
Manual for egameps.sty

by
Martin J. Osborne

martin.osborne@utoronto.ca

Version 1, April 2001
(based on egame.sty, November 1997)

1. Introduction

egameps.sty is a LATEX2e style file for drawing extensive games. It is intended
to have the capability of drawing any extensive game. It is not very fast
(probably because it is not written very efficiently, but possibly simply because
it needs to make a lot of computations). The latest version is available at
http://www.economics.utoronto.ca/osborne/latex/.

The style requires the PSTricks package (available on CTAN; documented
in The LATEX Graphics Companion) and a means of printing a Postscript
file (e.g. a Postscript printer, or a non-Postscript printer and the program
Ghostscript).

2. Installation

• Put egameps.sty in a directory from which TEX reads input files. (In
MiKTeX the directory might be something like \miktex\localtexmf\tex\latex\
or a subdirectory thereof.)

• Let TEX know that egameps has arrived. (In MiKTeX, “refresh the
filename database”.)

• Check that you have PSTricks. If you do not, get it from CTAN.

• To use the package in a document, put the lines
\usepackage{pstricks}

\usepackage{pstcol}

\usepackage{egameps}

in the preamble.

3. Using the style

To draw a game using the style, first break the game into components, each
consisting of a node together with the branches that emanate from it, the

1

names with which the actions are labeled, and the players’ payoffs if the nodes
at the end of the branches are terminal. To draw each component, calls to
two macros are needed. First \putbranch is called, which sets the position of
the node and the slope and length of the branch(es), then either \ib, \iib, or
\iiib. The macro \ib draws a single branch, while \iib and \iiib draw two
and three branches respectively. If the node has more than three branches,
calls to a combination of these macros are needed.

A game is begun by a call of the type
\begin{egame}(400,500)

which starts a pspicture, with dimensions (400, 500) and the unitlength equal
to the default of 0.1mm, or

\begin{egame}(400,500)[1mm]

which starts a pspicture, with dimensions (400, 500) and sets the unitlength
at 1mm.

The next section gives examples that illustrate many of the features of the
package. Precise descriptions of the macros are given in Section 5.

4. Examples

The game in Figure 1 is produced by the following code.

\begin{figure}[htb]

\hspace*{\fill}

\begin{egame}(600,280)

%

% put the initial branch at (300,240), with (x,y) direction

% (2,1), and horizontal length 200

\putbranch(300,240)(2,1){200}

%

% give the branch two actions, label it for player 1,

% and label the actions L and R

\iib{1}{L}{R}

%

% put a branch at (100,140), with (x,y) direction

% (1,1) and horizontal length 100

\putbranch(100,140)(1,1){100}

%

% give the branch two actions, omit a player label,

% label the actions a and b, and assign the payoffs

% $1,0$ and $2,3$ to these actions

2

\iib{}{a}{b}[$1,0$][$2,3$]

%

% put a branch at (500,140), with (x,y) direction (1,1)

% and horizontal length 100

\putbranch(500,140)(1,1){100}

%

% give the branch two actions, omit a player label,

% label the actions c and d, and assign the payoffs

% $0,1$ and $-1,0$ to these actions

\iib{}{c}{d}[$0,1$][$-1,0$]

%

% draw an information set between the nodes at (100,140)

% and (500,140)

\infoset(100,140){400}{2}

%

\end{egame}

\hspace*{\fill}

\caption[]{An extensive game}\label{f:one}

\end{figure}

RL

1

b

2, 3

a

1, 0

d

−1, 0

c

0, 1

2

Figure 1. An extensive game

Another example, illustrating more features, is produced by the following
code, and is shown in Figure 2.

\begin{figure}[htb]

\hspace*{\fill}

%

% fill boxes containing payoffs with a solid red color

\renewcommand{\egpayboxfillstyle}{solid}

\renewcommand{\egpayboxfillcolor}{red}

% add a bit of separation around the payoffs

\egpayoffboxsep=1mm

3

%

% fill boxes containing action labels with a solid blue color

\renewcommand{\egalboxfillstyle}{solid}

\renewcommand{\egalboxfillcolor}{blue}

\egactionboxsep=1mm

%

% put player labels in green circles

\renewcommand{\egplbox}{c}

\renewcommand{\egplboxlinestyle}{solid}

\renewcommand{\egplboxlinecolor}{green}

\egplayerboxsep=1mm

%

\begin{egame}(500,280)

%

% put the initial branch at (300,240), with (x,y) direction

% (2,1), and horizontal length 200

\putbranch(300,240)(2,1){200}

%

% give the branch three actions, label it for player 1,

% label the actions L, M, and R, and make the middle

% and right actions terminal, with payoffs $1,2$ and $0,1$

\iiib{1}{L}{M}{R}[][$1,2$][$0,1$]

%

% put a branch at (100,140), with (x,y) direction

% (1,1) and horizontal length 100

\putbranch(100,140)(1,1){100}

%

% give the branch two actions, make the left-hand one dashed,

% label the branch for player 2, putting

% the player label to the top left of the node,

% label the actions a and b, and assign the payoffs

% $1,0$ and $2,3$ to these actions

\iib[linestyle=dashed][]{2}[l]{a}{b}[$1,0$][$2,3$]

%

\end{egame}

\hspace*{\fill}

\caption[]{Another extensive game}\label{f:two}

\end{figure}

4

R

0, 1

L
M

1, 2

1

b

2, 3

a

1, 0

2

Figure 2. Another extensive game

Yet another example, illustrating still more features, is produced by the
following code, and is shown in Figure 3.

\begin{figure}[htb]

\hspace*{\fill}

%

\begin{egame}(600,480)

%

% put the initial branch at (300,240), with (x,y) direction

% (1,0), and horizontal length 200

\putbranch(300,240)(1,0){200}

%

% give the branch two actions, label it for player c,

% and label the actions ${1\over 2}$ and ${1\over 2}$

\iib{c}{${1\over 2}$}{${1\over 2}$}

%

% put a branch at (100,240), with (x,y) direction

% (0,1), going right, and vertical length 100. (Notes: If the

% branch were specified as going left, it would look the same,

% but the player label would be in the wrong place. The

% third mandatory argument of \putbranch is the horizontal

% distance unless the branch is vertical, in which case it is

% the vertical distance.)

\putbranch(100,240)(0,1)[r]{100}

%

% give the branch two actions, label it for player 1,

% and label the actions a and b

\iib{1}{a}{b}

%

% put a branch at (500,240), with (x,y) direction

% (0,1), going left, and vertical length 100.

5

\putbranch(500,240)(0,1)[l]{100}

%

% give the branch two actions, label it for player 1,

% and label the actions b and a

\iib{1}{b}{a}

%

% put an information set at (100,340), of length 400,

% assigned to player 2

\infoset(100,340){400}{2}

%

% put an information set at (100,140), of length 400,

% assigned to player 2

\infoset(100,140){400}{2}

%

% put a branch at (100,340), with (x,y) direction

% (1,1), going up, and horizontal length 100.

\putbranch(100,340)(1,1)[u]{100}

%

% specify a positive horizontal shift for the action labels,

% which slides the ones on the right-hand branches to the

% right along the branches and the ones on the left to the

% left, improving the label positions

\egalhshift=20

%

% give the branch two actions, give it no player label,

% label the actions L and R, and put payoffs of

% $-1,0$ and $0,-1$.

\iib{}{L}{R}[$-1,0$][$0,-1$]

%

% put a branch at (500,340), with (x,y) direction

% (1,1), going up, and horizontal length 100.

\putbranch(500,340)(1,1)[u]{100}

%

\egalhshift=20

%

% give the branch two actions, give it no player label,

% label the actions L and R, and put payoffs of

% $1,0$ and $0,1$.

\iib{}{L}{R}[$1,0$][$0,1$]

%

6

% put a branch at (100,140), with (x,y) direction

% (1,1), going down, and horizontal length 100.

\putbranch(100,140)(1,1)[d]{100}

%

\egalhshift=20

%

% give the branch two actions, give it no player label,

% label the actions L and R, and put payoffs of

% $2,0$ and $0,2$.

\iib{}{L}{R}[$1,0$][$0,1$]

%

% put a branch at (500,140), with (x,y) direction

% (1,1), going down, and horizontal length 100.

\putbranch(500,140)(1,1)[d]{100}

%

\egalhshift=20

%

% give the branch two actions, give it no player label,

% label the actions L and R, and put payoffs of

% $3,0$ and $0,3$.

\iib{}{L}{R}[$1,0$][$0,1$]

%

\end{egame}

\hspace*{\fill}

\caption[]{Yet another extensive game}\label{f:three}

\end{figure}

1

2

1

2 c

b

a

1
a

b

1

2

2

R

0,−1

L

−1, 0

R

0, 1

L

1, 0

R

0, 2

L

2, 0

R

0, 3

L

3, 0

Figure 3. Yet another extensive game

7

The next example, shown in Figure 4, shows how to combine calls to \iib

to draw nodes followed by four branches.

\begin{figure}[htb]

\hspace*{\fill}

\begin{egame}(1200,380)

%

% put an initial node at (700,340), with (x,y) direction

% (3,1), and horizontal length 600

\putbranch(700,340)(3,1){600}

%

% give the branch two actions, label it for player 1,

% label the actions A and D, and make the right-

% hand node terminal, with payoffs $0,1$.

\iib[linecolor=red][]{1}{A}{D}[][$0,1$]

%

% to add two more branches to the initial node, force

% the branch to be initial

\initialtrue

% and specify the direction (1,1) and the horizontal length 200

\putbranch(700,340)(1,1){200}

%

% tighten the spacing between labels and branches, to improve

% appearance (given the other branches)

\egactionlabelsep=0.5mm

% give the branch two actions and label the actions B and C

\iib{}{B}{C}

%

% reset default spacing

\egactionlabelsep=1mm

% put a branch at (100,140), with direction (1,1)

% and horizontal length 100.

\putbranch(100,140)(1,1){100}

%

% give the branch two actions, omit a player label,

% label the actions a and b, and put payoffs

\iib[][linecolor=red]{}{a}{b}[$2,1$][$4,0$]

%

% put a branch at (500,140), with direction (1,1)

% and horizontal length 100.

8

\putbranch(500,140)(1,1){100}

%

% give the branch two actions, omit a player label,

% label the actions a and b, and put payoffs

\iib[][linecolor=red]{}{a}{b}[$1,3$][$-1,0$]

%

% put a branch at (900,140), with direction (1,1)

% and horizontal length 100.

\putbranch(900,140)(1,1){100}

%

% give the branch two actions, omit a player label,

% label the actions a and b, and put payoffs

\iib[][linecolor=red]{}{a}{b}[$-1,0$][$2,1$]

%

% put an information set at (100,140), of length 800,

% assigned to player 2

\infoset(100,140){800}{2}

%

\end{egame}

\hspace*{\fill}

\caption[]{Yet another extensive game}\label{f:four}

\end{figure}

D

0, 1

A

1

CB

b

4, 0

a

2, 1

b

−1, 0

a

1, 3

b

2, 1

a

−1, 0

2

Figure 4. Yet another extensive game

5. Description of macros

\begin{egame}(width,height)[unitlength]

begins an extensive game of width width and height height and optionally sets
the unitlength to be unitlength (default 0.1mm). In the game, all distances are

9

given as integers, which are interpreted as multiples of the unitlength. These
integers should (probably) be divisible by two, so that the integer arithmetic
employed by TEX doesn’t lose accuracy when numbers are divided by two. I
have tested the macros thoroughly only with the default unitlength of 0.1mm;
unless there is a compelling reason to use some different unitlength, I suggest
sticking to 0.1mm. (\begin{egame}(w,h) starts a pspicture environment
(defined by PSTricks) of width w and height h.)

Permissible values:

width, height Any pair of integers. (You need to calculate these numbers.)

unitlength Any dimension. Default: 0.1mm.

\end{egame}

ends an extensive game.

\putbranch(x-coord,y-coord)(h-incr,v-incr)[direction]{length}

sets up the parameters for a branch at the point (x-coord ,y-coord), with direc-
tion parameter (h-incr ,v-incr), optional direction direction, and length length.
Note that this macro merely sets up the parameters for a call to \ib (one
branch), \iib (two branches), \iiib (three branches), or \ctmb (continuum
of branches); it does not draw anything. The way in which the direction pa-
rameter (h-incr ,v-incr) is interpreted depends on whether \ib, \iib, or \iiib
is used to draw the branches. The length is the horizontal distance between
the ends of one of the branches to be drawn, unless h-incr is 0, in which case
length is the vertical distance between the ends of one of the branches.

Permissible values:

(x-coord ,y-coord) Any pair of integers.

(h-incr ,v-incr) Any pair of integers except (0,0).

direction d (down), u (up), r (right), or l (left); default d. (The direction can
be changed also globally, by specifying \egdirection{direction} before
the call to \putbranch.)

length Any positive integer.

\ib[branchstyle]{player-name}[player-label-position]{action-label}

[action-label-position][payoffs]

puts a single branch with the parameters of the preceding call to \putbranch,

10

optionally using the PSTricks style branchstyle, assigns it the player name
player-name, optionally positions the player label relative to the node accord-
ing to player-label-position, labels the action action-label, optionally positions
the label according to player-label-position, and optionally adds the payoffs
payoffs. A single optional argument at the end is interpreted as follows: if
its value is o (outside), i (inside), or c (centered), it determines the position
of the action label; otherwise, it is a payoff label. If there are two optional
arguments, the first must be o (outside), i (inside), or c (centered), determin-
ing the position of the action label, and the second is a payoff label. (If you
do not want an optional positioning argument and you want your payoff label
to be “o”, “i”, or “c”, here’s a workaround: put the label in an hbox, as in
\hbox{o}. (Note that you do not need to do this if your payoff label is o,
etc.—only if it is just “o”.)

The first branch in any egame is taken to be the initial branch of the
game; its beginning node is indicated by \eginode, the default of which is a
small circle. Subsequent branches are taken to be noninitial, and are indicated
by \egnode, the default value of which is a small disk. To force a node to be
initial, specify \initialtrue before it; to force a node to be noninitial, specify
\initialfalse before it. To change the appearance of nodes, see Section 8.

Permissible values:

branchstyle Any PSTricks linestyle (e.g. linecolor=red, linestyle=dashed,
linewidth=2pt, doubleline=true).

Default: linecolor=black, linestyle=solid, linewidth=0.8pt.

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection

or by an optional argument of \putbranch) is d or u, either l

(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right
and up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label Any character string.

11

action-label-position o (outside), i (inside), or c (centered on branch).

Default: o. (For more on action label positioning, see Section 6.)

payoffs Any character string.

Examples:

\putbranch(0,100)(2,-1){200}

\ib{1}{x}

x

1

200

Note that in the following example the 1 in the direction pair (0,1) is
interpreted as sending the branch down, given that the \egdirection is d.
(That is, once you specify the \egdirection (or leave it at the default d)
you do not need to worry about getting the sign of the v-incr correct (if the
direction is d or u) or the sign of the h-incr correct (if the direction is l or r).

\putbranch(0,100)(0,1){100}

\ib[linecolor=gray]{1}[l]{x}[c]

x

1

100

\initialfalse

\putbranch(0,40)(1,1)[u]{100}

\ib{1}{x}[$0,2$]

x

0, 2

1

Notice that the optional direction specifier u in \putbranch affects not only
the direction of the branch (which is determined by the argument (1,1)), but
also the placement of the player label relative to the starting node.

\initialfalse

\putbranch(0,100)(1,1){100}

\ib{1}[l]{x}[i][$0,2$]

12

x

0, 2

1

\iib[style1][style2]{player-name}[player-label-position]{action-label1}

{action-label2}[action-label-position][payoffs1][payoffs2]

puts two branches with the parameters of the preceding call to \putbranch, op-
tionally using the PSTricks style branchstyle1 for the left or upper branch and
the style branchstyle2 for the other branch (or branchstyle1 for both branches,
if there is only one optional argument), assigns it the player name player-

name, optionally positions the player label relative to the node according to
player-label-position, labels the left/upper action with action-label1 and the
right/lower action with action-label2, optionally using the position action-

label-position, and optionally adds payoffs payoffs1 and payoffs2. The signs
of the direction parameters (h-incr ,v-incr) in the preceding \putbranch call
are ignored; the directions of the branches is determined by the direction of
the branch (as specified either by \egdirection or by the optional argument
of \putbranch). If, for example, the direction is d, then one branch goes down
and to the left and the other goes down and to the right.

The first branch in any egame is taken to be the initial branch of the
game; its beginning node is indicated by \eginode. Subsequent branches are
taken to be non-initial, and are indicated by \egnode. To force a node to be
initial, specify \initialtrue before it; to force a node to be noninitial, specify
\initialfalse before it.

Permissible values:

style1, style2 Any PSTricks line styles; see \ib. If there is only one style
present, it is applied to both branches. If there are two styles, the first is
applied to the right hand branch and the second to the left hand branch
if the game direction is up or down, and the first is applied to the lower
branch and the second to the upper branch if the game direction is left
or right.

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection

or by an optional argument of \putbranch) is d or u, either l

(above/below and to the left) and r (above/below and to the right).

13

• If the direction of the branch is r or l, either u (to the left/right
and up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label1 and action-label2 Any character strings.

action-label-position o (outside), i (inside), or c (centered). Default: o.

payoffs1 and payoffs2 Any character strings.

Examples:
Action labels “outside” (default):

\putbranch(100,140)(1,1){100}

\iib[linestyle=dashed]{1}{L}{R}

RL

1

100

Action labels “inside”:

\putbranch(100,140)(1,1){100}

\iib[linestyle=dashed]{1}{L}{R}[i]

RL

1

Action labels “centered”:

\renewcommand{\egarrowstyle}{e}

\putbranch(0,140)(2,1)[r]{200}

\iib{1}{L}{R}[c]

R

L

1

200

14

\renewcommand{\egarrowstyle}{e}

\putbranch(0,100)(1,1)[r]{100}

\iib[linecolor=gray][doubleline=true]{1}{L}{R}[$1,2$][$0,-1$]

R
0,−1

L

1, 2

1

\renewcommand{\egarrowstyle}{m}

\psset{arrowscale=2}

\putbranch(200,40)(1,0)[d]{200}

\iib{1}{L}{R}[$1,2$][$0,-1$]

R

0,−1

L

1, 2

1

\iiib[style1]{player-name}[player-label-position]{action-label1}

{action-label2}{action-label3}[action-label-position][payoffs1][payoffs2]

[payoffs3]

puts three branches with the parameters of the preceding call to \putbranch,
optionally all in the PSTricks style style, assigns it the player name player-

name, optionally positions the player label relative to the node according to
player-label-position, and labels the left/top action with action-label1, the mid-
dle action with action-label3, and the right/bottom action with action-label2,
optionally positioning the labels according to action-label-position and putting
the payoffs1, payoffs2, and payoffs3. The signs of the direction parameters (h-
incr ,v-incr) in the preceding \putbranch call are ignored; the directions of the
branches are determined by the direction of the branch (as specified either by
\egdirection or by the optional argument of \putbranch). If, for example,
the direction is d, then one branch goes down and to the left, one goes straight
down, and one goes down and to the right.

The first branch in any egame is taken to be the initial branch of the game;
its beginning node is indicated by a small circle. Subsequent branches are
taken to be non-initial, and are indicated by \egnode, the default value of
which is a small disk. To force a node to be initial, specify \initialtrue

before it; to force a node to be noninitial, specify \initialfalse before it.
Permissible values:

15

style Any PSTricks line style. [Note that only one style is allowed, which
applies to all three branches. If you want the branches to have different
styles, you need to use a combination of \ib and \iib.]

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection

or by an optional argument of \putbranch) is d or u, either l

(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right
and up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label1, action-label2, and action-label3 Any character strings.

action-label-position o (outside), i (inside), or c (centered). Default: o.

payoffs1, payoffs1, and payoffs3 Any character strings.

Examples:

\putbranch(200,240)(1,1){200}

\iiib{1}{L}{M}{R}

RL
M

1

200

\putbranch(30,210)(1,1)[r]{200}

\iiib[linecolor=gray]{1}{B}{M}{T}[c][$1,2$][$0,-1$][$7,1$]

16

T

7, 1

B

1, 2

M 0,−11

200

\ctmb[style]{player-name}[player-label-position](h-incr,v-incr)

{action-label}[action-label-position][payoffs]

draws a continuum of branches starting with the parameters of the previous
call to \putbranch, with a single branch drawn as a line with PSTricks style
style, player player, with the label optionally positioned according to player-

label-position, and slope \emph{h-incr,v-incr}, labeled with action-label,
which is optionally positioned according to action-label-position, and optionally
with payoffs payoffs.

The color of the triangle representing the continuum of branches is
\ctmfillcolor (default verylightgray (defined in the style)).

Permissible values:

style Any PSTricks line style. [Note that this is the style of the single branch,
not of the triangle.]

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection

or by an optional argument of \putbranch) is d or u, either l

(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right
and up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

(h-incr ,v-incr) Any pair of integers.

action-label Any character string.

17

action-label-position o (outside), i (inside), or c (centered). Default: o.

payoffs Any character strings.

Examples:

\putbranch(50,240)(2,-1)[d]{200}

\ctmb{1}(1,1){A}[i][$2,2$]:

A

2, 2

1

\renewcommand{\ctmfillcolor}{red}

\renewcommand{\egarrowstyle}{e}

\putbranch(50,240)(2,-1)[d]{200}

\ctmb[linecolor=blue]{1}(-1,1){A}[i][$2,2$]:

A

2, 2

1

\putbranch(50,0)(2,1)[u]{200}

\ctmb{1}(1,1){A}[i][$2,2$]:

A

2, 2

1

\infoset(x-coord,y-coord)[direction]{length}{player-name}

[player-label-position]

draws an information set starting at (x-coord ,y-coord), optionally with direc-
tion direction, of length length, with player label player-name. If the direction
of the game is either down or up, the information set is horizontal; if the di-
rection of the game is either right or left, the information set is vertical. The

18

player label is positioned at the middle of the information set, either above,
below, to the left, or to the right of it, depending on the direction of the game.
(Its position can be adjusted by adding some space before or after the player
name. For example,
\infoset(100,200){400}{1\hspace{10mm}}

centers the box containing 1\hspace{10mm} relative to the information set,
thus moving the label by about 5mm.

The dot character used in the information set is given by \infosetdot,
the default value of which is \pscircle*{2.5}; the spacing between the dots
is set by \infosetdotsep, the default value of which is 20. (See Section 8.)

Permissible values:

(x-coord ,y-coord) Any pair of integers.

direction h (horizontal) or v (vertical). If none is specified, it is assumed to
be h if the game direction is d or u, and v if the game direction is r or l.

length Any nonnegative integer.

player-name Any character string.

player-label-position o (over), u (up), or d (down) if direction is h, o (over),
l (left), or r (right) if direction is v.

Examples:

\egdirection{d}

\infoset(0,0){300}{1}

1

\egdirection{d}

\infoset(0,0){300}{1}[o]

1

\egdirection{d}

\infoset(0,0)[u]{200}{1}

1

19

6. Positioning action labels

The following algorithm is used to position an action label. The “reference
point” for a branch is its midpoint. An action label is surrounded by a box
(which may be colored and bordered by a line), from which it is separated by
\egactionboxsep, then this box is surrounded by another box, from which it
is separated by \egactionlabelsep. Then, for example, for a label positioned
above a downward-sloping branch, the bottom left-hand corner of the outer
box is placed at the reference point, as in Figure 5. For a label positioned
above a horizontal branch, the bottom center of the outer box is placed at the
reference point.

o

x

y

y = \egactionboxsep

x = \egactionlabelsep

Figure 5. The position of an action label above a downward-sloping branch.

This algorithm is not perfect. (Note that it is not continuous in the slope
of the branch.) The positions of labels may need fine tuning, which may be
achieved by setting either \egalhshift or \egalvshift or both to be nonzero
(each is an integer, interpreted as a multiple of the unitlength).

\egalhshift and \egalvshift must be set between \putbranch and \ib,
\iib, \iiib, or \ctmb. (They are set to zero by \putbranch.)

If \egalhshift is nonzero and \egalvshift is not, the reference point
for the action label on the single branch in \ib, of the right-hand branch for
directions d and u and of both branches for directions r and l in \iib, and
for the outer branches of \iiib, is moved horizontally by this amount and
is moved vertically to maintain the same separation from the branch. (That
is, the action label slides parallel to the branch; it moves horizontally by the
amount \egalhshift.) The reference point of the label on the symmetric
branch is moved symmetrically. (Note that the label on the middle branch of
\iiib is not moved. If you want to move it, you need to write separate calls
to \iib and \ib.)

Similarly, if \egalvshift is nonzero and \egalhshift is not, the reference
point for the action label is moved vertically by this amount and is moved

20

horizontally to maintain the same separation from the branch. After a branch
is drawn, \egalhshift and \egalvshift are reset to zero.

Note that the same effect can be acheived with either \egalhshift or
\egalvshift. The two methods are provided simply because in some cases
a vertical shift might be more natural to specify, whereas in other cases a
horizontal shift might be more natural to specify.

If both \egalhshift and \egalvshift are nonzero, the reference point is
moved horizontally by \egalhshift and vertically by \egalvshift.

Examples:
\egdirection{d} \egalhshift=40

B

2, 2

A

1, 1

1

\egalhshift=-40

B

2, 2

A

1, 1

1

\egalhshift=40\egalvshift=40

B

2, 2

A

1, 1

1

\egdirection{u}\egalhshift=60

B 2, 2

A 1, 1

1

21

7. Arrows

Branches can have arrows either at the end or in the middle, by setting
\renewcommand{\egarrowstyle}{e}

(for arrows at the end), or
\renewcommand{\egarrowstyle}{m}

(for arrows in the middle). The positioning of arrows in the middle is not
ideal: the tip of the arrow is placed in the middle of the branch, while ideally
the middle of the arrow should be there. I can’t see any easy way to improve
the placement.

The style of the arrows can be controlled with PSTricks’ various parameters
(as described, for example, in the LATEX Graphics Companion).

8. Parameters

\egdirection

Direction of game. Possible values: d (down), u (up), r (right), or l (left).
Default: d. Example: \egdirection{u}.

\initialtrue, \initialfalse
Force a node other than the first one in an egame to be initial, or force the
first node to be noninitial.

\eginode

Object used for initial node. Possible values: any object. Default:
\pscircle [linewidth=0.4pt]{5}. Example: \renewcommand{\eginode}

{\makebox(0,0){\rule{0.5mm}{0.5mm}}} (the \makebox causes the object
to be positioned correctly).

\egnode

Object used for nodes. Possible values: any object. Default: \pscircle*{5}.
Example: \renewcommand{\egnode}{\makebox(0,0){\rule{0.5mm}{0.5mm}}}
(the \makebox causes the object to be positioned correctly).

\infosetdot

Object used for “dots” in information sets. Possible values: any ob-
ject. Default: \pscircle*{2.5}. Example: \renewcommand{\infosetdot}

{\pscircle*{5}}.

\infosetdotsep

Spacing between dots in information set, as a multiple of the unit length.

22

Possible values: any positive integer. Default: 20. Example: \renewcommand

{\infosetdotsep}{40}.

\egplayerlabelsep

Spacing used to position box containing player label relative to center of initial
node, and relative to center of information set. Possible values: any dimension.
Default: 1mm. Example: \egplayerlabelsep=2mm.

\egplayerboxsep

Distance between edge of box around player label and player label. Possible
values: any dimension. Default: 0mm. Example: \egplayerboxsep=1mm.

\egactionlabelsep

Spacing used to position box containing action label relative to branch. Possi-
ble values: any dimension. Default: 0.7mm. Example: \egactionlabelsep=

1mm.

\egactionboxsep

Distance between edge of box around action label and action label. Possible
values: any dimension. Default: 0mm. Example: \egactionboxsep=1mm.

\egpayofflabelsep

Spacing used to position box containing action label relative to end of
branch. Possible values: any dimension. Default: 2mm. Example:
\egpayofflabelsep=1mm.

\egpayoffboxsep

Distance between edge of box around payoffs and payoffs. Possible values: any
dimension. Default: 0mm. Example: \egpayoffboxsep=1mm.

\egalpos

Position of action labels. Possible values: o (outside), i (inside), c (center).
Default: o. Example: \renewcommand{\egalpos}{c}.

\egalbox

Type of box for action labels. Possible values: f (frame), c (circle). Default:
f. Example: \renewcommand{\egalbox}{c}.

\egalboxlinestyle

Style of lines around boxes containing action labels. Possible values:
none, solid, dashed, dotted. Default: none. Example: \renewcommand

23

{\egalboxlinestyle}{solid}.

\egalboxlinecolor

Color of lines around boxes containing action labels. Possible values: any de-
fined color. Default: black. Example: \renewcommand{\egalboxlinecolor}
{red}.

\egalboxfillstyle

Style of fill of boxes containing action labels. Possible values: none, solid,
vlines, vlines*, hlines, hlines*, crosshatch, crosshatch*. Default:
none. Example: \renewcommand{\egalboxfillstyle}{solid}.

\egalboxfillcolor

Color of fill of boxes containing action labels. Possible values: any de-
fined color. Default: white. Example: \renewcommand{\egalboxfillcolor}
{blue}.

\egpaybox

Type of box for payoffs. Possible values: f (frame), c (circle). Default: f.
Example: \renewcommand{\egpaybox}{c}.

\egpayboxlinestyle

Style of lines around boxes containing payoffs. Possible values: none,
solid, dashed, dotted. Default: none. Example: \renewcommand

{\egpayboxlinestyle}{solid}.

\egpayboxlinecolor

Color of lines around boxes containing payoffs. Possible values: any defined
color. Default: black. Example: \renewcommand{\egpayboxlinecolor}

{gray}.

\egpayboxfillstyle

Style of fill of boxes containing action payoffs. Possible values: none, solid,
vlines, vlines*, hlines, hlines*, crosshatch, crosshatch*. Default:
none. Example: \renewcommand{\egpayboxfillstyle}{solid}.

\egpayboxfillcolor

Color of fill of boxes containing payoffs. Possible values: any defined color.
Default: white. Example: \renewcommand{\egpayboxfillcolor}{gray}.

\egplbox

24

Type of box for player labels. Possible values: f (frame), c (circle). Default:
f. Example: \renewcommand{\egplbox}{c}.

\egplboxlinestyle

Style of lines around boxes containing player labels. Possible values:
none, solid, dashed, dotted. Default: none. Example: \renewcommand

{\egplboxlinestyle}{solid}.

\egplboxlinecolor

Color of lines around boxes containing player labels. Possible values: any de-
fined color. Default: black. Example: \renewcommand{\egplboxlinecolor}
{gray}.

\egplboxfillstyle

Style of fill of boxes containing player labels. Possible values: none, solid,
vlines, vlines*, hlines, hlines*, crosshatch, crosshatch*. Default:
none. Example: \renewcommand{\egplboxfillstyle}{solid}.

\egplboxfillcolor

Color of fill of boxes containing player labels. Possible values: any defined
color. Default: white. Example: \renewcommand{\egplboxfillcolor}

{gray}.

\egarrowstyle

Style of arrows on branches. Possible values: n (none), e (end), m (mid). De-
fault: n (none). Example: \renewcommand{\egarrowstyle}{m} (mid). The
size of the arrows can be adjusted by using any of the PSTricks parameters—
e.g. \psset{arrowscale=1.5}.

\ctmfillcolor

Color of triangle used to indicate continuum of branches. Possible values:
any defined color. Default: verylightgray. Example: \renewcommand

{\ctmfillcolor}{red}.

9. Suggestions

It seems hard to proceed without first drawing the game on a piece of paper, at
least roughly. Be sure to allow enough space under (in the case of a downward-
pointing game) the terminal nodes—put the nodes that precede the terminal
nodes high enough that the bottom of the payoffs will be at height 0. Similarly,
specify the height of the game so that the label for the initial player does not

25

poke out the top. If parts of your game poke out of the frame defined by the
size you specify for your egame, TEX will not warn you, but the spacing above
and/or below your game will not be right. (If you specify the height to be too
small, for example, the top of your game may overlap the text above it.)

You can float your game in a figure (as I have done in the examples above),
or you can put it in the text. (For example, you may use $$\begin{egame}...
\end{egame}$$). Putting it in the text has the disadvantage that if it’s big
and happens to start at the bottom of a page then you may get a lot of white
space if it doesn’t fit on the page.

10. Enhancements

It would be nice to have a graphical interface, like that in LATEXCAD. I’m not
capable of writing one.

It would be nice also if the macros could calculate the dimensions of the
whole game, so the the user does not have to specify them in the \begin{game}
call. To make this change looks like a tough project to me.

The label-positioning algorithm could be enhanced, as discussed in Sec-
tion 6.

26

