
The etextools package
An e-TeX package providing useful tools for LaTeX Users

and package Writers
Florent CHERVET

florent.chervet@free.fr
Version 2 ε
14 July 2009

Contents

1 Introduction 2
1.1 Identification 2
1.2 Requirements 2
1.3 Acknowledgements –

Thank You ! 2
1.4 Hint for the reader 2

User commands

2 A few (7) “helper” macros 2

3 Expansion control 3

4 String manipulation 4
4.1 String trimming 4
4.2 Expanded string comparison 5
4.3 Testing characters 5
4.4 Fully expandable macros

with options 6

5 List management 7
5.1 The Command-List Parser . 7
5.2 Loops into lists 8
5.3 Converting csv lists to

etoolbox-lists 9
5.4 Removing elements from

etoolbox-lists 9

˜ A b s t r a c t ˜
The etextools package is based on the etex and etoolbox packages and de-
fines more tools for LATEX Users or package Writers. Before using this package,
it is highly recommended to read the documentation (of this package and...) of
the etoolbox package.

This package requires the etex package from David Carlisle and the etoolbox
package from Philipp Lehman. Both of them are available on CTAN under the
/latex/contrib/ directory 1.

The main contributions of this package are :

• the \expandnext macro;

• the ability to define fully expandable macros with parameter and/or star
version (with a small restriction) – see \FE@testopt, \FE@ifstar;

• a Command-List Parser constructor that fully uses this new feature :
command-list parser are fully expandable – see \csvloop and \listloop;

• three macros that are lacking from the etoolbox package for removing
elements from lists : \listdel and \listgdel, \listxdel.

1This documentation is produced with the ltxdockit classe and package by Philipp Lehman using the
DocStrip utility.
−→To get the documentation, run (twice): pdflatex etextools.dtx
−→To get the package, run: etex etextools.dtx

1

http://www.ctan.org/tex-archive/macros/latex/contrib/etextools/
mailto:florent.chervet@free.fr

The etextools package – an ε-TEX package for LATEX

1 Introduction

1.1 Identification
1 〈∗package〉
2 \NeedsTeXFormat{LaTeX2e}[1996/12/01]
3 \ProvidesPackage{etextools}
4 [2009/07/14 v2e e-TeX more useful tools for LaTeX package writers]
5 \csname ettl@onlyonce\endcsname\let\ettl@onlyonce\endinput

1.2 Requirements

This package requires both the etex package by David Carlisle and the etoolbox pack-
age by Philipp Lehman.

6 \RequirePackage{etex,etoolbox}

Furthermore, the space token must have its natural catcode (10) all along this package.

7 \edef\ettl@restore@space@catcode{\catcode‘\ =\the\catcode‘\ }
8 \AtEndOfPackage{\ettl@restore@space@catcode
9 \let\ettl@restore@space@catcode\ettl@undefined}

10 \catcode‘\ =10

1.3 Acknowledgements – Thank You !

Thanks to Philipp Lehman for the etoolbox package (and also for this nice class of
documentation). Much of my work on lists are based on his work and package.

Thank to Heiko Oberdiek who has done so much for the TEX and LATEX community, and
allows me to produce a package in one only .dtx file.

1.4 Hint for the reader

Every command provided in this etextools package are fully expandable unless ex-
plicitly specified. As it appears to be the philosophy of etoolbox to make the most
of its commands fully expandable (and this is very useful for package writing and/or
document-style programming) the fully expandable commands have a special sign inOOO the margin (displayed here for information).

Remain what a control sequence, a control word and a control character are...

User commands
2 A few (7) “helper” macros

\ettl@afterelse

\ettl@afterfi

Those two commands are the copies of \bbl@afterelse and \bbl@afterfi from theOOO babel package. They allow to get out of \if...\fi conditionals.

11 \long\def\ettl@afterelse#1\else#2\fi{\fi#1}
12 \long\def\ettl@afterfi#1\fi{\fi#1}

Those commands are used in \iffirstchar and \expandnext

etextools ©�Florent Chervet
2 / 10

The etextools package – an ε-TEX package for LATEX

\@gobblescape

This sequence of command is very often used, even in latex.ltx. So it appears to beOOO better to put it in a macro. It’s aim is to reverse the mechanism of \csname...\endcsname:

13 \newcommand*\@gobblescape{\expandafter\@gobble\string}

\str@gobblescape{〈string〉}
With ε-TEX \detokenize it is now possible to invoke a \string on an arbitrary se-OOO quence of tokens. Unfortunately, \detokenize adds a space tokens at the very end of
the sequence. \str@gobblescape acts exactly the same way as @gobblescape i. e., it
removes the first character from a string, but removes the trailing spaces as well:

14 \newcommand\str@gobblescape[1]{\expandafter\deblank\expandafter{%
15 \expandafter\@gobble\detokenize{#1}}}

The \deblank command will be desbribed later.

3 Expansion control

NOTA BENE: Pay attention that the expansion control macros are not primitives! There-�

fore:

\expandafter\controlsequence\noexpandcs{〈csname〉}
\expandafter\controlsequence\expandonce{〈command〉}

etc. etc. may not lead to the result you expected. The \expandonce macro from
etoolbox worth the same warning.

For expansion control, it’s better to use primitives, unless you clearly knows what you
do and what will happen... In particular, you’d very better avoid to use expansion�

control macros at the very beginning of the definition of a command, for if this
command is preceded (in the user’s code) by \expandafter, you will be lead to
undesirable result and most probably to an error !

\noexpandcs{〈csname〉}
In an expansion context (\edef) we often want a control sequence whose name resultsOOO from the expansion of some macros and/or other tokens to be created, but not expanded
at that point. Roughly:

\edef{\noexpandcs{<balanced text to be expanded as a cs-name>}}
will expand to: \"cs-name" but this (new) control sequence itself will not be expanded.
A typical use is shown in the following code:
−→ \edef\abc{\noexpandcs{abc@\@gobblescape\controlword}}
−→ if equivalent to: \def\abc{\abc@controlword}.

16 \newcommand*\noexpandcs[1]{\expandafter\noexpand\csname #1\endcsname}

\noexpandcs is used in the definition of \DeclareListCmdParser.

\noexpandafter

\noexpandafter only means \noexpand\expandafter and is shorter to type.OOO
17 \newcommand\noexpandafter{\noexpand\expandafter}

This command is used in the definition of \DeclareListCmdParser.

\expandnext{〈cstoken〉}{〈first parameter of cstoken〉}
We often want a control sequence to be expanded after its first argument. For example,OOO if we want to test if a command \foo has a blank replacement text we will type :

\expandafter\ifblank\expandafter{\foo}

etextools ©�Florent Chervet
3 / 10

The etextools package – an ε-TEX package for LATEX

Now suppose you wish to define a macro \detokenizecs{〈csname〉} that expands to
the detokenized content of \csname 〈csname〉\endcsname. Without \expandnext you
will have to say:

\expandafter\expandafter\expandafter\detokenize
\expandafter\expandafter\expandafter{\csname 〈csname〉\endcsname}

six \expandafter(s). With \expandnext you will just have to say:
\expandnext\expandnext\detokenize{\csname #1\endcsname}

Now observe the following game :

\def\foo{foo} −→ \def\Foo{\foo} ←↩
\def\\FOo{\Foo} −→ \def\FOO{\FOo} ←↩
\def\FOOL{\FOO}

And guess how many \expandafter you will need in order to test “\ifblank{foo}”
directly from \FOOL ???

\expandnext solves this problem : \FOOL has 5 degrees of expansion until it expands
to “foo”, so one require exactly 5 \expandnext : the solution is :

\expandnext\expandnext\expandnext\expandnext\expandnext\ifblank{\FOOL}

And now : if you define, say : \csdef{bloody fool}{\FOO} you just require 2 more
\expandnext in order to test “foo” from “\csname bloody fool\endcsname” ! just test
it!

18 \newcommand\expandnext[2]{%
19 \ifx#1\expandnext
20 \ettl@afterelse\expandafter\expandafter\expandafter
21 \expandafter\@expandnext{#2}{\expandafter\expandafter\expandafter}
22 \else\ettl@afterfi\expandafter#1\expandafter{#2}
23 \fi}
24 \long\def\@expandnext#1#2#3{%
25 \ifx#1\expandnext
26 \expandafter\ettl@afterelse\expandafter\expandafter\expandafter
27 \expandafter\@expandnext{#3}{\expandafter#2#2}
28 \else
29 \expandafter\ettl@afterfi#2#1#2{#3}
30 \fi}

This code is not very tricky but difficult to explain. The better is to watch at the log if the
reader is eager to understand the job of each \expandafter.

Note that the first argument of \expandnext must be a single 〈cstoken〉 (for \expandnext
acts only on the first following token).

4 String manipulation

4.1 String trimming

\deblank{〈string〉}
The macro \deblank will remove the extra blank space inserted by \detokenize at theOOO very end of the 〈string〉. Actually, it removes all trailing spaces (charcode 32, catcode
10) from its argument:

31 \newcommand\deblank{}
32 \begingroup\catcode‘\&=3% a & as a math shift
33 \long\gdef\deblank#1{\@deblank#1 &}
34 \long\gdef\@deblank#1 #2&{\ifblank{#2}{#1}{#1\@deblank#2 &}}
35 \endgroup

etextools ©�Florent Chervet
4 / 10

The etextools package – an ε-TEX package for LATEX

Note, by the way, that the leading spaces are also removed by TEX’s mastication mech-
anism.

4.2 Expanded string comparison

\xifblank{〈string〉}{〈true〉}{〈false〉}
\xifblank is similar to \ifblank except that the 〈string〉 is first expanded with
\protected@edef:

36 \newrobustcmd\xifblank[1]{\begingroup
37 \protected@edef\@xifblank{\endgroup
38 \noexpand\ifblank{#1}%
39 }\@xifblank}

\xifstrequal{〈string1 〉}{〈string2 〉}{〈true〉}{〈false〉}
In the same way, \xifstrequal is similar to \ifstrequal but both 〈string〉 arguments
are expanded with \protected@edef before comparison:

40 \newrobustcmd\xifstrequal[2]{%
41 \begingroup\protected@edef\@tempa{#1}\protected@edef\@tempb{#2}%
42 \ifx\@tempa\@tempb \aftergroup\@firstoftwo
43 \else \aftergroup\@secondoftwo
44 \fi\endgroup}

4.3 Testing characters

\iffirstchar{〈string1 〉}{〈string2 〉}{〈true〉}{〈false〉}
\iffirstchar{〈〉}{〈string〉}{〈true〉}{〈false〉}

\iffirstchar will compare the character codes of the first characters of each 〈string〉.OOO The comparison is catcode agnostic and the macro is fully expandable. Neither
〈string1 〉 not 〈string2 〉 is expanded before comparison.

There is a “special” use of this command when the user want to test if a 〈string〉 begins
with an escape character (\) one may say:

\iffirstchar \@backslashchar{〈string〉} or even easier:
\iffirstchar {}{〈string〉}

Please note that the tests:

\iffirstchar {〈whatever string1 is〉}{}
and: \iffirstchar {}{}

are always expanded into 〈false〉 (for consistency with the shortcut-test for \@backslashchar):

45 \newcommand\iffirstchar[2]{%
46 \if \expandafter\@car\string#2\relax\@nil\expandafter\@car#1\string\\\@nil
47 \ettl@afterelse\ifblank{#2}\@secondoftwo\@firstoftwo
48 \else \expandafter\@secondoftwo
49 \fi}

\ifsinglechar{〈string1 〉}{〈string2 〉}{〈true〉}{〈false〉}
\ifsinglechar will perform the test \iffirstchar but will also check that 〈string2 〉 hasOOO only one character.

50 \newcommand\ifsinglechar[2]{%

Remember that neither 〈string1 〉 nor 〈string2 〉 is expanded.
First: test if #2 is a single character:

51 \expandnext\expandnext\ifblank{\expandafter\@cdr\string#2 \@nil}

etextools ©�Florent Chervet
5 / 10

The etextools package – an ε-TEX package for LATEX

52 % \expandafter\expandafter\expandafter\ifblank
53 % \expandafter\expandafter\expandafter{%
54 % \expandafter\@cdr\string#2 \@nil}

The test returned 〈true〉: therefore test further the character codes of #2 and #1, and
switch to 〈true〉 only in case of equality:

55 {\iffirstchar{#1}{#2}}

Otherwise, switch to 〈false〉
56 \@secondoftwo}

Now with the macro \ifsinglechar it becomes possible to write fully expandable
macros with an option, provided that this macro has at least one non-optional ar-
gument, as far as we don’t use \futurelet nor any assignation. The “trick” is the
following:

\def\MacroWithOption#1{\ifsinglechar[{#1}
{\MacroHasOption[}
{\MacroNoOption{#1}}}}

\def\MacroHasOption[#1]#2... definition
\def\MacroNoOption#1... definition

Moreover (in the style of \@testopt):

\def\MacroWithOption#1{\ifsinglechar[{#1}
{\MacroHasOption#1}
{\MacroHasOption[default]{#1}}}

Therefore, the following macro is defined:

4.4 Fully expandable macros with options

\FE@testopt{〈argument to be tested〉}{〈commands〉}{〈default option〉}
\FE@testopt mimics the behaviour of \@testopt but is Fully Expandable (FE) and canOOO be used as follow:

\def\MacroWithOption#1{\FE@testopt{#1}\MacroHasOption{default}}

Remember that \MacroWithOption must have at least one mandatory argument.

57 \newcommand\FE@testopt[3]{\ifsinglechar [{#1}{#2#1}{#2[{#3}]{#1}}}

Limitation : if you call such an option command without option and with {[} as manda-�

tory argument, it will be considered that the command has an option, whose end will be
at the next ‘] ’ found in the input string.

\FE@testopt is used in the definition of \DeclareListCmdParser.

\FE@ifstar{〈argument to be tested〉}{〈star-commands〉}{〈non-star commands〉}
Similarly, it becomes possible to mimic the behaviour of \@ifstar but in a fullyOOO expandable(FE) way. \FE@ifstar can be used as follow :

\def\StarOrNotCommand#1{\FE@ifstar{#1}
{\StarredCommand}
{\NotStarredCommand}}

Remember that \StarredCommand and \NotStarredCommand must have at least one
mandatory argument.

58 \newcommand\FE@ifstar[3]{\ifsinglechar *{#1}{#2}{#3{#1}}}

Limitation : if you call such a command with {*} as mandatory argument, it will be�

considered that the command is starred, and the mandatory argument will be found
next inside the input string.

etextools ©�Florent Chervet
6 / 10

The etextools package – an ε-TEX package for LATEX

This “limitation” is in fact a benediction: thank to it we can have Fully-Expandable-
starred-macros-with-option!

\FE@ifstar is used in the definitions of \DeclareListCmdParser, \csvloop, \listloop and \csvtolist.

5 List management

5.1 The Command-List Parser

The etoolbox package provides a way to define list parsers a fully expandable macros:
the list parser is able to expand the auxiliary command \do on each item of a list.

Here we provide a \DeclareCmdListParser macro that is compatible and slightly dif-
ferent, because the auxiliary command is not necessarily \do. Such a command-list-
parser is fully expandable.

The idea is that if \csvloop has been defined as a command-parser then, thank to the
fully expandable macro \FE@testopt we can call for expansion:

\csvloop*{item,item,...} as a shortcut for \csvloop*[\do]{item,...}
or: \csvloop*[\listadd\mylist]{item,item,...}

for example to convert the csv-list into internal etoolbox list.

The star-form of \csvloop will be explained below.

\DeclareCmdListParser{〈command〉}{〈separator〉}
\DeclareCmdListParser acts in the same way as etoolbox-\DeclareListParser and
the command-list-parser are sensitive to the category code of the 〈separator〉 (which-is-
not-necessarily-a-single-character-and-shall-not-be-a-&-with-a-catcode-of-3).
The command-list-parser will be defined only if it is definable:

59 \newrobustcmd*\DeclareCmdListParser[2]{%
60 \@ifdefinable#1
61 {\expandafter\etextools@defcmdparser\expandafter{#1}{#2}}}

Then the job is done by \etextools@defcmdparser: we need the ‘ & ’ to have a catcode
of 3 and globally define the macro inside a purposeful group:

62 \begingroup\catcode‘\&=3
63 \gdef\etextools@defcmdparser#1#2{%
64 \begingroup

Now the parser definition is made inside an protected-\edef in order to expand control
sequences names:

65 \protected@edef\defineparser{\endgroup

Here we define the entry-point: we first test if the command was starred. This is pos-
sible because the list-parser has always a mandatory argument (the 〈list〉 itself or the
〈listmacro〉) :

66 \long\def#1####1{\noexpand\FE@ifstar{####1}
67 {\noexpandcs{ettl@lst@star\string#1}}
68 {\noexpandcs{ettl@lst@nost\string#1}}}%

Both starred and not-starred versions have an optional argument which is the auxiliary
command, whose name is \do if not specified. It is possible to test the option for the
same reason:

69 \long\csdef{ettl@lst@star\string#1}####1{\noexpand\FE@testopt{####1}
70 {\noexpandcs{ettl@lst@star@pt\string#1}}{\noexpand\do}}%
71 \long\csdef{ettl@lst@nost\string#1}####1{\noexpand\FE@testopt{####1}
72 {\noexpandcs{ettl@lst@nost@pt\string#1}}{\noexpand\do}}%

etextools ©�Florent Chervet
7 / 10

The etextools package – an ε-TEX package for LATEX

Definition of the parser with its arguments : [optional command]{list or listmacro}.
If the starred version was used, then we do not have to expand the (mandatory) 〈list〉:

73 \long\csdef{ettl@lst@star@pt\string#1}[####1]####2{%
74 \noexpandcs{ettl@lst\string#1}{####2}{####1}}%

On the other hand, if the parser was not starred, the (mandatory) 〈listmacro〉 is ex-
panded once:

75 \long\csdef{ettl@lst@nost@pt\string#1}[####1]####2{%
76 \noexpandafter\noexpandcs{ettl@lst\string#1}\noexpandafter{%
77 ####2}{####1}}%

ListParser is defined and leads to \"ettl@lst\string\ListParser" in all cases; here
the 〈list〉 is in first position, the auxiliary commands come after, so we reverse the order
and add a 〈separator〉 in case the 〈list〉 is empty:

78 \long\csdef{ettl@lst\string#1}####1####2{%
79 \noexpandcs{ettl@lst@\string#1}{####2}####1\noexpand#2&}%

In the following macro, we extract the first item from the list (before the 〈separator〉 #2),
for treatment:

80 \long\csdef{ettl@lst@\string#1}####1####2\noexpand#2####3&{%

Proceed with the first item, if not empty:

81 \noexpand\ifblank{####2}
82 {}
83 {\noexpand\ettl@lst@doitem{####1}{####2}}%

If the remainder of the list is empty then break loop, otherwise restart extracting the
next, first item for treatment:

84 \noexpand\ifblank{####3}
85 {\noexpand\ettl@listbreak}
86 {\noexpandcs{ettl@lst@\string#1}{####1}####3}&}%

Now the definitions are ready, execute them:

87 }\defineparser}%

\ettl@lst@doitem apply the auxiliary command(s) (in #1) to the item (#2): \ettl@listbreak
breaks the loop, removing the extra &:

88 \long\gdef\ettl@lst@doitem#1#2{#1{#2}}%
89 \long\gdef\ettl@listbreak#1&{}%

Leave “catcode-group”:

90 \endgroup

5.2 Loops into lists

Now we have to declare two command-list-parsers : \listloop for etoolbox lists and
\csvloop for comma-separated lists.

\csvloop[〈auxiliary commands〉]{〈csvlistmacro〉}
\csvloop*[〈auxiliary commands〉]{〈item,item,item,...〉}
\listloop[〈auxiliary commands〉]{〈listmacro〉}

\listloop*[〈auxiliary commands〉]{〈expanded list〉}
\listloop acts exactly as etoolbox-\dolistloop with an optional argument to change
the default auxiliary command \do to apply to each item of the list :

etextools ©�Florent Chervet
8 / 10

The etextools package – an ε-TEX package for LATEX

\listloop\mylist is \listloop[\do]\mylist and is also \dolistloop\mylist
\csvloop\csvlist is \csvloop[\do]\csvlist and is also: ←↩

\expandafter\docsvlist\expandafter{\csvlist}

Definition of \csvloop :

91 \DeclareCmdListParser\csvloop{,}

Definition of \listloop (with a ‘ | ’ of catcode 3 – cf.etoolbox):

92 \begingroup\catcode‘\|=3
93 \gdef\do{\DeclareCmdListParser\listloop{|}\undef\do}\aftergroup\do
94 \endgroup

5.3 Converting csv lists to etoolbox-lists

\csvtolist{〈listmacro〉}{〈csvlistmacro〉}
\csvtolist*{〈listmacro〉}{〈item,item,item...〉}

\csvtolist converts a comma separated list into an internal etoolbox list. It is useful to
insert more than one item at a time in a list. It’s also the first application of the \csvloop
macro just defined :

95 \newcommand\csvtolist[1]{\FE@ifstar{#1}\star@csvtolist\nost@csvtolist}
96 \def\star@csvtolist#1{\csvloop*[{\unexpanded{\listadd#1}}]}
97 \def\nost@csvtolist#1{\csvloop[{\unexpanded{\listadd#1}}]}

5.4 Removing elements from etoolbox-lists

The etoolbox package provides \listadd, \listgadd and \listxadd commands to
add items to a list. However, no command is designed to remove an element from a list.

\listdel{〈listmacro〉}{〈item〉}
\listgdel{〈listmacro〉}{〈item〉}
\listxdel{〈listmacro〉}{〈item〉}
\listxdelThe \listdel command removes the element 〈item〉 from the list 〈listmacro〉. Note that

the 〈listmacro〉 is redefined after deletion:

98 \newrobustcmd\listdel[2]{\@listdel\def{#1}{#2}}

Commands \listgdel and \listxdel are similar, except that the assignment (i. e.,
the redefinition of the list) is global; for the latter, the 〈item〉 is first expanded using
\protected@edef:

99 \newrobustcmd\listgdel[2]{\@listdel\gdef{#2}{#2}}
100 \newrobustcmd\listxdel[2]{\begingroup
101 \protected@edef\@listxdel{\endgroup
102 \unexpanded{\@listdel\def#1}{#2}%
103 }\@listxdel}

Now you noticed the job is delayed to a general macro \@listdel which is relatively
tricky ! We need first to be placed in an environment where the ‘ | ’ delimiter has a
category code of 3 (cf etoolbox-lists definitions):

104 \begingroup\catcode‘\|=3\catcode‘\&=3

Inside this “catcode-group” the definition of \@listdel ought to be global:

105 \long\gdef\@listdel#1#2#3{%

#1=\def or \gdef, #2=〈listmacro〉, #3=〈item〉 to remove.

etextools ©�Florent Chervet
9 / 10

The etextools package – an ε-TEX package for LATEX

In order to preserve the hash-table from temporary definitions, a group is opened:

106 \begingroup
107 \def\@tempa##1|#3|##2&{##1|##2\@tempb}%

\@tempa is a delimited macro whose aim is to remove the first 〈item〉 found in the list
and it adds \@tempb after the result. If the 〈item〉 was not in the list, then ##2 will be
empty. Note that \@tempa is the only macro whose definition depends on the 〈item〉
(and then leads \@listdel not to be fully-expandable).

The result of \@tempa expansion is then given to \@tempb whose purpose is to cancel
out whatever is found between the two delimiters: |\@tempb...|\@tempb:

108 \def\@tempb|##1|\@tempb##2|\@tempb{%
109 \ifblank{##2}{\unexpanded{##1}}

If the 〈item〉 was not is the list, then ##2 will be empty, and
\@tempb|...|tempb...|\@tempb

is replaced by the original-list (i. e., ##1 – that we shall not expand), then the loop is
broken; otherwise the 〈item〉 was in the list and ##1 is the shortened-list without the
〈item〉. We have to loop to remove all the 〈items〉 of the list, except in the case where
the shortened-list is empty after having removing 〈item〉 (##1 empty):

110 {\ifblank{##1}{}{\@tempx##1&}}}%

Now we just have to (define and) expand \@tempx in an \edef which is going to redefine
the 〈listmacro〉. \@tempx expands first \@tempa and then \@tempb on the result of the
expansion of \@tempa. The macro \@tempx itself has an argument: it is (at first stage)
the replacement text of 〈listmacro〉:

111 \def\@tempx##1&{\expandafter\@tempb\@tempa|##1|\@tempb|#3|&}%
112 \edef\@redef{\endgroup
113 \unexpanded{#1#2}{% ie: \def or \gdef \listmacro

\@redef redefines the list using (\def or \gdef), the replacement text is the result of the
expansion of \@tempx on the 〈listmacro〉 which is expanded once (to see its items...):

114 \expandafter\@tempx\unexpanded\expandafter{#2}&}%

Then just expand \@redef (fully expandable):

115 }\@redef}% end of \@listdel

And ends the “catcode-group”:

116 \endgroup

117 〈/package〉

etextools ©�Florent Chervet
10 / 10

	Introduction
	Identification
	Requirements
	Acknowledgements -- Thank You !
	Hint for the reader

	A few (PD17) ``helper'' macros
	\ettl@afterelse
	\str@gobblescape

	Expansion control
	\noexpandcs
	\noexpandafter
	\expandnext

	String manipulation
	String trimming
	\deblank

	Expanded string comparison
	\xifblank
	\xifstrequal

	Testing characters
	\iffirstchar
	\ifsinglechar

	Fully expandable macros with options
	\FE@testopt
	\FE@ifstar

	List management
	The Command-List Parser
	\DeclareCmdListParser

	Loops into lists
	\csvloop

	Converting csv lists to etoolbox-lists
	\csvtolist

	Removing elements from etoolbox-lists
	\listdel
	\listxdel

