
The etoolbox package
An e-TeX toolbox for class and package authors

Philipp Lehman
plehman@gmx.net

Version 2.0
August 21, 2010

Contents

1 Introduction 1
1.1 About 1
1.2 Requirements 1
1.3 License 1
1.4 Feedback 1
1.5 Acknowledgments . . . 2

2 User commands 2
2.1 Definitions 2
2.2 Patching 2
2.3 Protection 2
2.4 Lengths and counters . 3

2.5 Predefined hooks 3
3 Author commands 5

3.1 Definitions 5
3.2 Expansion control . . . 8
3.3 Hook management . . . 8
3.4 Patching 11
3.5 Boolean flags 12
3.6 Generic tests 14
3.7 List processing 22
3.8 Miscellaneous tools . . 25

4 Revision history 26

1 Introduction

1.1 About

The etoolbox package is a toolbox of programming facilities geared primarily
towards LaTeX class and package authors. It provides LaTeX frontends to some of
the new primitives provided by e-TeX as well as some generic tools which are not
related to e-TeX but match the profile of this package. The package is work in
progress.

1.2 Requirements

This package requires e-TeX. TeX distributions have been shipping e-TeX binaries
for quite some time, most distributions even use them by default these days. This
package checks if it is running under e-TeX. If you get an error message, try compil-
ing the document with elatex instead of latex or pdfelatex instead of pdflatex,
respectively.

1.3 License

Copyright © 2007–2010 Philipp Lehman. Permission is granted to copy, distribute
and/or modify this software under the terms of the LaTeX Project Public License,
version 1.3.1 This package is author-maintained.

1.4 Feedback

I started to work on this package when I found myself implementing the same
tools and shorthands I had employed in previous LaTeX packages for yet another
package. For the most part, the facilities provided by etoolbox address my needs

1 http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

1

http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/
mailto:plehman@gmx.net
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

as a package author and future development is likely to be guided by these needs
as well. Please note that I will not be able to address any feature requests.

1.5 Acknowledgments

The \ifblank test of this package is based on code by Donald Arseneau.

2 User commands

The facilities in this section are geared towards regular users as well as class and
package authors.

2.1 Definitions

\newrobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}
\newrobustcmd*{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}

The syntax and behavior of this command is similar to \newcommand except that
the newly defined 〈command〉 will be robust. The behavior of this command dif-
fers from the \DeclareRobustCommand command from the LaTeX kernel in that
it issues an error rather than just an informational message if the 〈command〉 is
already defined. Since it uses e-TeX’s low-level protection mechanism rather than
the corresponding higher-level LaTeX facilities, it does not require an additional
macro to implement the ‘robustness’.

\renewrobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}
\renewrobustcmd*{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}

The syntax and behavior of this command is similar to \renewcommand except that
the redefined 〈command〉 will be robust.

\providerobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}
\providerobustcmd*{〈command〉}[〈arguments〉][〈optarg default〉]{〈replacement text〉}

The syntax and behavior of this command is similar to \providecommand except
that the newly defined 〈command〉 will be robust. Note that this command will
provide a robust definition of the 〈command〉 only if it is undefined. It will not
make an already defined 〈command〉 robust.

2.2 Patching

\robustify{〈command〉}

Modifies a 〈command〉 defined with \newcommand such that it is robust without
altering its parameters, its prefixes, or its replacement text. If the 〈command〉 has
been defined with \DeclareRobustCommand, this will be detected automatically.
LaTeX’s high-level protection mechanism will be replaced by the corresponding
low-level e-TeX facility in this case.

2.3 Protection

\protecting{〈code〉}

This command applies LaTeX’s protection mechanism, which normally requires

2

prefixing each fragile command with \protect, to an entire chunk of arbitrary
〈code〉. Its behavior depends on the current state of \protect. Note that the braces
around the 〈code〉 are mandatory even if it is a single token.

2.4 Length and counter assignments

The facilities in this section are replacements for \setcounter and \setlength
which support arithmetic expressions.

\defcounter{〈counter〉}{〈integer expression〉}

Assigns a value to a LaTeX 〈counter〉 previously initialized with \newcounter. This
command is similar in concept and syntax to \setcounter except for two ma-
jor diVerences. 1) The second argument may be an 〈integer expression〉 which will
be processed with \numexpr. The 〈integer expression〉 may be any arbitrary code
which is valid in this context. The value assigned to the 〈counter〉 will be the result
of that calculation. 2) In contrast to \setcounter, the assignment is local by de-
fault but \defcounter may be prefixed with \global. The functional equivalent
of \setcounter would be \global\defcounter.

\deflength{〈length〉}{〈glue expression〉}

Assigns a value to a 〈length〉 register previously initialized with \newlength. This
command is similar in concept and syntax to \setlength except that the second
argument may be a 〈glue expression〉 which will be processed with \glueexpr. The
〈glue expression〉 may be any arbitrary code which is valid in this context. The
value assigned to the 〈length〉 register will be the result of that calculation. The
assignment is local by default but \deflength may be prefixed with \global. This
command may be used as a drop-in replacement for \setlength.

2.5 Predefined all-purpose hooks

LaTeX provides two hooks which defer the execution of code either to the begin-
ning or to the end of the document body. Any \AtBeginDocument code is executed
towards the beginning of the document body, after the main aux file has been read
for the first time. Any \AtEndDocument code is executed at the end of the docu-
ment body, before the main aux file is read for the second time. The hooks intro-
duced here are similar in concept but defer the execution of their 〈code〉 argument
to slightly diVerent locations. The 〈code〉 may be arbitrary TeX code. Parameter
characters in the 〈code〉 argument need not be doubled.

\AfterPreamble{〈code〉}

This hook is a variant of \AtBeginDocument which may be used in both the pream-
ble and the document body. When used in the preamble, it behaves exactely like
\AtBeginDocument. When used in the document body, it immediately executes its
〈code〉 argument. \AtBeginDocument would issue an error in this case. This hook
is useful to defer code which needs to write to the main aux file.

\AtEndPreamble{〈code〉}

This hook diVers from \AtBeginDocument in that the 〈code〉 is executed right at

3

the end of the preamble, before the main aux file (as written on the previous LaTeX
pass) is read and prior to any \AtBeginDocument code. Note that it is not possible
to write to the aux file at this point.

\AfterEndPreamble{〈code〉}

This hook diVers from \AtBeginDocument in that the 〈code〉 is executed at the
very end of \begin{document}, after any \AtBeginDocument code. Note that com-
mands whose scope has been restricted to the preamble with \@onlypreamble are
no longer available when this hook is executed.

\AfterEndDocument{〈code〉}

This hook diVers from \AtEndDocument in that the 〈code〉 is executed at the very
end of the document, after the main aux file (as written on the current LaTeX pass)
has been read and after any \AtEndDocument code.

In a way, \AtBeginDocument code is part neither of the preamble nor the docu-
ment body but located in-between them since it gets executed in the middle of the
initialization sequence performed prior to typesetting. It is sometimes desirable to
move code to the end of the preamble because all requested packages have been
loaded at this point. \AtBeginDocument code, however, is executed too late if it
is required in the aux file. In contrast to that, \AtEndPreamble code is part of the
preamble; \AfterEndPreamble code is part of the document body and may con-
tain printable text to be typeset at the very beginning of the document. To sum
that up, LaTeX will perform the following tasks ‘inside’ \begin{document}:

• Execute any \AtEndPreamble code
• Start initialization for document body (page layout, default fonts, etc.)
• Load the main aux file written on the previous LaTeX pass
• Open the main aux file for writing on the current pass
• Continue initialization for document body
• Execute any \AtBeginDocument code
• Complete initialization for document body
• Disable all \@onlypreamble commands
• Execute any \AfterEndPreamble code

Inside \end{document}, LaTeX will perform the following tasks:

• Execute any \AtEndDocument code
• Perform a final \clearpage operation
• Close the main aux file for writing
• Load the main aux file written on the current LaTeX pass
• Perform final tests and issue warnings, if applicable
• Execute any \AfterEndDocument code

Any \AtEndDocument code may be considered as being part of the document body
insofar as it is still possible to perform typesetting tasks and write to the main aux
file when it gets executed. \AfterEndDocument code is not part of the document

4

body. This hook is useful to evaluate the data in the aux file at the very end of a
LaTeX pass.

3 Author commands

The facilities in this section are geared towards class and package authors.

3.1 Definitions

3.1.1 Macro definitions

The facilities in this section are simple but frequently required shorthands which
extend the scope of the \@namedef and \@nameuse macros from the LaTeX kernel.

\csdef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to the TeX primitive \def except that it takes a control sequence name as
its first argument. This command is robust and corresponds to \@namedef.

\csgdef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to the TeX primitive \gdef except that it takes a control sequence name as
its first argument. This command is robust.

\csedef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to the TeX primitive \edef except that it takes a control sequence name as
its first argument. This command is robust.

\csxdef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to the TeX primitive \xdef except that it takes a control sequence name as
its first argument. This command is robust.

\protected@csedef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to \csedef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@edef except that it takes a control sequence name as its first
argument. This command is robust.

\protected@csxdef{〈csname〉}〈arguments〉{〈replacement text〉}

Similar to \csxdef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@xdef except that it takes a control sequence name as its first
argument. This command is robust.

\cslet{〈csname〉}{〈command〉}

Similar to the TeX primitive \let except that the first argument is a control se-
quence name. If 〈command〉 is undefined, 〈csname〉 will be undefined as well after
the assignment. This command is robust and may be prefixed with \global.

5

\letcs{〈command〉}{〈csname〉}

Similar to the TeX primitive \let except that the second argument is a control
sequence name. If 〈csname〉 is undefined, the 〈command〉 will be undefined as well
after the assignment. This command is robust and may be prefixed with \global.

\csletcs{〈csname〉}{〈csname〉}

Similar to the TeX primitive \let except that both arguments are control sequence
names. If the second 〈csname〉 is undefined, the first 〈csname〉 will be undefined
as well after the assignment. This command is robust and may be prefixed with
\global.

\csuse{〈csname〉}

Takes a control sequence name as its argument and forms a control sequence token.
This command diVers from the \@nameuse macro in the LaTeX kernel in that it
expands to an empty string if the control sequence is undefined.

\undef〈command〉

Clears a 〈command〉 such that e-TeX’s \ifdefined and \ifcsname tests will con-
sider it as undefined. This command is robust and may be prefixed with \global.

\csundef{〈csname〉}

Similar to \undef except that it takes a control sequence name as its argument.
This command is robust and may be prefixed with \global.

\csshow{〈csname〉}

Similar to the TeX primitive \show but takes a control sequence name as its argu-
ment. If the control sequence is undefined, this command will not implicitly assign
a meaning of \relax to it. This command is robust.

3.1.2 Arithmetic definitions

The facilities in this section permit calculations using macros rather than length
registers and counters.

\numdef〈command〉{〈integer expression〉}

Similar to \edef except that the 〈integer expression〉 is processed with \numexpr.
The 〈integer expression〉 may be any arbitrary code which is valid in this con-
text. The replacement text assigned to the 〈command〉 will be the result of that
calculation. If the 〈command〉 is undefined, it will be initialized to 0 before the
〈integer expression〉 is processed.

\numgdef〈command〉{〈integer expression〉}

Similar to \numdef except that the assignment is global.

6

\csnumdef{〈csname〉}{〈integer expression〉}

Similar to \numdef except that it takes a control sequence name as its first argu-
ment.

\csnumgdef{〈csname〉}{〈integer expression〉}

Similar to \numgdef except that it takes a control sequence name as its first argu-
ment.

\dimdef〈command〉{〈dimen expression〉}

Similar to \edef except that the 〈dimen expression〉 is processed with \dimexpr.
The 〈dimen expression〉 may be any arbitrary code which is valid in this context.
The replacement text assigned to the 〈command〉 will be the result of that cal-
culation. If the 〈command〉 is undefined, it will be initialized to 0pt before the
〈dimen expression〉 is processed.

\dimgdef〈command〉{〈dimen expression〉}

Similar to \dimdef except that the assignment is global.

\csdimdef{〈csname〉}{〈dimen expression〉}

Similar to \dimdef except that it takes a control sequence name as its first argu-
ment.

\csdimgdef{〈csname〉}{〈dimen expression〉}

Similar to \dimgdef except that it takes a control sequence name as its first argu-
ment.

\gluedef〈command〉{〈glue expression〉}

Similar to \edef except that the 〈glue expression〉 is processed with \glueexpr.
The 〈glue expression〉 may be any arbitrary code which is valid in this context. The
replacement text assigned to the 〈command〉 will be the result of that calculation.
If the 〈command〉 is undefined, it will be initialized to 0pt plus 0pt minus 0pt
before the 〈glue expression〉 is processed.

\gluegdef〈command〉{〈glue expression〉}

Similar to \gluedef except that the assignment is global.

\csgluedef{〈csname〉}{〈glue expression〉}

Similar to \gluedef except that it takes a control sequence name as its first argu-
ment.

\csgluegdef{〈csname〉}{〈glue expression〉}

Similar to \gluegdef except that it takes a control sequence name as its first argu-
ment.

7

\mudef〈command〉{〈muglue expression〉}

Similar to \edef except that the 〈muglue expression〉 is processed with \muexpr.
The 〈muglue expression〉 may be any arbitrary code which is valid in this context.
The replacement text assigned to the 〈command〉 will be the result of that cal-
culation. If the 〈command〉 is undefined, it will be initialized to 0mu before the
〈muglue expression〉 is processed.

\mugdef〈command〉{〈muglue expression〉}

Similar to \mudef except that the assignment is global.

\csmudef{〈csname〉}{〈muglue expression〉}

Similar to \mudef except that it takes a control sequence name as its first argument.

\csmugdef{〈csname〉}{〈muglue expression〉}

Similar to \mugdef except that it takes a control sequence name as its first argu-
ment.

3.2 Expansion control

The facilities in this section are useful to control expansion in an \edef or a similar
context.

\expandonce〈command〉

This command expands a 〈command〉 once and prevents further expansion of the
replacement text. This command is expandable.

\csexpandonce{〈csname〉}

Similar to \expandonce except that it takes a control sequence name as its argu-
ment.

3.3 Hook management

The facilities in this section are intended for hook management. A 〈hook〉 in this
context is a plain macro without any parameters and prefixes which is used to
collect code to be executed later. These facilities may also be useful to patch simple
macros by appending code to their replacement text. For more complex patching
operations, see section 3.4. All commands in this section will initialize the 〈hook〉
if it is undefined.

3.3.1 Appending to a hook

The facilities in this section append arbitrary code to a hook.

\appto〈hook〉{〈code〉}

This command appends arbitrary 〈code〉 to a 〈hook〉. If the 〈code〉 contains any
parameter characters, they need not be doubled. This command is robust.

8

\gappto〈hook〉{〈code〉}

Similar to \appto except that the assignment is global. This command may be used
as a drop-in replacement for the \g@addto@macro command in the LaTeX kernel.

\eappto〈hook〉{〈code〉}

This command appends arbitrary 〈code〉 to a 〈hook〉. The 〈code〉 is expanded at
definition-time. Only the new 〈code〉 is expanded, the current replacement text of
the 〈hook〉 is not. This command is robust.

\xappto〈hook〉{〈code〉}

Similar to \eappto except that the assignment is global.

\protected@eappto〈hook〉{〈code〉}

Similar to \eappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xappto〈hook〉{〈code〉}

Similar to \xappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\csappto{〈csname〉}{〈code〉}

Similar to \appto except that it takes a control sequence name as its first argument.

\csgappto{〈csname〉}{〈code〉}

Similar to \gappto except that it takes a control sequence name as its first argu-
ment.

\cseappto{〈csname〉}{〈code〉}

Similar to \eappto except that it takes a control sequence name as its first argu-
ment.

\csxappto{〈csname〉}{〈code〉}

Similar to \xappto except that it takes a control sequence name as its first argu-
ment.

\protected@cseappto〈hook〉{〈code〉}

Similar to \protected@eappto except that it takes a control sequence name as its
first argument.

\protected@csxappto〈hook〉{〈code〉}

Similar to \protected@xappto except that it takes a control sequence name as its
first argument.

9

3.3.2 Prepending to a hook

The facilities in this section ‘prepend’ arbitrary code to a hook, i. e., the code is
inserted at the beginning of the hook rather than being added at the end.

\preto〈hook〉{〈code〉}

Similar to \appto except that the 〈code〉 is prepended.

\gpreto〈hook〉{〈code〉}

Similar to \preto except that the assignment is global.

\epreto〈hook〉{〈code〉}

Similar to \eappto except that the 〈code〉 is prepended.

\xpreto〈hook〉{〈code〉}

Similar to \epreto except that the assignment is global.

\protected@epreto〈hook〉{〈code〉}

Similar to \epreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xpreto〈hook〉{〈code〉}

Similar to \xpreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\cspreto{〈csname〉}{〈code〉}

Similar to \preto except that it takes a control sequence name as its first argument.

\csgpreto{〈csname〉}{〈code〉}

Similar to \gpreto except that it takes a control sequence name as its first argu-
ment.

\csepreto{〈csname〉}{〈code〉}

Similar to \epreto except that it takes a control sequence name as its first argu-
ment.

\csxpreto{〈csname〉}{〈code〉}

Similar to \xpreto except that it takes a control sequence name as its first argu-
ment.

\protected@csepreto〈hook〉{〈code〉}

Similar to \protected@epreto except that it takes a control sequence name as its
first argument.

10

\protected@csxpreto〈hook〉{〈code〉}

Similar to \protected@xpreto except that it takes a control sequence name as its
first argument.

3.4 Patching

The facilities in this section are useful to hook into or modify existing code. All
commands presented here preserve the parameters and the prefixes of the patched
〈command〉. Note that \outer commands may not be patched. Also note that the
commands in this section will not automatically issue any error messages if patch-
ing fails. Instead, they take a 〈failure〉 argument which should provide suitable
fallback code or an error message. Issuing \tracingpatches in the preamble will
cause the commands to write debugging information to the transcript file.

\patchcmd[〈prefix〉]{〈command〉}{〈search〉}{〈replace〉}{〈success〉}{〈failure〉}

This command extracts the replacement text of a 〈command〉, replaces 〈search〉
with 〈replace〉, and reassembles the 〈command〉. The pattern match is category
code agnostic and matches the first occurence of the 〈search〉 pattern in the re-
placement text of the 〈command〉 to be patched. Note that the patching process
involves detokenizing the replacement text of the 〈command〉 and retokenizing
it under the current category code regime after patching. The category code of
the @ sign is temporarily set to 11. If the replacement text of the 〈command〉 in-
cludes any tokens with non-standard category codes, the respective category codes
must be adjusted prior to patching. If the code to be replaced or inserted refers to
the parameters of the 〈command〉 to be patched, the parameter characters need
not be doubled. If an optional 〈prefix〉 is specified, it replaces the prefixes of the
〈command〉. An empty 〈prefix〉 argument strips all prefixes from the 〈command〉.
The assignment is local. This command implicitly performs the equivalent of an
\ifpatchable test prior to patching. If this test succeeds, the command applies
the patch and executes 〈success〉. If the test fails, it executes 〈failure〉 without mod-
ifying the original 〈command〉. This command is robust.

\ifpatchable{〈command〉}{〈search〉}{〈true〉}{〈false〉}

This command executes 〈true〉 if the 〈command〉 may be patched with \patchcmd
and if the 〈search〉 pattern is found in its replacement text, and 〈false〉 otherwise.
This command is robust.

\ifpatchable*{〈command〉}{〈true〉}{〈false〉}

Similar to \ifpatchable except that the starred variant does not require a search
pattern. Use this version to check if a command may be patched with \apptocmd
and \pretocmd.

\apptocmd{〈command〉}{〈code〉}{〈success〉}{〈failure〉}

This command appends 〈code〉 to the replacement text of a 〈command〉. If the
〈command〉 is a parameterless macro, it behaves like \appto from section 3.3.1. In
contrast to \appto, \apptocmd may also be used to patch commands with param-

11

eters. In this case, it will detokenize the replacement text of the 〈command〉, apply
the patch, and retokenize it under the current category code regime. The category
code of the @ sign is temporarily set to 11. The 〈code〉 may refer to the parameters
of the 〈command〉. The assignment is local. If patching succeeds, this command
executes 〈success〉. If patching fails, it executes 〈failure〉 without modifying the
original 〈command〉. This command is robust.

\pretocmd{〈command〉}{〈code〉}{〈success〉}{〈failure〉}

This command is similar to \apptocmd except that the 〈code〉 is inserted at the
beginning of the replacement text of the 〈command〉. If the 〈command〉 is a param-
eterless macro, it behaves like \preto from section 3.3.1. In contrast to \preto,
\pretocmd may also be used to patch commands with parameters. In this case, it
will detokenize the replacement text of the 〈command〉, apply the patch, and reto-
kenize it under the current category code regime. The category code of the @ sign
is temporarily set to 11. The 〈code〉 may refer to the parameters of the 〈command〉.
The assignment is local. If patching succeeds, this command executes 〈success〉.
If patching fails, it executes 〈failure〉 without modifying the original 〈command〉.
This command is robust.

\tracingpatches Enables tracing for all patching commands, including \ifpatchable. The debug-
ging information will be written to the transcript file. This is useful if the reason
why a patch is not applied or \ifpatchable yields 〈false〉 is not obvious. This
command must be issued in the preamble.

3.5 Boolean flags

This package provides two interfaces to boolean flags which are completely inde-
pendent of each other. The facilities in section 3.5.1 are a LaTeX frontend to \newif.
Those in section 3.5.2 use a diVerent mechanism.

3.5.1 TeX flags

Since the facilities in this section are based on \newif internally, they may be used
to test and alter the state of flags previously defined with \newif. They are also
compatible with the boolean tests of the ifthen package and may serve as a LaTeX
interface for querying TeX primitives such as \ifmmode. The \newif approach re-
quires a total of three macros per flag.

\newbool{〈name〉}

Defines a new boolean flag called 〈name〉. If the flag has already been defined, this
command issues an error. The initial state of newly defined flags is false. This
command is robust.

\providebool{〈name〉}

Defines a new boolean flag called 〈name〉 unless it has already been defined. This
command is robust.

12

\booltrue{〈name〉}

Sets the boolean flag 〈name〉 to true. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\boolfalse{〈name〉}

Sets the boolean flag 〈name〉 to false. This command is robust and may be pre-
fixed with \global. It will issue an error if the flag is undefined.

\setbool{〈name〉}{〈value〉}

Sets the boolean flag 〈name〉 to 〈value〉 which may be either true or false. This
command is robust and may be prefixed with \global. It will issue an error if the
flag is undefined.

\ifbool{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the state of the boolean flag 〈name〉 is true, and to 〈false〉
otherwise. If the flag is undefined, this command issues an error. This command
may be used to perform any boolean test based on plain TeX syntax, i. e., any test
normally employed like this:

\iftest true\else false\fi

This includes all flags defined with \newif as well as TeX primitives such as
\ifmmode. The \if prefix is omitted when using the flag or the primitive in the
expression. For example:

\ifmytest true\else false\fi
\ifmmode true\else false\fi

becomes

\ifbool{mytest}{true}{false}
\ifbool{mmode}{true}{false}

\notbool{〈name〉}{〈not true〉}{〈not false〉}

Similar to \ifbool but negates the test.

3.5.2 LaTeX flags

In contrast to the flags from section 3.5.1, the facilities in this section require only
one macro per flag. They also use a separate namespace to avoid name clashes
with regular macros.

\newtoggle{〈name〉}

Defines a new boolean flag called 〈name〉. If the flag has already been defined, this
command issues an error. The initial state of newly defined flags is false. This
command is robust.

13

\providetoggle{〈name〉}

Defines a new boolean flag called 〈name〉 unless it has already been defined. This
command is robust.

\toggletrue{〈name〉}

Sets the boolean flag 〈name〉 to true. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\togglefalse{〈name〉}

Sets the boolean flag 〈name〉 to false. This command is robust and may be pre-
fixed with \global. It will issue an error if the flag is undefined.

\settoggle{〈name〉}{〈value〉}

Sets the boolean flag 〈name〉 to 〈value〉 which may be either true or false. This
command is robust and may be prefixed with \global. It will issue an error if the
flag is undefined.

\iftoggle{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the state of the boolean flag 〈name〉 is true, and to 〈false〉
otherwise. If the flag is undefined, this command issues an error.

\nottoggle{〈name〉}{〈not true〉}{〈not false〉}

Similar to \iftoggle but negates the test.

3.6 Generic tests

3.6.1 Macro tests

\ifdef{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined, and to 〈false〉 otherwise.
Note that control sequences will be considered as defined even if their meaning
is \relax. This command is a LaTeX wrapper for the e-TeX primitive \ifdefined.

\ifcsdef{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdef except that it takes a control sequence name as its first argument.
This command is a LaTeX wrapper for the e-TeX primitive \ifcsname.

\ifundef{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is undefined, and to 〈false〉 otherwise.
Apart from reversing the logic of the test, this command also diVers from \ifdef
in that commands will be considered as undefined if their meaning is \relax.

\ifcsundef{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifundef except that it takes a control sequence name as its first argu-
ment. This command may be used as a drop-in replacement for the \@ifundefined
test in the LaTeX kernel.

14

\ifdefmacro{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined and is a macro, and to 〈false〉
otherwise.

\ifcsmacro{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefmacro except that it takes a control sequence name as its first
argument.

\ifdefparam{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined and is a macro with one or
more parameters, and to 〈false〉 otherwise.

\ifcsparam{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefparam except that it takes a control sequence name as its first
argument.

\ifdefprefix{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined and is a macro prefixed with
\long and/or \protected, and to 〈false〉 otherwise. Note that \outer macros may
not be tested.

\ifcsprefix{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefprefix except that it takes a control sequence name as its first
argument.

\ifdefprotected{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined and is a macro prefixed with
\protected, and to 〈false〉 otherwise.

\ifcsprotected{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefprotected except that it takes a control sequence name as its
first argument.

\ifdefltxprotect{〈control sequence〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈control sequence〉 is defined and is a LaTeX protection shell,
and 〈false〉 otherwise. This command is robust. It will detect commands which have
been defined with \DeclareRobustCommand or by way of a similar technique.

\ifcsltxprotect{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefltxprotect except that it takes a control sequence name as its
first argument.

\ifdefempty{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is defined and is a parameterless macro

15

whose replacement text is empty, and to 〈false〉 otherwise. In contrast to \ifx, this
test ignores the prefixes of the 〈command〉.

\ifcsempty{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefempty except that it takes a control sequence name as its first
argument.

\ifdefvoid{〈control sequence〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈control sequence〉 is undefined, is a macro whose meaning
is \relax, or is a parameterless macro whose replacement text is empty, and to
〈false〉 otherwise.

\ifcsvoid{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefvoid except that it takes a control sequence name as its first
argument.

\ifdefequal{〈control sequence〉}{〈control sequence〉}{〈true〉}{〈false〉}

Compares two control sequences and expands to 〈true〉 if they are equal in the
sense of \ifx, and to 〈false〉 otherwise. In contrast to \ifx, this test will also yield
〈false〉 if both control sequences are undefined or have a meaning of \relax.

\ifcsequal{〈csname〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifdefequal except that it takes control sequence names as arguments.

\ifdefstring{〈command〉}{〈string〉}{〈true〉}{〈false〉}

Compares the replacement text of a 〈command〉 to a 〈string〉 and executes 〈true〉
if they are equal, and 〈false〉 otherwise. Neither the 〈command〉 nor the 〈string〉
is expanded in the test and the comparison is category code agnostic. Control
sequence tokens in the 〈string〉 argument will be detokenized and treated as strings.
This command is robust. Note that it will only consider the replacement text of the
〈command〉. For example, this code

\long\def\@gobbletwo#1#2{}
\ifdefstring{\@gobbletwo}{}{true}{false}

would yield 〈true〉. The prefix and the parameters of \@gobbletwo are ignored.

\ifcsstring{〈csname〉}{〈string〉}{〈true〉}{〈false〉}

Similar to \ifdefstring except that it takes a control sequence name as its first
argument.

3.6.2 String tests

\ifstrequal{〈string〉}{〈string〉}{〈true〉}{〈false〉}

Compares two strings and executes 〈true〉 if they are equal, and 〈false〉 otherwise.
The strings are not expanded in the test and the comparison is category code agnos-

16

tic. Control sequence tokens in any of the 〈string〉 arguments will be detokenized
and treated as strings. This command is robust.

\ifstrempty{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is empty, and to 〈false〉 otherwise. The 〈string〉 is
not expanded in the test.

\ifblank{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is blank (empty or spaces), and to 〈false〉 otherwise.
The 〈string〉 is not expanded in the test.

\notblank{〈string〉}{〈not true〉}{〈not false〉}

Similar to \ifblank but negates the test.

3.6.3 Arithmetic tests

\ifnumcomp{〈integer expression〉}{〈relation〉}{〈integer expression〉}{〈true〉}{〈false〉}

Compares two integer expressions according to 〈relation〉 and expands to 〈true〉
or 〈false〉 depending on the result. The 〈relation〉 may be <, >, or =. Both integer
expressions will be processed with \numexpr. An 〈integer expression〉 may be any
arbitrary code which is valid in this context. All arithmetic expressions may contain
spaces. Here are some examples:

\ifnumcomp{3}{>}{6}{true}{false}
\ifnumcomp{(7 + 5) / 2}{=}{6}{true}{false}
\ifnumcomp{(7+5) / 4}{>}{3*(12-10)}{true}{false}
\newcounter{countA}
\setcounter{countA}{6}
\newcounter{countB}
\setcounter{countB}{5}
\ifnumcomp{\value{countA} * \value{countB}/2}{=}{15}{true}{false}
\ifnumcomp{6/2}{=}{5/2}{true}{false}

Technically, this command is a LaTeX wrapper for the TeX primitive \ifnum, in-
corporating \numexpr. Note that \numexpr will round the result of all integer ex-
pressions, i. e., both expressions will be processed and rounded prior to being com-
pared. In the last line of the above examples, the result of the second expression
is 2.5, which is rounded to 3, hence \ifnumcomp will expand to 〈true〉.

\ifnumequal{〈integer expression〉}{〈integer expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifnumcomp{...}{=}{...}{...}{...}.

\ifnumgreater{〈integer expression〉}{〈integer expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifnumcomp{...}{>}{...}{...}{...}.

\ifnumless{〈integer expression〉}{〈integer expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifnumcomp{...}{<}{...}{...}{...}.

17

\ifnumodd{〈integer expression〉}{〈true〉}{〈false〉}

Evaluates an integer expression and expands to 〈true〉 if the result is an odd num-
ber, and to 〈false〉 otherwise. Technically, this command is a LaTeX wrapper for the
TeX primitive \ifodd, incorporating \numexpr.

\ifdimcomp{〈dimen expression〉}{〈relation〉}{〈dimen expression〉}{〈true〉}{〈false〉}

Compares two dimen expressions according to 〈relation〉 and expands to 〈true〉
or 〈false〉 depending on the result. The 〈relation〉 may be <, >, or =. Both dimen
expressions will be processed with \dimexpr. A 〈dimen expression〉 may be any
arbitrary code which is valid in this context. All arithmetic expressions may contain
spaces. Here are some examples:

\ifdimcomp{1cm}{=}{28.45274pt}{true}{false}
\ifdimcomp{(7pt + 5pt) / 2}{<}{2pt}{true}{false}
\ifdimcomp{(3.725pt + 0.025pt) * 2}{<}{7pt}{true}{false}
\newlength{\lengthA}
\setlength{\lengthA}{7.25pt}
\newlength{\lengthB}
\setlength{\lengthB}{4.75pt}
\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{2.75pt * 2}{true}{false}
\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{25pt / 6}{true}{false}

Technically, this command is a LaTeX wrapper for the TeX primitive \ifdim, incor-
porating \dimexpr. Since both \ifdimcomp and \ifnumcomp are expandable, they
may also be nested:

\ifnumcomp{\ifdimcomp{5pt+5pt}{=}{10pt}{1}{0}}{>}{0}{true}{false}

\ifdimequal{〈dimen expression〉}{〈dimen expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifdimcomp{...}{=}{...}{...}{...}.

\ifdimgreater{〈dimen expression〉}{〈dimen expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifdimcomp{...}{>}{...}{...}{...}.

\ifdimless{〈dimen expression〉}{〈dimen expression〉}{〈true〉}{〈false〉}

Alternative syntax for \ifdimcomp{...}{<}{...}{...}{...}.

3.6.4 Boolean expressions

The commands in this section are replacements for the \ifthenelse command
provided by the ifthen package. They serve the same purpose but diVer in syntax,
concept, and implementation. In contrast to \ifthenelse, they do not provide any
tests of their own but serve as a frontend to other tests. Any test which satisfies
certain syntactical requirements may be used in a boolean expression.

\ifboolexpr{〈expression〉}{〈true〉}{〈false〉}

Evaluates the 〈expression〉 and executes 〈true〉 if it is true, and 〈false〉 otherwise.
The 〈expression〉 is evaluated sequentially from left to right. The following ele-

18

ments, discussed in more detail below, are available in the 〈expression〉: the test
operators togl, bool, test; the logical operators not, and, or; and the subexpres-
sion delimiter (...). Spaces, tabs, and line endings may be used freely to arrange
the 〈expression〉 visually. Blank lines are not permissible in the 〈expression〉. This
command is robust.

\ifboolexpe{〈expression〉}{〈true〉}{〈false〉}

An expandable version of \ifboolexpr which may be processed in an expansion-
only context, e. g., in an \edef or in a \write operation. Note that all tests used
in the 〈expression〉 must be expandable, even if \ifboolexpe is not located in an
expansion-only context.

\whileboolexpr{〈expression〉}{〈code〉}

Evaluates the 〈expression〉 like \ifboolexpr and repeatedly executes the 〈code〉
while the expression is true. The 〈code〉 may be any valid TeX or LaTeX code. This
command is robust.

\unlessboolexpr{〈expression〉}{〈code〉}

Similar to \whileboolexpr but negates the 〈expression〉, i. e., it keeps executing
the 〈code〉 repeatedly unless the expression is true. This command is robust.

The following test operators are available in the 〈expression〉:

togl Use the togl operator to test the state of a flag defined with \newtoggle. For
example:

\iftoggle{mytoggle}{true}{false}

becomes

\ifboolexpr{ togl {mytoggle} }{true}{false}

The togl operator may be used with both \ifboolexpr and \ifboolexpe.

bool Use the bool operator to perform a boolean test based on plain TeX syntax, i. e.,
any test normally employed like this:

\iftest true\else false\fi

This includes all flags defined with \newif as well as TeX primitives such as
\ifmmode. The \if prefix is omitted when using the flag or the primitive in the
expression. For example:

\ifmmode true\else false\fi
\ifmytest true\else false\fi

becomes

\ifboolexpr{ bool {mmode} }{true}{false}
\ifboolexpr{ bool {mytest} }{true}{false}

This also works with flags defined with \newbool (see § 3.5.1). In this case

19

\ifbool{mybool}{true}{false}

becomes

\ifboolexpr{ bool {mybool} }{true}{false}

The bool operator may be used with both \ifboolexpr and \ifboolexpe.

test Use the test operator to perform a test based on LaTeX syntax, i. e., any test
normally employed like this:

\iftest{true}{false}

This applies to all macros based on LaTeX syntax, i. e., the macro must take a 〈true〉
and a 〈false〉 argument and these must be the final arguments. For example:

\ifdef{\somemacro}{true}{false}
\ifdimless{\textwidth}{365pt}{true}{false}
\ifnumcomp{\value{somecounter}}{>}{3}{true}{false}

When using such tests in the 〈expression〉, their 〈true〉 and 〈false〉 arguments are
omitted. For example:

\ifcsdef{mymacro}{true}{false}

becomes

\ifboolexpr{ test {\ifcsdef{mymacro}} }{true}{false}

and

\ifnumcomp{\value{mycounter}}{>}{3}{true}{false}

becomes

\ifboolexpr{
test {\ifnumcomp{\value{mycounter}}{>}{3}}

}
{true}
{false}

The test operator may be used with \ifboolexpr without any restrictions. It
may also be used with \ifboolexpe, provided that the test is expandable. Some
of the generic tests in § 3.6 are robust and may not be used with \ifboolexpe,
even if \ifboolexpe is not located in an expansion-only context. Use \ifboolexpr
instead if the test is not expandable.

Since \ifboolexpr and \ifboolexpe imply processing overhead, there is gener-
ally no benefit in employing them for a single test. The stand-alone tests in § 3.6
are more eYcient than test, \ifbool from § 3.5.1 is more eYcient than bool,
and \iftoggle from § 3.5.2 is more eYcient than togl. The point of \ifboolexpr
and \ifboolexpe is that they support logical operators and subexpressions. The
following logical operators are available in the 〈expression〉:

not The not operator negates the truth value of the immediately following element.
You may prefix togl, bool, test, and subexpressions with not. For example:

20

\ifboolexpr{
not bool {mybool}

}
{true}
{false}

will yield 〈true〉 if mybool is false and 〈false〉 if mybool is true, and

\ifboolexpr{
not (bool {boolA} or bool {boolB})

}
{true}
{false}

will yield 〈true〉 if both boolA and boolB are false.

and The and operator expresses a conjunction (both a and b). The 〈expression〉 is true
if all elements joined with and are true. For example:

\ifboolexpr{
bool {boolA} and bool {boolB}

}
{true}
{false}

will yield 〈true〉 if both bool tests are true. The nand operator (negated and, i. e.,
not both) is not provided as such but may be expressed by using and in a negated
subexpression. For example:

bool {boolA} nand bool {boolB}

may be written as

not (bool {boolA} and bool {boolB})

or The or operator expresses a non-exclusive disjunction (either a or b or both). The
〈expression〉 is true if at least one of the elements joined with or is true. For exam-
ple:

\ifboolexpr{
togl {toglA} or togl {toglB}

}
{true}
{false}

will yield 〈true〉 if either togl test or both tests are true. The nor operator (negated
non-exclusive disjunction, i. e., neither a nor b nor both) is not provided as such
but may be expressed by using or in a negated subexpression. For example:

bool {boolA} nor bool {boolB}

may be written as

not (bool {boolA} or bool {boolB})

21

(...) The parentheses delimit a subexpression in the 〈expression〉. The subexpression is
evaluated and the result of this evaluation is treated as a single truth value in the
enclosing expression. Subexpressions may be nested. For example, the expression:

(bool {boolA} or bool {boolB})
and
(bool {boolC} or bool {boolD})

is true if both subexpressions are true, i. e., if at least one of boolA/boolB and at
least one of boolC/boolD is true. Note that subexpressions are generally not re-
quired if all elements are joined with and or with or. For example, the expressions

bool {boolA} and bool {boolB} and {boolC} and bool {boolD}
bool {boolA} or bool {boolB} or {boolC} or bool {boolD}

will yield the expected results: the first one is true if all elements are true; the
second one is true if at least one element is true. However, when combining and
and or, it is advisable to always group the elements in subexpressions in order
to avoid potential misconceptions which may arise from diVerences between the
semantics of formal boolean expressions and the semantics of natural languages.
For example, the following expression

bool {bagel} and bool {ham} or bool {cheese}

is always true if cheese is true since the or operator will take the result of the
and evaluation as input. In contrast to the meaning of this expression when pro-
nounced in English, it is not processed like this

bool {bagel} and (bool {ham} or bool {cheese})

but evaluated strictly from left to right:

(bool {bagel} and bool {ham}) or bool {cheese}

3.7 List processing

3.7.1 User input

The facilities in this section are primarily designed to handle user input. When
building lists for internal use by a package, using the facilities in section 3.7.2 may
be preferable as they allow testing if an element is in a list.

\DeclareListParser{〈command〉}{〈separator〉}

This command defines a list parser similar to the \docsvlist command below,
which is defined like this:

\DeclareListParser{\docsvlist}{,}

Note that the list parsers are sensitive to the category code of the 〈separator〉.

\DeclareListParser*{〈command〉}{〈separator〉}

The starred variant of \DeclareListParser defines a list parser similar to the
\forcsvlist command below, which is defined like this:

22

\DeclareListParser*{\forcsvlist}{,}

\docsvlist{〈item, item, ...〉}

This command loops over a comma-separated list of items and executes the auxil-
iary command \do for every item in the list, passing the item as an argument. In
contrast to the \@for loop in the LaTeX kernel, \docsvlist is expandable. With
a suitable definition of \do, lists may be processed in an \edef or a comparable
context. You may use \listbreak at the end of the replacement text of \do to stop
processing and discard the remaining items in the list. Whitespace after list sepa-
rators is ignored. If an item contains a comma or starts with a space, it must be
wrapped in curly braces. The braces will be removed as the list is processed. Here is
a usage example which prints a comma-separated list as an itemize environment:

\begin{itemize}
\renewcommand*{\do}[1]{\item #1}
\docsvlist{item1, item2, {item3a, item3b}, item4}
\end{itemize}

Here is another example:

\renewcommand*{\do}[1]{* #1\MessageBreak}
\PackageInfo{mypackage}{%

Example list:\MessageBreak
\docsvlist{item1, item2, {item3a, item3b}, item4}}

In this example, the list is written to the log file as part of an informational mes-
sage. The list processing takes place during the \write operation.

\forcsvlist{〈handler〉}{〈item, item, ...〉}

This command is similar to \docsvlist except that \do is replaced by a 〈handler〉
specified at invocation time. The 〈handler〉 may also be a sequence of commands,
provided that the command given last takes the item as trailing argument. For
example, the following code will convert a comma-separated list of items into an
internal list called \mylist:

\forcsvlist{\listadd\mylist}{item1, item2, item3}

3.7.2 Internal lists

The facilities in this section handle internal lists of data. An ‘internal list’ in this
context is a plain macro without any parameters and prefixes which is employed
to collect data. These lists use a special character as internal list separator.1 When
processing user input in list format, see the facilities in section 3.7.1.

\listadd{〈listmacro〉}{〈item〉}

This command appends an 〈item〉 to a 〈listmacro〉. A blank 〈item〉 is not added to
the list.

1 The character | with category code 3. Note that you may not typeset a list by saying \listname.
Use \show instead to inspect the list.

23

\listgadd{〈listmacro〉}{〈item〉}

Similar to \listadd except that the assignment is global.

\listeadd{〈listmacro〉}{〈item〉}

Similar to \listadd except that the 〈item〉 is expanded at definition-time. Only
the new 〈item〉 is expanded, the 〈listmacro〉 is not. If the expanded 〈item〉 is blank,
it is not added to the list.

\listxadd{〈listmacro〉}{〈item〉}

Similar to \listeadd except that the assignment is global.

\listcsadd{〈listcsname〉}{〈item〉}

Similar to \listadd except that it takes a control sequence name as its first argu-
ment.

\listcsgadd{〈listcsname〉}{〈item〉}

Similar to \listcsadd except that the assignment is global.

\listcseadd{〈listcsname〉}{〈item〉}

Similar to \listeadd except that it takes a control sequence name as its first argu-
ment.

\listcsxadd{〈listcsname〉}{〈item〉}

Similar to \listcseadd except that the assignment is global.

\dolistloop{〈listmacro〉}

This command loops over all items in a 〈listmacro〉 and executes the auxiliary
command \do for every item in the list, passing the item as an argument. The list
loop itself is expandable. You may use \listbreak at the end of the replacement
text of \do to stop processing and discard the remaining items in the list. Here
is a usage example which prints an internal list called \mylist as an itemize
environment:

\begin{itemize}
\renewcommand*{\do}[1]{\item #1}
\dolistloop{\mylist}
\end{itemize}

\dolistcsloop{〈listcsname〉}

Similar to \dolistloop except that it takes a control sequence name as its argu-
ment.

\forlistloop{〈handler〉}{〈listmacro〉}

This command is similar to \dolistloop except that \do is replaced by a 〈handler〉
specified at invocation time. The 〈handler〉 may also be a sequence of commands,

24

provided that the command given last takes the item as trailing argument. For
example, the following code will prefix all items in the internal list \mylist with
\item, count the items as the list is processed, and append the item count at the
end:

\newcounter{itemcount}
\begin{itemize}
\forlistloop{\stepcounter{itemcount}\item}{\mylist}
\item Total: \number\value{itemcount} items
\end{itemize}

\forlistcsloop{〈handler〉}{〈listcsname〉}

Similar to \forlistloop except that it takes a control sequence name as its second
argument.

\ifinlist{〈item〉}{〈listmacro〉}{〈true〉}{〈false〉}

This command executes 〈true〉 if the 〈item〉 is included in a 〈listmacro〉, and 〈false〉
otherwise. Note that this test uses pattern matching based on TeX’s argument scan-
ner to check if the search string is included in the list. This means that it is usually
faster than looping over all items in the list, but it also implies that the items must
not include curly braces which would eVectively hide them from the scanner. In
other words, this macro is most useful when dealing with lists of plain strings
rather than printable data. When dealing with printable text, it is safer to use
\dolistloop to check if an item is in the list as follows:

\renewcommand*{\do}[1]{%
\ifstrequal{#1}{item}

{item found!\listbreak}
{}}

\dolistloop{\mylist}

\xifinlist{〈item〉}{〈listmacro〉}{〈true〉}{〈false〉}

Similar to \ifinlist except that the 〈item〉 is expanded prior to the test.

\ifinlistcs{〈item〉}{〈listcsname〉}{〈true〉}{〈false〉}

Similar to \ifinlist except that it takes a control sequence name as its second
argument.

\xifinlistcs{〈item〉}{〈listcsname〉}{〈true〉}{〈false〉}

Similar to \xifinlist except that it takes a control sequence name as its second
argument.

3.8 Miscellaneous tools

\rmntonum{〈numeral〉}

The TeX primitive \romannumeral converts an integer to a Roman numeral but TeX
or LaTeX provide no command which goes the opposite way. \rmntonum fills this

25

gap. It takes a Roman numeral as its argument and converts it to the correspond-
ing integer. Since it is expandable, it may also be used in counter assignments or
arithmetic tests:

\rmntonum{mcmxcv}
\setcounter{counter}{\rmntonum{CXVI}}
\ifnumless{\rmntonum{mcmxcviii}}{2000}{true}{false}

The 〈numeral〉 argument must be a literal string. It will be detokenized prior to
parsing. The parsing of the numeral is case-insensitive and whitespace in the ar-
gument is ignored. If there is an invalid token in the argument, \rmntonum will
expand to -1; an empty argument will yield an empty string. Note that \rmntonum
will not check the numeral for formal validity. For example, both V and VX would
yield 5, IC would yield 99, etc.

\ifrmnum{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if 〈string〉 is a Roman numeral, and to 〈false〉 otherwise. The
〈string〉 will be detokenized prior to performing the test. The test is case-insensitive
and ignores whitespace in the 〈string〉. Note that \ifrmnum will not check the
numeral for formal validity. For example, both V and VXV will yield 〈true〉. Strictly
speaking, what \ifrmnum does is parse the 〈string〉 in order to find out if it consists
of characters which may form a valid Roman numeral, but it will not check if they
really are a valid Roman numeral.

4 Revision history

This revision history is a list of changes relevant to users of this package. Changes
of a more technical nature which do not aVect the user interface or the behav-
ior of the package are not included in the list. If an entry in the revision history
states that a feature has been improved or extended, this indicates a syntactically
backwards compatible modification, such as the addition of an optional argument
to an existing command. Entries stating that a feature has been modified demand
attention. They indicate a modification which may require changes to existing doc-
uments in some, hopefully rare, cases. The numbers on the right indicate the rele-
vant section of this manual.

2.0 2010-08-21

Added \csshow . 3.1.1
Added \DeclareListParser* . 3.7.1
Added \forcsvlist . 3.7.1
Added \forlistloop . 3.7.2
Added \forlistcsloop . 3.7.2
Allow testing \par in macro tests . 3.6.1
Fixed some bugs

1.9 2010-04-10

Improved \letcs . 3.1.1

26

Improved \csletcs . 3.1.1
Improved \listeadd . 3.7.2
Improved \listxadd . 3.7.2
Added \notblank . 3.6.2
Added \ifnumodd . 3.6.3
Added \ifboolexpr . 3.6.4
Added \ifboolexpe . 3.6.4
Added \whileboolexpr . 3.6.4
Added \unlessboolexpr . 3.6.4

1.8 2009-08-06

Improved \deflength . 2.4
Added \ifnumcomp . 3.6.3
Added \ifnumequal . 3.6.3
Added \ifnumgreater . 3.6.3
Added \ifnumless . 3.6.3
Added \ifdimcomp . 3.6.3
Added \ifdimequal . 3.6.3
Added \ifdimgreater . 3.6.3
Added \ifdimless . 3.6.3

1.7 2008-06-28

Renamed \AfterBeginDocument to \AfterEndPreamble (name clash) . 2.5
Resolved conflict with hyperref
Rearranged manual slightly

1.6 2008-06-22

Improved \robustify . 2.2
Improved \patchcmd and \ifpatchable 3.4
Modified and improved \apptocmd . 3.4
Modified and improved \pretocmd . 3.4
Added \ifpatchable* . 3.4
Added \tracingpatches . 3.4
Added \AfterBeginDocument . 2.5
Added \ifdefmacro . 3.6.1
Added \ifcsmacro . 3.6.1
Added \ifdefprefix . 3.6.1
Added \ifcsprefix . 3.6.1
Added \ifdefparam . 3.6.1
Added \ifcsparam . 3.6.1
Added \ifdefprotected . 3.6.1
Added \ifcsprotected . 3.6.1
Added \ifdefltxprotect . 3.6.1
Added \ifcsltxprotect . 3.6.1
Added \ifdefempty . 3.6.1
Added \ifcsempty . 3.6.1

27

Improved \ifdefvoid . 3.6.1
Improved \ifcsvoid . 3.6.1
Added \ifstrempty . 3.6.2
Added \setbool . 3.5.1
Added \settoggle . 3.5.2

1.5 2008-04-26

Added \defcounter . 2.4
Added \deflength . 2.4
Added \ifdefstring . 3.6.1
Added \ifcsstring . 3.6.1
Improved \rmntonum . 3.8
Added \ifrmnum . 3.8
Added extended pdf bookmarks to this manual
Rearranged manual slightly

1.4 2008-01-24

Resolved conflict with tex4ht

1.3 2007-10-08

Renamed package from elatex to etoolbox 1
Renamed \newswitch to \newtoggle (name clash) 3.5.2
Renamed \provideswitch to \providetoggle (consistency) 3.5.2
Renamed \switchtrue to \toggletrue (consistency) 3.5.2
Renamed \switchfalse to \togglefalse (consistency) 3.5.2
Renamed \ifswitch to \iftoggle (consistency) 3.5.2
Renamed \notswitch to \nottoggle (consistency) 3.5.2
Added \AtEndPreamble . 2.5
Added \AfterEndDocument . 2.5
Added \AfterPreamble . 2.5
Added \undef . 3.1.1
Added \csundef . 3.1.1
Added \ifdefvoid . 3.6.1
Added \ifcsvoid . 3.6.1
Added \ifdefequal . 3.6.1
Added \ifcsequal . 3.6.1
Added \ifstrequal . 3.6.2
Added \listadd . 3.7.2
Added \listeadd . 3.7.2
Added \listgadd . 3.7.2
Added \listxadd . 3.7.2
Added \listcsadd . 3.7.2
Added \listcseadd . 3.7.2
Added \listcsgadd . 3.7.2
Added \listcsxadd . 3.7.2
Added \ifinlist . 3.7.2

28

Added \xifinlist . 3.7.2
Added \ifinlistcs . 3.7.2
Added \xifinlistcs . 3.7.2
Added \dolistloop . 3.7.2
Added \dolistcsloop . 3.7.2

1.2 2007-07-13

Renamed \patchcommand to \patchcmd (name clash) 3.4
Renamed \apptocommand to \apptocmd (consistency) 3.4
Renamed \pretocommand to \pretocmd (consistency) 3.4
Added \newbool . 3.5.1
Added \providebool . 3.5.1
Added \booltrue . 3.5.1
Added \boolfalse . 3.5.1
Added \ifbool . 3.5.1
Added \notbool . 3.5.1
Added \newswitch . 3.5.2
Added \provideswitch . 3.5.2
Added \switchtrue . 3.5.2
Added \switchfalse . 3.5.2
Added \ifswitch . 3.5.2
Added \notswitch . 3.5.2
Added \DeclareListParser . 3.7.1
Added \docsvlist . 3.7.1
Added \rmntonum . 3.8

1.1 2007-05-28

Added \protected@csedef . 3.1.1
Added \protected@csxdef . 3.1.1
Added \gluedef . 3.1.2
Added \gluegdef . 3.1.2
Added \csgluedef . 3.1.2
Added \csgluegdef . 3.1.2
Added \mudef . 3.1.2
Added \mugdef . 3.1.2
Added \csmudef . 3.1.2
Added \csmugdef . 3.1.2
Added \protected@eappto . 3.3.1
Added \protected@xappto . 3.3.1
Added \protected@cseappto . 3.3.1
Added \protected@csxappto . 3.3.1
Added \protected@epreto . 3.3.2
Added \protected@xpreto . 3.3.2
Added \protected@csepreto . 3.3.2
Added \protected@csxpreto . 3.3.2
Fixed bug in \newrobustcmd . 2.1

29

Fixed bug in \renewrobustcmd . 2.1
Fixed bug in \providerobustcmd . 2.1

1.0 2007-05-07

Initial public release

30

	Contents
	Introduction
	About
	Requirements
	License
	Feedback
	Acknowledgments

	User commands
	Definitions
	\newrobustcmd
	\renewrobustcmd
	\providerobustcmd

	Patching
	\robustify

	Protection
	\protecting

	Lengths and counters
	\defcounter
	\deflength

	Predefined hooks
	\AfterPreamble
	\AtEndPreamble
	\AfterEndPreamble
	\AfterEndDocument

	Author commands
	Definitions
	Macro definitions
	\csdef
	\csgdef
	\csedef
	\csxdef
	\protected@csedef
	\protected@csxdef
	\cslet
	\letcs
	\csletcs
	\csuse
	\undef
	\csundef
	\csshow

	Arithmetic definitions
	\numdef
	\numgdef
	\csnumdef
	\csnumgdef
	\dimdef
	\dimgdef
	\csdimdef
	\csdimgdef
	\gluedef
	\gluegdef
	\csgluedef
	\csgluegdef
	\mudef
	\mugdef
	\csmudef
	\csmugdef

	Expansion control
	\expandonce
	\csexpandonce

	Hook management
	Appending to a hook
	\appto
	\gappto
	\eappto
	\xappto
	\protected@eappto
	\protected@xappto
	\csappto
	\csgappto
	\cseappto
	\csxappto
	\protected@cseappto
	\protected@csxappto

	Prepending to a hook
	\preto
	\gpreto
	\epreto
	\xpreto
	\protected@epreto
	\protected@xpreto
	\cspreto
	\csgpreto
	\csepreto
	\csxpreto
	\protected@csepreto
	\protected@csxpreto

	Patching
	\patchcmd
	\ifpatchable
	\apptocmd
	\pretocmd
	\tracingpatches

	Boolean flags
	TeX flags
	\newbool
	\providebool
	\booltrue
	\boolfalse
	\setbool
	\ifbool
	\notbool

	LaTeX flags
	\newtoggle
	\providetoggle
	\toggletrue
	\togglefalse
	\settoggle
	\iftoggle
	\nottoggle

	Generic tests
	Macro tests
	\ifdef
	\ifcsdef
	\ifundef
	\ifcsundef
	\ifdefmacro
	\ifcsmacro
	\ifdefparam
	\ifcsparam
	\ifdefprefix
	\ifcsprefix
	\ifdefprotected
	\ifcsprotected
	\ifdefltxprotect
	\ifcsltxprotect
	\ifdefempty
	\ifcsempty
	\ifdefvoid
	\ifcsvoid
	\ifdefequal
	\ifcsequal
	\ifdefstring
	\ifcsstring

	String tests
	\ifstrequal
	\ifstrempty
	\ifblank
	\notblank

	Arithmetic tests
	\ifnumcomp
	\ifnumequal
	\ifnumgreater
	\ifnumless
	\ifnumodd
	\ifdimcomp
	\ifdimequal
	\ifdimgreater
	\ifdimless

	Boolean expressions
	\ifboolexpr
	\ifboolexpe
	\whileboolexpr
	\unlessboolexpr

	List processing
	User input
	\DeclareListParser
	\docsvlist
	\forcsvlist

	Internal lists
	\listadd
	\listgadd
	\listeadd
	\listxadd
	\listcsadd
	\listcsgadd
	\listcseadd
	\listcsxadd
	\dolistloop
	\dolistcsloop
	\forlistloop
	\forlistcsloop
	\ifinlist
	\xifinlist
	\ifinlistcs
	\xifinlistcs

	Miscellaneous tools
	\rmntonum
	\ifrmnum

	Revision history
	2.0 (2010-08-21)
	1.9 (2010-04-10)
	1.8 (2009-08-06)
	1.7 (2008-06-28)
	1.6 (2008-06-22)
	1.5 (2008-04-26)
	1.4 (2008-01-24)
	1.3 (2007-10-08)
	1.2 (2007-07-13)
	1.1 (2007-05-28)
	1.0 (2007-05-07)

