
Package ecclesiastic.sty∗

Claudio Beccari Donald Goodman

v.0.1 2007/09/28

Abstract

This package extends the typesetting facilities of the latin option to the
babel package for typesetting Latin according to the tradition of ecclesiastic
documents; these documents are mainly the devotional books used by the
Roman Catholic clergy, but not limited to them, that are being published
not only by the Vatican Typography, but also by many Printing Companies
around the world.

1 Introduction

This small extension package extends the features of latin.ldf by adding a cer-
tain level of ”frenchization” to the way of typesetting Ecclesiastical Latin; in par-
ticular all punctuation marks, except comma and full stop are preceded by a small
space. The guillemets are also accompanied by small spaces to the right of the
opening marks and to the left of the closing ones, with the provision of removing
spurious previous spaces. Footnotes are not indented and their reference number
is not an exponent, although footnote marks in the text keep being exponents.

The acute accent (actually the apostrophe sign) is made active so as to set an
acute accent over the following vowel (notice that in Latin there is no elision, so
there cannot be any conflict between the acute accent and the elision apostrophe).
Ecclesiastical Latin uses the æ and œ ligatures. Goodman asked to declare ‘a’
and ‘o’ as active characters so that the spelling ae and oe would automatically
produce the equivalent of \ae and \oe respectively.

In practice Beccari found serious programming problems with this solution and
adopted an alternative one; specifically the adopted solution was to type in "ae
and "oe respectively, and æ and œ would be inserted in the source text without
the need of leaving blancks after the control sequences or the need of inserting
extra braces; therefore one types in c"aelum and this is equivalent to c\ae lum or
c{\ae}lum or c\ae{}lum; the saving in the input stream is evident and misstypings
are likely less frequent.

∗This document corresponds to ecclesiastic.sty v.0.1, dated 2007/09/28.
Claudio Beccari (claudio dot beccari at alice dot it) did the programming. Donald Good-
man (dgoodmaniii at gmail dot com) asked for this extension, produced the requirements, and
tested the results.

1

The active apostrophe for the acute accent behaves properly also with y and
’ae and ’oe produce the accented diphthongs.

Of course, when using the OT1 encoding all accents interfere with hyphenation
and kerning. When using the T1 encoding this interference takes place only with
the accented diphthongs æ and œ; no visible problems for the lack of kerning, but
no hyphenation takes place after the accented diphthong until the end of the word,
even if the grammar allowed it.

2 Usage

Besides loading this package with the usual

\usepackage{ecclesiastic}

after loading babel with the option latin (possibly among other ones) all you have
to do is to input your source code the usual way, except that for guillemets and
accents you are supposed to use the " and the ’ active characters. The input code

Ita enim fit, ut regn’are is "< in m’entibus h’ominum "> dic’atur non

tam ob mentis ’aciem scienti’aeque su"ae amplit’udinem, quam quod ipse est

V’eritas, et verit’atem ab eo mort’ales haur’ire atque obedi’enter acc’ipere

nec’esse est; "< in volunt’atibus "> item "< h’ominum ">, quia \dots

will produce the following text:

Ita enim fit, ut regnáre is « in méntibus hóminum» dicátur non tam
ob mentis áciem scientiǽque suæ amplitúdinem, quam quod ipse est
Véritas, et veritátem ab eo mortáles hauŕıre atque obediénter acćıpere
necésse est ; « in voluntátibus» item «hóminum», quia . . .

Notice that the source text has spaces around the guillemets, but the typeset code
has the right small and constant space, irrespective of justification. Notice the use
of the ‘acute’ accent (actually the apostrophe) for accented vowels and diphthongs.
Notice the space in the typeset text before the semicolon.

3 Documented code

Some checks in order to use this package together with the one it should extend.
1 〈∗package〉
2 \def\CheckLatin{\expandafter\ifx\csname captionslatin\endcsname\relax

3 \PackageWarning{ecclesiastic}{\MessageBreak

4 latin must be specified as a global option\MessageBreak

5 or it must be passed as an option to babel\MessageBreak

6 \MessageBreak

7 Nothing done}\expandafter\endinput\fi}

8

9 \@ifpackageloaded{babel}{\CheckLatin}{%

10 \PackageWarning{ecclesiastic}{\MessageBreak

2

11 Package babel must be loaded before this package\MessageBreak

12 \MessageBreak

13 Nothing will be done}\endinput}

The following code was borrowed from frenchle.sty by Bernard Gaule, but there
are several modifications; in particular the Cyrillic guillemets are effectively chosen
as possible candidates before resorting to the horrible patch made up with the
‘much smaller’ and ‘much larger’ scriptsize signs. The Latin Modern fonts are
preferred if they are available. When the T1 encoding is in force the guillemets
are taken from the current font. The first macro specifies a common interface for
chosing where to get guillemets from.
14 \let\og\empty\let\fg\empty%

15 \def\FrenchGuillemetsFrom#1#2#3#4{%

16 \DeclareFontEncoding{#1}{}{}%

17 \DeclareFontSubstitution{#1}{#2}{m}{n}%

18 \DeclareTextCommand{\guillemotleft}{OT1}{%

19 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3}}%

20 \DeclareTextCommand{\guillemotright}{OT1}{%

21 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

Then come the macros for selecting various type of guillemets: the first macro
\CyrillicGuillemets selects them from the Cyrillic fonts; the second macro
\PolishGuillemets selects them from the Latin Modern fonts, who were assem-
bled by the Polish TUG, from which the name; the \LasyGuillemets represent
the poor man solution, which represents the last resort:
22 \def\CyrillicGuillemets{\FrenchGuillemetsFrom{OT2}{wncyr}{60}{62}}

23 \def\PolishGuillemets{\FrenchGuillemetsFrom{T1}{lmr}{19}{20}}

24 \def\LasyGuillemets{%

25 \DeclareTextCommand{\guillemotleft}{OT1}{\hbox{%

26 \fontencoding{U}\fontfamily{lasy}\selectfont(\kern-0.20em(}}%

27 \DeclareTextCommand{\guillemotright}{OT1}{\hbox{%

28 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}}}

Now the previous macros are executed depending on what is available on the
particular computer the code is executed on. Thinking to end up with a PDF file,
we prefer the T1 encodec latin Modern fonts; if these are not installed we resort
to the Cyrillic one, since the OT2 encoded Cyrillic fonts from the University o
Wisconsin are generally installed by default also in pfb format; should htese be
missing, then the poor man solution of the LATEX simbols is chosen. At the same
time, since the latter are the last resort, they are chosen as the default solution,
although its difficult to find an installation where either the Latin Modern or the
Wisconsin University fonts are not installed.
29 \IfFileExists{t1lmr.fd}{\PolishGuillemets}{%

30 \IfFileExists{ot2wncyr.fd}{\CyrillicGuillemets}{\LasyGuillemets}}

31 \DeclareTextSymbolDefault{\guillemotleft}{OT1}

32 \DeclareTextSymbolDefault{\guillemotright}{OT1}

Having defined the symbols, we now think to the spacing; we chose a smaller space
than in French typography, but, essencially this glue is without stretch and shrink

3

components, so that this space remains constant and does not stretch or shrink
for helping in line justification.
33 \def\guill@spacing{\penalty\@M\hskip.3\fontdimen2\font

34 \@plus\z@\@minus\z@}

Now we are in the position to define the opening and the closing guillemet
commands.

The spacings on the interior of the guillements and the spacings before the
”high” pucntuation marks are smaller than with the frenchle.sty settings for
the French typography. This has been made following Robert Bringhurst rec-
comendations of tight spacings, in particular before the punctuation marks and
within the French quotes.

Since Beccari is not used to such spacings, forbidden in Italian typography, he
finds the traditional French spacings very large, too large for his taste. Bringhurst
reccomendations come in very handy to justify the chosen spacings. May be who
is used to wider spacings finds them too tight. We think we found a compromise.
35 \DeclareRobustCommand*{\begin@guill}{\leavevmode

36 \guillemotleft\penalty\@M\guill@spacing

37 \ignorespaces}

38 \DeclareRobustCommand*{\end@guill}{\ifdim\lastskip>\z@\unskip\fi

39 \penalty\@M\guill@spacing\guillemotright{}}

We add the definition of \og (ouvrir guillemets) and \fg (fermer guillements) to
the \extraslatin list, as well as we add their ‘emptiness’ to the \noextrnolatin
one.
40 \addto\extraslatin{%

41 \renewcommand{\og}{\begin@guill}\renewcommand{\fg}{\end@guill}%

42 }

43 \addto\noextraslatin{\let\og\empty\let\fg\empty}

Therefore open guillemets may be input with the \og macro and the closed ones
with the \fg macro. This might be inconvenient, so that the "< and "> shortcuts
should be preferred; these shortcuts assure that the spaces after these shortcuts
are really spaces and are not used to terminate the macro name. B. Gaulle uses
the \xspace macro from the xspace package, but if this package is not loaded
or is not available, the \xspace macro behaves as \relax and does not produce
what is intended to do. See below the extended defintion of the " shortcut active
character.

Here we make the apostrophe an active char and define the shortcuts for Latin
that introduce the acute accent over the specified vowels, lower and upper case.
Probably upper case is useless, but it does not harm.
44 \initiate@active@char{’}%

45 \addto\extraslatin{\bbl@activate{’}}%

46 \addto\noextraslatin{\bbl@deactivate{’}}%

47

48 \declare@shorthand{latin}{’a}{\@ifnextchar e{\’\ae\@gobble}{\’a}}

49 \declare@shorthand{latin}{’e}{\’e}

50 \declare@shorthand{latin}{’i}{\’i}

51 \declare@shorthand{latin}{’o}{\@ifnextchar e{\’\oe\@gobble}{\’o}}

4

52 \declare@shorthand{latin}{’u}{\’u}

53 \declare@shorthand{latin}{’y}{\’y}

54 \declare@shorthand{latin}{’A}{\@ifnextchar E{\’\AE\@gobble}{\’A}}

55 \declare@shorthand{latin}{’E}{\’E}

56 \declare@shorthand{latin}{’I}{\’I}

57 \declare@shorthand{latin}{’O}{\@ifnextchar E{\’\OE\@gobble}{\’O}}

58 \declare@shorthand{latin}{’U}{\’U}

59 \declare@shorthand{latin}{’Y}{\’Y}

Here we redeclare the definition of the " shortcut active character; it is bor-
rowed from italian.ldf, but a new \LT@cwm macro is added to the existing \lt@@cwm
one so as to cope also with "ae and "oe, besides the guillemet commands.

The following declaration is probably a repetition of what is already in latin.ldf

60 \declare@shorthand{latin}{"}{%

61 \ifmmode

62 \def\lt@next{’’}%

63 \else

64 \def\lt@next{\futurelet\lt@temp\lt@cwm}%

65 \fi

66 \lt@next

67 }%

This also should already be in latin.ldf; it is the command that inserts a dis-
cretionary break, but does not inhibit hyphenation in the rest of the word.
68 \def\lt@@cwm{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}%

This, for what concerns Latin, is new as an interface with the definitions of
the guillemets
69 \def\lt@@ocap#1{\begin@guill}\def\lt@@ccap#1{\end@guill}%

This is completely new; il deals with \ae and \oe; since \ae is much more
frequent than \oe, we start with testing for an ‘a’ followed by an ‘e’, otherwise we
test about the presence of an ‘o’:
70 \DeclareRobustCommand\LT@cwm[2]{%

71 \ifx#1a\bbl@afterelse

72 \maybeae#1#2%

73 \else\bbl@afterfi

74 \testoe#1#2%

75 \fi}

If a sequence ae was detected, then \ae is inserted in the input stream in
place of that sequence, otherwise the two tokens are inserted in the input stream
preceded by the discretionary break implied by the presence of the " sign that
thriggered the whole process.

76 \def\maybeae#1#2{%

77 \ifx#2e\bbl@afterelse

78 \ae%

79 \else\bbl@afterfi

80 \lt@@cwm#1#2%

81 \fi

82 }

5

The same procedure is valid for the sequence oe

83 \def\maybeoe#1#2{%

84 \ifx#2e\bbl@afterelse

85 \oe%

86 \else\bbl@afterfi

87 \lt@@cwm#1#2%

88 \fi

89 }

But the presence of an ‘o’ must be checked before activating the previous
macro:
90 \def\testoe#1#2{%

91 \ifx#1o\bbl@afterelse

92 \maybeoe#1#2%

93 \else\bbl@afterfi

94 \lt@@cwm#1#2%

95 \fi}

This is the real execution of the " shortcut; remember that \lt@csw is an
alias for \lt@next, the action associated with " when outside the math mode;
furthermore \lt@temp contains the token following the " sign. Notice that the
category code of the \lt@temp is compared to that of a generic letter; the choice
of ‘e’ is absolutely irrelevant, because it is a generic letter; any other letter would
have done the same. So, first the temporary token is compared to a letter; if it’s
a letter the \LT@cwm is executed; the latter on turn looks for an ‘a’ or an ‘o’ and
possibly inserts a diphthong or a discretionary break; otherwise the temporary
token is compared to |, so that the shortcut "| is possibly executed by inserting a
discretionary break and by gobbling the bar; otherwise it checks for a ‘less than’
sign and possibly inserts double open guillemets; otherwise it checks for a ‘greater
than’ sign and possibly inserts double closed guillemets; otherwise it checks for
the slash and possibly it inserts a breakable slash \slash; otherwise it checks for
another double straight quotes sign and possibly it inserts double open high quotes
(this is useful for those keyboards that do not have the ‘back tick’ sign ‘).
96 \DeclareRobustCommand*{\lt@cwm}{\let\lt@@next\relax

97 \ifcat\noexpand\lt@temp e%

98 \def\lt@@next{\LT@cwm}%

99 \else

100 \if\noexpand\lt@temp \string|%

101 \def\lt@@next{\lt@@cwm\@gobble}%

102 \else

103 \if\noexpand\lt@temp \string<%

104 \def\lt@@next{\lt@@ocap}%

105 \else

106 \if\noexpand\lt@temp \string>%

107 \def\lt@@next{\lt@@ccap}%

108 \else

109 \if\noexpand\lt@temp\string/%

110 \def\lt@@next{\slash\@gobble}%

111 \else

6

112 \ifx\lt@temp"%

113 \def\lt@@next{‘‘\@gobble}%

114 \fi

115 \fi

116 \fi

117 \fi

118 \fi

119 \fi

120 \lt@@next}%

This done let’s take care of the punctuation. First we create the aliases of the
puntuation marks with their original category codes

121 \edef\puntoevirgola{\string;}\edef\cc@pv{\the\catcode‘;}%

122 \edef\duepunti{\string:}\edef\cc@dp{\the\catcode‘:}%

123 \edef\puntoesclamativo{\string!}\edef\cc@pe{\the\catcode‘!}%

124 \edef\puntointerrogativo{\string?}\edef\cc@pi{\the\catcode‘?}%

Then we make those puctuation marks active and add their activeness to
\extraslatin, and also their “deactiveness” to the \noextraslatin list. In this
way we are sure that there is no interference with other languages.

125 \initiate@active@char{;}

126 \initiate@active@char{:}

127 \initiate@active@char{!}

128 \initiate@active@char{?}

129 \addto\extraslatin{\bbl@activate{;}}

130 \addto\extraslatin{\bbl@activate{:}}

131 \addto\extraslatin{\bbl@activate{!}}

132 \addto\extraslatin{\bbl@activate{?}}

133 \addto\noextraslatin{\bbl@deactivate{;}}

134 \addto\noextraslatin{\bbl@deactivate{:}}

135 \addto\noextraslatin{\bbl@deactivate{!}}

136 \addto\noextraslatin{\bbl@deactivate{?}}

Here we define the space before punctuation; again the glue that is inserted in
the French typography is too large according to our taste; the glue we want to put
in front of the high punctuation marks should be smaller and we chose a smaller
compromise value, but again we fix the stretch and shrink components to zero.

137 \def\punct@spacing{\penalty\@M\hskip.4\fontdimen2\font

138 \@plus\z@\@minus\z@}

When then we give a definition to these actie characters; in each definition we
start by eliminating aby previous spacing inserted by the typist, then we insert
our space and finally the punctuation mark.

139 \declare@shorthand{latin}{;}{\ifdim\lastskip>\z@\unskip\fi

140 \punct@spacing\puntoevirgola}

141 \declare@shorthand{latin}{:}{\ifdim\lastskip>\z@\unskip\fi

142 \punct@spacing\duepunti}

143 \declare@shorthand{latin}{!}{\ifdim\lastskip>\z@\unskip\fi

144 \punct@spacing\puntoesclamativo}

145 \declare@shorthand{latin}{?}{\ifdim\lastskip>\z@\unskip\fi

146 \punct@spacing\puntointerrogativo}

7

For footnotes we require that the footnote mark be tiped flush to the left margin
and that it is typed normalsize; this rquires the redefinition of the \@makefntext
macro that must call a different version of \@makefnmark.

147 %

148 \let\lt@ori@makefntext\@makefntext

149 \newcommand\lt@makefntext[1]{%

150 \parindent 1em%

151 \noindent

152 \lt@Makefnmark\enspace #1}

153 \newcommand\lt@Makefnmark{\hbox{\normalfont\@thefnmark.}}

We add these commands to the \extraslatin and \noextraslatin lists.
154 \addto\extraslatin{\let\@makefntext\lt@makefntext}

155 \addto\noextraslatin{\let\@makefntext\lt@ori@makefntext}

Is this correct? May be not! In a mixed language text footnotes get labelled
in a different way depending on which language was in force when the \footnote
command was issued. Any solution?

In order to leave the category codes clean we re-establish the default codes
reassigning the active cars their initial meaning; we do this by executing . If Latin
is the default language, or when Latin is selected, the macro is automatically
executed and active catcodes reassigned to the active characters.

156 \noextraslatin

157 〈/package〉

8

