, this command issues an error.

\notboo1{(name)}{(not true)}{(not false)}

Similar to \ifbool but reverses the logic of the test.

12

3.6.2 LaTeX switches

In contrast to the switches from section 3.6.1, the facilities in this section require
only one macro per switch. They also use a separate namespace to avoid name
clashes with regular macros.

\newtoggle{(name)}

Defines a new boolean switch called (name). If the switch has already been defined,
this command issues an error. The initial state of newly defined switches is false.
This command is robust.

\providetoggle{(name)}

Defines a new boolean switch called (name) unless it has already been defined.
This command is robust.

\toggletrue{(name)}

Sets the boolean switch (name) to true. This command is robust and may be
prefixed with \global. It will issue an error if the switch is undefined.

\togglefalse{(name)}

Sets the boolean switch (name) to false. This command is robust and may be
prefixed with \global. It will issue an error if the switch is undefined.

\iftoggle{(name)}{(true)}{(false)}

Expands to (true) if the state of the boolean switch (name) is true, and to (false)
otherwise. If the switch is undefined, this command issues an error.

\nottoggle{(name)}{(not true)}{(not false)}
Similar to \iftoggle but reverses the logic of the test.
3.7 List processing
3.7.1 User input

The facilities in this section are primarily designed to handle user input. When
building lists for internal use by a package, using the facilities in section 3.7.2 is
preferable.

\DeclareListParser{(command)}{(separator)}

This command defines a list parser similar to the \docsvlist command below,
which is defined with “\DeclareListParser{\docsvlist}{, }’. Note that the list
parsers are sensitive to the category code of the (separator).

\docsvlist{(item, item, ...)}

This command loops over a comma-separated list and executes the auxiliary com-
mand \do for every item in the list, passing the item as an argument. In contrast
to the \@for loop in the LaTeX kernel, \docsvlist is expandable. With a suitable
definition of \do, lists may be processed inside an \edef or a comparable context.

13

You may use \1listbreak at the end of the replacement text of \do to stop process-
ing and discard the remaining items in the list. Whitespace after list separators is
ignored. If an item contains a comma or starts with a space, it must be wrapped
in curly braces. The braces will be removed as the list is processed. Here is a usage
example which prints a comma-separated list as an itemize environment:

\begin{itemize}
\renewcommand*{\do} [1] {\item #1}
\docsvlist{iteml, item2, {item3a, item3b}, itemd}
\end{itemize}

Here is another example:

\renewcommandx{\do}[1] {* #1\MessageBreak}
\PackageInfo{mypackage} {%

Example Tist:\MessageBreak

\docsvlist{iteml, item2, {item3a, item3b}, item4}}

In this example, the list is written to the log file as part of an informational mes-
sage. The list processing takes place during the \write operation.

3.7.2 Internal lists

The facilities in this section handle internal lists of data. An ‘internal list’ in this
context is a plain macro without any parameters and prefixes which is employed
to collect data. These lists use a special character as internal list separator. When
processing user input in a list format, see the facilities in section 3.7.1.

\Tistadd{(listmacro)}{(item)}
This command appends an (item) to a (listmacro).
\Tistgadd{(listmacro)}{ (item)}
Similar to \1istadd except that the assignment is global.
\Tisteadd{(listmacro)}{ (item)}

Similar to \listadd except that the (item) is expanded at definition-time. Only
the new (item) is expanded, the current list is not.

\Tistxadd{(listmacro)}{ (item)}
Similar to \1isteadd except that the assignment is global.
\Tistcsadd{(listcsname)}{ (item)}

Similar to \1istadd except that it takes a control sequence name as its first argu-
ment.

\Tistcsgadd{(listcsname)}{ (item)}

Similar to \1istcsadd except that the assignment is global.

14

\Tistcseadd{(listcsname)}{ (item)}

Similar to \1isteadd except that it takes a control sequence name as its first argu-
ment.

\Tistcsxadd{(listcsname)}{(item)}
Similar to \1istcseadd except that the assignment is global.
\doTlistToop{(listmacro)}

This command loops over all items in a (listmacro) and executes the auxiliary
command \do for every item in the list, passing the item as an argument. The list
loop itself is expandable. You may use \listbreak at the end of the replacement
text of \do to stop processing and discard the remaining items in the list. Here
is a usage example which prints an internal list called \mylist as an itemize
environment:

\begin{itemize}
\renewcommand{\do} [1]{\item #1}
\doTistToop{\mylist}

\end{itemize}

\dolistcsloop{(listcsname)}

Similar to \dolistloop except that it takes a control sequence name as its argu-
ment.

\ifinlist{(item)}{(listmacro)}

This command checks if an (item) is included in a (listmacro). Note that this test
uses pattern matching based on TeX’s argument scanner to check if the search
string is included in the list. This means that it is usually faster than looping over
all items in the list, but it also implies that the items must not include curly braces
which would effectively hide them from the scanner. In other words, this macro
is most useful when dealing with lists of plain strings rather than printable data.
When dealing with printable text, it may be preferable to use \dolistloop to
check if an item is in the list as follows:

\renewcommand={\do} [1] {%
\ifstrequal{#1}{item}
{item found!\Tistbreak}

{}}
\doTistToop{\mylist}

\xifinlist{(item)}{(listmacro)}
Similar to \ifinlist except that the (item) is expanded prior to the test.
\ifinlistcs{(item)}{(listcsname)}

Similar to \ifinlist except that it takes a control sequence name as its second
argument.

15

\xifinlistcs{(item)}{(listcsname)}

Similar to \xifinlist except that it takes a control sequence name as its second
argument.

3.8 Miscellaneous tools
\rmntonum{ (numeral) }

The TeX primitive \ romannumeral converts an integer to a Roman numeral but TeX
or LaTeX provide no command which goes the opposite way. \rmntonum fills this
gap. It takes a Roman numeral as its argument and converts it to the correspond-
ing integer. Since it is expandable, it may also be used in counter assignments or
\ifnum comparisons:

\rmntonum{mcmxcv}
\setcounter{counter}{\rmntonum{CXVI}}
\1fnum\rmntonum{memxcviii}<2000 ...

The (numeral) argument must be a literal string. It will be detokenized prior to
parsing. The parsing of the numeral is case-insensitive and whitespace in the ar-
gument is ignored. If there is an invalid token in the argument, \rmntonum will
expand to -1; an empty argument will yield an empty string. Note that \ rmntonum
will not check the numeral for formal validity. For example, both V and VX will
yield 5.

\ifrmnum{(string) }{(true)}{(false)}

Expands to (true) if (string) is a Roman numeral, and to (false) otherwise. The
(string) will be detokenized prior to performing the test. The test is case-insensitive
and ignores whitespace in the (string). Note that \ifrmnum will not check the
numeral for formal validity. For example, both V and VXV will yield (true). Strictly
speaking, what \if rmnum does is parse the (string) in order to find out if it consists
of characters which may form a valid Roman numeral.

4 Revision history

1.5 2008-04-26

Added \defcounter 2.3
Added \deflength 2.3
Added \ifdefstringo 3.5
Added \ifcsstring 3.5
Improved \rmntonum L 3.8
Added \ifrmnum e 3.8

Added extended pDF bookmarks to this manual
Rearranged manual slightly

1.4 2008-01-24

Resolved conflict with tex4ht

16

1.3 2007-10-08

Renamed package from elatex to etoolbox I
Renamed \newswitch to \newtoggle (nameclash) 3.6.2
Renamed \provideswitch to \providetoggle (consistency) 3.6.2
Renamed \switchtrue to \toggletrue (consistency) 3.6.2
Renamed \switchfalse to \togglefalse (consistency) 3.6.2
Renamed \ifswitch to \iftoggle (consistency) 3.6.2
Renamed \notswitch to \nottoggle (consistency) 3.6.2
Added \AtEndPreamble 2.4
Added \AfterEndDocument 2.4
Added \AfterPreamble 2.4
Added \undef 3.1.I
Added \csundef 3.1.1
Added \ifdefvoid 3.5
Added \ifcsvoid e 3.5
Added \ifdefequal e 3.5
Added \ifcsequal 3.5
Added \ifstrequal e 3.5
Added \listadd 3.7.2
Added \listeadd e 3.7.2
Added \listgadd 3.7.2
Added \listxadd e 3.7.2
Added \listcsadd 3.7.2
Added \listcseadd 3.7.2
Added \listcsgadd 3.7.2
Added \listcsxadd 3.7.2
Added \ifinlist e 3.7.2
Added \xifinlist 3.7.2
Added \ifinlistcs i e 3.7.2
Added \xifinlistcs 3.7.2
Added \dolistloop i i e 3.7.2
Added \dolistcsloop e 3.7.2

1.2 2007-07-13

Renamed \patchcommand to \patchcmd (name clash) 3.4

Renamed \apptocommand to \apptocmd (consistency) 3.4

Renamed \pretocommand to \pretocmd (consistency) 3.4

Added \newbool 3.6.1
Added \providebool 3.6.1
Added \booltrue e 3.6.1
Added \boolfalse 3.6.1
Added \ifbool 3.6.1
Added \notbool 3.6.1
Added \newswitch 3.6.2
Added \provideswitch, 3.6.2

17

Added \switchtrue e 3.6.2

Added \switchfalse 3.6.2
Added \ifswitch e 3.6.2
Added \notswitch 3.6.2
Added \DeclareListParser 3.7.1
Added \docsvlist 3.7.1
Added \rmntonum e 3.8

1.1 2007-05-28

Added \protected@csedef, 3.1.I
Added \protected@csxdef, 3.1.1
Added \gluedef 3.1.2
Added \gluegdef 3.1.2
Added \csgluedef 3.1.2
Added \csgluegdef 3.1.2
Added \mudef 3.1.2
Added \mugdef 3.1.2
Added \csmudef 3.1.2
Added \csmugdef 3.1.2
Added \protected@eappto 3.3.1
Added \protected@xappto 3.3.1
Added \protected@cseappto 3.3.1
Added \protected@csxappto 3.3.1
Added \protected@epreto, 3.3.2
Added \protected@xpreto 3.3.2
Added \protected@csepreto 3.3.2
Added \protected@csxpreto, 3.3.2
Fixed bug in \newrobustemd oo 2.1

Fixed bug in \renewrobustemd L. 2.1

Fixed bug in \providerobustemd 2.1

1.0 2007-05-07

Initial public release

18

	Contents
	Introduction
	About
	License
	Feedback
	Acknowledgments

	User commands
	Definitions
	\newrobustcmd
	\renewrobustcmd
	\providerobustcmd

	Patching
	\robustify

	Lengths and counters
	\defcounter
	\deflength

	Predefined hooks
	\AtEndPreamble
	\AfterEndDocument
	\AfterPreamble

	Author commands
	Definitions
	Macro definitions
	\csdef
	\csgdef
	\csedef
	\csxdef
	\protected@csedef
	\protected@csxdef
	\cslet
	\letcs
	\csletcs
	\csuse
	\undef
	\csundef

	Arithmetic definitions
	\numdef
	\numgdef
	\csnumdef
	\csnumgdef
	\dimdef
	\dimgdef
	\csdimdef
	\csdimgdef
	\gluedef
	\gluegdef
	\csgluedef
	\csgluegdef
	\mudef
	\mugdef
	\csmudef
	\csmugdef

	Expansion control
	\expandonce
	\csexpandonce
	\protecting

	Hook management
	Appending to a hook
	\appto
	\gappto
	\eappto
	\xappto
	\protected@eappto
	\protected@xappto
	\csappto
	\csgappto
	\cseappto
	\csxappto
	\protected@cseappto
	\protected@csxappto

	Prepending to a hook
	\preto
	\gpreto
	\epreto
	\xpreto
	\protected@epreto
	\protected@xpreto
	\cspreto
	\csgpreto
	\csepreto
	\csxpreto
	\protected@csepreto
	\protected@csxpreto

	Patching
	\patchcmd
	\ifpatchable
	\apptocmd
	\pretocmd

	Generic tests
	\ifdef
	\ifundef
	\ifcsdef
	\ifcsundef
	\ifdefvoid
	\ifcsvoid
	\ifdefequal
	\ifcsequal
	\ifdefstring
	\ifcsstring
	\ifstrequal
	\ifblank

	Boolean switches
	TeX switches
	\newbool
	\providebool
	\booltrue
	\boolfalse
	\ifbool
	\notbool

	LaTeX switches
	\newtoggle
	\providetoggle
	\toggletrue
	\togglefalse
	\iftoggle
	\nottoggle

	List processing
	User input
	\DeclareListParser
	\docsvlist

	Internal lists
	\listadd
	\listgadd
	\listeadd
	\listxadd
	\listcsadd
	\listcsgadd
	\listcseadd
	\listcsxadd
	\dolistloop
	\dolistcsloop
	\ifinlist
	\xifinlist
	\ifinlistcs
	\xifinlistcs

	Miscellaneous tools
	\rmntonum
	\ifrmnum

	Revision history
	1.5 (2008-04-26)
	1.4 (2008-01-24)
	1.3 (2007-10-08)
	1.2 (2007-07-13)
	1.1 (2007-05-28)
	1.0 (2007-05-07)

