%% %% Ein Beispiel der DANTE-Edition %% %% Beispiel 10-08-7 auf Seite 556. %% %% Copyright (C) 2012 Herbert Voss %% %% It may be distributed and/or modified under the conditions %% of the LaTeX Project Public License, either version 1.3 %% of this license or (at your option) any later version. %% %% See http://www.latex-project.org/lppl.txt for details. %% %% %% ==makeglossaries== % Show page(s) 1,2 %% \documentclass[ngerman,paper=a6,DIV=16,pagesize]{screxa} \pagestyle{empty} \setlength\parindent{0pt} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{microtype} \usepackage{babel} \usepackage{amsmath} \allowdisplaybreaks \makeatletter\@addtoreset{equation}{section}\makeatother \newcommand\erf{\operatorname{erf}} \newcommand\erfc{\operatorname{erfc}} \newcommand\dt{\,\mathrm{d}t} \usepackage[colorlinks]{hyperref} \usepackage[style=long3colheader,counter=equation]{glossaries} \makeglossaries \loadglsentries{data/verzeichnisse/glossdata3.txt} \renewcommand\entryname{Funktion}\renewcommand\descriptionname{Beschreibung} \renewcommand\pagelistname{Gl.}\renewcommand*\theHequation{\theHsection.\arabic{equation}} \renewcommand\theequation{\thesection.\arabic{equation}} \begin{document} \printglossary[title={Index der mathematischen Gleichungen}] \section{Gammafunktionen} \begin{equation}\gls{Gamma}=\int_{0}^{\infty}e^{-t}t^{z-1}\dt\end{equation} \begin{equation}\glslink{Gamma}{\ensuremath{\Gamma(x+1)}}=x\Gamma(x)\end{equation} \begin{equation}\gls{gamma}=\int_0^x e^{-t}t^{\alpha-1}\dt\end{equation} \begin{equation}\gls{iGamma}=\int_x^\infty e^{-t}t^{\alpha-1}\dt\end{equation} \section{Fehlerfunktionen} \begin{equation}\gls{erf}=\frac{2}{\surd\pi}\int_0^x e^{-t^2}\dt\end{equation} \begin{equation}\gls{erfc}=1 - \erf(x)\end{equation} \section{Betafunktionen} \begin{equation}\gls{B}=2\int_0^1 t^{x-1}(1-t^2)^{y-1}\dt\end{equation} \begin{equation}\gls{B}=2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\mathrm{d}\phi \end{equation} \begin{equation}\gls{B}=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=B(y,x)\end{equation} \begin{equation}\gls{Bx}=\int_0^x t^{p-1}(1-t)^{q-1}\dt\end{equation} \section{Hypergeometrische Funktionen} \begin{align} \gls{Phi} &= 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} +\frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} +\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\\\nonumber &\,\frac{z^3}{3!} + \cdots \end{align} \end{document}