eledmac
A presumptuous attempt to port
EDMAC, TABMAC and EDSTANZA to LaTeX*

Peter Wilson
Herries Press’
Maieul Rouquettet
based on the original work by

John Lavagnino, Dominik Wujastyk, Herbert Breger and Wayne Sullivan

Abstract

EDMAC, a set of PLAIN TEX macros, was made at the beginning of 90’s for
typesetting critical editions in the traditional way, i.e., similar to the Oxford
Classical Texts, Teubner, Arden Shakespeare and other series. A separate
set of PLAIN TEX macros, TABMAC, provides for tabular material. Another
set of PLAIN TEX macros, EDSTANZA, assists in typesetting verse.

The eledmac package makes the EDMAC, TABMAC and EDSTANZA facilities
available to authors who would prefer to use LaTeX. The principal functions
provided by the package are marginal line numbering and multiple series of
foot- and endnotes keyed to line numbers.

In addition to the EDMAC, TABMAC and EDSTANZA functions the package also
provides for index entries keyed to both page and line numbers. Multiple
series of the familiar numbered footnotes are also available.

Other LaTeX packages for critical editions include EDNOTES, and po-
emscol for poetical works.

To report bugs, please go to ledmac’s GitHub page and click ” New Issue”:
https://github.com/maieul/ledmac/issues/. You must open an account
with github.com to access my page (maieul/ledmac). GitHub accounts are
free for open-source users. You can report bugs in English or in French.

You can subscribe to the eledmac mail list in:
http://geekographie.maieul.net/146

Contents

(L Introductionl 5
*This file (eledmac.dtx) has version number v1.12.1, last revised 2014/08/06.

Therries dot press at earthlink dot net
'maieul at maieul dot net

https://github.com/maieul/ledmac/issues/
http://geekographie.maieul.net/146

2 Contents

LTOVErVIEW] . .« o o o e e e e 6
1.2 History|« . . o 7
C2IEDMAT. . . . oo ot e e e e 7
C22%¢cledmad o oo 8

[L.2.3 List of works edited with (e)ledmac|. 9

|12 The eledmac package| 9
13 Numbering text lines and paragraphs| 9
8.1 Lineation commandsl L o 12
3.2 Changing the line numbers| 13

4 The apparatus| 14
................................ 14

4.2 Alternate footnote formattingl L. 17
[4.3 Display options| 17
[£:3.1 Control Tine number printing] 18

[£.372 Separator between the lemma and the note content|. 19

4 of ..o 19

4.3.4 Font of the lemmal 20

4.3.5 Styles of notes content|o oo 20

4.3.6 Arbitrary code at the beginninging of notes| 20

[4.3.7 Options for notes i columns| oo v v v 21

4.3.8 Options for paragraphed footnotes| 21

4.3.9 Options for block of notes| 21

4.4 Page layout| 22
EETonts . . . o oo 22
4.6 Create anew series|. 23

6 Versel 24
[5.1 Repeating stanza indents| 24
B2 Stanza breaking] 25
b.3 Hanging symboll o o oo 25
5.4 Long verse and page break| 26
5.5 Varlous toolsl 26
[5.6 Hanging symbol 00000 26
[5.7 Text before/after verses 27
6_Grouping 27
rop marks 27

R Endnotes] 28
|19 Cross referencing| 28

29

Contents

1 Familiar |

S 2l

[L3 Tabular materiall

14 Sectioning commands|

115 Quotation environments|

|16 Page breaks|

[L7 Miscellaneous|

117.1 Known and suspected limitations|

[17.2 Use with other packages| . . .
17.3 Parallel typesetting|
17.4 Notes for EDMAC usersl . . .

118 Implementation overview|

120 Sectioning commands|

[21 Line counting)

[PT.T Choosing the system of lineation]

21.5 Commands within the line-Tist fild]
[21.6 Writing to the line-list file] . .

[22 Marking text for notes|

P21 Nedtext and \critext themselves o o v . .

22.2 Substitute lemmal

|23 Paragraph decomposition and reassembly|

23.1 Boxes, counters, \pstart an

pend|

[23.2 Processing one ling|

123.3 Line and page number computation|

[23.4 Line number printing|

23.5 Pstart number printing in si e:
23.6 Add insertions to the vertical Ii

30
31

31

32

35

37

37

37
38
39
40
40

43

43
45

48

51
51
56
57
61
62
69

72
74
79
79

4 Contents

[23.8 Printing leftover notes|o L. 95
24 Footnotes| 96
241 Fontsl 96
24.2 Outer-level footnote commandsl 96
|24.3 Normal footnote formattingl 97
24.4 Standard footnote definitionsl oL 104
|24.5 Paragraphed footnotes| oo 0oL 105
|24.5.1 Insertion of the footnotes separator| 111

P46 Columnar footnotesl 111
25 Familiar footnotes| 116
................................ 116
P52 Tootnote formatd 118
25.3 Two columns footnotes 121
25.4 Three columns footnotes 123
125.5 Paragraphed footnotes| oo L. 124
[25.6 Footnotes” orderl Lo 127
125.7 Footnotes” output|o 127
26 Endnotes| 128
27 Generate series| 130
|27.1 Test if series 1s still existing] 131
[27.2 Create all commands to memorize display options| 131
27.3 Create inserts, needed to add notes in foot| 132
|2(§ Ezreate commands for critical apparatus, \Xfootnote] 132
[27.5 Create tools for familiar footnotes (\footnoteX)|. 133
7.6 The endnotes 133
27.7 Init standards series (A,B,C.D.EZ)| 134
R7.8 Some toold 134
127.9 Old commands, kept for backward compatibility]. 137
[27.10 Hooks for a particular footnote] 138
R7.11 Allagl 138
[27.12 Line number printing]o oL 138
128 Output routine] 140
129 Cross referencing| 146
151
131 Minipages and such| 157
161

[32.1 Hyperref compatibility]« « v v v o e 165

List of Figures 5

33 Macro as environment| 165
[34 Versel 169
135 Arrays and tables| 173
136 Section’s title commandsl 191
136.1 Deprecated commands| 191
36.2 New commands : \eledxxx| 194

137 Page breaking or no page breaking depending of specific lines| 203

138 Long verse: prevents being separated by a page break| 204
[39 The Endl 205
|Appendix A Some things to do when changing version| 206
|Appendix A.1 Migration from ledmac to eledmac| 206
|Appendix A.2 Migration to eledmac 1.5.1) 206
|Appendix A.3 Migration to eledmac 1.12.0]. 207
[References| 208
Index 208
|IChange History]| 227

List of Figures

1 Introduction

The EDMAC macros [LW90] for typesetting critical editions of texts have been avail-
able for use with TeX since 90’s. Since EDMAC was introduced there has been a
small but constant demand for a version of EDMAC that could be used with LaTeX.
The eledmac package is an attempt to satisfy that request.

eledmac would not have been possible without the amazing work by John
Lavagnino and Dominik Wujastyk, the original authors of EDMAC. I, Peter Wilson,
am very grateful for their encouragement and permission to use EDMAC as a base.
The majority of both the code and this manual are by these two. The tabular
material is based on the TABMAC code [Bre96], by permission of its author, Herbert
Breger. The verse-related code is by courtesy of Wayne Sullivan, the author of
EDSTANZA [Sul92], who has kindly supplied more than his original macros.

Since 2011’s Maieul Rouquette begun to maintain and extend eledmac. As
plain TEX is used by little people, and IXTEX by more people eledmac and original
EDMAC are more and more distant.

6 1 Introduction

1.1 Overview

The eledmac package, together with LaTeX, provides several important facilities
for formatting critical editions of texts in a traditional manner. Major features
include:

e automatic stepped line numbering, by page or by section;
e sub-lineation within the main series of line numbers;

e variant readings automatically keyed to line numbers;

e caters for both prose and verse;

e multiple series of the footnotes and endnotes;

e block or columnar formatting of the footnotes;

e simple tabular material may be line numbered;

e indexing keyed to page and line numbers.

eledmac allows the scholar engaged in preparing a critical edition to focus
attention wholly on the task of creating the critical text and evaluating the variant
readings, text-critical notes and testimonia. IXTEX and eledmac will take care of
the formatting and visual correlation of all the disparate types of information.

The original EDMAC can be used as a ‘stand alone’ processor or as part of
a process. Omne example is its use as the formatting engine or ‘back end’ for
the output of an automatic manuscript collation program. COLLATE, written by
Peter Robinson, runs on the Apple Macintosh, can collate simultaneously up to a
hundred manuscripts of any length, and provides facilities for the scholar to tailor
the collation interactively. For further details of this and other related work, visit
the EDMAC home page at http://www.homepages.ucl.ac.uk/~ucgadkw/edmac/
index.htmll

Apart from eledmac there are some other LaTeX packages for critical edition
typesetting. As Peter Wilson is not an author, or even a prospective one, of any
critical edition work he could not provide any opinions on what authors in this
area might feel comfortable with or how well any of the packages meet their needs.

EDNOTES [Liic03], by Uwe Liick and Christian Tapp, is another LaTeX pack-
age being developed for critical editions. Unlike eledmac which is based on
EDMAC, EDNOTES takes a different (internal) approach and provides a different
set of features. For example it provides additional facilities for overlapping
lemmas and for handling tables. For more information there is a web site at
http://ednotes.sty.de.vu or email to ednotes.sty@web.de.

The poemscol package [BurQ1] by John Burt is designed for typesetting critical
editions of collections of poems. I do not know how, or whether, poemscol and
eledmac will work together.

Critical authors may find it useful to look at EDMAC, EDNOTES, eledmac, and
poemscol to see which best meets their needs.

At the time of writing Peter Wilson knows of two web sites, apart from the
EDMAC home page, that have information on eledmac, and other programs.

http://www.homepages.ucl.ac.uk/~ucgadkw/edmac/index.html
http://www.homepages.ucl.ac.uk/~ucgadkw/edmac/index.html
http://ednotes.sty.de.vu
ednotes.sty@web.de

1.2 History 7

e Jeronimo Leal pointed me tohttp://www.guit.sssup.it/latex/critical.
html. This also mentions another package for critical editions called Mauro-
TeX (http://www.maurolico.unipi.it/mtex/mtex.htm). These sites are
both in Italian.

e Dirk-Jan Dekker maintains http://www.djdekker.net/ledmac| which is a
FAQ for typesetting critical editions and eledmac.

This manual contains a general description of how to use the LaTeX version of
EDMAC, namely eledmac(in sections [2 through ; the complete source code for
the package, with extensive documentation (in sections |18 and following) ; and an
Index to the source code. We do not suggest that you need to read the source code
for this package in order to use it; we provide this code primarily for reference,
and many of our comments on it repeat material that is also found in the earlier
sections. But no documentation, however thorough, can cover every question that
comes up, and many can be answered quickly by consultation of the code. On a
first reading, we suggest that you should read only the general documentation in
sections [2] unless you are particularly interested in the innards of eledmac.

1.2 History
1.2.1 EDMAC

The original version of EDMAC was TEXTED. TEX, written by John Lavagnino in late
1987 and early 1988 for formatting critical editions of English plays.

John passed these macros on to Dominik Wujastyk who, in September—October
1988, added the footnote paragraphing mechanism, margin swapping and other
changes to suit his own purposes, making the style more like that traditionally used
for classical texts in Latin and Greek (e.g., the Oxford Classical Texts series). He
also wrote some extra documentation and sent the files out to several people. This
version of the macros was the first to be called EDMAC.

The present version was developed in the summer of 1990, with the intent of
adding necessary features, streamlining and documenting the code, and further
generalizing it to make it easily adaptable to the needs of editors in different
disciplines. John did most of the general reworking and documentation, with
the financial assistance of the Division of the Humanities and Social Sciences,
California Institute of Technology. Dominik adapted the code to the conventions of
Frank Mittelbach’s doc option, and added some documentation, multiple-column
footnotes, cross-references, and crop marks.! A description by John and Dominik
of this version of EDMAC was published as ‘An overview of EDMAC: a PLAIN TEX
format for critical editions’, TUGboat 11 (1990), pp. 623-643.

From 1991 through 1994, the macros continued to evolve, and were tested at
a number of sites. We are very grateful to all the members of the (now defunct)
edmac@mailbase.ac.uk discussion group who helped us with smoothing out bugs
and infelicities in the macros. Ron Whitney and our anonymous reviewer at the

1This version of the macros was used to format the Sanskrit text in volume I of Metarules of
Paninian Grammar by Dominik Wujastyk (Groningen: Forsten, 1993).

http://www.guit.sssup.it/latex/critical.html
http://www.guit.sssup.it/latex/critical.html
http://www.maurolico.unipi.it/mtex/mtex.htm
http://www.djdekker.net/ledmac

8 1 Introduction

TUG were both of great help in ironing out last-minute wrinkles, while Ron made
some important suggestions which may help to make future versions of EDMAC even
more efficient. Wayne Sullivan, in particular, provided several important fixes
and contributions, including adapting the Mittelbach/Schopf ‘New Font Selection
Scheme’ for use with PLAIN TEX and EDMAC. Another project Wayne has worked on
is a DVI post-processor which works with an EDMAC that has been slightly modified
to output \specials. This combination enables you to recover to some extent the
text of each line, as ASCII code, facilitating the creation of concordances, an index
verborum, etc.

At the time of writing (1994), we are pleased to be able to say that EDMAC is
being used for real-life book production of several interesting editions, such as the
Latin texts of Euclid’s Elements,? an edition of the letters of Nicolaus Coperni-
cus,® Simon Bredon’s Arithmetica,* a Latin translation by Plato of Tivoli of an
Arabic astrolabe text,” a Latin translation of part II of the Arabic Algebra by
Abii Kamil Shuja’ b. Aslam,® the Latin Rithmachia of Werinher von Tegernsee,”
a middle-Dutch romance epic on the Crusades,® a seventeenth-century Hungarian
politico-philosophical tract,” an anonymous Latin compilation from Hungary enti-
tled Sermones Compilati in Studio Gererali Quingeecclesiensi in Regno Ungarie,'°
the collected letters and papers of Leibniz,'! Theodosius’s Spherics, the German
Algorismus of Sacrobosco, the Sanskrit text of the Kasikavrtti of Vamana and
Jayaditya,'? and the English texts of Thomas Middleton’s collected works.

1.2.2 eledmac

Version 1.0 of TABMAC was released by Herbert Breger in October 1996. This added
the capability for typesetting tabular material.

Version 0.01 of EDSTANZA was released by Wayne Sullivan in June 1992, to help
a colleague with typesetting Irish verse.

In March 2003 Peter Wilson started an attempt to port EDMAC from TeX to
LaTeX. The starting point was EDMAC version 3.16 as documented on 19 July

2Gerhard Brey used EDMAC in the production of Hubert L. L. Busard and Menso Folkerts,
Robert of Chester’s (?) Redaction of Euclid’s Elements, the so-called Adelard II Version, 2
vols., (Basel, Boston, Berlin: Birkhéduser, 1992).

3Being prepared at the German Copernicus Research Institute, Munich.

4Being prepared by Menso Folkerts et al., at the Institut fiir Geschichte der Naturwis-
senschaften in Munich.

5Richard Lorch, Gerhard Brey et al., at the same Institute.

SRichard Lorch, ‘Abii Kamil on the Pentagon and Decagon’ in Vestigia Mathematica, ed. M.
Folkerts and J. P. Hogendijk (Amsterdam, Atlanta: Rodopi, 1993).

"Menso Folkerts, ‘Die Rithmachia des Werinher von Tegernsee’, ibid.

8Geert H. M. Claassens, De Middelnederlandse Kruisvaartromans, (Amsterdam: Schiphower
en Brinkman, 1993).

9Emil Hargittay, Csdky Istvdn: Politica philosophiai Okoskodds-szerint valé rendes életnek
példdja (1664—-1674) (Budapest: Argumentum Kiadd, 1992).

10Being produced, as was the previous book, by Gyula Mayer in Budapest.

117 eibniz, Sdmtliche Schriften und Briefe, series 1, 111, VII, being edited by Dr. H. Breger,
Dr. N. Géadeke and others, at the Leibniz-Archiv, Niedersachsische Landesbibliothek, Hannover.
(see http://www.nlb-hannover.de/Leibniz)

12Being prepared at Poona and Lausanne Universities.

http://www.nlb-hannover.de/Leibniz

1994 (available from CTAN). In August 2003 the TABMAC functions were added;
the starting point for these being version 1.0 of Ocober 1996. The EDSTANZA
(v0.01) functions were added in February 2004. Sidenotes and regular footnotes
in numbered text were added in April 2004.

This port was called ledmac.

Since July 2011, ledmac is maintained by Maieul Rouquette.

Important changes were put in version 1.0, to make eledmac more easily ex-
tensible (see p. These changes can trigger small problems with the old
customization. That is why a new name was selected: eledmac. To migrate from

ledmac to eledmac, please read Appendix [Appendix A.1| (pl206).

1.2.3 List of works edited with (e)ledmac

A collaborative list of works edited with (e)ledmac is available on https://www.
zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/
items. Please add your own edition made with (e)ledmac.

2 The eledmac package

eledmac is a three-pass package like LaTeX itself. Although your textual apparatus
and line numbers will be printed even on the first run, it takes two more passes
through LaTeX to be sure that everything gets to its right place. Any changes you
make to the input file may similarly require three passes to get everything to the
right place, if the changes alter the number of lines or notes. eledmac will tell you
that you need to make more runs, when it notices, but it does not expend the labor
to check this thoroughly. If you have problems with a line or two misnumbered at
the top of a page, try running LaTeX once or twice more.

A file may mix numbered and unnumbered text. Numbered text is printed with
marginal line numbers and can include footnotes and endnotes that are referenced
to those line numbers: this is how you’ll want to print the text that you're editing.
Unnumbered text is not printed with line numbers, and you can’t use eledmac’s
note commands with it: this is appropriate for introductions and other material
added by the editor around the edited text.

3 Numbering text lines and paragraphs

\beginnumbering Each section of numbered text must be preceded by \beginnumbering and fol-
\endnumbering lowed by \endnumbering, like:
\beginnumbering
(text)
\endnumbering
The \beginnumbering macro resets the line number to zero, reads an auxiliary

file called (jobname).nn (where (jobname) is the name of the main input file for
this job, and nn is 1 for the first numbered section, 2 for the second section, and
so on), and then creates a new version of this auxiliary file to collect information

https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items
https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items
https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items

\pstart
\pend

\autopar

10 3 Numbering text lines and paragraphs

during this run. The first instance of \beginnumbering also opens a file called
(jobname) .end to receive the text of the endnotes. \endnumbering closes the
(jobname).nn file.

If the line numbering of a text is to be continuous from start to end,
then the whole text will be typed between one pair of \beginnumbering and
\endnumbering commands. But your text will most often contain chapter or other
divisions marking sections that should be independently numbered, and these will
be appropriate places to begin new numbered sections. eledmac has to read and
store in memory a certain amount of information about the entire section when
it encounters a \beginnumbering command, so it speeds up the processing and
reduces memory use when a text is divided into a larger number of sections (at
the expense of multiplying the number of external files that are generated).

Within a numbered section, each paragraph of numbered text must be marked
using the \pstart and \pend commands:

\pstart
(paragraph of text)
\pend

Text that appears within a numbered section but isn’t marked with \pstart
and \pend will not be numbered.

The following example shows the proper section and paragraph markup, and
the kind of output that would typically be generated:

\beginnumbering

\pstart

This is a sample paragraph, with
lines numbered automatically.

\pend 1 This is a sample paragraph
2 with lines numbered

\pstart 3 automatically.

This paragraph too has its .

lines automatically numbered. 4 jjn§ pa?agrapkltoo .

\pend 5 has its lines automatically
6 numbered.

The lines of this paragraph are The lines of this paragraph

not numbered. are not numbered.

7 And here the numbering

\pstart
8 begins again.

And here the numbering begins
again.

\pend

\endnumbering

Both \pstart and \pend can take a optional argument, in brackets. Its content
will be printed before the beginning of the \pstart / after the end of the \pend.

This feature is not needed for normal use of eledmac, but it is needed when
using verse (see [5| p. or eledpar (see P .

A \noindent is automatically added before this argument.

You can use \autopar to avoid the nuisance of this paragraph markup and
still have every paragraph automatically numbered. The scope of the \autopar

11

command needs to be limited by keeping it within a group, as follows:

\begingroup
\beginnumbering
\autopar
A paragraph of numbered text. 1 A paragraph of numbered

2 text.

Another paragraph of numbered 3 Another paragraph of
text. 4 numbered text.
\endnumbering

\endgroup

\autopar fails, however, on paragraphs that start with a { or with any other
command that starts a new group before it generates any text. Such paragraphs
need to be started explicitly, before the new group is opened, using \indent,
\noindent, or \leavevmode, or using \pstart itself.'?

\firstlinenum By default, eledmac numbers every 5th line. There are two counters,
\linenumincrement firstlinenum and linenumincrement, that control this behaviour; they can
be changed using \firstlinenum{(num)} and \linenumincrement{(num)}.

\firstlinenum specifies the first line that will have a printed number, and
\linenumincrement is the difference between succesive numbered lines. For ex-

ample, to start printing numbers at the first line and to have every other line

numbered:
\firstlinenum{1} \linenumincrement{2}
\firstsublinenum There are similar commands, \firstsublinenum{(num)} and \sublinenumincrement{(num)}
\sublinenumincrement for controlling sub-line numbering.
\numberpstarttrue You can use the command \numberpstarttrue to insert a number on every

\pstart. To stop the numbering, you must use \numberpstartfalse. To reset
the numebering of \pstarts, insert

\setcounter{pstart}{0}

\pausenumbering eledmac stores a lot of information about line numbers and footnotes in memory
\resumenumbering as it goes through a numbered section. But at the end of such a section, it empties
its memory out, so to speak. If your text has a very long numbered section it is
possible that your LaTeX may reach its memory limit. There are two solutions
to this. The first is to get a larger LaTeX with increased memory. The second
solution is to split your long section into several smaller ones. The trouble with
this is that your line numbering will start again at zero with each new section. To
avoid this problem, we provide \pausenumbering and \resumenumbering which
are just like \endnumbering ...\beginnumbering, except that they arrange for
your line numbering to continue across the break. Use \pausenumbering only
between numbered paragraphs:

13For a detailed study of the reasons for this restriction, see Barbara Beeton, ‘Initiation rites’,
TUGboat 12 (1991), pp. 257-258.

\numberpstarttrue
\numberpstartfalse
\thepstart

\numberlinefalse
\numberlinetrue
\lineation

\linenummargin

12 3 Numbering text lines and paragraphs

\beginnumbering

\pstart

Paragraph of text.

\pend

\pausenumbering 1 Paragraph of
2 text.

\resumenumbering

\pstart 3 Another paragraph.
Another paragraph.

\pend

\endnumbering

We have defined these commands as two macros, in case you find it necessary
to insert text between numbered sections without disturbing the line numbering.
But if you are really just using these macros to save memory, you might as well
say

\newcommand{\memorybreak}{\pausenumbering\resumenumbering}

and say \memorybreak between the relevant \pend and \pstart.

It’s possible to insert a number at every \pstart command. You must use
the \numberpstarttrue command to have it. You can stop the numbering with
\numberpstartfalse. You can redefine the command \thepstart to change
style. On each \beginnumbering the numbering restarts.

With the \sidepstartnumtrue command, the number of \pstart will be
printed in side. In this case, the line number will be not printed.

With the \labelpstarttrue command, a \label added just after a \pstart
will refer to the number of this pstart.

3.1 Lineation commands

Line numbering can be disabled with \numberlinefalse. It can be enabled again
with \numberlinetrue. Lines can be numbered either by page, by pstart or
by section; you specify this using the \lineation{(arg)} macro, where (arg) is
either page, pstart or section. You may only use this command at places where
numbering is not in effect; you can’t change the lineation system within a section.
You can change it between sections: they don’t all have to use the same lineation
system. The package’s standard setting is \lineation{section}. If the lineation
is by pstart, the pstart number will be printed before the line number in the notes.
The command \linenummargin(location) specifies the margin where the line
(or pstart) numbers will be printed. The permissable value for (location) is one out
of the list left, right, inner, or outer, for example \linenummargin{inner}.
The package’s default setting is
\linenummargin{left}
to typeset the numbers in the left hand margin. You can change this whenever
you’re not in the middle of making a paragraph.
More precisely, the value of \1inenummargin used is that in effect at the \pend
of a numbered paragraph. Apart from an initial setting for \linenummargin,

3.2 Changing the line numbers 13

only change it after a \pend, whereupon it will apply to all following numbered
paragraphs, until changed again (changing it between a \pstart and \pend pair
will apply the change to all the current paragraph).
\firstlinenum In most cases, you will not want a number printed for every single line of the
\linenumincrement text. Four WTEX counters control the printing of marginal numbers and they can
\firstsublinenum be set by the macros \firstlinenum{(num)}, etc. \firstlinenum specifies the
\sublinenumincrement number of the first line in a section to number, and \linenumincrement is the in-
crement between numbered lines. \firstsublinenum and \sublinenumincrement
do the same for sub-lines. Initially, all these are set to 5 (e.g., \firstlinenum{5}.
\linenumberlist You can define \linenumberlist to specify a non-uniform distribution of
printed line numbers. For example:
\def\linenumberlist{1,2,3,5,7,11,13,17,19,23,29}
to have numbers printed on prime-numbered lines only. There must be no spaces
within the definition which consists of comma-separated decimal numbers. The
numbers can be in any order but it is easier to read if you put them in numerical
order. Either omitting the definition of \linenumberlist or following the vacu-
ous definition
\def\linenumberlist{}
the standard numbering sequence is applied. The standard sequence is that speci-
fied by the combination of the firstlinenum, linenumincrement, firstsublinenum
and linenumincrement counter values.
\leftlinenum When a marginal line number is to be printed, there are a lot of ways to
\rightlinenum display it. You can redefine \leftlinenum and \rightlinenum to change the
\linenumsep way marginal line numbers are printed in the left and right margins respectively;
the initial versions print the number in font \numlabfont (described below) at a
distance \linenumsep (initially set to one pica) from the text.

3.2 Changing the line numbers

Normally the line numbering starts at 1 for the first line of a section and steps up
by one for each line thereafter. There are various common modifications of this
system, however; the commands described here allow you to put such modifications
into effect.
\startsub You insert the \startsub and \endsub commands in your text to turn sub-
\endsub lineation on and off. In plays, for example, stage directions are often numbered
with sub-line numbers: as line 10.1, 10.2, 10.3, rather than as 11, 12, and 13.
Titles and headings are sometimes numbered with sub-line numbers as well.
When sub-lineation is in effect, the line number counter is frozen and the sub-
line counter advances instead. If one of these commands appears in the middle of
a line, it doesn’t take effect until the next line; in other words, a line is counted
as a line or sub-line depending on what it started out as, even if that changes in
the middle.
\startlock The \startlock command, used in running text, locks the line number at its
\endlock current value, until you say \endlock. It can tell for itself whether you are in a
patch of line or sub-line numbering. One use for line-number locking is in printing

14 4 The apparatus

poetry: there the line numbers should be those of verse lines rather than of printed
lines, even when a verse line requires several printed lines.

\lockdisp When line-number locking is used, several printed lines may have the same line
number, and you have to specify whether you want the number attached to the
first printed line or the last, or whether you just want the number printed by them
all. (This assumes that, on the basis of the settings of the previous parameters,
it is necessary to display a line number for this line.) You specify your preference
using \lockdisp{(arg)}; its argument is a word, either first, last, or all. The
package initially sets this as \lockdisp{first}.

\setline In some cases you may want to modify the line numbers that are automatically
\advanceline calculated: if you are printing only fragments of a work but want to print line num-
bers appropriate to a complete version, for example. The \setline{(num)} and
\advanceline{(num)} commands may be used to change the current line’s num-
ber (or the sub-line number, if sub-lineation is currently on). They change both
the marginal line numbers and the line numbers passed to the notes. \setline
takes one argument, the value to which you want the line number set; it must be
0 or greater. \advanceline takes one argument, an amount that should be added

to the current line number; it may be positive or negative.

\setlinenum The \setline and \advanceline macros should only be used within a
\pstart...\pend group. The \setlinenum{(num)} command can be used out-
side such a group, for example between a pend and a \pstart. It sets the line
number to (num). It has no effect if used within a \pstart...\pend group

\linenumberstyle Line numbers are nomally printed as arabic numbers. You can use \linenumberstyle{(style)}
\sublinenumberstyle to change the numbering style. (style) must be one of:

Alph Uppercase letters (A...Z).
alph Lowercase letters (a...z).
arabic Arabic numerals (1, 2, ...)
Roman Uppercase Roman numerals (I, II, ...)
roman Lowercase Roman numerals (i, ii, ...)

Note that with the Alph or alph styles, ‘numbers’ must be between 1 and 26
inclusive.
Similarly \sublinenumberstyle{(style)} can be used to change the numbering
style of sub-line numbers, which is normally arabic numerals.
\skipnumbering When inserted into a numbered line the macro \skipnumbering causes the
numbering of that particular line to be skipped; that is, the line number is un-
changed and no line number will be printed.

4 The apparatus

4.1 Commands

\edtext Within numbered paragraphs, all footnotes and endnotes are generated by the

\Afootnote
\Bfootnote
\Cfootnote
\Dfootnote
\Efootnote

4.1 Commands 15

\edtext macro:
\edtext{(lemma)}{{commands)}

The (lemma) argument is the lemma in the main text: \edtext both prints
this as part of the text, and makes it available to the (commands) you specify to
generate notes.

For example:
I saw my friend \edtext{Smith}{ 1 I saw my friend

\Afootnote{Jones C, D.}} 2 Smith on Tuesday.

on Tuesday. 2 Smith] Jones C, D.

The lemma Smith is printed as part of this sentence in the text, and is also
made available to the footnote that specifies a variant, Jones C, D. The footnote
macro is supplied with the line number at which the lemma appears in the main
text.

The (lemma) may contain further \edtext commands. Nesting makes it possi-
ble to print an explanatory note on a long passage together with notes on variants
for individual words within the passage. For example:

\edtext{I saw my friend 1 I saw my friend
\edtext{Smith}{\Afootnote{Jones 2 Smith on Tuesday.
C, D.}} on Tuesday.H mJones C,D.
\Bfootnote{The date was S .
July 16, 1954.} 1-2 I saw my friend

} Smith on Tuesday.] The

date was July 16, 1954.
However, \edtext cannot handle overlapping but unnested notes—for exam-

ple, one note covering lines 10-15, and another covering 12-18; a \edtext that
starts in the (lemma) argument of another \edtext must end there, too. (The
\lemma and \linenum commands may be used to generate overlapping notes if
necessary.)

Commands used in \edtext’s second argument The second argument of
the \edtext macro, (commands), may contain a series of subsidiary commands
that generate various kinds of notes.

Five separate series of the footnotes are maintained; each macro taking one
argument like \Afootnote{(text)}. When all five are used, the A notes appear
in a layer just below the main text, followed by the rest in turn, down to the E
notes at the bottom. These are the main macros that you will use to construct
the critical apparatus of your text. The package provides five layers of notes in
the belief that this will be adequate for the most demanding editions. But it is
not hard to add further layers of notes should they be required.

An optional argument can be added before the text of the footnote. Its value
is a comma separated list of options. The available options are:

e nonum to disable line numbering for this note.

e nosep to disable the lemma separator for this note.

\Aendnote
\Bendnote
\Cendnote
\Dendnote
\Eendnote

\lemma

\linenum

16 4 The apparatus

Example: \Afootnote [nonum] {(text)}.

The package also maintains five separate series of endnotes. Like footnotes
each macro takes a single argument like \Aendnote{(text)}. Normally, none of
them are printed: you must use the \doendnotes macro described below (p.
to call for their output at the appropriate point in your document.

By default, no paragraph can be made in the notes of critical apparatus. You
can allow it by adding the options parapparatus when loading the package :

\usepackage [parapparatus] {eledmac}

If you want to change the lemma that gets passed to the notes, you can do this
by using \lemma{(alternative)} within the second argument to \edtext, before
the note commands. The most common use of this command is to abbreviate the

lemma that’s printed in the notes. For example:
\edtext{I saw my friend

\edtext{Smith}{\Afootnote{Jones 1 I saw my friend
C, D.}} on Tuesday.} 2 Smith on Tuesday.
{\lemma{I \dots\ Tuesday.} mJones C, D.
\Bfootnote{The date was -
July 16, 1954.} 1-21... Tuesday.]

} The date was July 16, 1954.

You can use \linenum{(arg)} to change the line numbers passed to the notes.
The notes are actually given seven parameters: the page, line, and sub-line num-
ber for the start of the lemma; the same three numbers for the end of the lemma,
and the font specifier for the lemma. As the argument to \linenum, you specify
those seven parameters in that order, separated by vertical bars (the | character).
However, you can retain the value computed by eledmac for any number by sim-
ply omitting it; and you can omit a sequence of vertical bars at the end of the
argument. For example, \1inenum{| | |23} changes one number, the ending page
number of the current lemma.

This command doesn’t change the marginal line numbers in any way; it just
changes the numbers passed to the footnotes. Its use comes in situations that
\edtext has trouble dealing with for whatever reason. If you need notes for
overlapping passages that aren’t nested, for instance, you can use \lemma and
\linenum to generate such notes despite the limitations of \edtext. If the
(lemma) argument to \edtext is extremely long, you may run out of memory;
here again you can specify a note with an abbreviated lemma using \lemma and
\linenum. The numbers used in \linenum need not be entered manually; you can
use the ‘x-" symbolic cross-referencing commands below (p. to compute them
automatically.

Similarly, being able to manually change the lemma’s font specifier in the notes
might be important if you were using multiple scripts or languages. The form of
the font specifier is three separate codes separated by / characters, giving the
family, series, and shape codes as defined within NFSS.

\footparagraph
\foottwocol
\footthreecol

4.2 Alternate footnote formatting 17

Changing the names of these commands The commands for generating the
apparatus have been given rather bland names, because editors in different fields
have widely divergent notions of what sort of notes are required, where they should
be printed, and what they should be called. But this doesn’t mean you have to
type \Afootnote when you’d rather say something you find more meaningful, like
\variant. We recommend that you create a series of such aliases and use them
instead of the names chosen here; all you have to do is put commands of this form
at the start of your file:

\let\variant=\Afootnote
\let\explanatory=\Bfootnote
\let\trivial=\Aendnote
\let\testimonia=\Cfootnote

4.2 Alternate footnote formatting

If you just launch into eledmac using the commands outlined above, you will get a
standard layout for your text and notes. You may be happy to accept this at the
very beginning, while you get the hang of things, but the standard layout is not
particularly pretty, and you will certainly want to modify it in due course. The
package provides ways of changing the fonts and layout of your text, but these are
not aimed at being totally comprehensive. They are enough to deal with simple
variations from the norm, and to exemplify how you might go on to make more
signifiant changes.

By default, all footnotes are formatted as a series of separate paragraphs in one
column. Three other formats are also available for notes, and using these macros
you can select a different format for a series of notes.

e \footparagraph formats all the footnotes of a series as a single paragraph;
e \foottwocol formats them as separate paragraphs, but in two columns;

e \footthreecol, in three columns.

Each of these macros takes one argument: a letter (between A and E) for the series
of notes you want changed. So a text with three layers of notes might begin thus:

\footnormal{A}
\footthreecol{B}
\footparagraph{C}

This would make the A-notes ordinary, B-notes would be in three columns, and
the bottom layer of notes would be formed into a paragraph on each page.

4.3 Display options

Since version 1.0, some commands can be used to change the display of the foot-
notes. All can have an optional argument [(s)], which is the letter of the series —
or a list of letters separated by comma — depending on which option is applied.

\numberonlyfirstinline

\numberonlyfirstintwolines

\symlinenum

\nonumberinfootnote

\pstartinfootnote

\onlypstartinfootnote

\beforenumberinfootnote

\afternumberinfootnote

\nonbreakableafternumber

\beforesymlinenum

\aftersymlinenum

18 4 The apparatus

When a length, noted (I), is used, it can be stretchable: a minus b minus c.
The final length m is calculated by IXTEX to have: b —a < m < b+ c. If you use
relative unity*?, it will be relative to fontsize of the footnote.

4.3.1 Control line number printing

By default, the line number is printed in every note. If you want to print it only
the first time for a value (i.e one time for line 1, one time for line 2 etc.), you can use
\numberonlyfirstinline[(s)]. Use \numberonlyfirstinline[(s)] [{false)] to
cancel it (<s> can be empty if you want to disable it for every series).

Suppose you have a lemma on line 2 and a lemma between line 2 and line 3.

With \numberonlyfirstinline, the second lemma is considered to be on the same
line as the first lemma. But if you use both \numberonlyfirstinline[(s)] and
\numberonlyfirstintwolines[(s)], the distinction is made. Use \numberonlyfirstintwolines [(
to cancel it (<s> can be empty if you want to disable it for every series).

For setting a particular symbol in place of the line number, you can use
\symlinenum[(s)]{(symbol)} in combination with \numberonlyfirstinline [(s)].
From the second lemma of the same line, the symbol will be used instead of line
number.

You can use \nonumberinfootnotel[(s)] if you don’t want to have the line
number in a footnote. To cancel it, use \nonumberinfootnote [(s)] [{false)].

You can use \pstartinfootnote[(s)] if you want to print the pstart number in
the footnote, before the line and subline number. Use \pstartinfootnote[(s)] [{false)]
to cancel it (<s> can be empty if you want to disable it for every series). Note
that when you change the lineation system, the option is automatically switched :

e If you use lineation by pstart, the option is enabled.
e If you use lineation by section or by page, the option is disabled.

In combination with \pstartinfootnote, you can use \onlypstartinfootnote [{s)]
if you want to print only the pstart number in the footnote, and not the line and
subline number. Use \onlypstartinfootnote[(s)] [{false)] to cancel it (<s> can
be empty if you want to disable it for every series).

With \beforenumberinfootnote[(s)1{(l}}, you can add some space before
the line number in a footnote. If the line number is not printed, the space is not
either. The default value is 0 pt.

With \afternumberinfootnote [(s)]{(l)} you can add some space after the
line number in a footnote. If the line number is not printed, the space is not either.

The default value is 0.5 em.

By default, the space defined by \afternumberinfootnote is breakable. With
\nonbreakableafternumber [(s)] it becomes nonbreakable. Use \nonbreakableafternumber [(s)]
to cancel it (<s> can be empty if you want to disable it for every series).

With \beforesymlinenum[(s)]{(l)} you can add some space before the line
symbol in a footnote. The default value is value set by \beforenumberinfootnote.

With \aftersymlinenum[(s)]1{(l)} you can add some space before the line

14T ike em which is the width of a M.

\inplaceofnumber

\boxlinenum

\boxsymlinenum

\lemmaseparator

\beforelemmaseparator

\afterlemmaseparator

\nolemmaseparator

\inplaceoflemmaseparator

\Xnotenumfont

\Xendnotenumfont

\notenumfontX

\Xnotefontsize

4.3 Display options 19

symbol in a footnote. The default value is value set by \afternumberinfootnote.

If no number or symbolic line number is printed, you can add a space, with
\inplaceofnumber [(s)]{(l)}. The default value is 1 em.

It could be useful to put the line number inside a fixed box: the content of
the note will be printed after this box. You can use \boxlinenum[(s)]{(l)} to do
that. To subsequently disable this feature, use \boxlinenum with length equal to
0 pt. One use of this feature is to print line number in a column, and the note in
an other column:

\Xhangindent{lem}
\afternumberinfootnote{Oem}
\boxlinenum{lem}

\boxsymlinenum[(s)]{(l)} is the same as \boxlinenum but for the line number
symbol.

4.3.2 Separator between the lemma and the note content

By default, in a footnote, the separator between the lemma and thenote is a right
bracket (\rbracket). You can use \lemmaseparator [(s)]1{(lemmaseparator)} to
change it. The optional argument can be used to specify in which series it is
applied. Note that there is a non-breakable space between lemma and separator,
but breakable space between separator and lemma.

Using \beforelemmaseparator [(s)1{(l)} you can add some space between
lemma and separator. If your lemma separator is empty, this space won’t be
printed. The default value is 0 em.

Using \afterlemmaseparator [(s)]1{(/)} you can add some space between sep-
arator and note. If your lemma separator is empty, this space won’t be printed.
The default value is 0.5 em.

You can suppress the lemma separator, using \nolemmaseparator [(s)], which
is simply a alias of \lemmaseparator [{(s)]{}.

With \inplaceoflemmaseparator [(s)]1{(/)} you can add a space if no lemma
separator is printed. The default value is 1 em.

4.3.3 Font style

\Xnotenumfont [{s)]{{command)} is used to change the font style for line numbers
in critical footnotes ; (command) must be one (or more) switching command, like
\bfseries.

\Xendnotenumfont [(s)]{{command)} is used to change the font style for line
numbers in critical footnotes. (command) must be one (or more) switching com-
mand, like \bfseries.

\notenumfontX[(s)]{(command)} is used to change the font style for note
numbers in familiar footnotes. (command) must be one (or more) switching com-
mand, like \bfseries.

\Xnotefontsize [{s)]{(command)} is used to define the font size of critical

20 4 The apparatus

footnotes of the series. The default value is \footnotesize. The (command)

must not be a size in pt, but a standard LaTeX size, like \small.
\notefontsizeX \notefontsizeX [(s)]1{(command)} is used to define the font size of critical
footnotes of the series. The default value is \footnotesize. The (command)

must not be a size in pt, but a standard LaTeX size, like \small.
\Xendnotefontsize \Xendnotefontsize[(s)1{(l)} is used to define the font size of end critical
footnotes of the series. The default value is \footnotesize. The (command)

must not be a size in pt, but a standard LaTeX size, like \small.

4.3.4 Font of the lemma

\Xlemmadisablefontselection By default, font of the lemma in footnote is the same as font of the lemma in the
main text. For example, if the lemma is in italic in the main text, it is also in italic
in note. The \Xlemmadisablefontselection[(s)] command allows to disable it
for a specific series.

\Xendlemmadisablefontselection By default, font of the lemma in endnote is the same as font of the lemma in
the main text. For example, if the lemma is in italic in the main text, it is also in
italic in note. The command allows \Xendlemmadisablefontselectionl[(s)] to
disable it for a specific series.

4.3.5 Styles of notes content

\Xhangindent For critical notes NOT paragraphed you can define an indent with \Xhangindent [{s)]1{(l)},
which will be applied in the second line of notes. It can help to make distinction
between a new note and a break in a note. The default value is 0 pt.

\hangindentX For familiar notes NOT paragraphed you can define an indent with \Xhangindent [{s)1{(l)},
which will be applied in the second line of notes. It can help to make a distinction
between a new note and a break in anote.

4.3.6 Arbitrary code at the beginninging of notes

The three next commands add an arbitrary code at the beginning of notes. As
the name’s space is local to the notes, you can use it to redefine some style inside
the notes. For example, if you don’t want the pstart number to be in bold, use :

\bhookXnote{\renewcommand{\thepstart}{\arabic{pstart}.}}

\bhookXnote \bhookXnote [(series)]1{(code)} is to be used at the beginning of the critical
footnotes.

\bhooknoteX \bhooknoteX [(series)]1{{code)} is to be used at the beginning of the familiar
footnotes.

\bhookXendnote \bhookXendnote [(series)]{(code)} is to be used at the beginning of the end-

notes.

\hsizetwocol
\hsizethreecol
\hsizetwocolX

\hsizethreecolX

\afternote

\parafootsep

\Xragged

\raggedX

\txtbeforeXnotes
\beforeXnotes

\beforenotesX

\afterXrule

\afterruleX

4.3 Display options 21

4.3.7 Options for notes in columns

For the following four macros, be careful that the columns are made from right to
left.
\hsizetwocol[{s)]1{(l)} is used to change width of a column when critical
notes are displaying in two columns. Defaut value is .45 \hsize.
\hsizethreecol[(s)]{(l)} is used to change width of a column when critical
notes are displaying in three columns. Defaut value is .3 \hsize.
\hsizetwocol[{s)]{(l)} is used to change width of a column when familiar
notes are displaying in two columns. Defaut value is .45 \hsize.
\hsizethreecolX[(s)]1{({)} is used to change width of a column when familiar
notes are displaying in three columns. Defaut value is .3 \hsize.

4.3.8 Options for paragraphed footnotes

You can add some space after a note by using \afternote [(s)1{(l)}. The default
value is lem plus.4em minus.4em.

For paragraphed footnotes (see below), you can chooce the separator between
each note by \parafootsep[(s)]1{(l)}. A common separator is a double pipe
(11), which you can set by \parafootsep{$||$}.

Text in paragraphed critical notes is justified, but you can use \Xragged [(s)]1+L+
if you want it to be ragged left, or \Xragged [(s)]+R if you want it to be ragged
right.

Text in paragraphed footnotes is justified, but you can use \raggedX [{s)]+L+
if you want it to be ragged left, or \raggedX[(s)]+R if you want it to be ragged
right.

4.3.9 Options for block of notes

You can add some text before critical notes with \textbeforeXnotes [(s)1{(text)}.
You can change the vertical space printed before the rule of the critical notes
with \beforeXnotes[(s)1{(l)}. The default valueis 1.2em plus .6em minus .6em.
Be careful, the standard B TEX footnote rule, which is used by eled-

mac, decreases 3pt. These 3pt are not changed by this command.

You can change the vertical space printed before the rule of the familiar notes
with \beforenotesX[(s)1{(l)}. The default valueis 1.2em plus .6em minus .6em.
Be careful, the standard BTEX footnote rule, which is used by eled-

mac, decreases 3pt. These 3pt are not changed by this command.

You can change the vertical space printed after the rule of the critical notes
with \afterXrule[(s)1{(l)}. The default value is Opt.

Be careful, the standard BTEX footnote rule, which is used by eled-
mac, adds 2.6pt. These 2.6pt are not changed by this command.

Be careful with this setting: it can place notes by the page number, at the
bottom of the page. You can change the vertical space printed after the rule of
the familiar notes with \beforenotesX[(s)]1{(l)}. The default value is Opt.

Be careful, the standard BTEX footnote rule, which is used by eled-
mac, adds 2.6pt. These 2.6pt are not changed by this command.

\preXnotes

\prenotesX

\maxhXnotes

\maxhnotesX

\numlabfont

22 4 The apparatus

Be careful with this setting: it can place notes by the page number, at the
bottom of the page.

You can set the space before the first series of critical notes printed on each
page and set a different amount of space for subsequent the series on the page.
You can do it with \preXnotes{(l}}. Default value is Opt. You can disable this
feature by setting the length to Opt.

Be careful with this setting: it can place notes by the page number, at the
bottom of the page.

You can want the space before the first printed (in a page) series of familiar
notes not to be the same as before other series. Default value is Opt. You can
do it with \prenotesX{(l)}. You can disable this feature by setting the length to
0 pt.

Be careful with this setting: it could make the notes be written on the bottom
pages number. By default, one series of critical notes can take 80% of the page
size, before being broken to the next page. If you want to change the size use
\maxhXnotes [{s)]1{([}}. Be careful : the length can’t be flexible, and is relative
to the the current font. For example, if you want the note to take, at most, 33 of
the text height, do \maxhXnotes{.33\textheight}.

\maxhnotesX[(s)1{(l)} is the same as previous, but for familiar footnotes.

Be careful with the two previous commands. Actually, for technical purposes,
one paragraphed note is considered as one block. Consequently, it can’t be broken
between two pages, even if you used these commands. The debug is in the todolist.

4.4 Page layout

You should set up the page layout parameters, and in particular the \baselineskip
of the footnotes (this is done for you if you use the standard \notefontsetup),
before you call any of these macros because their action depends on these; too
much or too little space will be allotted for the notes on the page if these macros
use the wrong values.!®

4.5 Fonts

One of the most important features of the appearance of the notes, and indeed of
your whole document, will be the fonts used. We will first describe the commands
that give you control over the use of fonts in the different structural elements of
the document, especially within the notes, and then in subsequent sections specify
how these commands are used.

For those who are setting up for a large job, here is a list of the complete set of
eledmac macros relating to fonts that are intended for manipulation by the user:
\endashchar, \fullstop, \numlabfont, and \rbracket.

Line numbers for the main text are usually printed in a smaller font in the

15There is one tiny proviso about using paragraphed notes: you shouldn’t force any explicit
line-breaks inside such notes: do not use \par, \break, or \penalty=-10000. If you must have
a line-break for some obscure reason, just suggest the break very strongly: \penalty=-9999 will
do the trick. Page @ explains why this restriction is necessary.

\endashchar
\fullstop
\rbracket

\select@lemmafont

4.6 Create a new series 23

margin. The \numlabfont macro is provided as a standard name for that font: it
is initially defined as

\newcommand{\numlabfont}{\normalfont\scriptsize}

You might wish to use a different font if, for example, you preferred to have these
line numbers printed using old-style numerals.

A relatively trivial matter relates to punctuation. In your footnotes, there will
sometimes be spans of line numbers like this: 12-34, or lines with sub-line numbers
like this: 55.6. The en-dash and the full stop are taken from the same font as the
numbers, and it all works nicely. But what if you wanted to use old-style numbers,
like 12 and 347 These look nice in an edition, but when you use the fonts provided
by PLAIN TEX they are taken from a math font which does not have the en-dash
or full stop in the same places as a text font. If you (or your macros) just typed
$\oldstyle 12--34$ or $\oldstyle 55.6$ you would get ‘12>°34’and ‘55>6’. So
we define \endashchar and \fullstop, which produce an en-dash and a full stop
respectively from the normal document font, whatever font you are using for the
numbers. These two macros are used in the macros which format the line numbers
in the margins and footnotes, instead of explicit punctuation. We also define an
\rbracket macro for the right square bracket printed at the end of the lemma in
many styles of textual notes (including eledmac’s standard style). For polyglossia,
when the lemma is RTL, the bracket automatically switches to a left bracket.

We will briefly discuss \select@lemmafont here because it is important to
know about it now, although it is not one of the macros you would expect to
change in the course of a simple job. Hence it is ‘protected’ by having the Q-sign
in its name.

When you use the \edtext macro to mark a word in your text as a lemma,
that word will normally be printed again in your apparatus. If the word in the
text happens to be in a font such as italic or bold you would probably expect it to
appear in the apparatus in the same font. This becomes an absolute necessity if the
font is actually a different script, such as Arabic or Cyrillic. \select@lemmafont
does the work of decoding eledmac’s data about the fonts used to print the lemma
in the main text and calling up those fonts for printing the lemma in the note.

\select@lemmafont is a macro that takes one long argument—the cluster
of line numbers passed to the note commands. This cluster ends with a code
indicating what fonts were in use at the start of the lemma. \select@lemmafont
selects the appropriate font for the note using that font specifier.

eledmac uses \select@lemmafont in a standard footnote format macro called
\normalfootfmt. The footnote formats for each of the layers A to E are \let
equal to \normalfootfmt. So all the layers of the footnotes are formatted in the
same way.

4.6 Create a new series

If you need more than 5 series of critical footnotes you can create extra series, using
\newseries command. For example to create G and H series \newseriesG,H.

\stanza

\&

\stanzaindentbase

\setstanzaindents

24 5 Verse

5 Verse

In 1992 Wayne Sullivan' wrote the EDSTANZA macros [Sul92] for typesetting verse
in a critical edition. More specifically they were for handling poetry stanzas which
use indentation to indicate rhyme or metre.

With Wayne Sullivan’s permission the majority of this section has been taken
from [Sul92]. Peter has made a few changes to enable his macros to be used in
the LaTeX ledmac, and now in eledmac. package.

Use \stanza at the start of a stanza. Each line in a stanza is ended by an
ampersand (&), and the stanza itself is ended by putting \& at the end of the last
line.

Be careful: you must have NO space between the end of your verse
and & or \&. In most cases, you will see no difference, but if your verse is exactly
the same length as a line, then you will have an empty hanging verse.

Lines within a stanza may be indented. The indents are integer multiples of
the length \stanzaindentbase, whose default value is 20pt.

In order to use the stanza macros, one must set the indentation values. First
the value of \stanzaindentbase should be set, unless the default value 20pt is
desired. Every stanza line indentation is a multiple of this.

To specify these multiples one invokes, for example
\setstanzaindents{3,1,2,1,2}.

The numerical entries must be whole numbers, 0 or greater, separated by
commas without embedded spaces. The first entry gives the hanging indentation
to be used if the stanza line requires more than one print line.

If it is known that each stanza line will fit on more than one print line, then
this first entry should be 0; TEX does less work in this case, but no harm ensues
if the hanging indentation is not 0 but is never used.

If you want the hanging verse to be flush right, you can use \hanginsymbol:
see p. 20

Enumeration is by stanza lines, not by print lines. In the above example the
lines are indented one unit, two units, one unit, two units, with 3 units of hanging
indentation in case a stanza line is too long to fit on one print line.

5.1 Repeating stanza indents

Since version 0.13, if the indentation is repeated every n verses of the stanza, you
can define only the n first indentations, and say they are repeated, defining the
value of the stanzaindentsrepetition counter at n. For example:

\setstanzaindents{5,1,0}
\setcounter{stanzaindentsrepetition}{2}

is like

16Department of Mathematics, University College, Dublin 4, Ireland

\setstanzapenalties

\hangingsymbol

5.2 Stanza breaking 25

\setstanzaindents{0,1,0,1,0,1,0,1,0,1,0}

Be careful: the feature change in eledmac 1.5.1. See [Appendix A.2|
p- [206}

If you don’t use the stanzaindentsrepetition counter, make sure you have
at least one more numerical entry in \setstanzavalues than the number of lines
in the stanza.

If you want to disable this feature again, just put the counter to O:

\setcounter{stanzaindentsrepetition}{0}

The macros make no restriction on the number of lines in a stanza. Stanza in-
dentation values (and penalty values) obey TEX’s grouping conventions, so if one
stanza among several has a different structure, its indentations (penalties) may be
set within a group; the prior values will be restored when the group ends.

5.2 Stanza breaking

When the stanzas run over several pages, it is often desirable that page breaks
should arise between certain lines in the stanza, so a facility for including penalties
after stanza lines is provided. If you are satisfied with the page breaks, you need
not set the penalty values.

The command
\setstanzapenalties{1,5000,10100,5000,0}
results in a penalty of 5000 being placed after the first and third lines of the stanza,
and a penalty of —100 after the second.

The first entry “1” is a control value. If it is zero, then no penalties are
passed on to TEX, which is the default. Values between 0 and 10000 are penalty
values; values between 10001 and 20000 have 10000 subtracted and the result is
given as a negative penalty. The mechanism used for indentations and penalties
requires unsigned values less than 32768. No penalty is placed after the last line,
so the final ,0 in then example above could be omitted. The control sequence
\endstanzaextra can be defined to include a penalty. A penalty of 10000 will
prevent a page break; such a penalty is included automatically where there is
stanza hanging indentation. A penalty of —10000 (corresponding to the entry value
20000 in this context) forces a page break. Values in between act as suggestions
as to the desirability of a page break at a given line. There is a subtle interaction
between penalties and glue, so it may take some adjustment of skips and penalties
to achieve the best results.

5.3 Hanging symbol

It’s possible to insert a symbol in each line of hanging verse, as in French ty-
pography for ‘[". To insert in eledmac, redefine macro \hangingsymbol with this
code:

\ampersand

\endstanzaextra

\startstanzahook

\flagstanza

\hangingsymbol

26 5 Verse

\renewcommand{\hangingsymbol}{[\,}

You can also use it to force hanging verse to be flush right:

\renewcommand{\hangingsymbol}{\protect\hfill}

5.4 Long verse and page break

If you want to prevent page breaks inside long verses, use the option nopbinverse
when loading package, or use \lednopbinversetrue. Read [16] p. [37] for further
details.

5.5 Various tools

If you need to print an & symbol in a stanza, use the \ampersand macro, not \&
which will end the stanza.

The macro \endstanzaextra, if it is defined, is called at the end of a stanza.
You could define this, for example, to add extra space between stanzas (by default
there is no extra space between stanzas); if you are using the memoir class, it
provides a length \stanzaskip which may come in handy.

Similarly, if \startstanzahook is defined, it is called by \stanza at the start.
This can be defined to do something.

Putting \flagstanza[(len)]{(text)} at the start of a line in a stanza (or else-
where) will typeset (text) at a distance (len) before the line. The default (len) is
\stanzaindentbase.

For example, to put a verse number before the first line of a stanza you could
proceed along the lines:

\newcounter{stanzanum}
\setcounter{stanzanum}{0}
\newcommand*{\startstanzahook}{\refstepcounter{stanzanum}}
\newcommand{\numberit}{\flagstanza{\thestanzanum}}
\stanza
\numberit First line...&

rest of stanza\&

\stanza
\numberit First line, second stanza...

5.6 Hanging symbol

It’s possible to insert a symbol on each line of hanging verse, as in French ty-
pography for ‘[’. To insert in eledmac, redefine macro \hangingsymbol with this
code:

\renewcommand{\hangingsymbol}{[\,}

minipage

ledgroup

ledgroupsized

5.7 Text before/after verses 27

5.7 Text before/after verses
It is possible to add text, like a subtitle, before or after verse:

e \stanza command can take a optional argument (in brackets). Its content
will be printed before the stanza.

e & can be replaced by \newverse with two optional arguments (in brackets).
The first will be printed after the current verse, the second before the next
verse.

e \& can take a optional argument (in brackets). Its content will be printed
after the stanza.

6 Grouping

In a minipage environment LaTeX changes \footnote numbering from arabic to
alphabetic and puts the footnotes at the end of the minipage.

You can put numbered text with critical footnotes in a minipage and the
footnotes are set at the end of the minipage.

You can also put familiar footnotes (see section in a minipage but unlike
with \footnote the numbering scheme is unaltered.

Minipages, of course, aren’t broken across pages. Footnotes in a ledgroup
environment are typeset at the end of the environment, as with minipages, but
the environment includes normal page breaks. The environment makes no change
to the textwidth so it appears as normal text; it just might be that footnotes
appear in the middle of a page, with text above and below.

The ledgroupsized environment is similar to ledroup except that you must
specify a width for the environment, as with a minipage.
\begin{ledgroupsized} [{pos)]{(width)}.

The required (width) argument is the text width for the environment. The
optional {pos) argument is for positioning numbered text within the normal tex-
twidth. It may be one of the characters:

1 (left) numbered text is flush left with respect to the normal textwidth. This
is the default.

¢ (center) numbered text is in the center of the textwidth.
r (right) numbered text is flush right with respect to the normal textwidth.

Note that normal text, footnotes, and so forth are all flush left.
\begin{ledgroupsized}{\textwidth} is effectively the same as \begin{ledgroup}

7 Crop marks

The eledmac package does not provide crop marks. These are available with either
the memoir class [Wil02] or the crop package.

28 9 Cross referencing

8 Endnotes

\doendnotes \doendnotes{(letter)} closes the .end file that contains the text of the endnotes, if
\endprint it’s open, and prints one series of endnotes, as specifed by a series-letter argument,
\printnpnum e.g., \doendnotes{A}. \endprint is the macro that’s called to print each note. It
uses \select@lemmafont to select fonts, just as the footnote macros do (see p.

above).

As endnotes may be printed at any point in the document they always start
with the page number of where they were specified. The macro \printapnum{{num)3}
is used to print these numbers. Its default definition is:
\newcommand*{\printnpnum} [1]{p.#1) }

\noendnotes If you aren’t going to have any endnotes, you can say \noendnotes in your
file, before the first \beginnumbering, to suppress the generation of an unneeded
.end file.

9 Cross referencing

The package provides a simple cross-referencing facility that allows you to mark
places in the text with labels, and generate page and line number references to
those places elsewhere using those labels.

\edlabel First you place a label in the text using the command \edlabel{(lab)}. (lab)
can be almost anything you like, including letters, numbers, punctuation, or a
combination—anything but spaces; you might say \edlabel{toves-3}, for exam-
ple.l”

\edpageref Elsewhere in the text, either before or after the \edlabel, you can refer to

\lineref its location via \edpageref{(lab)}, or \lineref{(lab)}, \sublineref{(lab)}, or

\sublineref \pstartref{(lab)}. These commands will produce, respectively, the page, line,
\pstartref sub-line and pstart on which the \edlabel{(lab)} command occurred.

An \edlabel command may appear in the main text, or in the first argu-
ment of \edtext, but not in the apparatus itself. But \edpageref, \lineref,
\sublineref, \pstartref commands can also be used in the apparatus to refer
to \edlabels in the text.

The \edlabel command works by writing macros to LaTeX .aux file. You will
need to process your document through LaTeX twice in order for the references
to be resolved.

You will be warned if you say \edlabel{foo} and foo has been used as a
label before. The ref commands will return references to the last place in the
file marked with this label. You will also be warned if a reference is made to an
undefined label. (This will also happen the first time you process a document after
adding a new \edlabel command: the auxiliary file will not have been updated
yet.)

If you want to refer to a word inside an \edtext{...}{...} command, the
\edlabel should be defined inside the first argument, e.g.,

17More precisely, you should stick to characters in the TEX categories of ‘letter’ and ‘other’.

\xpageref
\xlineref
\xsublineref
\xpstartref

\xxref

\edmakelabel

\label
\ref
\pageref

29

The \edtext{creature\edlabel{elephant} was quite
unafraid}{\Afootnote{0f the mouse, that is.}}

However, there are situations in which you’ll want eledmac to return a number
without displaying any warning messages about undefined labels or the like: if
you want to use the reference in a context where IMNTEX is looking for a number,
such a warning will lead to a complaint that the number is missing. This is
the case for references used within the argument to \linenum, for example. For
this situation, three variants of the reference commands, with the x prefix, are
supplied: \xpageref, \xlineref, \xsublineref and \xpstartref. They have
these limitations:

e They will not tell you if the label is undefined.

e They must be preceded in the file by at least one of the four other cross-
reference commands—e.g., a \edlabel{foo} command, even if you never
refer to that label—since those commands can all do the necessary processing
of the .aux file, and the \x... ones cannot.

e When hyperref is loaded, the hyperref link won’t be added. (Indeed, it’s not
a limitation, but a feature.

The macros \xxref and \edmakelabel let you manipulate numbers and labels
in ways which you may find helpful in tricky situations.

The \xxref{(labl)}{(lab2)} command generates a reference to a sequence of
lines, for use in the second argument of \edtext. It takes two arguments, both
of which are labels: e.g., \xxref{mouse}{elephant}. It calls \linenum (q.v.,
p. above) and sets the beginning page, line, and sub-line numbers to those of
the place where \edlabel{mouse} was placed, and the ending numbers to those
where \edlabel{elephant} occurs.

Sometimes the \edlabel command cannot be used to specify exactly the
page and line desired—for example, if you want to refer to a page and line
number in another volume of your edition. In such cases, you can use the
\edmakelabel{(lab)}{(numbers)} macro so that you can ‘roll your own’ label.
For example, if you say ‘\edmakelabel{elephant}{10]25|0}" you will create
a new label, and a later call to \edpageref{elephant} would print ‘10’ and
\lineref{elephant} would print ‘25’. The sub-line number here is zero. It is
usually best to collect your \edmakelabel statements near the top of your docu-
ment, so that you can see them at a glance.

The normal \label, \ref and \pageref macros may be used within num-
bered text, and operate in the familiar fashion.

10 Side notes

The \marginpar command does not work in numbered text. Instead the package
provides for non-floating sidenotes in either margin.

\ledinnernote
\ledouternote

\ledleftnote
\ledrightnote
\ledsidenote
\sidenotemargin

\ledlsnotewidth
\ledrsnotewidth

\rightnoteupfalse
\leftnoteupfalse

\ledlsnotesep
\ledrsnotesep
\ledlsnotefontsetup
\ledrsnotefontsetup

\sidenotesep

\multfootsep

\footnoteA
\footnoteB
\footnoteC
\footnoteD
\footnoteE

30 11 Familiar footnotes

\ledleftnote{(text)} will put (text) into the inner margin level with where
the command was issued. Similarly, \ledouternote{(text)} puts (text) in the
outer margin.

\ledsidenote{(text)} will put (text) into the margin specified by the
current setting of \sidenotemargin{(location)}. The permissable value for
(location) is one out of the list left, right, inner, or outer, for example
\sidenotemargin{outer}. The package’s default setting is
\sidenotemargin{right}
to typeset \ledsidenotes in the right hand margin. This is the opposite to the
default margin for line numbers. The style for a \1ledsidenote follows that for a
\ledleftnote or a \ledrightnote depending on the margin it is put in.

If two, say, \ledleftnote, commands are called in the same line the second
(text) will obliterate the first. There is no problem though with having both a left
and a right sidenote on the same line.

The left sidenote text is put into a box of width \ledlsnotewidth and the
right text into a box of width \ledrsnotewidth. These are initially set to the
value of \marginparwidth.

By default, Sidenotes are placed to align with the last line of the note to which
it refers. If you want they to be placed to align with the first line of the note to
which it refers, use \leftnoteupfalse (for left note) and/or \rightnoteupfalse
(for right note).

The texts are put a distance \ledlsnotesep (or \ledrsnotesep) into the left
(or right) margin. These lengths are initially set to the value of \linenumsep.

These macros specify how the sidenote texts are to be typeset. The initial
definitions are:

\newcommand*{\ledlsnotefontsetup}{\raggedleft\footnotesize}), left
\newcommand*{\ledrsnotefontsetup}{\raggedright\footnotesizel}’ right

These can of course be changed to suit.

If you have two or more sidenotes for the same line, they are separated by a
comma. But if you want to change this separator, you can redefine the macro
\sidenotesep.

11 Familiar footnotes

The footmisc package [Fai03] by Robin Fairbairns has an option whereby sequential
footnote marks in the text can be separated by commas®* like so. As a convenience
eledmac provides this automatically.

\multfootsep is used as the separator between footnote markers. Its default
definition is:
\providecommand*{\multfootsep}{\normalfont, }
and can be changed if necessary.

As well as the standard LaTeX footnotes generated via \footnote, the pack-
age also provides three series of additional footnotes called \footnoteA through

11.1 Position of the familiar footnotes 31

\footnoteE. These have the familiar marker in the text, and the marked text at
the foot of the page can be formated using any of the styles described for the
critical footnotes. Note that the ‘regular’ footnotes have the series letter at the
end of the macro name whereas the critical footnotes have the series letter at the
start of the name.
\footnormalX Each of the \foot...X macros takes one argument which is the series letter
\footparagraphX (e.g., B). \footnormalX is the typical footnote format. With \footparagraphX
\foottwocolX the series is typeset a one paragraph, with \foottwocolX the notes are in two
\footthreecolX columns, and are in three columns with \foothreecolX.

\thefootnoteA As well as using the \foot. . .X macros to specify the general footnote arrange-
\bodyfootmarkA ment for a series, each series uses a set of macros for styling the marks. The mark
\footfootmarkA numbering scheme is defined by the \thefootnoteA macro; the default is:

\renewcommand*{\thefootnoteA}{\arabic{footnoteA}}
The appearance of the mark in the text is controlled by \bodyfootmarkA which
is defined as:
\newcommand*{\bodyfootmarkA}{’,
\hbox{\textsuperscript{\normalfont\@nameuse{@thefnmarkA}}}}
The command \footfootmarkA controls the appearance of the mark at the start
of the footnote text. It is defined as:
\newcommand*{\footfootmarkA}{\textsuperscript{\@nameuse{@thefnmarkA}}}
There are similar command triples for the other series.
Additional footnote series can be easily defined: you just have to use
\newseries, defined above (see p.

11.1 Position of the familiar footnotes

\fnpos There is a historical incoherence in (e)ledmac. The familiar footnotes are before
\mpfnpos the critical footnotes in a normal page, but after in a minipage or in a ledgroup.
However, it is possible to change the relative position of both types of footnotes.
If you want to have familiar footnotes after critical footnotes in a normal page,

use:

\fnpos{critical-familiar}

Or, if you want a minipage or ledgroup to have critical footnotes after familiar
footnotes, use:

\mpfnpos{familiar-critical}

12 Indexing

\edindex LaTeX provides the \index{(item)} command for specifying that (item) and
the current page number should be added to the raw index (idx) file. The
\edindex{(item)} macro can be used in numbered text to specify that (item)
and the current page & linenumber should be added to the raw index file.

\pagelinesep

\edindexlab

edarrayl
edarrayc
edarrayr
edtabularl
edtabularc
edtabularr

32 13 Tabular material

If the memoir class or the imakeidx package is used then the macro takes
an optional argument, which is the name of a raw index file. For example
\edindex [1line] {item} will use line.idx as the raw file instead of \ jobname. idx.

The minimal version of imakeidx package to be used is the version 1.3a uploaded
on CTAN on 2013/07/11.

Be careful with the order of package loading and index declaration. You must
use this order:

1. Load imakeidx.
2. Load eledmac.
3. Declare the index with the macro \makeindex of imakeidx.

The page & linenumber combination is written as page\pagelinesep line, where
the default definition is \newcommand{\pagelinesep}{-} so that an item on page
3, line 5 will be noted as being at 3-5. You can renew \pagelinesep to get a
different separator (but it just so happens that - is the default separator used by
the MAKEINDEX program).

The \edindex process uses a \label/\ref mechanism to get the correct line
number. It automatically generates labels of the form \label{\edindexlab N},
where N is a number, and the default definition of \edindexlab is:
\newcommand*{\edindexlab}{$&}
in the hopes that this will not be used by any other labels (\edindex’s labels are
like \1abel{$&27}). You can change \edindexlab to something else if you need
to.

13 Tabular material

LaTeX’s normal tabular and array environments cannot be used where line num-
bering is being done; more precisely, they can be used but with odd results, so
don’t use them. However, eledmac provides some simple tabulation environments
that can be line numbered. The environments can also be used in normal unnum-
bered text.

There are six environments; the edarray* environments are for math and
edtabular* for text entries. The final 1, ¢, or r in the environment names indicate
that the entries will be flushleft (1), centered (c) or flushright (r). There is
no means of specifying different formats for each column, nor for specifying a
fixed width for a column. The environments are centered with respect to the
surrounding text.

\begin{edtabularc}

1 &2 & 3\\ 1 9 3
:Ai szi chc: " a bb cce
\end{edtabularc} AAA BB C

Entries in the environments are the same as for the normal array and tabular
environments but there must be no ending \\ at the end of the last row. There

\edtabcolsep
\spreadmath
\spreadtext

\edrowfill

33

must be the same number of column designators (the &) in each row. There is no
equivalent to any line drawing commands (such as \hline). However, unlike the
normal environments, the ed. .. environments can cross page breaks.

Macros like \edtext can be used as part of an entry.

For example:

\beginnumbering

\pstart

\begin{edtabularl}

\textbf{\Large I} & wish I was a little bug\edindex{bugl} &
\textbf{\Large I} & eat my peas with honey\edindex{honey} \\
& With whiskers \edtext{round}{\Afootnote{around}} my tummy &
& I’ve done it all my life. \\

& I'd climb into a honey\edindex{honey} pot &

& It makes the peas taste funny \\

& And get my tummy gummy.\edindex{gummy} &

& But it keeps them on the knife.

\end{edtabularr}

\pend

\endnumbering

produces the following parallel pair of verses.

1 I wish I was a little bug I eat my peas with honey

2 With whiskers round my tummy I’ve done it all my life.

3 I’d climb into a honey pot It makes the peas taste funny
4 And get my tummy gummy. But it keeps them on the knife.

The distance between the columns is controlled by the length \edtabcolsep.

\spreadmath{(math)} typesets {(math)} but the {(math)} has no effect on
the calculation of column widths. \spreadtext{(text)} is the analagous command
for use in edtabular environments.

\begin{edarrayl}
1&2 & 3 & 4\\
& \spreadmath{F+G+C} & & \\ L2 3 4
a & bb & ccc & dddd F+G+C
\end{edarrayl} a bb ccc dddd

The macro \edrowfill{(start)}{{end)}H(fill)} fills columns number (start)
to (end) inclusive with (fill). The (fill) argument can be any horizontal ‘fill’. For
example \hrulefill or \upbracefill.

Note that every row must have the same number of columns, even if some
would not appear to be necessary.

The \edrowfill macro can be used in both tabular and array environments.
The typeset appearance of the following code is shown below.

\begin{edtabularr}
1 & 2 &3 &4 & 5\\
Q & & fd & h & quertziohg \\

34 13 Tabular material

v & wptz & x &y & vb \\
g & nnn & \edrowfill{3}{5}{\upbracefill} & & \\
\edrowfill{1}{3}{\downbracefill} & & & pq & dgh \\
k & & 1 & co & ghweropjklmnbvcxys \\
1 & 2 & 3 & \edrowfill{4}{5}{\hrulefill} &
\end{tabularr}

1 2 3 4 5

Q fd h qwertziohg

v wptz X y vb

g nnn

—— Pa dgh

k 1 co ghweropjklmnbvexys

1 2 3

You can also define your own ‘fill’. For example:

\newcommand*{\upbracketfill}{’
\vrule height 4pt depth Opt\hrulefill\vrule height 4pt depth Opt}

is a fill like \upbracefill except it has the appearance of a (horizontal) bracket
instead of a brace. It can be used like this:

\begin{edarrayc}
1 &2 & 3 & 4\\
a & \edrowfill{2}{3}{\upbracketfill} & & d \\
A& B & C & D
\end{edarrayc}
1 2 3 4
a 1 d
A B C D
\edatleft \edatleft [{math)]1{({symbol)}{{halfheight)} typesets the math (symbol) as

\edatright \left<symbol> with the optional (math) centered before it. The (symbol)
is twice (halfheight) tall. The \edatright macro is similar and it typesets
\right<symbol> with (math) centered after it.

\begin{edarrayc}
&1 &2&3& \\
&4 &58&6& \\
\edatleft[left =]{\{}{1.5\baselineskip}
&7 &8 &9 &
\edatright [= right]{)}{1.5\baselineskip}
\end{edarrayc}

35

1 2 3

left=< 4 5 6 | =right
7 89
(

\edbeforetab \edbeforetab{(text)}{({entry)}, where (entry) is an entry in the leftmost col-
\edaftertab umn, typesets (text) left justified before the (entry). Similarly \edaftertab{(entry)}{(text)},
where (entry) is an entry in the rightmost column, typesets (text) right justified
after the (entry).
For example:

\begin{edarrayl}
A & 1&2&3\\
\edbeforetab{Before}{B} & 1 & 3 & 6 \\
C & 1 & 4 & \edaftertab{8}{After} \\
D &1&5¢&0
\end{edarrayl}
A1 2 3
Before B 1 3 6
C 1 4 8 After
D 1 5 0
\edvertline The macro \edvertline{(height)} draws a vertical line (height) high (contrast

\edvertdots this with \edatright where the size argument is half the desired height).

\begin{edarrayr}

akb&C&d &\\
vE&w&x&y &\\
m&n&o&p &\\

k& &L & cvb & \edvertline{4pc}
\end{edarrayr}

a b C d
vow T Y
m n o P
k L cub

The \edvertdots macro is similar to \edvertline except that it produces a
vertical dotted instead of a solid line.

14 Sectioning commands

The standard sectioning command (\chapter, \section etc.) can be used inside
a numbered text. But the line which contains it won’t be numbered, and you can’t
add critical notes inside. In the past (between versions 1.1.0 and 1.12.0), these
following commands were provided:

36 14 Sectioning commands

e \ledchapter [(text)]1{(critical text)}

e \ledchapter*

e \ledsectionl[(text)]{{critical text)}

e \ledsection*

e \ledsubsection[(text)]{{critical text)}

e \ledsubsectionx

e \ledsubsubsectionl[(text)]1{(critical text)}
e \ledsubsubsection*

These commands are deprecated, and won’t be maintened anymore, because of a
bad conception. Since version 1.12.0, you have to use the following commands:

e \eledchapter [(text)]{({critical text)}

\eledchapter*
e \eledsection[{text)]{(critical text)}

\eledsection*

\eledsubsection [(text)]{(critical text)}

\eledsubsectionx
e \eledsubsubsection[(text)]{{critical text)}
e \eledsubsubsection*

Which are equivalent to the INTEX commands. Each indivual command must be
called alone in a \pstart...\pend:

\pstart
\eledsection*{xxxx\ledsidenote{section}}
\pend

\pstart
\eledsubsection*{xxxx\ledsidenote{sub}}
\pend

\pstart

normal text

\pend

At the first run, you will see only the text. It’s normal. At the second run, you
will see the formating. And consequently, at the third run, you will see the table
of contents.

For technical reason, the page break before \elechapter can’t be add auto-
matically. You have to insert it manually via \beforeeledchapter, which must
be called outside of a numbering section.

\ledpb
\lednopb

\ledpbsetting

\lednopbinversetrue

\extensionchars

37

15 Quotation environments

The quotation and quote environment can be used so that same definition/note
appears both inside and outside a numbered section. The typographical conse-
quences will resemble the outside numbered sections, based on the styles of the
book class. However, if you use a package that redefines these environments, these
redefinitions won’t be available inside the numbering section. You must open the
quotation environments inside a \start-\pend block, not outside.

In some case, you don’t want these environments be redefined in numbered
section. You can load the package with the option noquotation to prevent this
redefinition.

16 Page breaks

Eledmac and eledpar break pages automatically. However, you may sometimes
want to either force page breaks or prevent them. The packages provide two
mMacros:

e \ledpb adds a page break.

e \lednopb prevents a page break, by adding one line to the current page if
needed.

These commands have effect only at the second run.

These two commands take effect at the beginning of line in which they are
called. For example, if you call \ledpb at 1. 444, the 1. 443 will be at the p. n,
and the 1. 444 at the p. n + 1. However you can change the behavior, and decide
they will have effect after the end of the line, adding \ledpbsetting{after} at
the beginning of your file (better: in your preamble). With the previous example,
the 1. 444 will be at the p. n and the 1. 445 will be at the p. n + 1.

If you are using eledpar to typeset parallel pages you must use \lednopb on
both sides in the two corresponding lines. This is especially important when you
are using stanzas; otherwise the pages will run out of sync. You can also decide to
prevent page breaks between two lines of a long verse. To do this, use nopbinverse
when loading package, or add \lednopbinversetrue in the beginning of your file
(better: in your preamble). This feature works only with verse of 2 lines, not
more. It works at the third run, or at fourth run with eledpar. By default, when
a long verse runs normally between two pages, a page break will be placed at the
beginning of the verse. However, if you have addedledpbsetting{after}, the
page break will be placed at the end of the long verse, and the page containing
the long verse will have one extra line.

17 Miscellaneous

When the package assembles the name of the auxiliary file for a section, it pre-
fixes \extensionchars to the section number. This is initially defined to be

\ifledfinal

\showlemma

\ballast

38 17 Miscellaneous

empty, but you can add some characters to help distinguish these files if you
like; what you use is likely to be system-dependent. If, for example, you said
\renewcommand{\extensionchars}{!}, then you would get temporary files called
jobname. !1, jobname.!2, etc.

The package can take options. The option ‘final’, which is the default is for
final typesetting; this sets \ifledfinal to TRUE. The other option, ‘draft’, may
be useful during earlier stages and sets \ifledfinal to FALSE.

The lemma within the text is printed via \showlemma{lemma}. Normally, or
with the ‘final” option, the definition of \showlemma is:
\newcommand*{\showlemma} [1]{#1}
so it just produces its argument. With the ‘draft’ option it is defined as
\newcommand*{\showlemma} [1]{\textit{#1}}
so that its argument is typeset in an italic font, which may make it easier to check
that all lemmas have been treated.

If you would prefer some other style, you could put something like this in the
preamble:

\ifledfinal\else
\renewcommand{\showlemma} [1] {\textbf{#1}}), or simply ...[1]1{#1}
\fi

17.1 Known and suspected limitations

In general, eledmac’s system for adding marginal line numbers breaks anything
that makes direct use of the LaTeX insert system, which includes marginpars,
footnotes and floats.

However, you can use both \footnote and the familiar footnote series notes
in numbered text. A \marginpar in numbered text will throw away its contents
and send a warning message to the terminal and log file, but will do no harm.

\parshape cannot be used within numbered text, except in a very restricted
way.

LaTeX is a three-pass system, but even after a document has been processed
three times, there are some tricky situations in which the page breaks decided by
TEX never settle down. At each successive run, eledmac may oscillate between two
different sets of page decisions. To stop this happening, should it arise, Wayne Sul-
livan suggested the inclusion of the quantity \ballast. The amount of \ballast
will be subtracted from the penalties which apply to the page breaks calculated
on the previous run through TEX, thus reinforcing these breaks. So if you find
your page breaks oscillating, say
\setcounter{ballast}{100}
or some such figure, and with any luck the page breaks will settle down. Luckily,
this problem doesn’t crop up at all often.

The restriction on explicit line-breaking in paragraphed footnotes, mentioned
in a footnote [I5] p.22] and described in more detail on p.[I08] really is a nuisance
if that’s something you need to do. There are some possible solutions, described
by Michael Downes, but this area remains unsatisfactory.

\pageparbreak

\footfudgefiddle

\morenoexpands

17.2 Use with other packages 39

LaTeX has a reputation for putting things in the wrong margin after a page
break. The eledmac package does nothing to improve the situation — in fact it
just makes it more obvious if numbered text crosses a page (or column) boundary
and the numbers are meant to flip from side to side. Try and keep the numbers in
the same margin all the time. Another aspect of TeX’s page breaking mechanism
is that when numbering lines by the page, the first few numbers after a page break
may continue as though the lines were still on the previous page.

If you can’t resist flipping the numbers or numbering by the page, then you
might find that judicious use of \pageparbreak may help if numbering goes awry
across a page (or column) break. It tries to force TeX into partitioning the current
paragraph into two invisibly joined paragraphs with a page break between them.
Insert the command between the last word on one page and the first word on
the next page. If later you change something earlier in the document the natural
page break may be in a different place, and you will have to adjust the location
of \pageparbreak accordingly.

For paragraphed footnotes TEX has to estimate the amount of space required.
If it underestimates this then the notes may get too long and run off the bottom
of the text block. \footfudgefiddle can be increased from its default 64 (say to
68) to increase the estimate. You have to use \renewcommand for this, like:
\renewcommand{\footfudgefiddle}{68}

Help, suggestions and corrections will be gratefully received.

17.2 Use with other packages

Because of eledmac’s complexity it may not play well with other packages. In
particular eledmac is sensitive to commands in the arguments to the \edtext and
*footnote macros (this is discussed in more detail in section and in particular
the discussion about \no@expands and \morenoexpands). You will have to see
what works or doesn’t work in your particular case.

It is possible that eledmac and the hyperref package may work together. I
have not tried this combination but past experience with hyperref suggests that
cooperation is unlikely; hyperref changes many LaTeX internals and eledmac does
things that are not normally seen in LaTeX.

If you want to use the option bottom of the footmisc package, you must load
this package before the eledmac package.

You can define the macro \morenoexpands to modify macros that you call
within \edtext. Because of the way eledmac numbers the lines the arguments to
\edtext can be processed more than once and in some cases a macro should only
be processed once. One example is the \colorbox macro from the color package,
which you might use like this:

. \edtext{\colorbox{mycolor}{lemma}}{\Afootnote{...\colorbox...}}

If you actually try this!® you will find LaTeX whinging ‘Missing { inserted’,

18Reported by Dirk-Jan Dekker in the CTT thread ‘Incompatibility of “color” package’ on
2003/08/28.

40 17 Miscellaneous

and then things start to fall apart. The trick in this case is to specify either:

\newcommand{\morenoexpands}{\let\colorbox=0}

or

\makeatletter
\newcommand{\morenoexpands}{\let\colorbox\@secondoftwo}
\makeatother

(\@secondoftwo is an internal LaTeX macro that takes two arguments and thows
away the first one.) The first incantation lets color show in both the main text
and footnotes whereas the second one shows color in the main text but kills it in
the lemma and footnotes. On the other hand if you use \textcolor instead, like

... \edtext{\textcolor{mycolor}{lemma}}{\Afootnote{...\textcolor...}}

there is no need to fiddle with \morenoexpands as the color will naturally be
displayed in both the text and footnotes. To kill the color in the lemma and
footnotes, though, you can do:

\makeatletter
\newcommand{\morenoexpands}{\let\textcolor\@secondoftwol}
\makeatother

It took me a little while to discover all this. If you run into this sort of problem
you may have to spend some time experimenting before hitting on a solution.

17.3 Parallel typesetting

Peter Wilson has developed the Ledpar package as an extension to eledmac specif-
ically for parallel typesetting of critical texts. This also cooperates with the babel
package for typesetting in multiple languages. The package has been called eledpar
since September 2012.

He also developed the ledarab package for handling parallel Arabic text in
critical editions. However, this package is not maintened by Maieul Rouquette.
You should use the capabilities of a modern TeX processor, like Xe(La)TeX

17.4 Notes for EDMAC users

If you have never used EDMAC, ignore this section. If you have used EDMAC and
are starting on a completely new document, ignore this section. Only read this
section if you are converting an original EDMAC document to use eledmac.

The package still provides the original \text command, but it is (a) deprecated,
and (b) its name has been changed!® to \critext; use the \edtext macro instead.

19A name like \text is likely to be defined by other LaTeX packages (it certainly is by the
AMS packages) and it seems sensible to try and avoid clashes with other definitions.

\critext

17.4 Notes for EDMAC users 41

However, if you do use \critext (the new name for \text), the following is a
reminder.

Within numbered paragraphs, footnotes and endnotes are generated by forms
of the \critext macro:

\critext{(lemma)}{commands)/

The (lemma) argument is the lemma in the main text: \critext both prints
this as part of the text, and makes it available to the (commands) you specify
to generate notes. The / at the end terminates the command; it is part of the
macro’s definition so that spaces after the macro will be treated as significant.

For example:
I saw my friend \critext{Smith} 1 1 saw my friend

\Afootnote{Jones C, D.}/ 2 Smith on Tuesday.

on Tuesday. 2 Smith] Jones C, D.

The lemma Smith is printed as part of this sentence in the text, and is also
made available to the footnote that specifies a variant, Jones C, D. The footnote
macro is supplied with the line number at which the lemma appears in the main
text.

The (lemma) may contain further \critext commands. Nesting makes it
possible to print an explanatory note on a long passage together with notes on
variants for individual words within the passage. For example:

\critext{I saw my friend 1 I saw my friend
\critext{Smith}{\Afootnote{Jones 2 Smith on Tuesday.
C, D.}/ on Tuesday.} mJones C, D.
\Bfootnote{The date was I .
July 16, 1954.} 1-2 I saw my friend

/ Smith on Tuesday.] The

date was July 16, 1954.
However, \critext cannot handle overlapping but unnested notes—for exam-

ple, one note covering lines 10-15, and another covering 12-18; a \critext that
starts in the (lemma) argument of another \critext must end there, too. (The
\lemma and \linenum commands may be used to generate overlapping notes if
necessary.)

The second argument of the \critext macro, (commands), is the same as the
second argument to the \edtext macro.

It is possible to define aliases for \critext, which can be easier to type. You
can make a single character substitute for \critext by saying this:

\catcode‘\<=\active
\let<=\critext

Then you might say <{Smith}\variant{Jones}/. This of course destroys the
ability to use < in any new macro definitions, so long as it remains in effect; hence
it should be used with care.

Changing the character at the end of the command requires more work:

\catcode ‘\<=\active

42 17 Miscellaneous

\def\xtext#1#2>{\critext{#1}{#2}/}
\let<=\xtext

This allows you to say <{Smith}\Afootnote{Jones}>.

Aliases for \critext of the first kind shown here also can’t be nested—that is,
you can’t use the alias in the text that forms the first argument to \critext. (See
section [22] to find out why.) Aliases of the second kind may be nested without any
problem.

If you really have to use \critext in any of the tabular or array environments,
then \edtext must not be used in the same environment. If you use \critext in
one of these environments then you have to issue the declaration \usingcritext
beforehand. The declaration \usingedtext must be issued to revert to the default
assumption that \edtext will be used.

43

18 Implementation overview

We present the eledmac code in roughly the order in which it’s used during a run
of TEX. The order is exactly that in which it’s read when you load The eledmac
package, because the same file is used to generate this manual and to generate
the LaTeX package file. Most of what follows consists of macro definitions, but
there are some commands that are executed immediately—especially at the start
of the code. The documentation generally describes the code from the point of
view of what happens when the macros are executed, though. As each macro is
introduced, its name is printed in the margin.

We begin with the commands you use to start and stop line numbering in a
section of text (Section . Next comes the machinery for writing and reading
the auxiliary file for each section that helps us count lines, and for creating list
macros encoding the information from that file (Section ; this auxiliary file will
be read at the start of each section, to create those list macros, and a new version
of the file will be started to collect information from the body of the section.

Next are commands for marking sections of the text for footnotes (Section ,
followed by the macros that take each paragraph apart, attach the line numbers
and insertions, and send the result to the vertical list (Section . The footnote
commands (Section and output routine (Section finish the main part of
the processing; cross-referencing (Section and endnotes (Section complete
the story.

In what follows, macros with an @ in their name are more internal to the work-
ings of eledmac than those made up just of ordinary letters, just as in PLAIN TEX
(see The TeXbook, p.344). You are meant to be able to make free with ordinary
macros, but the ‘Q’" ones should be treated with more respect, and changed only
if you are pretty sure of what you are doing.

19 Preliminaries

We try and use 1@d in macro names to help avoid name clashes, but this is not
a hard and fast rule. For example, if an original EDMAC macro includes edmac We
will simply change that to eledmac.

Announce the name and version of the package, which is targetted for LaTeX2e.

1 (xcode)
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{eledmac}[2014/08/06 v1.12.1 LaTeX port of EDMACIY

Generally, these are the modifications to the original. EDMAC code:

e Replace as many \def’s by \newcommand’s as possible to avoid overwriting
LaTeX macros.

e Replace user-level TeX counts by LaTeX counters.

e Use the LaTeX font handling mechanisms.

\ifledfinal
\ifparapparatus@

\if@RTL

\showlemma

44 19 Preliminaries

e Use LaTeX messaging and file facilities.

Use this to remember which option is used, set and execute the options with final
as the default.

4 \newif\ifledfinal

5 \newif\ifparapparatus@

6 \newif\ifnoquotation@

7 \newif\iflednopbinverse

8 \newif\ifparledgroup

9 \newif\ifledsecnolinenumber

10 \parapparatus@false

11 \DeclareOption{noquotation}{\noquotation@true}
12 \DeclareOption{final}{\ledfinaltrue}

13 \DeclareOption{draft}{\ledfinalfalse}

14 \DeclareOption{parapparatus}{\parapparatus@true}
15 \DeclareOption{nopbinverse}{\lednopbinversetrue}
16 \DeclareOption{ledsecnolinenumber}{\ledsecnolinenumbertrue}
17 \ExecuteOptions{final}

Use the starred form of \ProcessOptions which executes options in the order
listed in the source file: class options, then listed package options, so a package
option can override a class option with the same name. This was suggested by
Dan Luecking in the ctt thread Class/package option processing, on 27 February
2004.

18 \ProcessOptions*\relax

19

Loading package zargs to declare commands with optional arguments. FEtoolbox
is also used to make code clearer - for example, in dynamic command names
(which can replace \csname etc.). Use suffiz to declare commands with a starred
version, xstring to work with strings and iflutex to test if LualLLaTeX is running,
and ragged2e to manage ragging for paragraphed notes.

20 \RequirePackage{xargs}

21 \RequirePackage{etoolbox}

22 \reserveinserts{32}

23 \RequirePackage{suffix}

24 \RequirePackage{xstring}

25 \RequirePackage{ifluatex}

26 \RequirePackage{ragged2e}

The \if@RTL is defined by the bidi package, which is sometimes loaded by poly-
glossia. But we define it if the bidi package is not loaded.

27 \ifcsdef{if@RTL}{}{\newif\if@RTL}

\showlemma{(lemma)} typesets the lemma text in the body. It depends on the
option.
28 \ifledfinal

29 \newcommand*{\showlemmal} [1]{#1}
30 \else

\linenumberlist

\@ledtempcnta
\@l@dtempcntb

\ifl@dmemoir

\ifl@imakeidx

\eledmac@warning

\eledmac@error

\led@err@NumberingStarted
d@err@NumberingNotStarted
umberingShouldHaveStarted

\led@mess@NotesChanged

19.1 Messages 45

31 \newcommand*{\showlemma}[1]{\underline{#1}}
32 \fi
33

The code for the \linenumberlist mechanism was given to Peter Wilson by
Wayne Sullivan on 2004/02/11.

Initialize it as \empty
34 \let\linenumberlist=\empty

35

In imitation of IMTEX, we create a couple of scratch counters.

LaTeX already defines \@tempcnta and \@tempcntb but Peter Wilson have
found in the past that it can be dangerous to use these (for example one of the
AMS packages did something nasty to the ccaption package’s use of one of these).

36 \newcount\@l@dtempcnta \newcount\@l@dtempcntb

Define a flag for if the memoir class has been used.

37 \newif\ifl@dmemoir
38 \@ifclassloaded{memoir}{\1@dmemoirtrue}{\1@dmemoirfalse}
39

Define a flag for if the imakeidx package has been used.

40 \newif\ifl@imakeidx
41 \@ifpackageloaded{imakeidx}{\1@imakeidxtrue}{\1@imakeidxfalse}

19.1 Messages

All the messages are grouped here as macros. This saves TeX’s memory when the
same message is repeated and also lets them be edited easily.

Write a warning message.
42 \newcommand{\eledmac@warning}[1] {\PackageWarning{eledmac}{#1}}

Write an error message.
43 \newcommand{\eledmac@error}[2] {\PackageError{eledmac}{#1}{#2}}

44 \newcommand*{\led@err@NumberingStarted}{%

45 \eledmac@error{Numbering has already been started}{\@ehc}}

46 \newcommand*{\led@err@NumberingNotStarted}{%

47 \eledmac@error{Numbering was not started}{\@ehcl}}

48 \newcommand*{\led@err@NumberingShouldHaveStarted}{}

49 \eledmac@error{Numbering should already have been started}{\@ehcl}}

50 \newcommand*{\led@mess@NotesChanged}{%
51 \typeout{eledmac reminder: 1}J,
52 \typeout{ The number of the footnotes in this section

\led@mess@SectionContinued

\led@err@LineationInNumbered

\led@warn@BadLineation
\led@warn@BadLinenummargin
\led@warn@BadLockdisp
\led@warn@BadSublockdisp

\led@warn@NoLineFile

\led@warn@BadAdvancelineSubline
\led@warn@BadAdvancelineLine

\led@warn@BadSetline
\led@warn@BadSetlinenum

\led@err@PstartNotNumbered
\led@err@PstartInPstart
\led@err@PendNotNumbered
\led@err@PendNoPstart
\led@err@AutoparNotNumbered

46 19 Preliminaries

53 has changed since the last run.l}V

54 \typeout{ You will need to run LaTeX two more times
55 before the footnote placementl},

56 \typeout{ and line numbering in this section are

57 correct.}}

58 \newcommand*{\led@mess@SectionContinued} [1]{%
59 \message{Section #1 (continuing the previous section)l}}

60 \newcommand*{\led@err@LineationInNumbered}{’
61 \eledmac@error{You can’t use \string\lineation\space within
62 a numbered section}{\@ehc}}

63 \newcommand*{\led@warn@BadLineation}{J

64 \eledmac@warning{Bad \string\lineation\space argumentl}}

65 \newcommand*{\led@warn@BadLinenummargin}{/

66 \eledmac@warning{Bad \string\linenummargin\space argumentl}}
67 \newcommand*{\led@warn@BadLockdisp}{/

68 \eledmac@warning{Bad \string\lockdisp\space argumentl}}

69 \newcommand*{\led@warn@BadSublockdisp}{/

70 \eledmac@warning{Bad \string\sublockdisp\space argument}}

71 \newcommand*{\led@warn@NoLineFile} [1]1{%
72 \eledmac@warning{Can’t find line-list file #1}}

73 \newcommand*{\led@warn@BadAdvancelineSubline}{%

74 \eledmac@warning{\string\advanceline\space produced a sub-line
75 number less than zero.}}

76 \newcommand*{\led@warn@BadAdvancelineLine}{},

77 \eledmac@uarning{\string\advanceline\space produced a line

78 number less than zero.}}

79 \newcommand*{\led@warn@BadSetline}{’,

80 \eledmac@warning{Bad \string\setline\space argumentl}}

81 \newcommand*{\led@warn@BadSetlinenum}{%

82 \eledmac@warning{Bad \string\setlinenum\space argument}}

83 \newcommand*{\led@err@PstartNotNumbered}{’

84 \eledmac@error{\string\pstart\space must be used within a

85 numbered section}{\@ehc}}

86 \newcommand*{\led@err@PstartInPstart}{/

87 \eledmac@error{\string\pstart\space encountered while another

19.1 Messages 47

88 \string\pstart\space was in effect}{\@ehcl}}

89 \newcommand*{\led@err@PendNotNumbered}{%

90 \eledmac@error{\string\pend\space must be used within a

91 numbered section}{\@ehc}}

92 \newcommand*{\led@err@PendNoPstart}{’

93 \eledmac@error{\string\pend\space must follow a \string\pstart}{\@ehc}}
94 \newcommand*{\led@err@AutoparNotNumbered}{%

95 \eledmac@error{\string\autopar\space must be used within a

96 numbered section}{\@ehc}}

\led@warn@BadAction

97 \newcommand*{\led@warn@BadAction}{%
98 \eledmac@warning{Bad action code, value \next@action.}}

\led@warn@DuplicatelLabel

\led@warn@RefUndefined g9 \newcommand*{\led@warn@uplicateLabel}[1]{%
100 \eledmac@warning{Duplicate definition of label ‘#1’ on page \the\pageno.l}}
101 \newcommand*{\led@warn@RefUndefined} [1]{%
102 \eledmac@warning{Reference ‘#1’ on page \the\pageno\space undefined.
103 Using €000°.3}}

\led@warn@NoMarginpars

104 \newcommand*{\led@warn@NoMarginpars}{%
105 \eledmac@warning{You can’t use \string\marginpar\space in numbered textl}}

ed@warn@BadSidenotemargin

106 \newcommand*{\led@warn@BadSidenotemargin}{%
107 \eledmac@warning{Bad \string\sidenotemmargin\space argument}}

\led@warn@NoIndexFile

108 \newcommand*{\led@warn@NoIndexFile} [1]1{%
109 \eledmac@warning{Undefined index file #1}}

\led@err@TooManyColumns

\led@err@UnequalColumns 119 \newcommand+{\led@err@TooManyColumns}{%
\led@err@LowStartColumn 111 \eledmac@error{Too many columns}{\@ehc}}
\led@err@HighEndColumn 112 \newcommand*{\led@err@UnequalColumns}{’
\led@err@ReverseColumns 113 \eledmac@error{Number of columns is not equal to the number
114 in the previous row (or \protect\\ \space forgotten?)}{\Q@ehc}}
115 \newcommand*{\led@err@LowStartColumn}{%
116 \eledmac@error{Start column is too low}{\@ehc}}
117 \newcommand*{\led@err@HighEndColumn}{%
118 \eledmac@error{End column is too high}{\@ehc}}
119 \newcommand*{\led@err@ReverseColumns}{’
120 \eledmac@error{Start column is greater than end column}{\@ehcl}}

\section@num

\extensionchars

\ifnumbering
\numberingtrue
\numberingfalse

\ifnumberingR
\ifl@dpairing
\l@dpairingtrue
\l@dpairingfalse
\ifpst@rtedL
\pst@rtedLtrue
\pst@rtedLfalse
\1@dnumpstartsL
\ifledRcol
\ifledRcol@

48 20 Sectioning commands

20 Sectioning commands

You use \beginnumbering and \endnumbering to begin and end a line-numbered
section of the text; the pair of commands may be used as many times as you
like within one document to start and end multiple, separately line-numbered
sections. LaTeX will maintain and display a ‘section number’ as a count named
\section@num that counts how many \beginnumbering and \resumenumbering
commands have appeared; it needn’t be related to the logical divisions of your
text.

Each section will read and write an associated ‘line-list file’, containing information
used to do the numbering; the file will be called (jobname).nn, where nn is the
section number. However, you may direct that an extra string be added before the
nn in that filename, in order to distinguish these temporary files from others: that
string is called \extensionchars. Initially it’s empty, since different operating
systems have greatly varying ideas about what characters are permitted in file
names. So \renewcommand{\extensionchars}{-} gives temporary files called
jobname.-1, jobname.-2, etc.

121 \newcount\section@num

122 \section@num=0

123 \let\extensionchars=\empty

The \ifnumbering flag is set to true if we're within a numbered section (that is,
between \beginnumbering and \endnumbering). You can use \ifnumbering in
your own code to check whether you’re in a numbered section, but don’t change
the flag’s value.

124 \newif\ifnumbering

In preparation for the eledpar package, these are related to the ‘left’ text of parallel
texts (when \ifl@dpairing is TRUE). They are explained in the eledpar manual.

125 \newif\ifl@dpairing

126 \l@dpairingfalse

127 \newif\ifpst@rtedL

128 \pst@rtedLfalse

129 \newcount\1l@dnumpstartsL

\ifledRcol is set to true in the Rightside environnement. It must be distingued
from \ifledRcol@ which is set to true when a right line is processed, in \Pages
or \Columns.

130 \newif\ifledRcol

131 \newif\ifledRcol@

The \ifnumberingR flag is set to true if we're within a right text numbered
section.

132 \newif\ifnumberingR

49

\beginnumbering \beginnumbering begins a section of numbered text. When it’s executed we
\initnumbering@reg increment the section number, initialize our counters, send a message to your
terminal, and call macros to start the lineation machinery and endnote files.

The initializations here are trickier than they look. \1ine@list@stuff will use
all of the counters that are zeroed here when it assembles the line-list and other
lists of information about the lineation. But it will do all of this locally and within
a group, and when it’s done the lists will remain but the counters will return to
zero. Those same counters will then be used as we process the text of this section,
but the assignments will be made globally. These initializations actually apply
to both uses, though in all other respects there should be no direct interaction
between the use of these counters and variables in the two processing steps.

For parallel processing :

e zero \1@dnumpstartsL — the number of chunks to be processed.
e set \ifpst@rtedl to FALSE.

133 \newcommand*{\beginnumbering}{’
134 \ifnumbering

135 \led@err@NumberingStarted
136 \endnumbering
137 \fi

138 \global\numberingtrue

139 \globalladvance\section@num \G@ne

140 \initnumbering@reg

141 \message{Section \the\section®@num }%

142 \line®@list@stuff{\jobname.\extensionchars\the\section@num}
143 \l@dend®@stuff

144 \setcounter{pstart}{1}

145 \ifl@dpairing

146 \global\l@dnumpstartsL \z@

147 \global\pst@rtedLfalse

The tools for section’s title commands are called:
e Define old (deprecated) sectioning commands.
e Define an empty list of pstart number where sectioning commands are called.
e Input auxiliary file with the description of section titles.

e Open the same auxiliary file to write in.

148 \else

149 \begingroup

150 \initnumbering@sectcmd
151 \fi

152 \gdef\eled@sections@@{}

153 \makeatletter\InputIfFileExists{\jobname.eledsec\the\section@num}{}{}\makeatother
154 \immediate\openout\eled@sectioning@out=\jobname.eledsec\the\section@num\relax

155 }

\endnumbering

50

20

156 \newcommand*{\initnumbering@reg}{%

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

\global\pst@rtedLfalse
\global\l@dnumpstartsL \z@
\globallabsline@uum \z@
\gdef\normal@page@break{}
\gdef\1l@prevepb{}
\gdef\1l@prev@nopb{}
\global\line@num \z@
\global\subline@uum \z@
\global\@lock \z@
\global\sub@lock \z@
\global\sublines@false
\global\let\next@page@num=\relax
\global\let\sub@change=\relax
\resetprevline@
\resetprevpage@num

}

Sectioning commands

\endnumbering must follow the last text for a numbered section. It takes care of
notifying you when changes have been noted in the input that require running the
file through again to move everything to the right place.

174 \def\endnumbering{%

175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191

193
194
195
196
197
198
199 }

\ifnumbering
\global\numberingfalse
\normal@pars
\ifl@dpairing
\global\pst@rtedLfalse
\else
\ifx\insertlines@list\empty\else
\global\noteschanged@true
\fi
\ifx\line@list\empty\else
\global\noteschanged@true
\fi
\fi
\ifnoteschanged®
\led@mess@NotesChanged
\fi
\else
\led@err@NumberingNotStarted
\fi
\autoparfalse
\immediate\closeout\eled@sectioning@out
\ifl@dpairing\else
\endgroup
\fi

\pausenumbering The \pausenumbering macro is just the same as \endnumbering, but with the

\resumenumbering

\ifbypstart@
\bypstart@true
\bypstart@false
\ifbypage@
\bypage@true
\bypage@false

51

\ifnumbering flag set to true, to show that numbering continues across the gap.2’

200 \newcommand{\pausenumbering}{’
201 \ifautopar\global\autopar@pausetrue\fi/,
202 \endnumbering\global\numberingtrue}

The \resumenumbering macro is a bit more involved, but not much. It does
most of the same things as \beginnumbering, but without resetting the vari-
ous counters. Note that no check is made by \resumenumbering to ensure that
\pausenumbering was actually invoked.

203 \newcommand*{\resumenumbering}{7
204 \ifnumbering

205 \ifautopar@pause\autopar\fi

206 \global\pst@rtedLtrue

207 \global\advance\section@num \@ne

208 \led@mess@SectionContinued{\the\section@num}j,
209 \1ine@list@stuff{\jobname.\extensionchars\the\section@numl}y,
210 \l@dend@stuff

211 \begingroup

212 \initnumbering@sectcmd

213 \else

214 \led@err@NumberingShouldHaveStarted

215 \endnumbering

216 \beginnumbering

217 \fi}

218

219

21 Line counting

21.1 Choosing the system of lineation

Sometimes you want line numbers that start at 1 at the top of each page; sometimes
you want line numbers that start at 1 at each \pstart; other times you want line
numbers that start at 1 at the start of each section and increase regardless of page
breaks. eledmac can do it either way, and you can switch from one to the other
within one work. But you have to choose one or the other for all line numbers and
line references within each section. Here we will define internal codes for these
systems and the macros you use to select them.

The \ifbypage@ and \ifbypstart@ flag specifie the current lineation system:

o line-of-page: bypstart@ = false and bypage@ = true.

e line-of-pstart: bypstart@ = true and bypage@ = false.

eledmac will use the line-of-section system unless instructed otherwise.

220 \newif\ifbypage@
221 \newif\ifbypstart®

200ur thanks to Wayne Sullivan, who suggested the idea behind these macros.

52

21 Line counting

\lineation \lineation{(word)} is the macro you use to select the lineation system. Its

\linenummargin
\line@margin
\l@dgetline®@margin

argument is a string: either page or section or pstart.

222 \newcommand*{\lineation} [1]1{{%
\ifnumbering
\led@err@LineationInNumbered

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

\else

\def\@tempa{#1}\def\@tempb{page}’
\ifx\@tempa\@tempb

\global\bypage@true
\global\bypstart@false
\pstartinfootnote[] [false]

\else

\fi
\fi}}

\def\@tempb{pstart}’
\ifx\@tempa\@tempb

\global\bypage@false
\global\bypstart@true
\pstartinfootnote

\else

\def\@tempb{section}
\ifx\@tempa\@tempb
\global\bypage@false
\global\bypstart@false
\pstartinfootnote[] [falsel
\else

\led@warn@BadLineation

\fi

\fi

You call \linenummargin{(word)} to specify which margin you want your line
numbers in; it takes one argument, a string. You can put the line numbers in
the same margin on every page using left or right; or you can use inner or
outer to get them in the inner or outer margins. (These last two options assume
that even-numbered pages will be on the left-hand side of every opening in your
book.) You can change this within a numbered section, but the change may not
take effect just when you’d like; if it’s done between paragraphs nothing surprising
should happen.

for outer, and 3 for inner.

249 \newcount\line@margin

250 \newcommand*{\linenummargin} [1]{{%

\1l@dgetline@margin{#1}J

\ifnum\@l@dtempcntb>\m@ne
\global\line@margin=\0@1@dtempcntb

251
252
253
254

\fi}}

255 \newcommand*{\1@dgetline@margin}[1]{%
\def\@tempa{#1}\def\@tempb{leftl}/
\ifx\@tempa\@tempb

256
257

The selection is recorded in the count \line@margin: 0 for left, 1 for right, 2

21.1 Choosing the system of lineation 53

258 \@l@dtempcntb \z@

259 \else

260 \def\@tempb{right}/,

261 \ifx\@tempa\@tempb

262 \@l@dtempcntb \@ne

263 \else

264 \def\@tempb{outerl}y,

265 \ifx\@tempa\@tempb

266 \@l@dtempcntb \tw@
267 \else

268 \def\@tempb{inner}y,
269 \ifx\@tempa\@tempb
270 \@l@dtempcntb \three
271 \else

272 \led@warn@BadLinenummargin
273 \@l@dtempcntb \m@ne
274 \fi

275 \fi

276 \fi

277 \fi}

278

\c@firstlinenum The following counters tell eledmac which lines should be printed with line num-
\c@linenumincrement bers. firstlinenum is the number of the first line in each section that gets
a number; linenumincrement is the difference between successive numbered
lines. The initial values of these counters produce labels on lines 5, 10, 15, etc.

linenumincrement must be at least 1.

279 \newcounter{firstlinenum}

280 \setcounter{firstlinenum}{5}

281 \newcounter{linenumincrement}

282 \setcounter{linenumincrement}{5}

\c@firstsublinenum The following parameters are just like firstlinenum and linenumincrement, but
\c@sublinenumincrement for sub-line numbers. sublinenumincrement must be at least 1.

283 \newcounter{firstsublinenum}

284 \setcounter{firstsublinenum}{5}

285 \newcounter{sublinenumincrement}

286 \setcounter{sublinenumincrement}{5}
287

\firstlinenum These macros can be used to set the corresponding counters.
\linenumincrement 588 \newcommand*{\firstlinenum}[1]{\setcounter{firstlinenum}{#1}}
\firstsublinenum 289 \newcommand*{\linenumincrement}[1]{\setcounter{linenumincrement}{#1}}
\sublinenumincrement 290 \newcommand*{\firstsublinenum}[1]{\setcounter{firstsublinenum}{#1}}
291 \newcommand*{\sublinenumincrement}[1]{\setcounter{sublinenumincrement}{#1}}
292

\lockdisp When line locking is being used, the \lockdisp{(word)} macro specifies whether
\lock@disp a line number—if one is due to appear—should be printed on the first printed line
\l@dgetlock@disp

\sublockdisp
\sublock@disp

\linenumberstyle
\linenumrep
\linenumr@p

\sublinenumberstyle
\sublinenumrep
\sublinenumr@p

54 21 Line counting

or on the last, or by all of them. Its argument is a word, either first, last, or
all. Initially, it is set to first.
\lock@disp encodes the selection: 0 for first, 1 for last, 2 for all.
293 \newcount\lock@disp
294 \newcommand{\lockdisp}[1]1{{%
295 \l@dgetlock@disp{#1}%
296 \ifnum\@l@dtempcntb>\m@ne
297 \global\lock@disp=\@1l@dtempcntb

298 \else
299 \led@warn@BadLockdisp
300 \fil}}

301 \newcommand*{\1@dgetlock@disp}[1]{
302 \def\@tempa{#1}\def\@tempb{firstl}}
303 \ifx\@tempa\@tempb

304 \@l@dtempcntb \z@

305 \else

306 \def\@tempb{last}/

307 \ifx\@tempa\@tempb

308 \@l@dtempcntb \@ne
309 \else

310 \def\@tempb{alll}y,
311 \ifx\@tempa\@tempb
312 \@l@dtempcntb \tw@
313 \else

314 \@ledtempcntb \m@ne
315 \fi

316 \fi

317 \fi}

318

The same questions about where to print the line number apply to sub-lines, and
these are the analogous macros for dealing with the problem.

319 \newcount\sublock@disp

320 \newcommand{\sublockdisp} [1]{{%

321 \l@dgetlock@disp{#1}/,

322 \ifnum\@l@dtempcntb>\m@ne

323 \global\sublock@disp=\@l@dtempcntb

324 \else

325 \led@warn@BadSublockdisp
326 \fil}}

327

We provide a mechanism for using different representations of the line numbers,
not just the normal arabic.

NOTE: In v0.7 \linenumrep and \sublinenumrep replaced the internal
\linenumr@p and \sublinenumr®@p.

\linenumberstyle and \sublinenumberstyle are user level macros for set-
ting the number represention (\linenumrep and \sublinenumrep) for line and
sub-line numbers.

\leftlinenum
\rightlinenum
\linenumsep
\numlabfont
\ledlinenum

21.1 Choosing the system of lineation 55

328 \newcommand*{\linenumberstyle} [1]{%

329 \def\linenumrep##1{\@nameuse{@#1}{##1}}}

330 \newcommand*{\sublinenumberstyle}[1]{%

331 \def\sublinenumrep##1{\Onameuse{@#1}{##1}}}
Initialise the number styles to arabic.

332 \linenumberstyle{arabic}

333 \let\linenumr@p\linenumrep

334 \sublinenumberstyle{arabic}

335 \let\sublinenumr@p\sublinenumrep
336

\leftlinenum and \rightlinenum are the macros that are called to print
marginal line numbers on a page, for left- and right-hand margins respectively.
They’re made easy to access and change, since you may often want to change the
styling in some way. These standard versions illustrate the general sort of thing
that will be needed; they’re based on the \leftheadline macro in The TeXbook,
p-416.

Whatever these macros output gets printed in a box that will be put into the
appropriate margin without any space between it and the line of text. You’ll
generally want a kern between a line number and the text, and \linenumsep is
provided as a standard way of storing its size. Line numbers are usually printed
in a smaller font, and \numlabfont is provided as a standard name for that font.
When called, these macros will be executed within a group, so font changes and
the like will remain local.

\ledlinenun typesets the line (and subline) number.

The original \numlabfont specification is equivalent to the LaTeX \scriptsize
for a 10pt document.

337 \newlength{\linenumsep}

338 \setlength{\linenumsep}{1ipc}

339 \newcommand*{\numlabfont}{\normalfont\scriptsize}
340 \newcommand*{\ledlinenum}{%

341 \numlabfont\linenumrep{\line®@num}J,

342 \ifsublines@

343 \ifnum\subline@num>0\relax

344 \unskip\fullstop\sublinenumrep{\subline@num},
345 \fi

346 \fi}

347 \newcommand*{\leftlinenum}{%
348 \ledlinenum

349 \kern\linenumsep}

350 \newcommand*{\rightlinenum}{}
351 \kern\linenumsep

352 \ledlinenum}

353

\list@create

\list@clear

\xright@appenditem

\led@toksa
\led@toksb

\xleft@appenditem

\gl@p

56 21 Line counting

21.2 List macros

Reminder: compare these with the LaTeX list macros in case they would be
suitable instead.

We will make heavy use of lists of information, which will be built up and taken
apart by the following macros; they are adapted from The TeXbook, pp. 378379,
which discusses their use in more detail.

These macros consume a large amount of the run-time of this code. We intend
to replace them in a future version, and in anticipation of doing so have defined
their interface in such a way that it is not sensitive to details of the underlying
code.

The \1list@create macro creates a new list. In this version of eledmac this macro
doesn’t do anything beyond initializing an empty list macro, but in future versions
it may do more.

354 \newcommand*{\list@create} [1]{\global\let#1=\empty}

The \list@clear macro just initializes a list to the empty list; in this version of
eledmac it is no different from \list@create.

355 \newcommand*{\list@clear}[1]{\global\let#1=\empty}

\xright@appenditem expands an item and appends it to the right end of a list
macro. We want the expansion because we’ll often be using this to store the
current value of a counter. \xright®@appenditem creates global control sequences,
like \xdef, and uses two temporary token-list registers, \@toksa and \@toksb.
356 \newtoks\led@toksa \newtoks\led@toksb

357 \global\led@toksa={\\}

358 \long\def\xright@appenditem#1\to#2{/,

359 \globallled@toksb=\expandafter{#21}/,

360 \xdef#2{\the\led@toksb\the\led@toksa\expandafter{#1}}%

361 \global\led@toksb={1}}

\xleft@appenditem expands an item and appends it to the left end of a list macro;
it is otherwise identical to \xright®@appenditem.

362 \long\def\xleft@appenditem#1\to#2{Y

363 \globallled@toksb=\expandafter{#2}%

364 \xdef#2{\the\led@toksa\expandafter{#1}\the\led@toksbl}}

365 \global\led@toksb={}}

The \gl@p macro removes the leftmost item from a list and places it in a control
sequence. You say \gl@p\1\to\z (where \1 is the list macro, and \z receives the
left item). \1 is assumed nonempty: say \ifx\1l\empty to test for an empty \1.
The control sequences created by \gl@p are all global.

366 \def\gl@p#1\to#2{\expandafter\glO@poff#1\gl@poff#1#2}

367 \long\def\gl@poff\\#1#2\glOpoff#3#4{\gdef#4{#1}\gdef#3{#2}}
368

\line@num

\subline®@num

\ifsublines@
\sublines@true
\sublines@false

\absline@num

21.3 Line-number counters and lists 57

21.3 Line-number counters and lists

Footnote references using line numbers rather than symbols can’t be generated in
one pass, because we don’t know the line numbers till we ship out the pages. It
would be possible if footnotes were never keyed to more than one line; but some
footnotes gloss passages that may run for several lines, and they must be tied to
the first line of the passage glossed. And even one-line passages require two passes
if we want line-per-page numbering rather than line-per-section numbering.

So we run LaTeX over the text several times, and each time save information
about page and line numbers in a ‘line-list file’ to be used during the next pass. At
the start of each section—whenever \beginnumbering is executed—the line-list
file for that section is read, and the information from it is encoded into a few list
mMacros.

We need first to define the different line numbers that are involved in these
macros, and the associated counters.

The count \1ine®@num stores the line number that’s used in marginal line number-
ing and in notes: counting either from the start of the page or from the start of
the section, depending on your choice for this section. This may be qualified by
\subline@num.

369 \newcount\line@num

The count \subline®@num stores a sub-line number that qualifies \1ine@num. For
example, line 10 might have sub-line numbers 1, 2 and 3, which might be printed
as lines 10.1, 10.2, 10.3.

370 \newcount\subline@num

We maintain an associated flag, \ifsublines@, to tell us whether we’re within a
sub-line range or not.

You may wonder why we don’t just use the value of \subline@num to determine
this—treating anything greater than 0 as an indication that sub-lineation is on. We
need a separate flag because sub-lineation can be used together with line-number
locking in odd ways: several pieces of a logical line might be interrupted by pieces
of sub-lineated text, and those sub-line numbers should not return to zero until
the next change in the major line number. This is common in the typesetting
of English Renaissance verse drama, in which stage directions are given sub-line
numbers: a single line of verse may be interrupted by several stage directions.

371 \newif\ifsublines@

The count \absline@num stores the absolute number of lines since the start of
the section: that is, the number we’'ve actually printed, no matter what numbers
we attached to them. This value is never printed on an output page, though
\1line@num will often be equal to it. It is used internally to keep track of where
notes are to appear and where new pages start: using this value rather than
\line@num is a lot simpler, because it doesn’t depend on the lineation system in
use.

372 \newcount\absline@num

58 21 Line counting

We'll be calling \absline@num numbers ‘absolute’ numbers, and \1ine@num
and \subline@num numbers ‘visible’ numbers.

\@lock The counts \@lock and \sub@lock tell us the state of line-number and sub-line-
\sub@lock number locking. 0 means we’re not within a locked set of lines; 1 means we're at
the first line in the set; 2, at some intermediate line; and 3, at the last line.

373 \newcount\@lock
374 \newcount\sub@lock

\line@list Now we can define the list macros that will be created from the line-list file. We
\insertlines@list will maintain the following lists:

\actionlines@list .
e \line@list: the page and line numbers for every lemma marked by

\actions@list
\edtext. There are seven pieces of information, separated by vertical bars:

the starting page,

line, and

sub-line numbers, followed by the
ending page,

line, and

sub-line numbers, and then the
font specifier for the lemma.

A e

These line numbers are all visible numbers. The font specifier is a set of four
codes for font encoding, family, series, and shape, separated by / characters.
Thus a lemma that started on page 23, line 35 and went on until page 24,
line 3 (with no sub-line numbering), and was typeset in a normal roman font
would have a line list entry like this:

23135/0/2413|0|0T1/cmr/m/n.

There is one item in this list for every lemma marked by \edtext, even if
there are several notes to that lemma, or no notes at all. \edtext reads the
data in this list, making it available for use in the text of notes.

e \insertlines@list: the line numbers of lines that have footnotes or other
insertions. These are the absolute numbers where the corresponding lemmas
begin. This list contains one entry for every footnote in the section; one
lemma may contribute no footnotes or many footnotes. This list is used by
\add@inserts within \do@line, to tell it where to insert notes.

e \actionlines@list: a list of absolute line numbers at which we are to
perform special actions; these actions are specified by the \actions@list
list defined below.

e \actions@list: action codes corresponding to the line numbers in \actionlines@list.
These codes tell eledmac what action it’s supposed to take at each of these
lines. One action, the page-start action, is generated behind the scenes by
eledmac itself; the others, for specifying sub-lineation, line-number locking,
and line-number alteration, are generated only by explicit commands in your
input file. The page-start and line-number-alteration actions require argu-
ments, to specify the new values for the page or line numbers; instead of

21.3 Line-number counters and lists 59

storing those arguments in another list, we have chosen the action-code val-
ues so that they can encode both the action and the argument in these cases.
Action codes greater than —1000 are page-start actions, and the code value
is the page number; action codes less than —5000 specify line numbers, and
the code value is a transformed version of the line number; action codes
between these two values specify other actions which require no argument.

Here is the full list of action codes and their meanings:

Any number greater than —1000 is a page-start action: the line number
associated with it is the first line on a page, and the action number is the
page number. (The cutoff of —1000 is chosen because negative page-number
values are used by some macro packages; we assume that page-number values
less than —1000 are not common.) Page-start action codes are added to
the list by the \page®@action macro, which is (indirectly) triggered by the
workings of the \page@start macro; that macro should always be called in
the output routine, just before the page contents are assembled. eledmac
calls it in \pagecontents.

The action code —1001 specifies the start of sub-lineation: meaning that,
starting with the next line, we should be advancing \subline@num at each
start-of-line command, rather than \line@num.

The action code —1002 specifies the end of sub-lineation. At the next start-
of-line, we should clear the sub-line counter and start advancing the line
number. The action codes for starting and ending sub-lineation are added
to the list by the \sub@action macro, as called to implement the \startsub
and \endsub macros.

The action code —1003 specifies the start of line number locking. After the
number for the current line is computed, it will remain at that value through
the next line that has an action code to end locking.

The action code —1004 specifies the end of line number locking.

The action code —1005 specifies the start of sub-line number locking. After
the number for the current sub-line is computed, it will remain at that value
through the next sub-line that has an action code to end locking.

The action code —1006 specifies the end of sub-line number locking.

The four action codes for line and sub-line number locking are added to the
list by the \do@lockon and \do@lockoff macros, as called to implement the
\startlock and \endlock macros.

An action code of —5000 or less sets the current visible line number (either
the line number or the sub-line number, whichever is currently being ad-
vanced) to a specific positive value. The value of the code is —(5000 + n),
where n is the value (always > 0) assigned to the current line number. Ac-
tion codes of this type are added to the list by the \set@line®action macro,
as called to implement the \advanceline and \setline macros: this action
only occurs when the user has specified some change to the line numbers
using those macros. Normally eledmac computes the visible line numbers

\page@num
\endpage@num
\endline®@num

\endsubline@num

\ifnoteschanged®
\noteschanged@true
\noteschanged@false

\resetprevline®

\resetprevline@

\resetprevpage@num

60 21 Line counting

from the absolute line numbers with reference to the other action codes and
the settings they invoke; it doesn’t require an entry in the action-code list
for every line.

Here are the commands to create these lists:

375 \list@create{\line@list}

376 \list@create{\insertlines@list}
377 \list@create{\actionlines@list}
378 \list@create{\actions@list}

379

We’ll need some counts while we read the line-list, for the page number and the
ending page, line, and sub-line numbers. Some of these will be used again later
on, when we are acting on the data in our list macros.
380 \newcount\page@num
381 \newcount\endpage@num
382 \newcount\endline@num
383 \newcount\endsubline@num

If the number of the footnotes in a section is different from what it was during
the last run, or if this is the very first time you've run LaTeX, on this file, the
information from the line-list used to place the notes will be wrong, and some
notes will probably be misplaced. When this happens, we prefer to give a single
error message for the whole section rather than messages at every point where we
notice the problem, because we don’t really know where in the section notes were
added or removed, and the solution in any case is simply to run LaTeX two more
times; there’s no fix needed to the document. The \ifnoteschanged@ flag is set
if such a change in the number of notes is discovered at any point.

384 \newif\ifnoteschanged®@

Inside the apparatus, at each note, the line number is stored in a macro called
\prevlineX, where X is the letter of the current series. This macro is called when
using \numberonlyfirstinline. This macro must be reset at the same time as
the line number. The \resetprevline@ does this resetting for every series.

385 \newcommand*{\resetprevline@}{J

386 \def\do##1{\global\csundef{prevline##11}1}/
387 \dolistloop{\@series}/,

388 }

Inside the apparatus, at each note, the page number is stored in a macro called
\prevpageX@num, where X is the letter of the current series. This macro is called
when using \parafootsep. This macro must be reset at the beginning of each
numbered section The \resetprevpage@ command resets this macro for every
series.

21.4 Reading the line-list file 61

\resetprevpage®@
389 \newcommand*{\resetprevpage@num}{/
390 \def\do##1{\ifcsdef{prevpage##10num}{\global\csname prevpage##1@num\endcsname=0}{}}7
391 \dolistloop{\@series}/,
392 }

21.4 Reading the line-list file

\read@linelist \read@linelist{(file)} is the control sequence that’s called by \beginnumbering
(via \1ine@list@stuff) to open and process a line-list file; its argument is the
name of the file.

393 \newread\@inputcheck
394 \newcommand*{\read@linelist}[1]{%
395 \list@clearing@reg

When the file is there we start a new group and make some special definitions
we’ll need to process it: it’s a sequence of TEX commands, but they require a
few special settings. We make [and | become grouping characters: they’re used
that way in the line-list file, because we need to write them out one at a time
rather than in balanced pairs, and it’s easier to just use something other than
real braces. @ must become a letter, since this is run in the ordinary LaTeX
context. We ignore carriage returns, since if we’re in horizontal mode they can get
interpreted as spaces to be printed.

Our line, page, and line-locking counters were already zeroed by \1ine@list@stuff
if this is being called from within \beginnumbering; sub-lineation will be turned
off as well in that case. On the other hand, if this is being called from
\resumenumbering, those things should still have the values they had when
\pausenumbering was executed.

If the file is not there, we print an informative message.

Now, after these preliminaries, we start interpreting the file.

396 \get@linelistfile{#11}}
397 \endgroup

When the reading is done, we’re all through with the line-list file. All the
information we needed from it will now be encoded in our list macros.

Finally, we initialize the \next@actionline and \next@action macros, which
specify where and what the next action to be taken is.

398 \global\page@num=\m@ne
399 \ifx\actionlines@list\empty

400 \gdef\next@actionline{1000000}7%

401 \else

402 \gl@p\actionlines@list\to\next@actionline
403 \gl@p\actions@list\to\next@action

404 \fi}

405

\list@clearing@reg Clears the lists for \read@linelist

\get@linelistfile

\@nl
\@nl@reg

62 21 Line counting

406 \newcommand*{\list@clearing@regl}{’
407 \list@clear{\line@list}},

408 \list@clear{\insertlines@list}V
409 \list@clear{\actionlines@list}
410 \list@clear{\actions@list}}

eledmac can take advantage of the LaTeX ‘safe file input’ macros to get the line-list
file.

411 \newcommand*{\get@linelistfile}[1]1{%
412 \InputIfFileExists{#1}{%

413 \global\noteschanged@false

414 \begingroup

415 \catcode‘\[=1 \catcode‘\]=2

416 \makeatletter \catcode‘\"~"M=9}{%
417 \led@warn@NoLineFile{#1}},

418 \global\noteschanged@true

419 \begingroup}%

420 }

421

This version of \read@linelist creates list macros containing data for the
entire section, so they could get rather large. It would be no more difficult to
read the line-list file incrementally rather than all at once: we could read, at
the start of each paragraph, only the commands relating to that paragraph. But
this would require that we have two line-lists open at once, one for reading, one
for writing, and on systems without version numbers we’d have to do some file
renaming outside of LaTeX for that to work. We’ve retained this slower approach
to avoid that sort of hacking about, but have provided the \pausenumbering and
\resumenumbering macros to help you if you run into macro memory limitations

(see p.[l1] above).

21.5 Commands within the line-list file

This section defines the commands that can appear within a line-list file. They
all have very short names because we are likely to be writing very large numbers
of them out. One macro, \@nl, is especially short, since it will be written to
the line-list file once for every line of text in a numbered section. (Another of
these commands, \@lab, will be introduced in a later section, among the cross-
referencing commands it is associated with.)

When these commands modify the various page and line counters, they de-
liberately do not say \global. This is because we want them to affect only the
counter values within the current group when nested calls of \@ref occur. (The
code assumes throughout that the value of \globaldefs is zero.)

The macros with action in their names contain all the code that modifies the
action-code list: again, this is so that they can be turned off easily for nested calls
of \@ref.

\@nl does everything related to the start of a new line of numbered text.

21.5 Commands within the line-list file 63

In order to get the \setlinenum to work Peter Wilson had to slip in some new
code at the start of the macro, to get the timing of the actions correct. The problem
was that his original naive implementation of \setlinenum had a unfortunate
tendency to change the number of the last line of the preceding paragraph. The
new code is sort of based on the page number handling and \setline It seems
that a lot of fiddling with the line number internals is required.

In November 2004 in order to accurately determine page numbers Peter Wilson
added these to the macro. It is now:

\@nl{(page counter number)}{{printed page number)}
I don’t (yet) use the printed number (i.e., the \thepage) but it may come in handy
later. The macro \fix@page checks if a new page has started.

422 \newcommand{\@nl}[2]{%

423 \fix@page{#11}%

424 \@nl@reg}

425 \newcommand*{\@nl@reg}{%

426 \ifx\l@dchset@num\relax \else

427 \advance\absline@num \@ne
428 \set@line@action

429 \let\1l@dchset@num=\relax
430 \advance\absline@num \m@ne
431 \advance\line@num \m@ne
432 \fi

First increment the absolute line-number, and perform deferred actions relating
to page starts and sub-lines.

433 \advance\absline@num \@ne

434 \ifx\next@page@num\relax \else
435 \page@action

436 \let\next@page@num=\relax
437 \fi

438 \ifx\sub@change\relax \else
439 \ifnum\sub@change>\z@

440 \sublines@true

441 \else

442 \sublines@false

443 \fi

444 \subQ@action

445 \let\sub@change=\relax

446 \fi

Fix the lock counters, if necessary. A value of 1 is advanced to 2; 3 advances
to 0; other values are unchanged.

447 \ifcase\@lock

448 \or

449 \@lock \tw@
450 \or \or

451 \@lock \z@
452 \fi

453 \ifcase\sub@lock

\last@page@num
\fix@page

\@pend
\@pendR
\@lopL
\@lopR

\sub@on
\sub@off

64 21 Line counting

454 \or

455 \sub@lock \tw@
456 \or \or

457 \sub@lock \z@
458 \fi

Now advance the visible line number, unless it’s been locked.

459 \ifsublines@

460 \ifnum\sub@lock<\tw@

461 \advance\subline@num \@ne

462 \fi

463 \else

464 \ifnum\@lock<\tw@

465 \advance\line@num \@ne \subline@num \z@
466 \fi

467 \fi}

468

\fix@page basically replaces \@page. It determines whether or not a new page
has been started, based on the page values held by \@nl.

469 \newcount\last@page@num

470 \last@page®@num=-10000

471 \newcommand*{\fix@page} [1]1{%

472 \ifnum #1=\last@page@num

473 \else

474 \ifbypage@

475 \line@num=\z@ \subline@num=\zQ

476 \fi

477 \page@num=#1\relax

478 \last@page@num=#1\relax

479 \def\next@page@num{#13}J,

480 \listcsxadd{normal@page@break}{\the\absline@num}
481 \fi}

482

These don’t do anything at this point, but will have been added to the auxiliary
file(s) if the eledpar package has been used. They are just here to stop eledmac
from moaning if the eledpar is used for one run and then not for the following one.

483 \newcommand*{\@pend} [1]{}
484 \newcommand*{\@pendR} [1]{}
485 \newcommand*{\@LlopL} [1]{}
486 \newcommand*{\@LlopR} [1]{}
487

The \sub@on and \sub@off macros turn sub-lineation on and off: but not directly,
since such changes don’t really take effect until the next line of text. Instead they
set a flag that notifies \@nl of the necessary action.

488 \newcommand*{\sub@on}{\ifsublines@

\@adv

\@set

\1l@d@set
\1l@dchset@num

21.5 Commands within the line-list file 65

489 \let\sub@change=\relax

490 \else

491 \def\sub@changes{1}%

492 \fi}

493 \newcommand*{\sub@off}{\ifsublines@
494 \def\sub@changes{-1}%

495 \else

496 \let\sub@change=\relax

497 \fi}

498

The \@adv{{num)} macro advances the current visible line number by the amount
specified as its argument. This is used to implement \advanceline.

499 \newcommand*{\@adv}[1]{\ifsublines®@

500 \advance\subline@num by #1\relax
501 \ifnum\subline@num<\z@

502 \led@warn@BadAdvancelineSubline
503 \subline@num \z@

504 \fi

505 \else

506 \advance\line@uum by #1\relax
507 \ifnum\line@num<\z@

508 \led@warn@BadAdvancelineLine
509 \line@num \z@

510 \fi

511 \fi

512 \set@line@action}

513

The \@set{(num)} macro sets the current visible line number to the value speci-
fied as its argument. This is used to implement \setline.

514 \newcommand*{\@set} [1]{\ifsublines@

515 \subline@num=#1\relax
516 \else

517 \line@num=#1\relax
518 \fi

519 \set@line@action}

520

The \1@d@set{(num)} macro sets the line number for the next \pstart... to

the value specified as its argument. This is used to implement \setlinenum.
\1@dchset@num is a flag to the \@1 macro. If it is not \relax then a linenumber

change is to be done.

521 \newcommand*{\1@d@set}[1]1{%

522 \line@num=#1\relax

523 \advance\line@num \@ne

524 \def\l@dchset@num{#1}}

525 \let\l@dchset@num\relax

526

\page@action

\set@line@action

\sub@action

\lock@on
\do@lockon
\do@lockonL

66 21 Line counting

\page@action adds an entry to the action-code list to change the page number.
527 \newcommand*{\page@action}{’,

528 \xright@appenditem{\the\absline@num}\to\actionlines@list

529 \xright@appenditem{\next@page@num}\to\actions@list}

\set@line®@action adds an entry to the action-code list to change the visible line
number.
530 \newcommand*{\set@line@action}{/

531 \xright@appenditem{\the\absline@num}\to\actionlines@list
532 \ifsublines@

533 \@l@dtempcnta=-\subline@num
534 \else

535 \@ledtempcnta=-\1line@num
536 \fi

537 \advance\@l@dtempcnta by -5000
538 \xright@appenditem{\the\@l@dtempcnta}\to\actions@list}

\sub@action adds an entry to the action-code list to turn sub-lineation on or off,
according to the current value of the \ifsublines@ flag.

539 \newcommand*{\sub@action}{%

540 \xright@appenditem{\the\absline@num}\to\actionlines®@list

541 \ifsublines@

542 \xright@appenditem{-1001}\to\actions@list
543 \else
544 \xright@appenditem{-1002}\to\actions@list
545 \fi}

\lock@on adds an entry to the action-code list to turn line number locking on.
The current setting of the sub-lineation flag tells us whether this applies to line
numbers or sub-line numbers.

Adding commands to the action list is slow, and it’s very often the case that
a lock-on command is immediately followed by a lock-off command in the line-list
file, and therefore really does nothing. We use a look-ahead scheme here to detect
such pairs, and add nothing to the line-list in those cases.
546 \newcommand*{\lock@on}{\futurelet\next\do@lockon}
547 \newcommand*{\do@lockon}{’
548 \ifx\next\lock@off

549 \global\let\lock@off=\skip@lockoff
550 \else

551 \do@lockonL

552 \fi}

553 \newcommand*{\do@lockonL}{%
554 \xright@appenditem{\the\absline@num}\to\actionlines@list
555 \ifsublines@

556 \xright@appenditem{-1005}\to\actions@list
557 \ifnum\sub@lock=\z@
558 \sub@lock \@ne

559 \else

\lock@off
\do@lockoff
\do@lockoffL
\skip@lockoff

\n@num
\n@num@reg

\@ref
\insert@count

21.5 Commands within the line-list file 67

560 \ifnum\sub@lock=\thr@a@
561 \sub@lock \@ne

562 \fi

563 \fi

564 \else

565 \xright@appenditem{-1003}\to\actions@list
566 \ifnum\@lock=\z@

567 \@lock \@ne

568 \else

569 \ifnum\@lock=\thr@a@
570 \@lock \@ne

571 \fi

572 \fi

573 \fi}

574

\lock@off adds an entry to the action-code list to turn line number locking off.

575 \newcommand*{\do@lockoffL}{}
576 \xright@appenditem{\the\absline@num}\to\actionlines@list
577 \ifsublines@

578 \xright@appenditem{-1006}\to\actions@list
579 \ifnum\sub@lock=\tw@

580 \sub@lock \thr@e@

581 \else

582 \sub@lock \z@

583 \fi

584 \else

585 \xright@appenditem{-1004}\to\actions@list
586 \ifnum\@lock=\tw@

587 \@lock \thre@@

588 \else

589 \@lock \z@

590 \fi

591 \fi}

592 \newcommand*{\do@lockoff}{\do@lockoffL}

593 \newcommand*{\skip@lockoff}{\global\let\lock@off=\do@lockoff}
594 \global\let\lock@off=\do@lockoff

595

This macro implements the \skipnumbering command. It uses a new action code,
namely 1007.

596 \newcommand*{\n@num}{\n@numereg}

597 \newcommand*{\n@num@reg}{’

598 \xright@appenditem{\the\absline@num}\to\actionlines@list

599 \xright@appenditem{-1007}\to\actions@list}

600

\@ref marks the start of a passage, for creation of a footnote reference. It takes
two arguments:

68 21 Line counting

e #1, the number of entries to add to \insertlines@list for this reference.
This value, here and within \edtext, which computes it and writes it to the
line-list file, will be stored in the count \insert@count.

601 \newcount\insert@count

e #2 a sequence of other line-list-file commands, executed to determine the
ending line-number. (This may also include other \@ref commands, corre-
sponding to uses of \edtext within the first argument of another instance
of \edtext.)

\dummy@ref When nesting of \@ref commands does occur, it’s necessary to temporarily rede-
fine \@ref within \@ref, so that we’re only doing one of these at a time.

602 \newcommand*{\dummy@ref} [2] {#2}

\@ref@reg The first thing \@ref (i.e. \@ref@reg) itself does is to add the specified number
of items to the \insertlines@list list.
603 \newcommand*{\@ref} [2]{/
604 \@ref@reg{#1}{#2}}
605 \newcommand*{\@ref@reg} [2]{%
606 \global\insert@count=#1\relax
607 \loop\ifnum\insert@count>\z@
608 \xright@appenditem{\the\absline@num}\to\insertlines@list
609 \globalladvance\insert@count \m@ne
610 \repeat

Next, process the second argument to determine the page and line numbers
for the end of this lemma. We temporarily equate \@ref to a different macro
that just executes its argument, so that nested \@ref commands are just skipped
this time. Some other macros need to be temporarily redefined to suppress their
action.

611 \begingroup

612 \let\@ref=\dummyQ@ref

613 \let\page@action=\relax

614 \let\sub@action=\relax

615 \let\set@line@action=\relax

616 \let\@lab=\relax

617 #2

618 \global\endpage@num=\page@num

619 \global\endline@num=\1line@num

620 \global\endsubline@num=\subline@num

621 \endgroup

Now store all the information about the location of the lemma’s start and end
in \line@list.

622 \xright@appenditemy,

623 {\the\page@num|\the\line@num|%

624 \ifsublines@ \the\subline@num \else O\fil%
625 \the\endpage@num|\the\endline@num|?

626 \ifsublines@ \the\endsubline@um \else O\fi}\to\line@list

\linenum@out

\iffirst@linenum@out®@
\first@linenum@out@true
\first@linenum@out@false

\line@list@stuff

21.6 Writing to the line-list file 69

Finally, execute the second argument of \@ref again, to perform for real all
the commands within it.

627 #2}
628

21.6 Writing to the line-list file

We’ve now defined all the counters, lists, and commands involved in reading the
line-list file at the start of a section. Now we’ll cover the commands that eledmac
uses within the text of a section to write commands out to the line-list.

The file will be opened on output stream \linenum@out.

629 \newwrite\linenum@out

Once any file is opened on this stream, we keep it open forever, or else switch to
another file that we keep open. The reason is that we want the output routine
to write the page number for every page to this file; otherwise we’d have to write
it at the start of every line. But it’s not very easy for the output routine to tell
whether an output stream is open or not. There’s no way to test the status of a
particular output stream directly, and the asynchronous nature of output routines
makes the status hard to determine by other means.

We can manage pretty well by means of the \iffirst@linenum@out®@ flag; its
inelegant name suggests the nature of the problem that made its creation necessary.
It’s set to be true before any \linenum@out file is opened. When such a file is
opened for the first time, it’s done using \immediate, so that it will at once be
safe for the output routine to write to it; we then set this flag to false.

630 \newif\iffirst@linenum@out®
631 \first@linenum@out@true

The \line@list@stuff{(file)} macro, which is called by \beginnumbering, per-
forms all the line-list operations needed at the start of a section. Its argument is
the name of the line-list file.
632 \newcommand*{\line@list@stuff}[1]{%

First, use the commands of the previous section to interpret the line-list file
from the last run.
633 \read@linelist{#1}/,

Now close the current output line-list file, if any, and open a new one. The
first time we open a line-list file for output, we do it using \immediate, and clear
the \iffirst@linenum@out®@ flag.

634 \iffirst@linenum@out@

635 \immediate\closeout\linenum@out
636 \global\first@linenum@out@false,
637 \immediate\openout\linenum@out=#1\relax

638 \else

70 21 Line counting

If we get here, then this is not the first line-list we’ve seen, so we don’t open or
close the files immediately, except if we are in a minipage and this minipage is not

a ledgroup.

639 \if@minipage¥

640 \if@ledgroup’

641 \closeout\linenum@out¥

642 \openout\linenum@out=#1\relaxy
643 \else’

644 \immediate\closeout\linenum@out?
645 \immediate\openout\linenum@out=#1\relax
646 \fi

647 \else/

648 \closeout\linenum@out?,

649 \openout\linenum@out=#1\relax

650 \£fiY

651 \fi}

652

\new@line The \new@line macro sends the \@nl command to the line-list file, to mark the
start of a new text line, and its page number.

653 \newcommand*{\new@line}{%
654 \IfStrEq{\led@pb@setting}{afterl}/,

655 {\xifinlistcs{\the\absline@num}{1l@prev@nopbl}y,

656 {\xifinlistcs{\the\absline@num}{normal@page@break}y

657 {\numgdef{\@next@page}{\thepage+1}/

658 \write\linenum@out{\string\@nl[\@nextCpage] [\@nextCpage] }%
659 Yh

660 {\write\linenum@out{\string\@nl[\the\cOpage] [\thepagel}}’
661 Yh

662 {\write\linenum@out{\string\@nl [\the\c@page] [\thepagel}}}%
663 {}

664 \IfStrEq{\led@pb@setting}{beforel}y,

665 {\numdef{\next@absline}{\the\absline@num+1}J,

666 \xifinlistcs{\next@absline}{1@prev@nopbly

667 {\xifinlistcs{\the\absline@num}{normal@page@breakl}’

668 {\numgdef{\nc@page}{\c@page+1}/

669 \write\linenum@out{\string\@nl [\nc@page] [\nc@pagel }/,

670 Yk

671 {\write\linenum@out{\string\n@l[\the\c@pagel [\thepagel}}/
672 Y

673 {\write\linenum@out{\string\@nl [\the\c@pagel [\thepagel}}%
674 Yh

675 i

676 \IfStrEqCase{\led@pb@setting}{{before}{\relax}{after}{\relax}}[\write\linenum@out{\stri
677 }

678

\flag@start We enclose a lemma marked by \edtext in \flag@start and \flag@end: these
\flag@end send the \@ref command to the line-list file. \edtext is responsible for setting

\page@start

\startsub
\endsub

\advanceline

21.6 Writing to the line-list file 71

the value of \insert@count appropriately; it actually gets done by the various
footnote macros.

679 \newcommand*{\flag@start}{/

680 \edef\next{\write\linenum@out{%

681 \string\@ref [\the\insert@count] [}}%

682 \next}

683 \newcommand*{\flag@end}{\write\linenum@out{]}}

Originally the commentary was: \page@start writes a command to the line-list
file noting the current page number; when used within an output routine, this
should be called so as to place its \write within the box that gets shipped out,
and as close to the top of that box as possible.

However, in October 2004 Alexej Krukov discovered that when processing long
paragraphs that included Russian, Greek and Latin texts eledmac would go into
an infinite loop, emitting thousands of blank pages. This was caused by being
unable to find an appropriate place in the output routine. A different algorithm
is now used for getting page numbers.

684 \newcommand*{\page@start}{}
685

\startsub and \endsub turn sub-lineation on and off, by writing appropriate in-
structions to the line-list file. When sub-lineation is in effect, the line number
counter is frozen and the sub-line counter advances instead. If one of these com-
mands appears in the middle of a line, it doesn’t take effect until the next line; in
other words, a line is counted as a line or sub-line depending on what it started
out as, even if that changes in the middle.

We tinker with \lastskip because a command of either sort really needs to be
attached to the last word preceding the change, not the first word that follows the
change. This is because sub-lineation will often turn on and off in mid-line—stage
directions, for example, often are mixed with dialogue in that way—and when a
line is mixed we want to label it using the system that was in effect at its start.
But when sub-lineation begins at the very start of a line we have a problem, if we
don’t put in this code.

686 \newcommand*{\startsub}{\dimenO\lastskip
687 \ifdim\dimenO>Opt \unskip \fi

688 \write\linenum@out{\string\sub@onl}
689 \ifdim\dimen0>Opt \hskip\dimenO \fi}
690 \def\endsub{\dimenO\lastskip

691 \ifdim\dimen0>Opt \unskip \fi

692 \write\linenum@out{\string\sub@offl}},
693 \ifdim\dimen0>Opt \hskip\dimenO \fi}
694

You can use \advanceline{{num)} in running text to advance the current visible
line-number by a specified value, positive or negative.

695 \newcommand*{\advanceline} [1]1{\write\linenum@out{\string\@adv [#1]}}

\setline

\setlinenum

\startlock
\endlock

\ifl@dskipnumber
\l@dskipnumbertrue
\l@dskipnumberfalse
\skipnumbering
\skipnumbering@reg

72 22 Marking text for notes

You can use \setline{(num)} in running text (i.e., within \pstart...\pend) to
set the current visible line-number to a specified positive value.

696 \newcommand*{\setline}[1]{%
697 \ifnum#1<\z@

698 \led@warn@BadSetline

699 \else

700 \write\linenum@out{\string\@set [#1]}%
701 \fi}

702

You can use \setlinenum{(num)} before a \pstart to set the visible line-number
to a specified positive value. It writes a \1@d@set command to the line-list file.

703 \newcommand*{\setlinenum} [1]{%
704 \ifnum#1<\z@

705 \led@warn@BadSetlinenum

706 \else

707 \write\linenum@out{\string\1@d@set [#1]11}/
708 \fi}

709

You can use \startlock or \endlock in running text to start or end line number
locking at the current line. They decide whether line numbers or sub-line numbers
are affected, depending on the current state of the sub-lineation flags.

710 \newcommand*{\startlock}{\write\linenum@out{\string\lock@on}}

711 \def\endlock{\write\linenum@out{\string\lock@offl}}

712

In numbered text \skipnumbering will suspend the numbering for that particular
line.

713 \newif\ifl@dskipnumber

714 \l@dskipnumberfalse

715 \newcommand*{\skipnumbering}{\skipnumbering@reg}

716 \newcommand*{\skipnumbering@reg}{%

717 \write\linenum@out{\string\n@num}/,

718 \advanceline{-1}}

719

22 DMarking text for notes

The \edtext (or \critext) macro is used to create all footnotes and endnotes, as
well as to print the portion of the main text to which a given note or notes is keyed.
The idea is to have that lemma appear only once in the .tex file: all instances of
it in the main text and in the notes are copied from that one appearance.

For convenience, I will use *text when I do not need to distinguish between
\edtext and \critext. The *text macros take two arguments, the only differ-
ence between \edtext and \critext is how the second argument is delineated.

73

\critext requires two arguments. At any point within numbered text, you
use it by saying:

\critext{#1}#2/

Similarly \edtext requires the same two arguments but you use it by saying:

\edtext{#1}{#2}

e #1 is the piece of the main text being glossed; it gets added to the main text,
and is also used as a lemma for notes to it.

e #2 is a series of subsidiary macros that generate various kinds of notes. With
\critext the / after #2 must appear: it marks the end of the macro. (The
TeXbook, p. 204, points out that when additional text to be matched follows
the arguments like this, spaces following the macro are not skipped, which
is very desirable since this macro will never be used except within text.
Having an explicit terminator also helps keep things straight when nested
calls to \critext are used.) Braces around #2 are optional with \critext
and required for \edtext.

The *text macro may be used (somewhat) recursively; that is, *text may be
used within its own first argument. The code would be much simpler without this
feature, but nested notes will commonly be necessary: it’s quite likely that we’ll
have an explanatory note for a long passage and notes on variants for individual
words within that passage. The situation we can’t handle is overlapping notes that
aren’t nested: for example, one note covering lines 10-15, and another covering
12-18. You can handle such cases by using the \lemma and \linenum macros
within #2: they alter the copy of the lemma and the line numbers that are passed
to the notes, and hence allow you to overcome any limitations of this system,
albeit with extra effort.

The recursive operation of *text will fail if you try to use a copy that is
called something other than *text. In order to handle recursion, *text needs
to redefine its own definition temporarily at one point, and that doesn’t work if
the macro you are calling is not actually named *text. There’s no problem as
long as *text is not invoked in the first argument. If you want to call *text
something else, it is best to create instead a macro that expands to an invocation
of *xtext, rather than copying *text and giving it a new name; otherwise you
will need to add an appropriate definition for your new macro to \morenoexpands.

Side effects of our line-numbering code make it impossible to use the usual
footnote macros directly within a paragraph whose lines are numbered (see com-
ments to \do@line, p.. Instead, the appropriate note-generating command
is appended to the list macro \inserts@list, and when \pend completes the
paragraph it inserts all the notes at the proper places.

Note that we don’t provide previous-note information, although it’s often
wanted; your own macros must handle that. We can’t do it correctly without

\end@lemmas

\dummy@text

74 22 Marking text for notes

keeping track of what kind of notes have gone past: it’s not just a matter of re-
membering the line numbers associated with the previous invocation of *text,
because that might have been for a different kind of note. It is preferable for your
footnote macros to store and recall this kind of information if they need it.

An example where some ‘memory’ of line numbers might be required is where
there are several variant readings per line of text, and you do not wish the line
number to be repeated for each lemma in the notes. After the first occurrence of
the line number, you might want the symbol ‘||’ instead of further occurrences,
for instance. This can easily be done by a macro like \printlines, if it saves the
last value of \1@d@nums that it saw, and then performs a simple conditional test
to see whether to print a number or a ‘||’.

22.1 \edtext and \critext themselves

The various note-generating macros might want to request that commands be
executed not at once, but in close connection with the start or end of the lemma.
For example, footnote numbers in the text should be connected to the end of the
lemma; or, instead of a single macro to create a note listing variants, you might
want to use several macros in series to create individual variants, which would
each add information to a private macro or token register, which in turn would be
formatted and output when all of #2 for the lemma has been read.

To accomodate this, we provide a list macro to which macros may add commands
that should subsequently be executed at the end of the lemma when that lemma
is added to the text of the paragraph. A macro should add its contribution to
\end@lemmas by using \xleft@appenditem. (Anything that needs to be done at
the start of the lemma may be handled using \aftergroup, since the commands
specified within \critext’s second argument are executed within a group that
ends just before the lemma is added to the main text.)

\end@lemmas is intended for the few things that need to be associated with
the end of the lemma, like footnote numbers. Such numbers are not implemented
in the current version, and indeed no use is currently made of \end@lemmas or
of the \aftergroup trick. The general approach would be to define a macro to
be used within the second argument of \critext that would add the appropriate
command to \end@lemmas.

Commands that are added to this list should always take care not to do any-
thing that adds possible line-breaks to the output; otherwise line numbering could
be thrown off.

720 \1list@create{\end@lemmas}

We now need to define a number of macros that allow us to weed out nested
instances of \critext, and other problematic macros, from our lemma. This is
similar to what we did in reading the line-list file using \dummy@ref and various
redefinitions—and that’s because nested \critext macros create nested \@ref
entries in the line-list file.

\dummy@edtext

\no@expands
\morenoexpands

22.1 \edtext and \critext themselves 75

Here’s a macro that takes the same arguments as \critext but merely returns
the first argument and ignores the second.

721 \long\def\dummy@text#1#2/{#1}

LaTeX users are not used to delimited arguments, so I provide a \edtext macro
as well.

722 \newcommand{\dummy@edtextl} [2] {#1}

We’re going to need another macro that takes one argument and ignores it
entirely. This is supplied by the LaTeX \@gobble{(arg)}.

We need to turn off macro expansion for certain sorts of macros we’re likely to see
within the lemma and within the notes.

The first class is font-changing macros. We suppress expansion for them by
letting them become equal to zero.?! This is done because we want to pass into
our notes the generic commands to change to roman or whatever, and not their
expansions that will ask for a particular style at a specified size. The notes may
well be in a smaller font, so the command should be expanded later, when the
note’s environment is in effect.

A second sort to turn off includes a few of the accent macros. Most are not a
problem: an accent that’s expanded to an \accent command may be harder to
read but it works just the same. The ones that cause problems are: those that use
alignments—TEX seems to get confused about the difference between alignment
parameters and macro parameters; those that use temporary control sequences;
and those that look carefully at what the current font is.

(The \copyright macro defined in PLAIN TEX has this sort of problem as
well, but isn’t used enough to bother with. That macro, and any other that
causes trouble, will get by all right if you put a \protect in front of it in your
file.)

We also need to eliminate all eledmac macros like \edlabel and \setline
that write things to auxiliary files: that writing should be done only once. And
we make \critext itself, if it appears within its own argument, do nothing but
copy its first argument.

Finally, we execute \morenoexpands. The version of \morenoexpands defined
here does nothing; but you may define a version of your own when you need to add
more expansion suppressions as needed with your macros. That makes it possible
to make such additions without needing to copy or modify the standard eledmac
code. If you define your own \morenoexpands, you must be very careful about
spaces: if the macro adds any spaces to the text when it runs, extra space will
appear in the main text when \critext is used.

(A related problem, not addressed by these two macros, is that of charac-
ters whose category code is changed by any the macros used in the arguments
to \critext. Since the category codes are set when the arguments are scanned,

21Gince ‘control sequences equivalent to characters are not expandable’— The TeXbook, answer
to Exercise 20.14.

76 22 Marking text for notes

macros that depend on changing them will not work. We have most often en-
countered this with characters that are made ‘active’ within text in some, but not
all, of the languages used within the document. One way around the problem,
if it takes this form, is to ensure that those characters are always active; within
languages that make no special use of them, their associated control sequences
should simply return the proper character.)

723 \newcommand*{\no@expands}{%

724 \let\select@@lemmafont=0Y%

725 \let\startsub=\relax \let\endsub=\relax
726 \let\startlock=\relax \let\endlock=\relax
727 \let\edlabel=\@gobble

728 \let\setline=\Q@gobble \let\advanceline=\Q@gobble
729 \let\critext=\dummy@text

730 \let\edtext=\dummy@edtext

731 \l@dtabnoexpands

732 \morenoexpands}

733 \let\morenoexpands=\relax

734

\etag Now, we define an empty \@tag command. It will be redefine by \edtext: its

value is the first args. It will be used by the \Xfootnote commands.

735 \newcommand{\@tag}+{}

736 % \end{macrocode}

737 % \end{macro}

738 % \begin{macro}{\critext}

739 % Now we begin \cs{critext} itself. The definition requires a \verb"/" after

740 % the arguments: this eliminates the possibility of problems about

741 % knowing where \verb"#2" ends. This also changes the handling of spaces
742 %, following an invocation of the macro: normally such spaces are

743 %, skipped, but in this case they’re significant because \verb"#2" is
744 % a ‘delimited parameter’. Since \cs{critext} is always used in running
745 %, text, it seems more appropriate to pay attention to spaces than to
746 % skip them.

747 %

748 % When executed, \cs{critext} first ensures that we’re in

749 % horizontal mode.

750 % \begin{macrocode}

751 \long\def\critext#1#2/{\leavevmode

\@tag Our normal lemma is just argument #1; but that argument could have further

invocations of \critext within it. We get a copy of the lemma without any

\critext macros within it by temporarily redefining \critext to just copy its

first argument and ignore the other, and then expand #1 into \@tag, our lemma.
This is done within a group that starts here, in order to get the original

\critext restored; within this group we’ve also turned off the expansion of those

control sequences commonly found within text that can cause trouble for us.

752 \begingroup

753 \global\renewcommand{\@tag}{\no@expands #1}%%

22.1 \edtext and \critext themselves 77

\l@denums Prepare more data for the benefit of note-generating macros: the line references
and font specifier for this lemma go to \1@d@nums.

754 \set@line

\insert@count will be altered by the note-generating macros: it counts the
number of deferred footnotes or other insertions generated by this instance of
\critext.

755 \global\insert@count=0

Now process the note-generating macros in argument #2 (i.e., \Afootnote,
\lemma, etc.). \ignorespaces is here to skip over any spaces that might appear
at the start of #2; otherwise they wind up in the main text. Footnote and other
macros that are used within #2 should all end with \ignorespaces as well, to
skip any spaces between macros when several are used in series.

756 \ignorespaces #2\relax

Finally, we're ready to admit the first argument into the current paragraph.

It’s important that we generate and output all the notes for this chunk of
text before putting the text into the paragraph: notes that are referenced by line
number should generally be tied to the start of the passage they gloss, not the
end. That should all be done within the expansion of #2 above, or in \aftergroup
commands within that expansion.

757 \@ifundefined{xpg@main@language}{%if not polyglossia

758 \flag@start}’
759 {\if@RTL\flag@end\else\flag@start\fi), With polyglossia, you must track whether the language re
760 }

761 \endgroup
762 \showlemma{#1}%

Finally, we add any insertions that are associated with the end of the lemma.
Footnotes that are identified by symbols rather than by where the lemma begins
in the main text need to be done here, and not above.

763 \ifx\end@lemmas\empty \else

764 \gl@p\end@lemmas\to\x@lemma

765 \x@lemma

766 \global\let\x@lemma=\relax

767 \fi

768 \@ifundefined{xpg@main@language}{/if not polyglossia

769 \flag@end}

770 {\if@RTL\flag@start\else\flag@end\fi), With polyglossia, you must track whether the language re
771 }

772}

\edtext

773 \newcommand{\edtext}[2]{\leavevmode

774 \begingroup

775 \global\renewcommand{\@tag}{\no@expands #1}%
776 \set@line

78 22 Marking text for notes

T \globallinsert@count=0

778 \ignorespaces #2\relax

779 \@ifundefined{xpg@main@language}{%if not polyglossia

780 \flag@start}’

781 {\if@RTL\flag@end\else\flag@start\fi), With polyglossia, you must track whether the
782 Yh

783 \endgroup
784 \showlemma{#11}
785 \ifx\end@lemmas\empty \else

786 \gl@p\end@lemmas\to\x0@lemma

787 \x@lemma

788 \global\let\x@lemma=\relax

789 \fi

790 \@ifundefined{xpg@main@language}{%if not polyglossia

791 \flag@end}%

792 {\ifO@RTL\flag@start\else\flag@end\fi)% With polyglossia, you must track whether the
793 Yh

794}

795

\ifnumberline The \ifnumberline option can be set to FALSE to disable line numbering.

796 \newif\ifnumberline
797 \numberlinetrue

\set@line The \set@line macro is called by \critext to put the line-reference field and
font specifier for the current block of text into \1@d@nums.

One instance of \critext may generate several notes, or it may generate
none—it’s legitimate for argument #2 to \critext to be empty. But \flag@start
and \flag@end induce the generation of a single entry in \1ine@list during the
next run, and it’s vital to also remove one and only one \l1ine@list entry here.

798 \newcommand*{\set@line}{%

If no more lines are listed in \1ine®@list, something’s wrong—probably just
some change in the input. We set all the numbers to zeros, following an old
publishing convention for numerical references that haven’t yet been resolved.

799 \ifx\line@list\empty

800 \global\noteschanged@true
801 \xdef\1@d@nums{000|000|000|000|000|000|\edfont@infol}},
802 \else

803 \gl@p\line@list\to\@tempb

804 \xdef\1@d@nums{\@tempb|\edfont@infol}y,
805 \global\let\@tempb=\undefined

806 \fi}

807

\edfont@info The macro \edfont@info returns coded information about the current font.

808 \newcommand*{\edfont@info}{\f@encoding/\f@family/\f@series/\f@shape}
809

\lemma

\linenum

\line@set

\1ledeadd

22.2 Substitute lemma 79

22.2 Substitute lemma

The \lemma{(tezt)} macro allows you to change the lemma that’s passed on to
the notes.

810 \newcommand*{\lemma} [1]{\global\renewcommand{\@tag}{\no@expands #1}}

22.3 Substitute line numbers

The \1linenum macro can change any or all of the page and line numbers that are
passed on to the notes.

As argument \linenum takes a set of seven parameters separated by verti-
cal bars, in the format used internally for \1@d@nums (see p.: the starting
page, line, and sub-line numbers, followed by the ending page, line, and sub-line
numbers, and then the font specifier for the lemma. However, you can omit any
parameters you don’t want to change, and you can omit a string of vertical bars
at the end of the argument. Hence \linenum{18/410118]71110} is an invocation
that changes all the parameters, but \1inenum{ |33} only changes the starting line
number, and leaves the rest unaltered.

We use \\ as an internal separator for the macro parameters.

811 \newcommand*{\linenum} [1]{%

812 \xdef\@tempa{#1||||||]|\noexpand\\\1@d@nums}y,
813 \global\let\1@d@nums=\empty

814 \expandafter\line@set\@tempal|\\\ignorespaces}

\linenum calls \1ine@set to do the actual work; it looks at the first number in
the argument to \linenum, sets the corresponding value in \1@d@nums, and then
calls itself to process the next number in the \linenum argument, if there are more
numbers in \1@d@nums to process.

815 \def\line@set#1|#2\\#3|#4\\{/

816 \gdef\@tempb{#1}%

817 \ifx\@tempb\empty

818 \1@d@add{#3}%
819 \else

820 \1@dQadd{#1}%
821 \fi

822 \gdef\@tempb{#4}

823 \ifx\@tempb\empty\else

824 \1ed@add{|}\line@set#2\\#4\\Y
825 \fi}

\line@set uses \1@d@add to tack numbers or vertical bars onto the right hand
end of \1@d@nums.

826 \newcommand{\1@d@add} [1] {\xdef\1@d@nums{\1@d@nums#1}}
827

\raw@text
\ifnumberedpar®@
\numberedpar@true
\numberedpar@false
\num@lines
\one@line
\par@line

\pstart
\numberpstarttrue
\numberpstartfalse
\labelpstarttrue
\labelpstartfalse
\thepstart

80 23 Paragraph decomposition and reassembly

23 Paragraph decomposition and reassembly

In order to be able to count the lines of text and affix line numbers, we add an
extra stage of processing for each paragraph. We send the paragraph into a box
register, rather than straight onto the vertical list, and when the paragraph ends
we slice the paragraph into its component lines; to each line we add any no