
The elatex package
An e-TeX toolbox for class and package authors

Philipp Lehman
plehman@gmx.net

Version 1.1
May 28, 2007

Contents

1 Introduction 1
1.1 About 1
1.2 License 1
1.3 Contributions 1
1.4 Acknowledgments 2

2 User commands 2
2.1 Definitions 2
2.2 Patching 2

3 Author commands 2
3.1 Definitions 3
3.2 Arithmetic 4
3.3 Expansion 5
3.4 Hooks 6
3.5 Patching 8
3.6 Tests 9

4 Revision history 10

1 Introduction

1.1 About

The elatex package is a toolbox of programming facilities geared primarily to-
wards LaTeX class and package authors. It provides LaTeX frontends to some of
the new primitives provided by e-TeX as well as some generic tools which are
not strictly related to e-TeX but match the profile of this package. This package
will not modify any part of the LaTeX kernel. Its name is not meant to imply
that it patches LaTeX such that the kernel makes use of e-TeX facilities by de-
fault. The package is work in progress. At present, it provides facilities for macro
definitions, expansion control, hook management, and macro patching.

1.2 License

Copyright © 2007 Philipp Lehman. This package is author-maintained. Permis-
sion is granted to copy, distribute and/or modify this software under the terms
of the LaTeX Project Public License, version 1.3.1 This software is provided ‘as
is’, without warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular
purpose.

1.3 Contributions and feedback

I started to work on this package when I found myself implementing the same
tools and shorthands I had employed in previous LaTeX packages for yet another
package. For the most part, the facilities provided by elatex address my needs
as a package author and future development is likely to be guided by these needs
as well. Please note that I will not be able to address any feature requests. How-

1 http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

1

http://www.ctan.org/tex-archive/macros/latex/contrib/elatex/
mailto:plehman@gmx.net
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

ever, I am open to contributions by other class and package authors, provided
that the contributed code is suYciently generic, matches the profile of this pack-
age, and may be added to the package without requiring significant adaption.

1.4 Acknowledgments

The \ifblank test of this package is based on code by Donald Arseneau.

2 User commands

The facilities in this section are geared towards regular users as well as class and
package authors.

2.1 Definitions

\newrobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈definition〉}

The syntax and behavior of this command is similar to \newcommand except
that the newly defined 〈command〉 is robust. This command diVers from the
\DeclareRobustCommand command from the LaTeX kernel in that it issues an
error rather than just an informational message if the 〈command〉 is already de-
fined. Since it uses e-TeX’s low-level protection mechanism rather than the cor-
responding high-level LaTeX facilities, it does not require an additional macro to
implement the ‘robustness’. This command itself is also robust.

\renewrobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈definition〉}

The syntax and behavior of this command is similar to \renewcommand except
that the redefined 〈command〉 is robust. This command itself is also robust.

\providerobustcmd{〈command〉}[〈arguments〉][〈optarg default〉]{〈definition〉}

The syntax and behavior of this command is similar to \providecommand ex-
cept that the newly defined 〈command〉 is robust. Note that this command only
provides a robust definition if the 〈command〉 is undefined. It will not make an
already defined 〈command〉 robust. This command itself is robust.

2.2 Patching

\robustify{〈command〉}

Redefines a 〈command〉 such that it is robust without altering its syntax or def-
inition. If the 〈command〉 has been defined with \DeclareRobustCommand, this
will be detected automatically. LaTeX’s high-level protection mechanism is re-
placed by the corresponding low-level e-TeX facility in this case. This command
is robust and may only be used in the document preamble.

3 Author commands

The facilities in this section are geared towards class and package authors.

2

3.1 Definitions

The facilities in this section are simple but frequently required shorthands which
extend the scope of the \@namedef and \@nameuse macros from the LaTeX ker-
nel.

\csdef{〈csname〉}〈arguments〉{〈definition〉}

Similar to the TeX primitive \def except that it takes a control sequence name
as its first argument. This command is robust and corresponds to \@namedef.

\csgdef{〈csname〉}〈arguments〉{〈definition〉}

Similar to the TeX primitive \gdef except that it takes a control sequence name
as its first argument. This command is robust.

\csedef{〈csname〉}〈arguments〉{〈definition〉}

Similar to the TeX primitive \edef except that it takes a control sequence name
as its first argument. This command is robust.

\csxdef{〈csname〉}〈arguments〉{〈definition〉}

Similar to the TeX primitive \xdef except that it takes a control sequence name
as its first argument. This command is robust.

\protected@csedef{〈csname〉}〈arguments〉{〈definition〉}

Similar to \csedef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel
command \protected@edef except that it takes a control sequence name as its
first argument. This command is robust.

\protected@csxdef{〈csname〉}〈arguments〉{〈definition〉}

Similar to \csxdef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel
command \protected@xdef except that it takes a control sequence name as its
first argument. This command is robust.

\cslet{〈csname〉}{〈command〉}

Similar to the TeX primitive \let except that the first argument is a control
sequence name. This command is robust.

\letcs{〈command〉}{〈csname〉}

Similar to the TeX primitive \let except that the second argument is a control
sequence name. This command is robust.

\csletcs{〈csname〉}{〈csname〉}

Similar to the TeX primitive \let except that both arguments are control se-
quence names. This command is robust.

3

\csuse{〈csname〉}

Takes a control sequence name as its argument and forms a control sequence
token. This command diVers from the \@nameuse macro from the LaTeX kernel
in that it expands to an empty string if the control sequence is undefined.

3.2 Arithmetic definitions

The facilities in this section permit calculations using macros rather than length
registers and counters.

\numdef{〈command〉}{〈integer expression〉}

This command is similar to \edef except that the 〈integer expression〉 is pro-
cessed with \numexpr. The 〈integer expression〉 may be any arbitrary code which
is valid in this context. The definition assigned to 〈command〉 will be the result of
that calculation. If the 〈command〉 is undefined, it will be initialized to ‘0’ before
the 〈integer expression〉 is processed.

\numgdef{〈command〉}{〈integer expression〉}

Similar to \numdef except that the assignment is global.

\csnumdef{〈csname〉}{〈integer expression〉}

Similar to \numdef except that it takes a control sequence name as its first argu-
ment.

\csnumgdef{〈csname〉}{〈integer expression〉}

Similar to \numgdef except that it takes a control sequence name as its first
argument.

\dimdef{〈command〉}{〈dimen expression〉}

This command is similar to \edef except that the 〈dimen expression〉 is processed
with \dimexpr. The 〈dimen expression〉 may be any arbitrary code which is valid
in this context. The definition assigned to 〈command〉 will be the result of that
calculation. If the 〈command〉 is undefined, it will be initialized to ‘0pt’ before
the 〈dimen expression〉 is processed.

\dimgdef{〈command〉}{〈dimen expression〉}

Similar to \dimdef except that the assignment is global.

\csdimdef{〈csname〉}{〈dimen expression〉}

Similar to \dimdef except that it takes a control sequence name as its first argu-
ment.

\csdimgdef{〈csname〉}{〈dimen expression〉}

Similar to \dimgdef except that it takes a control sequence name as its first
argument.

4

\gluedef{〈command〉}{〈glue expression〉}

This command is similar to \edef except that the 〈glue expression〉 is processed
with \glueexpr. The 〈glue expression〉 may be any arbitrary code which is valid
in this context. The definition assigned to 〈command〉 will be the result of that
calculation. If the 〈command〉 is undefined, it will be initialized to ‘0pt plus
0pt minus 0pt’ before the 〈glue expression〉 is processed.

\gluegdef{〈command〉}{〈glue expression〉}

Similar to \gluedef except that the assignment is global.

\csgluedef{〈csname〉}{〈glue expression〉}

Similar to \gluedef except that it takes a control sequence name as its first
argument.

\csgluegdef{〈csname〉}{〈glue expression〉}

Similar to \gluegdef except that it takes a control sequence name as its first
argument.

\mudef{〈command〉}{〈muglue expression〉}

This command is similar to \edef except that the 〈muglue expression〉 is pro-
cessed with \muexpr. The 〈muglue expression〉 may be any arbitrary code which
is valid in this context. The definition assigned to 〈command〉 will be the result
of that calculation. If the 〈command〉 is undefined, it will be initialized to ‘0mu’
before the 〈muglue expression〉 is processed.

\mugdef{〈command〉}{〈muglue expression〉}

Similar to \mudef except that the assignment is global.

\csmudef{〈csname〉}{〈muglue expression〉}

Similar to \mudef except that it takes a control sequence name as its first argu-
ment.

\csmugdef{〈csname〉}{〈muglue expression〉}

Similar to \mugdef except that it takes a control sequence name as its first argu-
ment.

3.3 Expansion control

The facilities in this section are useful to control expansion in an \edef or a
similar context.

\expandonce{〈command〉}

This command expands 〈command〉 once and prevents further expansion of the
replacement text.

5

\csexpandonce{〈csname〉}

Similar to \expandonce except that it takes a control sequence name as its argu-
ment.

\protecting{〈code〉}

This command applies LaTeX’s protection mechanism, which normally requires
prefixing each fragile command with \protect, to an entire chunk of arbitrary
〈code〉 or text. Its behavior depends on the current state of \protect. Note that
the braces around 〈code〉 are mandatory even if it is a single token.

3.4 Hook management

The facilities in this section are intended for hook management. A ‘hook’ in this
context is a plain macro without any arguments and prefixes which is used to
collect code to be executed later. These facilities may also be useful to patch
simple macros by appending code to them. For more complex patching opera-
tions, see section 3.5. All commands in this section will initialize the hook if it is
undefined.

3.4.1 Appending code to a hook

The facilities in this section append arbitrary code to a hook.

\appto{〈command〉}{〈code〉}

This command appends arbitrary 〈code〉 to a 〈command〉. If the 〈code〉 contains
any parameter characters, they need not be doubled. This command is robust.

\gappto{〈command〉}{〈code〉}

Similar to \appto except that the assignment is global. This command may be
used as a drop-in replacement for the \g@addto@macro command in the LaTeX
kernel.

\eappto{〈command〉}{〈code〉}

This command appends arbitrary 〈code〉 to a 〈command〉. The 〈code〉 is expanded
at definition-time. Only the new 〈code〉 is expanded, the current definition of
〈command〉 is not. This command is robust.

\xappto{〈command〉}{〈code〉}

Similar to \eappto except that the assignment is global.

\protected@eappto{〈command〉}{〈code〉}

Similar to \eappto except that LaTeX’s protection mechanism is temporarily en-
abled.

6

\protected@xappto{〈command〉}{〈code〉}

Similar to \xappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\csappto{〈csname〉}{〈code〉}

Similar to \appto except that it takes a control sequence name as its first argu-
ment.

\csgappto{〈csname〉}{〈code〉}

Similar to \gappto except that it takes a control sequence name as its first argu-
ment.

\cseappto{〈csname〉}{〈code〉}

Similar to \eappto except that it takes a control sequence name as its first argu-
ment.

\csxappto{〈csname〉}{〈code〉}

Similar to \xappto except that it takes a control sequence name as its first argu-
ment.

\protected@cseappto{〈command〉}{〈code〉}

Similar to \protected@eappto except that it takes a control sequence name as
its first argument.

\protected@csxappto{〈command〉}{〈code〉}

Similar to \protected@xappto except that it takes a control sequence name as
its first argument.

3.4.2 Prepending code to a hook

The facilities in this section ‘prepend’ arbitrary code to a hook, i. e., the code is
inserted at the beginning of the hook rather than being added at the end.

\preto{〈command〉}{〈code〉}

Similar to \appto except that the 〈code〉 is ‘prepended’, i. e., inserted at the be-
ginning of the hook rather than being added at the end.

\gpreto{〈command〉}{〈code〉}

Similar to \preto except that the assignment is global.

\epreto{〈command〉}{〈code〉}

Similar to \eappto except that the 〈code〉 is ‘prepended’, i. e., inserted at the
beginning of the hook rather than being added at the end.

7

\xpreto{〈command〉}{〈code〉}

Similar to \epreto except that the assignment is global.

\protected@epreto{〈command〉}{〈code〉}

Similar to \epreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xpreto{〈command〉}{〈code〉}

Similar to \xpreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\cspreto{〈csname〉}{〈code〉}

Similar to \preto except that it takes a control sequence name as its first argu-
ment.

\csgpreto{〈csname〉}{〈code〉}

Similar to \gpreto except that it takes a control sequence name as its first argu-
ment.

\csepreto{〈csname〉}{〈code〉}

Similar to \epreto except that it takes a control sequence name as its first argu-
ment.

\csxpreto{〈csname〉}{〈code〉}

Similar to \xpreto except that it takes a control sequence name as its first argu-
ment.

\protected@csepreto{〈command〉}{〈code〉}

Similar to \protected@epreto except that it takes a control sequence name as
its first argument.

\protected@csxpreto{〈command〉}{〈code〉}

Similar to \protected@xpreto except that it takes a control sequence name as
its first argument.

3.5 Patching

The facilities in this section are useful to hook into or modify existing code. All
commands presented here preserve the number of arguments and the prefixes
of the patched 〈command〉. Note that the patching process involves detokenizing
the 〈command〉 and retokenizing it under the current category code regime after
patching. The category code of ‘@’ is temporarily set to 11. If the definition of the
〈command〉 includes any tokens with non-standard category codes, the respec-
tive category codes must be adjusted prior to patching. If the code to be replaced
or inserted refers to the parameters of the 〈command〉 to be patched, the param-

8

eter characters need not be doubled when invoking one of the commands below.
Note that \outer commands may not be patched.

\patchcommand[〈prefix〉]{〈command〉}{〈search〉}{〈replace〉}{〈success〉}{〈failure〉}

This command extracts the definition of a 〈command〉, replaces 〈search〉 with
〈replace〉, and reassembles the 〈command〉. The pattern match is category code
agnostic and matches the first occurence of the 〈search〉 string in the definition
of the 〈command〉 to be patched. If an optional 〈prefix〉 is specified, it replaces
the prefixes of the 〈command〉. An empty 〈prefix〉 strips all prefixes from the
〈command〉. This command executes 〈success〉 if patching succeeds, and 〈failure〉
otherwise. It is robust and may only be used in the document preamble. The
assignment is local.

\ifpatchable{〈command〉}{〈search〉}{〈true〉}{〈false〉}

This command executes 〈true〉 if the 〈command〉 is defined and the 〈search〉
pattern is found in its definition, and 〈false〉 otherwise. This command is robust
and may only be used in the document preamble.

\apptocommand{〈command〉}{〈code〉}

This command appends 〈code〉 to the definition of 〈command〉. In contrast to the
\appto command from section 3.4.1, this one may be used to patch a 〈command〉
which takes an arbitrary number of arguments. The 〈code〉 may refer to the
parameters of the 〈command〉 in this case. This command is robust and may
only be used in the document preamble. The assignment is local.

\pretocommand{〈command〉}{〈code〉}

This command is similar to \apptocommand except that the 〈code〉 is ‘prepended’,
i. e., inserted at the beginning of the definition of 〈command〉. In contrast to the
\preto command from section 3.4.1, this one may be used to patch a 〈command〉
which takes an arbitrary number of arguments. The 〈code〉 may refer to the
parameters of the 〈command〉 in this case. This command is robust and may
only be used in the document preamble. The assignment is local.

3.6 Tests

\ifdef{〈command〉}{〈true〉}{〈false〉}

A LaTeX wrapper for the e-TeX primitive \ifdefined. This command expands
to 〈true〉 if the 〈command〉 is defined, and to 〈false〉 otherwise. Note that the
〈command〉 is considered as defined even if its meaning is \relax.

\ifundef{〈command〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈command〉 is undefined, and to 〈false〉 otherwise. Apart
from reversing the logic of the test, this command also diVers from \ifdef in
that the 〈command〉 is considered as undefined if its meaning is \relax.

9

\ifcsdef{〈csname〉}{〈true〉}{〈false〉}

A LaTeX wrapper for the e-TeX primitive \ifcsname. This command expands
to 〈true〉 if 〈csname〉 is defined, and to 〈false〉 otherwise. Note that 〈csname〉 is
considered as defined even if its meaning is \relax.

\ifcsundef{〈csname〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if 〈csname〉 is undefined, and to 〈false〉 otherwise. Apart from
reversing the logic of the test, this command also diVers from \ifcsdef in that
the 〈csname〉 is considered as undefined if its meaning is \relax. This command
may be used as a drop-in replacement for the \@ifundefined test in the LaTeX
kernel.

\ifblank{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is blank (empty or spaces), and to 〈false〉 other-
wise. The 〈string〉 is not expanded in the test.

4 Revision history

1.1 2007-05-28

Added \protected@csedef . 3.1
Added \protected@csxdef . 3.1
Added \gluedef . 3.2
Added \gluegdef . 3.2
Added \csgluedef . 3.2
Added \csgluegdef . 3.2
Added \mudef . 3.2
Added \mugdef . 3.2
Added \csmudef . 3.2
Added \csmugdef . 3.2
Added \protected@eappto . 3.4.1
Added \protected@xappto . 3.4.1
Added \protected@cseappto . 3.4.1
Added \protected@csxappto . 3.4.1
Added \protected@epreto . 3.4.2
Added \protected@xpreto . 3.4.2
Added \protected@csepreto . 3.4.2
Added \protected@csxpreto . 3.4.2
Fixed bug in \newrobustcmd . 2.1
Fixed bug in \renewrobustcmd . 2.1
Fixed bug in \providerobustcmd . 2.1

1.0 2007-05-07

Initial public release

10

	Contents
	Introduction
	About
	License
	Contributions
	Acknowledgments

	User commands
	Definitions
	Patching

	Author commands
	Definitions
	Arithmetic
	Expansion
	Hooks
	Patching
	Tests

	Revision history

