% -*- coding: utf-8 -*- % !TEX program = xelatex % % Package epyt: a simple and clean theme for LaTeX beamer class % Copyright (C) 2013-2015 Zou Hu % % Please report bugs, problems, and suggestions via % https://github.com/zohooo/epyt % % The package may be distributed and/or modified under the conditions % of the LaTeX Project Public License, either version 1.3 of this % license or (at your option) any later version. The latest version % of this license is in % http://www.latex-project.org/lppl.txt \documentclass[14pt]{beamer} \usetheme[color=white]{epyt} % black, blue, green, white \usepackage{arev} % use arev sans font \hypersetup{ pdfpagemode={FullScreen}, } \title{Epyt Theme for Beamer} \author{zohooo@yeah.net} %\institute{https://github.com/zohooo/epyt} \begin{document} \begin{frame}[plain]\transboxout \titlepage \end{frame} \begin{frame}\transboxin \begin{center} \tableofcontents[hideallsubsections] \end{center} \end{frame} \epytsetup{color=green} \section{Introduction} \begin{frame}{Introduction} Epyt is a simple but nice theme for Beamer, with the following features: \pause \begin{itemize}[<+->] \item simple structure: with page numbers at footer, no head bar and side bar; \item simple templates: displaying theorems with traditional inline style; \item simple colors: using only several foreground and background colors. \end{itemize} \end{frame} \epytsetup{color=blue} \section{Enumerates} \begin{frame}[fragile]{Ordered Lists} A Beamer theme consists of the following four parts: \pause \begin{enumerate}[<+->] \item outer theme, with \verb!\usebeameroutertheme!; \item inner theme, with \verb!\usebeamerinnertheme!; \item color theme, with \verb!\usebeamercolortheme!; \item font theme, with \verb!\usebeamerfonttheme!. \end{enumerate} \end{frame} \epytsetup{color=black} \section{Mathmatics} \begin{frame}{Example} \begin{example} Prove the following result: \[ \lim_{x\to0}\frac{\sin 3x}{\ln(1-2x)}=-\frac{3}{2} \] \end{example}\pause \begin{proof} Since $\sin 3x \sim 3x$ and $\ln(1-2x) \sim -2x$, we have \[ \lim_{x\to0}\frac{\sin 3x}{\ln(1-2x)}=\lim_{x\to0}\frac{3x}{-2x}=-\frac{3}{2}, \] and we are done. \end{proof} \end{frame} \end{document}