
The easylist package for numbered items

Paul Isambert

zappathustra@free.fr

http://paulisambert.free.fr

July 5, 2009

Abstract

This package is designed for typesetting lists of numbered items (like Wittgenstein's Tractatus

or�more likely�the outline of a work yet to be done) with a single active character acting as the
only command. Various options are available to achieve greater control over the general appearance
of the list.

Contents

1 Choosing the symbol 2

2 Usage 2

3 Referring to an item 3

4 Options 3

4.1 Parameters a�ecting the nth counter in an item number 4
� Startn, Startn * . 4
� Mark, Markn, FinalMark, FinalMarkn 4
� Numbers, Numbersn . 5

4.2 Parameters a�ecting numbers and items of the nth level 5
� Hide, Hiden . 5
� Style, Stylen, Style*, Stylen *, Style**, Stylen ** 5
� CtrCom, CtrComn . 6
� Hang, Hangn . 6
� Align, Alignn . 6
� Margin, Marginn . 7
� Progressive, Progressive* . 7
� Space, Spacen, Space*, Spacen * . 8
� Indent, Indentn . 8
� FinalSpace, FinalSpacen . 8

5 Prede�ned styles 8

6 Trouble with boxes 10

7 An example 11

8 Implementation 11

8.1 Declarations and options . 11
8.2 Basic recursive de�nitions . 13
8.3 Parameters . 15
8.4 Parametric tests . 20
8.5 Non-parametric tests . 22

8.5.1 Dimensions . 22
8.5.2 Number denotation . 25
8.5.3 Numbers . 25

8.6 Creating items . 26

1

1 Choosing the symbol

Here's what the LATEX code with easylist in its default usage looks like:

\begin{easylist}
� First proposition.

�� Interesting comment.

��� A note on the comment.

��� Another note.

���� By the way...

����� This is a subsub...-proposition.

� Let's start something new...

\end{easylist}

And it yields:

1. First proposition.
1.1. Interesting comment.
1.1.1. A note on the comment.
1.1.2. Another note.
1.1.2.1. By the way...
1.1.2.1.1. This is a subsub...-proposition.
2. Let's start something new...

(No, the pinky box isn't part of the package.)
Now, the section sign � might not be readily accessible on some (most?) keyboards (although it is

accessible and useless on French ones). So you can choose another one instead by setting an option when
calling the package (� is default):

\usepackage[pilcrow]{easylist} to use ¶
\usepackage[at]{easylist} to use @
\usepackage[sharp]{easylist} to use #
\usepackage[ampersand]{easylist} to use &

The selected character is made active between \begin{easylist} and \end{easylist} and then
returns to its initial value. So when using # for instance, just make sure to de�ne new commands
outside the easylist, or use the \Activate and \Deactivate commands in your list; as you might have
guessed, they make the symbol respectively active and back to its original category. (Ending a list and
then beginning a new one will not be noticeable in the �nal product, so you can interrupt your list to
create a new command.) In what follows, I will be using �, but everything applies to other symbols too.1

2 Usage

First of all, you have to decide how many counters you need. By default, easylist creates 10 coun-
ters, but you might want more, so just specify a number as an option when calling the package:
\usepackage[50]{easylist} will create 50 counters. Who knows? this might be useful. You can
create as many counters as TEX allows you to. If you exceed its limit, it'll say it. You can also specify a
number below 10, if you want less counters to be created.

The example above says it all, so let's repeat it:

1You might not be happy with the symbols and maybe you'd like to use another one, or simply have your favorite symbol
as default to avoid remembering such a cumbersome name as `pilcrow'. Here's a simple hack that does the job: select the
entire code of the package, and replace all occurrences of � with your symbol. Make sure you won't use it in the list for
other purposes, though.

2

\begin{easylist}
� First proposition.

�� Interesting comment.

��� A note on the comment.

��� Another note.

���� By the way...

����� This is a subsub...-proposition.

� Let's start something new...

\end{easylist}

Your list must be enclosed between \begin{easylist} and \end{easylist}, which is welcome since a
character is made active and active characters are notoriously dangerous. As you might have guessed,
one � creates a proposition of the �rst level, two �'s make a proposition of the second level, and so on
down to the �fth level. If you concatenate more �'s than available, you'll get an error message telling you
to ask for more and the problematic line will begin with !!! instead of numbers. Every sequence of �'s
must terminate with a space, otherwise numbers won't be printed.

Two things are worth mentioning. First, note that � automatically creates a new line, so typing your
propositions in a row will not a�ect the result. Hence

\begin{easylist} � First proposition. �� Interesting comment. \end{easylist}

still yields

1. First proposition.
1.1. Interesting comment.

Second, when skipping one or more level(s), that(those) level(s) will be numbered 0 (except otherwise
speci�ed�see below), as in:

\begin{easylist}
� First proposition.

��� A sub-comment to the first proposition.

\end{easylist}

which yields:

1. First proposition.
1.0.1. A sub-comment to the �rst proposition.

That's it. The following sections deal with labelling and referring and layout options, but for basic
purpose you don't need more than that. Prede�ned style, available with \begin{easylist}[<Style>],
are treated in section 5.

3 Referring to an item

You can use LATEX's \label, \ref and \pageref to refer to an item. The \label can appear anywhere
in the text of the item (a�ecting only \pageref) but if you put it after the row of �'s, make sure there's a
space in between, otherwise � won't �re, as mentionned above. The output of \ref is the counters of the
item referred to with their original denotation and punctuation but not their original Style or CtrCom
(see below), that is they adopt style where \ref is called. Only counters that have not been hidden will
appear.

4 Options

Several parameters are available to achieve a �ner control over the �nal output. The general command
is \ListProperties(key=value,key=value...), where key is a parameter. ListProperties a�ects all
subsequent items and all subsequent lists, wherever it is issued. If you want to set the parameters back to

3

default, use \NewList, which can also have an argument (between parentheses like \ListProperties) and
will then function as \ListProperties if you want to specify again a parameter. Note that you don't need
to put all your parameters in the same \ListProperties: several \ListProperties(key=value...)
have the same e�ect as a big \ListProperties with all parameters at once. By de�nition, this is not the
case for \NewList�which, by the way, I'm using in all examples here, although I show \ListProperties

just to make you believe in the illusion of a stand-alone list...
Parametern a�ects the nth counter (e.g. 5 in 14.5.22 is the second counter) or the item of the nth

level (e.g. 14.5.22 is a counter of the third level). I think there isn't much room for ambiguity, and at
least the context will make clear what I'm talking about�and if you're still uncertain, well, just try the
parameter!

If a value contains a comma or a closing parenthesis, you should enclose it between braces or easylist
will take them to be delimiters. For instance, if you want a closing parenthesis to be FinalMark (see
below), say \ListProperties(FinalMark={)}). And if you want to put a framebox anywhere, say for
instance \ListProperties(Style2**={\framebox(5,5){}}).

4.1 Parameters a�ecting the nth counter in an item number

• Startn =<Number> makes the nth counter start at <Number> , if and only if it immediately precedesStartn

Startn * an item containing that counter, otherwise it is useless.
• Startn *=<Counter> makes the nth counter dependent on <Counter> , where <Counter> is an external
counter, like \thesection. The counter cannot be controlled anymore and stubbornly follows <Counter> .
To make it back to normal, say Startn *=NA, which is of course default.

\begin{easylist}
\ListProperties(Start1*=\thesection,Start2=17)
� First proposition.

�� Numbering doesn't work.

\ListProperties(Start2=17)
�� This is better.

� Hey, I can't move on!

� I must be stuck to an external counter!

\ListProperties(Start1*=NA)
� Okay, it works again.

\end{easylist}
4. First proposition.
4.1. Numbering doesn't work.
4.17. This is better.
4. Hey, I can't move on!
4. I must be stuck to an external counter!
5. Okay, it works again.

• Mark=<Punctuation> sets the punctuation of all counters to <Punctuation> .Mark

Markn

FinalMark

FinalMarkn

• Markn =<Punctuation> sets the punctuation of the nth counter to <Punctuation> .
• FinalMark=<Punctation> sets the punctuation of the �nal counter, if speci�ed, for all items. To
unspecify it without using \NewList, say FinalMarkn =NA.
• FinalMarkn =<Punctuation> sets the punctuation of the last (i.e. the nth) counter of the nth item.
To unspecify it without using \NewList, say FinalMarkn =NA.

The di�erence between Mark(n) and FinalMark(n) is that the latter supersedes the former at the
end of the counters numbering an item. In case FinalMark(n) is set to NA, then Mark(n) is used in all
positions. The default punctuation mark is a full stop, and FinalMark is unspeci�ed (so all item numbers
end with a full stop by default).

In the following example, note that = followed by nothing is understood as a normal value, albeit
empty, and that specifying FinalMark3 after FinalMark makes the former win. If FinalMark3 had
appeared before FinalMark, then its value would have been superseded. It works the same for all the
parameters that follow.

There's a �nal caveat: if you want �xed spaces as marks, you shouldn't use LATEX's \hspace but
TEX's original \hskip. The former makes it all wrong, and I don't really know why (it doesn't stand
being the replacement text of a macro de�ned with \edef or \xdef). You may not be used to \hskip,
but it's very simple. Instead of \hspace{1cm}, for instance, say \hskip 1cm.

4

\ListProperties(Mark=.,FinalMark=,FinalMark3={)})
1 The world is all that exists...
1.1 ... said Ludwig to Lizzie...
1.1.1) ... but she wasn't listening.

• Numbers=<Number denotation> sets the way all counters are printed.Numbers

Numbersn • Numbersn =<Number denotation> sets the way the nth counter is printed. Here are the admissible
values:

r for lower case roman numerals;
R for upper case roman numerals;
l for lower case letters;
L for upper case letters;
z for Zapf's Dingbats;
a for arabic numbers, which are the default value.

Note that if you choose letters for a given counter, it should not exceed 26, or TEX will complain�and
you'll have no number at all. Since I think that using letters with more than, say, 10 items, is ill-advised,
I didn't overcome that limitation.

\ListProperties(Numbers2=R,Numbers3=L,Numbers4=r,Numbers5=l,Numbers6=z)
1. I...
1.I. ... really...
1.I.A. ... like...
1.I.A.i. ... numbers...
1.I.A.i.a. ... however...
1.I.A.i.a.1. ... they are printed.

4.2 Parameters a�ecting numbers and items of the nth level

• Hide=<Number> hides the �rst <Number> counters for all items. It isn't very useful unless you want allHide

Hiden counters to be hidden for all items, that is you want lists of unnumbered items, in which case you may
say Hide=100 (or Hide=10000 if you have more than 100 counters!).
• Hiden =<Number> hides the �rst <Number> counters for items of the nth level. This is more useful.

If <Number> > n, then nothing is printed. Note that if you refer to an item with hidden numbers,
those will not appear when referring to the item with \ref. See the example below.

\ListProperties(Hide2=1,Hide3=2,Progressive*=.5cm,Numbers3=l,
Numbers4=r,FinalMark3={)})

1. Now, what's the di�erence with enumerate? asks Leslie.
1. Frankly, I don't know, Don answers.

a) Should have made it proprietary.
1.1.a.i. And suddenly all counters reappear... This is ugly! they both ex-
claim, but they cannot help noticing that referring to the previous item with
\ref yields a).

• Style=<Format> sets the style of counters and text for all items.Style

Stylen

Style*

Stylen *

Style**

Stylen **

• Stylen =<Format> sets the style of counters and text for items of the nth level.
• Style*=<Format> sets the style of all counters.
• Stylen *=<Format> sets the style of the counters of items belonging to the nth level.
• Style**=<Format> sets the style of all item texts.
• Stylen **=<Format> sets the style of the texts of items belonging to the nth level.

Since numbers and texts are enclosed in groups, <Format> can safely be a command such as \bfseries
or \itshape, etc., or even \color{green} of the xcolor package. The no-star version interacts freely
with the other two (up to (LA)TEX's font limitations).

Those parameters are actually placeholders in front of the counter or the text of the item (or both in
case of Style), so you can use them to add nice symbols, for instance.

The default style is the style of your document.

5

\ListProperties(Style=\color{blue},Style1*=\bfseries,
Style2*=\itshape,Style1**=\scshape\bullet ,

Style1**=\diamond ,Style3**=\Rightarrow ,Hide3=3)

1. • A fundamental proposition.

1.1. � An essential comment.
⇒ First...
⇒ Then...
⇒ And we should not forget...

• CtrCom=<Command> makes <Command> into a command whose argument is the counters of all items.CtrCom

CtrComn • CtrComn =<Command> makes <Command> into a command whose argument is the counters of items of
the nth level.

Note that <Command> can only be a command taking one token (i.e. possibly a group) as its last
argument. Only the bare command must be issued when specifying the parameter. In the following
example, CtrCom=\colorbox{pink} thus means CtrCom=\colorbox{pink}{COUNTERS}.

\ListProperties(CtrCom=\fbox,CtrCom3=\colorbox{pink})

1. A box is a box is a box...

1.1. ... said Gertie to Jim...
1.1.1. ... who was looking for Leopold.

• Hang=<Boolean> lets all item texts hang from their counters if <Boolean> is true.Hang

Hangn • Hangn =<Boolean> let all item texts of level n hang from their counters if <Boolean> is true.
If you don't want texts to hang, set <Boolean> to false, or F, or RDNZL or even True for that matter,

i.e. anything but true. By default, no text hangs from its counter.
If you specify Margin or Progressive (see below), the counter will be at the speci�ed distance and

the text of the item will be at that distance plus the width of the counter. If you specify Indent (see
below again), the �rst paragraph won't be indented.

\ListProperties(Margin1=1cm,Hang1=true,Indent1=.5cm)
1. I'm a nice item with a margin of 1cm for my counter and,

well, 1cm plus something else for me.
Here I have an indent because I'm a brave new para-

graph.

\ListProperties(Hang1=false)
2. Hey! I'm not hanging anymore! I just have a 1cm

margin! And I'm already indented!

• Align=<keyword or dimension> aligns all item texts at the same level for all levels.Align

Alignn • Alignn =<keyword or dimension> aligns all item texts of the nth level.
This needs an explanation. Item numbers don't have the same width, even if they belong to the same

counter. For instance, the �rst item of the �rst level has 1 as its number, while the 33rd one of the same
level has 33, and obviously 33 is a wider expression than 1. So the corresponding item texts won't start
at the same horizontal distance, i.e. they wont be aligned. And if texts hang from their counters, the
entire left margin will be unaligned, which might be pretty ugly.

This parameter is meant to avoid such a situation. If <keyword> is move, then the item number will
be moved to the left if it is too large (as in the enumerate environment). If <keyword> is fixed, the
FinalSpace (see below), i.e. the space between the item number and the item text, will be shrinked
(or stretched) accordingly (as in a table of contents). If it is reduced to nothing and the counter is still
too wide, then the counter will spread on the text and you'll get a warning; then you should increase
FinalSpace so the �rst counter will be larger and the problematic one will have more room. In both
cases, the reference width is the width of the �rst item counter (of the adequate level, of course) that
easylist meets after the parameter is set. It is very likely to be 1, thus a narrow counter. Finally, if
you use a <dimension> instead of a keyword, it has the same e�ect as fixed, except that the reference
width is not the width of the �rst counter of that level but the speci�ed dimension. FinalSpace then
becomes useless.

Set <keyword> to anything but fixed and move to turn o� this parameter, which by default is not
in use. Note that items belonging to di�erent levels aren't aligned with one another.

6

\ListProperties(Hang=true,Margin=1cm,
FinalSpace=2em)

1. Here is the �rst item of my very uninteresting
yet very convenient list.

1000. Here's the 1000th one which obviously isn't
aligned with what precedes, although both
are on the same level.

\ListProperties(Hang=true,Margin=1cm,
Align=fixed,FinalSpace=2em)

1. Here is the �rst item of my very uninteresting
yet very convenient list.

1000. Here's the 1000th one which obviously is
aligned with what precedes. Fortunately,
FinalSpace was wide enough.

\ListProperties(Hang=true,Margin=1cm,
Align=move,FinalSpace=2em)

1. Here is the �rst item of my very uninteresting
yet very convenient list.

1000. Here's the 1000th one which is also aligned
with what precedes, but it would have run out
of the box if Margin hadn't been taken care
of.

\ListProperties(Hang=true,Margin=1cm,Align=2cm)
1. Hey, my counter is 2cm wide.
1000. Mine too.

A note on dimensions: the following parameters take <Dimensions> as values. However, those
dimensions should be speci�ed explicitely (e.g. \ListProperties(Margin=2cm)) or with a command
(e.g. \newcommand{\mydimension}{2cm} and then \ListProperties(Margin=\mydimension)), but you
should not directly use real TEX dimensions de�ned with \newdimen (or LATEX's \newlength), etc. In case
you want such dimensions here, you have to pre�x them with \the. So if you have de�ned a dimension
\mydimen, ListProperties(Margin=\the\mydimen) is ok, but not \ListProperties(Margin=\mydi-
men). This may sound paradoxical, and indeed it is, but easylist runs some tests on the parameters
before TEX gets crazy (you want to avoid 10 error messages when you have 10 counters), and in order to
test a dimension, it has to be readable, hence \the.

• Margin=<Dimension> sets the distance from the left margin at which all items should start.Margin

Marginn • Marginn =<Dimension> sets the distance from the left margin at which items of the nth level should
start.

A negative value doesn't move the left margin to the left, but indents the right margin.

\ListProperties(Margin2=3ex,Margin3=6ex,Margin4=9ex,
Margin5=12ex)

1. First proposition.
1.1. Interesting comment.

1.1.1. A note on the comment.
1.1.2. Another note.
This is fascinating. We can start a new paragraph at any
level and it remains where it should be.

1.1.2.1. By the way...
1.1.2.1.1. This is a subsub...-proposition.

2. Let's start something new...

• Progressive=<Dimension> sets the margin of all items to a distance depending on their level.Progressive

Progressive* Namely, items of the nth level have a margin of n× <Dimension> .
• Progressive*=<Dimension> does the same, except that items of the nth level have a margin of
n× <Dimension> − <Dimension> . This means that items of the �rst level will be at the current margin
and that the progressive indentation will start at the second item.
Thus the previous example could have been typeset with:

7

\ListProperties(Progressive*=3ex)
1. First proposition.

1.1. Interesting comment.
1.1.1. A note on the comment.
1.1.2. Another note.
This is fascinating. We can start a new paragraph at any
level and it remains where it should be.

1.1.2.1. By the way...
1.1.2.1.1. This is a subsub...-proposition.

2. Let's start something new...

You can still specify Margin (after Progressive) if you want some items to be at a speci�ed distance.

• Space=<Dimension> sets the vertical space between items of a di�erent level.Space

Spacen

Space*

Spacen *

• Spacen =<Dimension> sets the vertical space between items of the nth level and previous items belong-
ing to another level.
• Space*=<Dimension> sets the vertical space between items of the same level.
• Spacen *=<Dimension> sets the vertical space between items of the nth level and previous items
belonging to the same level.

This space is added to the normal space between two lines. You can use a negative value if you want
to compact your list.

\ListProperties(Space2=1cm,Space2*=.5cm)
1. Innocent item.

1.1. What a space! It must be Space2!

1.2. This one is less impressive. It must be Space2*.

• Indent=<Dimension> sets the indentation of all paragraphs.Indent

Indentn • Indentn =<Dimension> sets the indentation of paragraphs belonging to items of the nth level.

\ListProperties(Indent2=2cm,Margin2=1cm)
1. Here is an una�ected item.

1.1. Here is a paragraph. Its text
is totally silly. But it exhibits a nice indenta-
tion.

Here's a new paragraph, under
the same number. Its text is still silly, but
it still has a nice indentation too.

• FinalSpace=<Dimension> sets the distance between the item number (more precisely, the last mark)FinalSpace

FinalSpacen and the text for all items. Default is .3em.
• FinalSpacen =<Dimension> sets the distance between the item number (more precisely, the last mark)
and the text for items of the nth level. This may not be very useful, except when adjusting it to meet
the requirements of alignment.

In case you set the Align parameter to fixed, FinalSpace may be shrinked or stretched.

\ListProperties(FinalSpace2=1cm)
1. The following item wants to be seen.
1.1. Yes I do.

5 Prede�ned styles

You can load some prede�ned styles with \begin{easylist}[<Style>]. They simply issue \NewList

with some special values. You can still add \ListProperties to modify them further, and you can still
interrupt your list and start it again later, and you don't have to specify \begin{easylist}[<Style>]:

8

\begin{easylist} is enough, since it will inherit the properties of the previous one (if it hasn't been
\NewList'ed, of course).

• tractatus is an imitation of Wittgenstein's Tractatus Logico-Philosophicus. It's quite simple: Mark1

is turned to a dot, and all other marks are turned o�.

1. The world is all that exists.
1.1 If something doesn't exist, it doesn't belong to
the world.
1.11 Of something that doesn't exist, we should not
speak.
2. I won't speak of things that don't exist.
2.1 Although they have some appeal to me.
2.10001 I really can't resist.

• checklist has no numbers, only check boxes, items are indented according to their levels, and the style
of the �rst level is \bfseries.

Things to do

Finish the easylist package

Find new prede�ned styles
Comment the code
Avoid being verbose and making dumb jokes
to hide weaknesses

Tidy up the room

• booktoc roughly emulates a table of contents according to the book class (without page numbers, of
course). Items of the �rst level are formatted like parts, and so on. Items of the seventh level and higher
are not formatted at all.

I My part

1 My chapter

1.1 My wonderful section
1.1.1 My tremendous subsection

1.1.1.1 My very exciting subsubsection
1.1.1.1.1 My delicate paragraph

1.1.1.1.1.1 My secret subparagraph where everything is unveiled and
which goes to the end of the line to show its hanging from
the counter

2 My second chapter

• articletoc does the same for the article class. Items of the �rst level are sections, etc. Items of the
�fth level and higher are not formatted.

1 A very interesting section

1.1 A subsection that will explain great theories
1.1.1 Here we �nd a proof

1.1.1.1 And a corollary here
1.1.1.1.1 This paragraph seems really cool

• enumerate mimicks the enumerate environment as de�ned in the LATEX base and article class. Items
of the �fth level and higher aren't formatted.

9

1. I have somehing to say...

(a) But I don't know if I can...

i. This is enumerate made easy...

A. Oh yeah, you can spot some di�erences too,
maybe in the separation between items...

(Two hours later)

200. Now that we've come thus far, let's study alignment of items
in this emulated enumerate environment.

• itemize does the same for the itemize environment.

• Hey, this is a bullet.

� And this is a dash.

∗ Here we have an \ast (don't forget the $'s!).

· And �nally a \cdot, in case you didn't know.

6 Trouble with boxes

Active characters, as is well known, are nasty beings, and it's hard to keep them activated all the way
down. That's why the easylist environment in its present state won't work in boxes. That is

\fbox{%
\begin{easylist}
� First proposition.

\end{easylist}}

will print:

§ First proposition.

where § is the normal value of � (in T1 font encoding). Lists in boxes aren't that common (except for this
document), but such a limitation is always annoying. The solution is to make active the character you've
chosen to create items just before the box and then turn it back to its initial value. For that purpose,
easylist has the two commands \Activate and \Deactivate. So here's what you'll do:

\Activate
\fbox{%
\begin{easylist}
� First proposition.

\end{easylist}}
\Deactivate

and you'll get:

1. First proposition.

Unfortunately, this has to be issued for every box. That is, the following code won't work (even if you
surround your command de�nition with \Activate and \Deactivate�I told you that active characters
were nasty):

\newcommand{\myfbox}[1]{\Activate\fbox{#1}\Deactivate}
\myfbox{%
\begin{easylist}
� First proposition.

\end{easylist}}

Finally, for some boxes, as for instance the \fbox above, a \NewList should be issued at the beginning
of the list. Don't ask me why. Instead, avoid \fboxes.

10

7 An example

Now, it so happened that French writer Jacques Roubaud published a book named La Dissolution just
as I released the �rst version of this package (although the book was written in 2000). He uses MS word
and has some troubles with the numbered items of which his text is made. I don't know if he knows TEX
(he's a retired professional mathematician, so who knows?), but anyway here's an excerpt from the book
as a tribute to that coincidence. It's in French.

\NewList(Style*=\footnotesize,Style3=\color{red},Style4=\color{blue!60!black})
\ListProperties(Style5=\color{green!60!black},Style6=\color{violet})
\ListProperties(Style7=\color{yellow!50!brown},Style8=\color{gray})
\ListProperties(Start1=70,Start2=6,Progressive*=2em,Mark=)

70 6 Après une heure environ de lecture de choses à lire et de lecture
de paysage

70 6 1 m'amenant à découvrir que le Châlons traversé par le
train ne se nommait plus, comme dans mon souvenir d'écolier,
-sur Marne, mais -en Champagne, réforme onomastique récente
qui m'avait jusqu'alors échappé, et avait vraisemblablement
obligé les autorités municipales à un intense �lobbying�

70 6 1 1 il y aura bientôt un Villefranche-en-Beaujolais-
nouveau, si Mâcon laisse faire
70 6 1 2 je véri�e, à tout hasard, que Reims n'est pas de-
venu Reims-en-Champagne

70 6 1 2 1 aucune ville X n'a choisi de se renommer �X
en Champagne Pouilleuse�

70 6 1 2 1 1 laquelle a été baptisée, pendant que je
ne regardais pas, �Champagne crayeuse�

70 6 1 2 1 1 1 rebaptême qui a vraisemblable-
ment obligé les autorités de quelques groupe-
ments d'autorités municipales à un intense
�lobbying�

70 6 1 2 1 1 1 1 les progrès du P.C. sont
globaux comme l'économie du même ad-
jectif

(c© Éditions Nous)

8 Implementation

I'm not used to DocStrip so I input the code by hand with the fancyvrb package. Gaps in line numbering
correspond to blank lines in the package. Besides, I'm pretty talkative, so I put the code in red. It will
be easier to skip comments.

8.1 Declarations and options

After some commented-out information, here are the usual declarations:

17 \NeedsTeXFormat{LaTeX2e}

18 \ProvidesPackage{easylist}[2009/01/06 v.1.2 Numbered items with a single command.]

To process options, we already need conditionals and counts. The �rst four conditionals and the �rst
count will be used in options, while the remaining conditional and counts are used in the following tests.
We also de�ne a convenient shorthand.

20 \makeatletter

21

22 \newif\ifPilcrow

23 \newif\ifAt

24 \newif\ifSharp

25 \newif\ifAmpersand

26 \newif\ifDubiousFigure

27

11

28 \newcount\el@CounterTotal

29 \el@CounterTotal10

30 \newcount\el@Scratch

31 \def\el@Advance#1{\advance#1 by 1\relax}

The \el@NumberCheck test is a basic token-by-token test that checks whether a sequence is made
of numbers, which unfortunately have no category code of their own. The command takes the next
character, compares it to 0, then 1, up to 9, etc. until it matches; if it doesn't the sequence is not a
number and \DubiousFiguretrue is output.

First, \el@NumberCheck looks whether the next character is ?, the terminator, in which case the
control counter is set to 0, \e@synext (called at the end of the command to create recursion) is deactivated
and the command comes to an end. So we can write \el@NumberCheck 2563? and 2563 will be tested.

33 \def\el@NumberCheck#1{%

34 \expandafter\if#1?%

35 \el@Scratch0%

36 \def\e@synext##1{\relax}%

Then, if the argument is not ?, but the control counter has reached 10, then the argument is not a number
(all �gures have been exhausted). The counter is set to 0, the sequence is said doubtful and the rest of
it is discarded:

37 \else%

38 \ifnum\el@Scratch=10%

39 \el@Scratch0%

40 \def\e@synext##1?{\relax}%

41 \DubiousFiguretrue%

If all �gures have not been tried, the argument is compared to the present one, which is the value of the
control counter. If it matches, the counter is reset and the command proceeds to the next character. If
not, the counter is stepped and the command is called on the same argument:

42 \else%

43 \expandafter\if#1\the\el@Scratch%

44 \el@Scratch0%

45 \def\e@synext##1{\el@NumberCheck}%

46 \else%

47 \el@Advance\el@Scratch%

48 \let\e@synext\el@NumberCheck%

49 \fi%

50 \fi

51 \fi\e@synext{#1}}

Now we can declare options. When it comes to choosing the symbol, they simply makes some con-
ditional true. The conditional will be used at the end of the package, when we de�ne the environment.

53 \DeclareOption{pilcrow}{\Pilcrowtrue}

54 \DeclareOption{at}{\Attrue}

55 \DeclareOption{sharp}{\Sharptrue}

56 \DeclareOption{ampersand}{\Ampersandtrue}

The remaining (undeclared) option is checked and if it's a valid number (if it passes the test above),
then \el@CounterTotal, which tells the entire package how many counters, parameters, etc., must be
created, is set to its value:

57 \DeclareOption*{%

58 \expandafter\el@NumberCheck\CurrentOption?%

59 \ifDubiousFigure%

60 \PackageError{easylist}{%

61 ^^J==> `\CurrentOption' is not a valid number (in package options).

62 ^^J==> It is ignored and there are only 10 counters}{}%

63 \else%

64 \el@CounterTotal\CurrentOption%

65 \fi\DubiousFigurefalse}

66 \ProcessOptions\relax

12

We need two more counters for the rest of the package (well, for now):

68 \newcount\el@ControlCounter

69 \el@ControlCounter1%

70 \newcount\el@CounterLevel

71 \el@CounterLevel1%

8.2 Basic recursive de�nitions

Since the number of counters depends on \el@CounterTotal, I can't create them in advance, so I designed
recursive commands whose purpose is to create other commands in a given amount. The general trick is
quite basic: simply use \easynext at the end of the command, which is \let to the command itself if the
desired quantity (speci�ed by \el@CounterTotal) has not been reached yet, and to \relax otherwise.

First, \Generic@Counter creates as many counters as needed. They are named List1, List2, List3,
etc., and they are respectively the �rst, second, third, etc. counter of the �nal output. It's so simple that
we don't need \easynext to create tail recursion. We simply \expandafter the command itself at the
end of the conditional, so it jumps the \fi.

73 \def\el@GenericCounter{%

74 \ifnum\el@ControlCounter>\el@CounterTotal%

75 \el@ControlCounter1%

76 \else%

77 \newcounter{List\the\el@ControlCounter}%

78 \el@Advance\el@ControlCounter%

79 \expandafter\el@GenericCounter%

80 \fi}

81

82 \el@GenericCounter

\Generic@Def creates the commands that de�ne parameters of the counters, that is Margin, Style,
and so on, once again according to \el@CounterTotal.

Basically, \Generic@Def[A]{B}{C} will create commands \B1A, \B2A, \B3A, etc., with the de�nition C.
The optional argument is needed to handle stars as in \Start1*, \Style2*, \Style2**, etc. (Yes, it would
have been much simpler and somewhat more coherent to de�ne and use \Style**2 instead of \Style2**,
for instance. But \Style**2 does not please my eye.) Of course, \Style2** is not a valid TEX command,
since it does not contain only category 11 characters (i.e. letters), but \cscommand Style2**\endcsname

is and I use it throughout the package.
First, we check whether there still needs commands. If not, i.e. if the control counter is higher than

the number of required levels, then the control counter is reset and the command does not reiterate:

84 \newcommand{\el@GenericDef}[3][]{%

85 \ifnum\el@ControlCounter>\el@CounterTotal%

86 \def\easynext[##1]##2##3{\relax}%

87 \el@ControlCounter1%

If there still needs commands, then one is created whose name depends on the value of the control counter.
The \def is global (\gdef) because the easylist environment is made of concatenated groups; hence, if
\ListProperties is called between \begin{easylist} and \end{easylist}, the parameters so de�ned
would be stuck to their groups. Moreover, the \gdef is pre�xed with \expandafter, otherwise it would
try to de�ne \csname, which would be a very bad idea. Globality and delay of \def are pervasive in this
package.

88 \else%

89 \expandafter\gdef\csname #2\the\el@ControlCounter#1\endcsname{#3}%

Once the command is created, the control counter is stepped and the command reiterates:

90 \el@Advance\el@ControlCounter%

91 \let\easynext\el@GenericDef%

92 \fi%

93 \easynext[#1]{#2}{#3}}

Now we create the default values of the parameters. These are important even if they're empty,
because in what follows we'll look for invalid parameters as unde�ned commands. The command
\el@PreviousItem is used for the Space parameter. It records the level of the previous item, and
since the �rst list has no previous item, it is set to 0. NA is the value of a parameter which has to be
discarded.

13

95 \def\el@PreviousItem{0}

96 \el@GenericDef{FinalMark}{NA}

97 \el@GenericDef{Mark}{.}

98 \el@GenericDef{Margin}{0cm}

99 \el@GenericDef{Numbers}{a}

100 \el@GenericDef{Style}{}

101 \el@GenericDef[*]{Style}{}

102 \el@GenericDef[**]{Style}{}

103 \el@GenericDef{Indent}{0cm}

104 \el@GenericDef{Start}{NA}

105 \el@GenericDef[*]{Start}{NA}

106 \el@GenericDef{CtrCom}{}

107 \el@GenericDef{Space}{0cm}

108 \el@GenericDef[*]{Space}{0cm}

109 \el@GenericDef{Hide}{0}

110 \el@GenericDef{Hang}{false}

111 \el@GenericDef{FinalSpace}{.3em}

112 \el@GenericDef{Align}{false}

The Progressive(*) parameter is di�erent, since it creates a di�erent de�nition for each command
(namely the Margin command), so it can't use \el@GenericDef. It sets the Margin of each item to
n × <Dimension> where <Dimension> is the argument of the command and n is the level of the item.
The starred version simply substracts one argument (which is a dimension) to each Margin, which is thus
set to n× <Dimension> − <Dimension> , and so items of the �rst level stay at the current margin.

First we need a new conditional and a new dimension:

114 \newif\ifProgressiveStar

115 \newdimen\el@ProgressiveDimension

Progressive calls \el@ProgressiveMargin and Progressive* calls \el@ProgressiveMargin*. It's
the same command, but with a di�erent value for the conditional.

117 \def\el@ProgressiveMargin{%

118 \@ifstar%

119 {\ProgressiveStartrue\el@ProgressiveM@rgin}%

120 {\ProgressiveStarfalse\el@ProgressiveM@rgin}}

\el@ProgressiveM@rgin does the real job. First, as usual, it checks whether there are enough
commands, in which case it resets and stops:

122 \def\el@ProgressiveM@rgin#1{%

123 \ifnum\el@ControlCounter>\el@CounterTotal%

124 \def\easynext##1{\relax}%

125 \el@ControlCounter1%

If a command must be created, it sets the dimension to the value of the argument and multiply it by the
level of that command:

126 \else%

127 \el@ProgressiveDimension#1%

128 \multiply\el@ProgressiveDimension by \el@ControlCounter%

Then, if in the starred version, it substracts one argument to the dimension:

129 \ifProgressiveStar%

130 \advance\el@ProgressiveDimension by -#1%

131 \fi%

The Margin of the level is set to the value of the dimension. The de�nition is global for the same
reason as above and immediate (\xdef) because the value of the dimension is changed at each iteration
of \el@ProgressiveM@rgin, so we want to store it beforehand. Finally, the dimension is stringed with
\the because we want to be able to test it (dimensions are unanalyzable tokens). Actually, it has already
been tested when the user called the Progressive parameter. But since it becomes the value of the
Margins, and since these are tested after each \ListProperties, we want it to be so.

132 \expandafter\xdef\csname Margin\the\el@ControlCounter\endcsname{%

133 \the\el@ProgressiveDimension}%

14

Finally, we step the control counter and reiterate:

134 \el@Advance\el@ControlCounter%

135 \let\easynext\el@ProgressiveM@rgin%

136 \fi%

137 \easynext{#1}}

8.3 Parameters

In the �rst (nonrecursive) version of this package, I used the keyval package to set the parameters. But
I was not able to use keyval pairs into recursive de�nitions, so I had to create such pairs myself. This
proved rather easy, albeit fastidious and ugly�because the package has to check parameters to process
them. I'm nonetheless very happy with that because I was able to taylor more precise tests.

\ListProperties(Arg) calls \el@ListProperties on `A=A,Arg,Z=Z,' with `A=A' to avoid troubles
in case of an empty \ListProperties() and `Z=Z' as a terminator. Once parameters have been set, it
runs some tests on the testable arguments, described below. The values of Style or Mark cannot be
tested, of course, because they're so diverse.

139 \def\ListProperties(#1){%

140 \el@ListProperties A=A,#1,Z=Z,%

141 \el@GenericNumberCheck{Hide}%

142 \el@GenericNumberCheck{Start}%

143 \el@GenericNumberCheck[*]{Start}%

144 \el@GenericLetterCheck%

145 \el@GenericUnitSearch{Margin}%

146 \el@GenericUnitSearch{Indent}%

147 \el@GenericUnitSearch{Space}%

148 \el@GenericUnitSearch[*]{Space}%

149 \el@GenericUnitSearch{FinalSpace}}

\NewList calls \el@NewList and then \ListProperties if the next character is an opening paren-
thesis.

151 \def\NewList{%

152 \@ifnextchar(%

153 {\el@NewList\ListProperties}%

154 {\el@NewList}}

\el@NewList simply sets all parameters back to default and reset all counters. \el@ResetCounters
(which needs setting \el@ControlCounter to 0) is described in section 8.6. Don't worry for \el@Control-
Counter set to 0, the tests below bring it back to 1, its default value.

156 \def\el@NewList{%

157 \el@ControlCounter0%

158 \el@ResetCounters%

159 \gdef\el@PreviousItem{0}%

160 \el@GenericDef{FinalSpace}{.3em}

161 \el@GenericDef{FinalMark}{NA}%

162 \el@GenericDef{Mark}{.}%

163 \el@GenericDef{Margin}{0cm}%

164 \el@GenericDef{Numbers}{a}%

165 \el@GenericDef{Style}{}%

166 \el@GenericDef[*]{Style}{}%

167 \el@GenericDef[**]{Style}{}%

168 \el@GenericDef{Indent}{0cm}%

169 \el@GenericDef{Start}{NA}%

170 \el@GenericDef[*]{Start}{NA}%

171 \el@GenericDef{CtrCom}{}%

172 \el@GenericDef{Space}{0cm}

173 \el@GenericDef[*]{Space}{0cm}%

174 \el@GenericDef{Hide}{0}%

175 \el@GenericDef{Hang}{false}%

176 \el@GenericDef{Align}{false}}

15

Finally, we need keywords to identify parameters without numbers, like Style, and some values:

178 \def\el@MarginTest{Margin}

179 \def\el@MarkTest{Mark}

180 \def\el@FinalMarkTest{FinalMark}

181 \def\el@NumbersTest{Numbers}

182 \def\el@IndentTest{Indent}

183 \def\el@StyleTest{Style}

184 \def\el@CtrStyleTest{Style*}

185 \def\el@ParStyleTest{Style**}

186 \def\el@CounterCommandTest{CtrCom}

187 \def\el@ProgressiveTest{Progressive}

188 \def\el@ProgressiveStarTest{Progressive*}

189 \def\el@StartTest{Start}

190 \def\el@StartStarTest{Start*}

191 \def\el@SpaceTest{Space}

192 \def\el@SpaceStarTest{Space*}

193 \def\el@HideTest{Hide}

194 \def\el@HangTest{Hang}

195 \def\el@FinalSpaceTest{FinalSpace}

196 \def\el@AlignTest{Align}

197 \def\el@True{true}

198 \def\el@False{false}

199 \def\el@Fixed{fixed}

200 \def\el@AlreadyFixed{alreadyfixed}

201 \def\el@Move{move}

202 \def\el@AlreadyMoved{alreadymoved}

Here are some shorthands. ^^J is the character creating a new line and ==> is simply a useless
decoration.

204 \newcommand{\el@Error}[4][]{%

205 \PackageError{easylist}{^^J==> `#3' is not a valid #4 (#2=#3). It is ignored#1}{}}

206 \def\el@DimenError#1#2{%

207 \el@Error[.^^J==> Note that true TeX dimensions should be prefixed with%

208 ^^J==> \string\the\space in \string\ListProperties]{#1}{#2}{dimension}}

And here comes the ugly de�nition. Most of the conditionals aren't indented because they amount
to exclusive cases, and it's ugly enough. The command takes two parameters delimited by = and a
comma at the end (i.e. Parameter=Value,), does a lot of testing and if everything is ok assigns Value
to \Parameter. Roughly speaking.

First we reset all conditionals and names issued by tests (see below):

210 \def\el@ListProperties#1=#2,{%

211 \DubiousFigurefalse%

212 \DubiousLetterfalse%

213 \DubiousNumberfalse%

214 \DubiousParameterfalse%

215 \Pointfalse%

216 \Signfalse%

217 \def\el@Parameter{}%

218 \def\el@ParameterNumber{}%

Then we set the default value of tail recursion and store the names of the parameter and the value:

219 \let\easynext@Properties\el@ListProperties%

220 \def\el@TempParameter{#1}%

221 \def\el@TempValue{#2}%

If the parameter is equal to Z, we rede�ne tail recursion as \relax so the process comes to an end. If the
parameter is A, we simply go on, since A is just a placeholder.

222 \if#1Z%

223 \let\easynext@Properties\relax%

224 \else\if#1A%

16

Now we use the keywords to catch Margin, Style, etc., which are not treated like Margin2, Style5, etc.
If the parameter is Margin, for instance, we check whether the value is a correct dimension (tests are
described in the next section), and in case it is, we launch \el@GenericDef{Margin}{#2}, which de�nes
\Margin1, \Margin2, etc., with the value as their de�nition.

225 \else\ifx\el@TempParameter\el@MarginTest%

226 \expandafter\el@UnitSearch#2?

227 \ifDubiousFigure%

228 \el@DimenError{#1}{#2}%

229 \else%

230 \el@GenericDef{Margin}{#2}%

231 \fi%

Progressive(*), Indent, Space(*) and FinalSpace behave like Margin and test dimensions:

232 \else\ifx\el@TempParameter\el@ProgressiveTest%

233 \expandafter\el@UnitSearch#2?%

234 \ifDubiousFigure%

235 \el@DimenError{#1}{#2}%

236 \else%

237 \el@ProgressiveMargin{#2}%

238 \fi%

239 \else\ifx\el@TempParameter\el@ProgressiveStarTest%

240 \expandafter\el@UnitSearch#2?%

241 \ifDubiousFigure%

242 \el@DimenError{#1}{#2}%

243 \else%

244 \el@ProgressiveMargin*{#2}%

245 \fi%

246 \else\ifx\el@TempParameter\el@IndentTest%

247 \expandafter\el@UnitSearch#2?%

248 \ifDubiousFigure%

249 \el@DimenError{#1}{#2}%

250 \else%

251 \el@GenericDef{Indent}{#2}%

252 \fi%

253 \else\ifx\el@TempParameter\el@SpaceTest%

254 \expandafter\el@UnitSearch#2?%

255 \ifDubiousFigure%

256 \el@DimenError{#1}{#2}%

257 \else%

258 \el@GenericDef{Space}{#2}%

259 \fi%

260 \else\ifx\el@TempParameter\el@SpaceStarTest%

261 \expandafter\el@UnitSearch#2?%

262 \ifDubiousFigure%

263 \el@DimenError{#1}{#2}%

264 \else%

265 \el@GenericDef[*]{Space}{#2}%

266 \fi%

267 \else\ifx\el@TempParameter\el@FinalSpaceTest%

268 \expandafter\el@UnitSearch#2?%

269 \ifDubiousFigure%

270 \el@DimenError{#1}{#2}%

271 \else%

272 \el@GenericDef{FinalSpace}{#2}%

273 \fi%

Hide tests whether its argument is a number. (If you don't understand \el@Error, see above, where it's
been de�ned.)

274 \else\ifx\el@TempParameter\el@HideTest%

275 \expandafter\el@NumberCheck#2?%

276 \ifDubiousFigure%

17

277 \el@Error{#1}{#2}{number}%

278 \else%

279 \el@GenericDef{Hide}{#2}%

280 \fi%

For Numbers, we check that the value is a correct number denotation, namely a, r, R, l, L and z (which
will be turned into commands later on).

281 \else\ifx\el@TempParameter\el@NumbersTest%

282 \el@LetterCheck{#2}%

283 \ifDubiousLetter%

284 \el@Error%

285 {#1}{#2}{number denotation}%

286 \else%

287 \el@GenericDef{Numbers}{#2}%

288 \fi%

For Align and Hang, we test whether the value is some keyword, and in the case of Align, if it is not a
keyword, we test whether it's a dimension.

289 \else\ifx\el@TempParameter\el@AlignTest%

290 \ifx\el@TempValue\el@Fixed%

291 \el@GenericDef{Align}{fixed}%

292 \else\ifx\el@TempValue\el@Move%

293 \el@GenericDef{Align}{move}%

294 \else\ifx\el@TempValue\el@False%

295 \else%

296 \expandafter\el@UnitSearch\el@TempValue?%

297 \ifDubiousFigure%

298 \el@Error%

299 [.^^J==> Admissible values are `false', `fixed', `move' or a dimension]%

300 {#1}{#2}{value for `Align'}%

301 \DubiousFigurefalse%

302 \else%

303 \el@GenericDef{Align}{#2}%

304 \fi%

305 \fi\fi\fi%

306 \else\ifx\el@TempParameter\el@HangTest%

307 \ifx\el@TempValue\el@True%

308 \el@GenericDef{Hang}{true}%

309 \else\ifx\el@TempValue\el@False%

310 \el@GenericDef{Hang}{false}%

311 \else%

312 \el@Error%

313 [.^^J==> Admissible values are `true' or `false']%

314 {#1}{#2}{value for `Hang'}%

315 \fi\fi%

Start(*) is not allowed without specifying a number, so an error is issued if it appears without one:

316 \else\ifx\el@TempParameter\el@StartTest%

317 \PackageError{easylist}%

318 {^^J==> `Start' can't be used without a number, so it is ignored}{}%

319 \else\ifx\el@TempParameter\el@StartStarTest%

320 \PackageError{easylist}%

321 {^^J==> `Start*' can't be used without a number, so it is ignored}{}%

Finally, with (Final)Mark, Style(*(*)), and CtrCommand, there's not much we can test, so we just
launch a generic de�nition and hope.

322 \else\ifx\el@TempParameter\el@MarkTest%

323 \el@GenericDef{Mark}{#2}%

324 \else\ifx\el@TempParameter\el@FinalMarkTest%

325 \el@GenericDef{FinalMark}{#2}%

326 \else\ifx\el@TempParameter\el@StyleTest%

18

327 \el@GenericDef{Style}{#2}%

328 \else\ifx\el@TempParameter\el@CtrStyleTest%

329 \el@GenericDef[*]{Style}{#2}%

330 \else\ifx\el@TempParameter\el@ParStyleTest%

331 \el@GenericDef[**]{Style}{#2}%

332 \else\ifx\el@TempParameter\el@CounterCommandTest%

333 \el@GenericDef{CtrCom}{#2}%

Now, if the parameter is not a keyword, it is either something like Style2 or an error from the user.
The former is treated below. In the latter case, we put the parameter to the test and issue some error
message accordingly: whether it has a wrong name, or a number higher than the amount of counters
asked for, or both, or none. We can do that because we de�ne and use parameters as commands with
\csname Parameter\endcsname. Using \csname Command\endcsname is equivalent to \relax if no such
command has been de�ned (unlike \Command which yields an error message). That's the reason why all
parameters have to be de�ned, albeit sometimes vacuously, as have been done above.

So we see whether \csname Parameter\endcsname is equal to \relax, and if it is, we test it to see
what's wrong:

334 \else\expandafter\ifx\csname #1\endcsname\relax%

335 \el@DubiousParameter#1?%

If it has a wrong name and a wrong number, we say:

336 \ifDubiousParameter%

337 \ifDubiousNumber%

338 \PackageError{easylist}{^^J==> `#1' is not a valid parameter. It is ignored.%

339 ^^J==> Besides, you don't have \el@ParameterNumber\space counters}{}%

If only the name is wrong:

340 \else%

341 \PackageError{easylist}{^^J==> `#1' is not a valid parameter. It is ignored}{}%

342 \fi%

If only the number is wrong:

343 \else%

344 \ifDubiousNumber%

345 \PackageError{easylist}{^^J==> You don't have \el@ParameterNumber\space%

346 counters, so `#1' is ignored.%

347 ^^J==> Ask for more of them}{}%

And �nally if none are wrong, as in the case of Style**2, which the test cannot detect:

348 \else%

349 \PackageError{easylist}{^^J==> Something is wrong with `#1' but I don't know what.%

350 ^^J==> Maybe you put stars before numbers or you specified a number%

351 ^^J==> to Progressive. Anyway, it is ignored}{}%

352 \fi%

353 \fi%

If nothing is wrong, we simply de�ne the parameter as a command with the value as its de�nition:

354 \else%

355 \expandafter\gdef\csname #1\endcsname{#2}%

And we uglily close that ugly de�nition and call \el@CommaKiller:

356 \fi%

357 \el@CommaKiller}

\el@CommaKiller simply gobbles stray commas to avoid trouble with \ListProperties(Hide=5,),
or \ListProperties(Hide=5,,,,,,,,,Margin=2cm) for that matter. If the next character is a comma,
it calls \el@Comm@Killer, which takes an argument, namely the comma, and does nothing with it but
calls \el@CommaKiller again, thus proceeding to the next character. If the latter is not a comma,
\easynext@Properties is called, which has been de�ned as \el@ListProperties or as \relax, depend-
ing on remaining arguments in \ListProperties.

359 \def\el@Comm@Killer#1{\el@CommaKiller}

360 \def\el@CommaKiller{\@ifnextchar,{\el@Comm@Killer}{\easynext@Properties}}

19

8.4 Parametric tests

Here are the tests used on parameter names and values in \ListProperties and \el@ListProperties

(hence the bad pun that titles this section). One of them, namely \el@NumberCheck, has been de�ned
at the beginning of the package because we needed it to test options. First, we need some conditionals
(\ifDubiousFigure was de�ned with \el@NumberCheck) and temporary names:

362 \newif\ifDubiousLetter

363 \newif\ifDubiousParameter

364 \newif\ifDubiousNumber

365 \newif\ifPoint

366 \newif\ifSign

367

368 \def\el@Parameter{}

369 \def\el@ParameterNumber{}

370 \def\el@Void{}

First, \el@DubiousParameter is called when \el@ListProperties �nds an unde�ned parameter. I
use it simply to give more detailed error messages; I could have let easylist always prompt the same
error message, but using packages with this kind of parameters, I sometime get lost with their names.
So I think details are welcome in error messages, even if it's not much. Anyway, \el@DubiousParameter
scans strings token by token until it meets a ?. A parameter name is made of letters, numbers, and stars.
This test looks for them and lumps them together. For instance, when it meets a letter, it stores it in
\el@Parameter, which is de�ned as \el@P@rameter plus the letter, where \el@P@rameter has been \let

to \el@Parameter beforehand (watch the @'s!), i.e. with its previous value.
So �rst, we \let temporary names and numbers. In case this is the �rst iteration, they are just empty.

We also reset a conditional.

372 \def\el@DubiousParameter#1{%

373 \let\el@P@rameter\el@Parameter%

374 \let\el@P@rameterNumber\el@ParameterNumber%

375 \DubiousFigurefalse%

In case we meet the terminator, we call the two tests that'll try the parameter and its number (described
below). Otherwise, we de�ne \easynext to be the command itself, so it will iterate until the question
mark:

376 \if#1?%

377 \def\easynext{\el@ParameterNumberTest\el@ParameterTest}%

378 \else%

379 \let\easynext\el@DubiousParameter%

Now we look for letters, i.e. characters of category code 11. If we �nd one, we store it in \el@Parameter:

380 \ifcat#1a%

381 \edef\el@Parameter{\el@P@rameter#1}%

If the character is not a letter, we already test what we have collected as letters. We don't wait for the
end of the sequence, otherwise Sty7le, for instance, would be analyzed as Style and 7 and we'd be forced
to say that it is wrong but we don't know why. So it just makes error messages a little more e�cient:
Sty is analyzed and rejected, and then when Sty and le are concatenated, although they will pass the
test, the wrong analysis cannot be undone.

382 \else%

383 \el@ParameterTest%

Now we look for stars and collect them into the parameter name, just like letters:

384 \if#1*

385 \edef\el@Parameter{\el@P@rameter#1}%

Finally, we analyse everyhing else, i.e. characters of category code 12 (or worse!) except stars. When we
�nd such a character, we test whether it's a number:

386 \else%

387 \el@NumberCheck#1?

20

If it's not, we can already say the parameter name is wrong, since it should contain only letters, stars,
and numbers.

388 \ifDubiousFigure%

389 \DubiousParametertrue%

If the character is a number, we collect it in \el@ParameterNumber, to be tested later.

390 \else%

391 \edef\el@ParameterNumber{\el@P@rameterNumber#1}%

And we close and call \easynext:

392 \fi%

393 \fi%

394 \fi%

395 \fi\easynext}

Now we test what we have gathered. The following two tests output values to conditionals, which
are then used at the end of \el@ListProperties (see above), namely whether the parameter has a bad
name or a bad number or both or none.

The name of the parameter is simply compared to keywords with \el@ParameterTest, and if it
matches with none, we �re the proper conditional. If the name matches Progressive(*), we turn down
bad numbers, otherwise easylist will see `good name, bad number', and say `you don't have so many
counters', while actually the problem is that this parameter don't take a number. So easylist will see
`good name, good number', say `something's wrong but I don't know what' and politely suggest that
maybe you put a number to Progressive. (Sorry for the unindented conditionals.)

397 \def\el@ParameterTest{%

398 \ifx\el@Parameter\el@MarginTest%

399 \else\ifx\el@Parameter\el@MarkTest%

400 \else\ifx\el@Parameter\el@FinalMarkTest%

401 \else\ifx\el@Parameter\el@NumbersTest%

402 \else\ifx\el@Parameter\el@IndentTest%

403 \else\ifx\el@Parameter\el@StyleTest%

404 \else\ifx\el@Parameter\el@CtrStyleTest%

405 \else\ifx\el@Parameter\el@ParStyleTest%

406 \else\ifx\el@Parameter\el@CounterCommandTest%

407 \else\ifx\el@Parameter\el@ProgressiveTest%

408 \DubiousNumberfalse%

409 \else\ifx\el@Parameter\el@ProgressiveStarTest%

410 \DubiousNumberfalse%

411 \else\ifx\el@Parameter\el@StartTest%

412 \else\ifx\el@Parameter\el@StartStarTest%

413 \else\ifx\el@Parameter\el@HideTest%

414 \else\ifx\el@Parameter\el@SpaceTest%

415 \else\ifx\el@Parameter\el@SpaceStarTest%

416 \else\ifx\el@Parameter\el@HangTest%

417 \else\ifx\el@Parameter\el@FinalSpaceTest%

418 \else\ifx\el@Parameter\el@AlignTest%

419 \else\DubiousParametertrue%

420 \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}

Now we test numbers. If there is none, everything's ok, but if there's one and it's larger than the
total number of counters (stored in el@CounterTotal), then the conditional is launched.

422 \def\el@ParameterNumberTest{%

423 \ifx\el@ParameterNumber\el@Void%

424 \else%

425 \ifnum\el@ParameterNumber>\el@CounterTotal%

426 \DubiousNumbertrue%

427 \fi%

428 \fi}

21

8.5 Non-parametric tests

Now we test the values of the parameters (hence, once again, the bad title) before TEX gets crazy. Indeed,
if the user say, for instance, Margin=2, we want to disable 2 (which is not a dimension) before TEX tries
to put it where it belongs and starts complaining that there lacks a legal unit of measure. Those tests
are used in \ListProperties and \el@ListProperties above.

8.5.1 Dimensions

So, �rst, we devise a test for dimensions. It's a token-by-token test, and that's the reason why dimensions
de�ned with TEX's \newdimen or LATEX's \newlength should be pre�xed with \the (they're unreadable
otherwise). A dimension is made of at most one plus or minus sign at the beginning, numbers separated
by at most one dot or comma for decimals, and two letters which form the unit's name. That's the basis
on which we can build our test.

First, we de�ne default tail:

430 \def\el@UnitSearch#1{%

431 \let\easynext\el@UnitSearch%

Then we look for the plus or minus sign. It's ok if we have never encountered one before, in which case
the dimension is wrong and we let the test gobble the rest of the sequence.

432 \if#1-%

433 \ifSign%

434 \DubiousFiguretrue%

435 \def\easynext##1?{\relax}%

436 \else%

437 \Signtrue%

438 \fi%

439 \else%

440 \if#1+%

441 \ifSign%

442 \DubiousFiguretrue%

443 \def\easynext##1?{\relax}%

444 \else%

445 \Signtrue%

446 \fi%

If the character is not a plus minus sign, then none can appear later: the signs are always at the beginning
of a dimension. Thus, as soon as we meet a character which is not a plus or minus sign, we do as if we
had encountered one, i.e. with set the corresponding conditional to true.

447 \else%

448 \Signtrue%

Then, if we meet the terminator, it means that the dimension is wrong, since dimensions end with letters
(the unit) and if letters are met, another test is launched which goes to the end of the sequence (and the ter-
minator). So \el@UnitSearch should never see ? with a valid dimension. (We use \DubiousFiguretrue,
although we're testing dimensions, because that single conditional is enough. We don't need one for
numbers, one for units, etc. As long as something is wrong, the dimension is wrong, and I think the user
can �nd out what, contrary to the parametric tests above that were more detailed.)

449 \if#1?%

450 \DubiousFiguretrue%

451 \let\easynext\relax%

Next, if we meet a point or a comma, it's ok unless we already met once, in which case the dimension is
wrong, and we simply gobble the rest of the sequence:

452 \else%

453 \if#1.%

454 \ifPoint%

455 \DubiousFiguretrue%

456 \def\easynext##1?{\relax}%

457 \else%

458 \Pointtrue%

22

459 \fi%

460 \else%

461 \if#1,%

462 \ifPoint

463 \DubiousFiguretrue%

464 \def\easynext##1?{\relax}%

465 \else%

466 \Pointtrue%

467 \fi%

If we �nd a letter, we quit \el@UnitSearch for another test.

468 \else%

469 \ifcat#1a%

470 \def\easynext{\el@UnitCheck#1}%

Now, if the character is none of the above, then its category code is 12. So we test whether it's a number:

471 \else%

472 \el@NumberCheck#1?%

If it's not, that doesn't mean that the dimension is wrong. Indeed, if it is a TEX or LATEX dimension as
de�ned above, then its pre�xing with \the turned it into a readable sequence of characters, but they all
have category code 12, even letters. So the unit (which is always pt) can't be detected by \ifcat#1a

above, for the p is not of the same category anymore. So we run a special test:

473 \ifDubiousFigure%

474 \def\easynext{\el@DimenUnitCheck#1}%

And we close. The rest is up to the tests that have been called.

475 \fi%

476 \fi%

477 \fi%

478 \fi%

479 \fi%

480 \fi%

481 \fi\easynext}

Before testing units, we need keywords, namely their names. I hope I didn't miss one2:

483 \def\el@Em{em}%

484 \def\el@Ex{ex}%

485 \def\el@Centimetre{cm}%

486 \def\el@Millimetre{mm}%

487 \def\el@Inch{in}%

488 \def\el@Pica{pc}%

489 \def\el@Point{pt}

490 \def\el@Didot{dd}%

491 \def\el@Cicero{cc}%

492 \def\el@BigPoint{bp}%

493 \def\el@ScaledPoint{sp}%

Now we simply compare what we've found to those keywords. \el@UnitCheck takes the rest of the
sequence (from the �rst letter found with \el@UnitSearch) as its argument. In case nothing matches,
then the dimension is wrong (when fed with two commands, \ifx tests whether they have the same
expansion).

495 \def\el@UnitCheck#1?{%

496 \def\el@TempUnit{#1}%

497 \ifx\el@TempUnit\el@Em%

498 \else\ifx\el@TempUnit\el@Ex%

2Actually, I missed those same dimensions pre�xed with true (see the TEXbook, chapter 10), but since there might be
any number of spaces, including zero, between true and the unit, it's hard to test. And I think true is hardly used�and
one can still de�ne the appropriate dimension beforehand. What, me, reluctant?

23

499 \else\ifx\el@TempUnit\el@Centimetre%

500 \else\ifx\el@TempUnit\el@Millimetre%

501 \else\ifx\el@TempUnit\el@Inch%

502 \else\ifx\el@TempUnit\el@Pica%

503 \else\ifx\el@TempUnit\el@Point%

504 \else\ifx\el@TempUnit\el@Didot%

505 \else\ifx\el@TempUnit\el@Cicero%

506 \else\ifx\el@TempUnit\el@BigPoint%

507 \else\ifx\el@TempUnit\el@ScaledPoint%

508 \else\DubiousFiguretrue\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}

Here's the little test for the case letters have turned to category 12. In that case, the unit is pt

(dimensions always use pt, even if you de�ne them with another unit). The conditional \if compares
character codes, not category codes, so it works �ne here. If the �rst character is p and the second is t, then
we have a valid unit and we can turn o� \ifDubiousFigure (which was turned on by \el@NumberCheck

in \el@UnitSearch above).

510 \def\el@DimenUnitCheck#1#2?{%

511 \if#1p%

512 \if#2t%

513 \DubiousFigurefalse%

514 \fi%

515 \fi}

Now, those tests work �ne when we have something like Margin=2cm. \el@ListProperties identi�es
the keyword and runs the test on 2cm accordingly. But if we have Margin3=2cm, we can't do that: Margin3
is not identi�ed, we simply know that it's been already de�ned and thus it's a valid parameter. But apart
from that, we don't know anything�actually, \el@ListProperties doesn't even know it's a Margin; it
just de�nes it because its name is ok. So we have to test those parameters after they've been rede�ned
by \el@ListProperties. However, we don't know which parameters have been speci�ed, so we must
test them all. But we don't know in advance how many of them there are: it depends on the number of
counters that the user has asked for. So we need a recursive test, just like we had a recursive de�nition.
That's the meaning of all those \el@Generic... tests appended at the end of \ListProperties above.

Here's the generic version of \el@UnitSearch. First, we do some cleaning:

517 \newcommand{\el@GenericUnitSearch}[2][]{%

518 \Pointfalse%

519 \Signfalse%

Then, if the control counter is higher than \el@CounterTotal, then we have tested all parameters and
we stop:

520 \ifnum\el@ControlCounter>\el@CounterTotal%

521 \el@ControlCounter1%

522 \def\easynext[##1]##2{\relax}%

Otherwise, we take the value of the parameter of the level we're in (according to the control counter).
The name of the parameter is made out of the two arguments, the �rst of which is optional since it is
used for stars. So \el@GenericUnitSearch[*]{Space} will test Space1*, Space2*, etc.:

523 \else%

524 \edef\el@TempTestable{\csname #2\the\el@ControlCounter#1\endcsname}%

Then we launch \el@UnitSearch. In case we have a invalid dimension, we issue an error message and
rede�ne the command to its default value (unfortunately not its previous value in case the user had
already speci�ed one), which is .3em for FinalSpace and 0cm for anything else.

525 \expandafter\el@UnitSearch\el@TempTestable?%

526 \ifDubiousFigure%

527 \def\el@Name{#2}%

528 \ifx\el@Name\el@FinalSpace%

529 \el@Error[^^J==> and #2\the\el@ControlCounter#1\space is set to .3em.%

530 ^^J==> Note that true TeX dimensions should be prefixed with%

531 ^^J==> \string\the\space in \string\ListProperties]%

532 {#2\the\el@ControlCounter#1}{\el@TempTestable}{dimension}%

24

533 \expandafter\gdef\csname #2\the\el@ControlCounter#1\endcsname{.3em}%

534 \else%

535 \el@Error[^^J==> and #2\the\el@ControlCounter#1\space is set to 0cm.%

536 ^^J==> Note that true TeX dimensions should be prefixed with%

537 ^^J==> \string\the\space in \string\ListProperties]%

538 {#2\the\el@ControlCounter#1}{\el@TempTestable}{dimension}%

539 \expandafter\gdef\csname #2\the\el@ControlCounter#1\endcsname{0cm}%

540 \fi%

541 \fi%

Finally, we set the stage for a new iteration:

542 \DubiousFigurefalse%

543 \el@Advance\el@ControlCounter%

544 \let\easynext\el@GenericUnitSearch%

545 \fi\easynext[#1]{#2}}%

8.5.2 Number denotation

Here's a test to check that the value of Numbers is valid. Well, it's quite simple, it just compares letters:

547 \def\el@LetterCheck#1{%

548 \if#1a%

549 \else\if#1r%

550 \else\if#1R%

551 \else\if#1l%

552 \else\if#1L%

553 \else\if#1z%

554 \else\DubiousLettertrue%

555 \fi\fi\fi\fi\fi\fi}

The generic version is exactly the same thing as \el@GenericUnitSearch above, so I don't comment
it. It's even simpler since we don't need an argument: only one parameter uses this test.

557 \def\el@GenericLetterCheck{%

558 \ifnum\el@ControlCounter>\el@CounterTotal%

559 \el@ControlCounter1%

560 \def\easynext{\relax}%

561 \else%

562 \edef\el@TempTestable{\csname Numbers\the\el@ControlCounter\endcsname}%

563 \expandafter\el@LetterCheck\el@TempTestable%

564 \ifDubiousLetter%

565 \PackageError{easylist}%

566 {^^J==> `\el@TempTestable' is not a valid number denotation %

567 (Numbers\the\el@ControlCounter=\el@TempTestable).%

568 ^^J==> It is ignored and those numbers will be arabic numbers}{}%

569 \expandafter\gdef\csname Numbers\the\el@ControlCounter\endcsname{a}%

570 \fi%

571 \DubiousLetterfalse%

572 \el@Advance\el@ControlCounter%

573 \let\easynext\el@GenericLetterCheck%

574 \fi\easynext}%

8.5.3 Numbers

Finally we devise a generic version of \el@NumberCheck (de�ned at the beginning of the package). It
concerns Hide and Start(*). The beginning is as usual:

576 \newcommand{\el@GenericNumberCheck}[2][]{%

577 \ifnum\el@ControlCounter>\el@CounterTotal%

578 \el@ControlCounter1%

579 \def\easynext[##1]##2{\relax}%

25

We store the value of the parameter, make sure it's not NA (the unspeci�ed value of Start(*)), and run
\el@NumberCheck:

580 \else%

581 \edef\el@TempTestable{\csname #2\the\el@ControlCounter#1\endcsname}%

582 \ifx\el@TempTestable\el@NA%

583 \else%

584 \expandafter\el@NumberCheck\el@TempTestable?%

If something's wrong, we issue the appropriate message depending on the name of the parameter and the
presence or absence of a star, rede�ne the command, and close as usual:

585 \ifDubiousFigure%

586 \def\el@Name{#2}%

587 \ifx\el@Name\el@HideTest%

588 \el@Error[^^J==> and no counter will be hidden for items of level \the\el@ControlCounter]%

589 {#2\the\el@ControlCounter#1}{\el@TempTestable}{number}%

590 \expandafter\gdef\csname #2\the\el@ControlCounter#1\endcsname{0}%

591 \else%

592 \if#1*%

593 \el@Error[^^J==> and this counter will continue its progression]%

594 {#2\the\el@ControlCounter#1}{\el@TempTestable}{counter}%

595 \else%

596 \el@Error[^^J==> and this counter will continue its progression]%

597 {#2\the\el@ControlCounter#1}{\el@TempTestable}{number}%

598 \fi%

599 \expandafter\gdef\csname #2\the\el@ControlCounter#1\endcsname{NA}%

600 \fi%

601 \fi%

602 \fi%

603 \DubiousFigurefalse%

604 \el@Advance\el@ControlCounter%

605 \let\easynext\el@GenericNumberCheck%

606 \fi\easynext[#1]{#2}}%

8.6 Creating items

Now we can start typesetting items. First of all, we want counters to be properly reset when higher ones
are stepped. So \el@ResetCounters sets a scratch counter to the control counter, steps it (because we're
interested in those counters that are below the current one) and launch the real job.

608 \def\el@ResetCounters{%

609 \el@Scratch\el@ControlCounter%

610 \el@Advance\el@Scratch%

611 \el@@ResetCounters}

First, if we have done all counters, we stop.

613 \def\el@@ResetCounters{%

614 \ifnum\el@Scratch>\el@CounterTotal%

615 \let\easynext\relax%

616 \el@Scratch0%

Otherwise, we set the counters under investigation to 0, conditionally reset its Start value to NA

and reiterate. Resetting Start just forces the user to de�ne this parameter before an item containing
that counter, which is just security. But we don't want this to happen with an intermediate counter.
Indeed, setting for instance the �rst counter to 10 just before an item of the second level needs to reset the
second counter, except when that counter has also just been speci�ed with Start2. Now, when building an
item's number, \el@CounterLevel represents its level (in our example, it's 2) and \el@ControlCounter

represents the counter we're currently working with (here, 1). So the conditional does the job: it resets
the second counter but not its Start value, in case there is one.

617 \else%

618 \setcounter{List\the\el@Scratch}{0}%

26

619 \ifnum\el@ControlCounter=\el@CounterLevel%

620 \expandafter\gdef\csname Start\the\el@Scratch\endcsname{NA}%

621 \fi%

622 \el@Advance\el@Scratch%

623 \let\easynext\el@@ResetCounters%

624 \fi\easynext}

We need some simple de�nitions, including a font de�nition for Zapf's Dingbats.

626 \def\el@ItemCounter{}

627 \def\el@NA{NA}

628 \font\el@ZapfDingbats=pzdr%

Now, here's the command that handles numbers and their punctuation. It de�nes \el@ItemCounter,
to be inserted in the �nal product. First, we turn user's input into commands for the Numbers parameter.
We do this here because a command such as \l has to be local, since it's used to typeset some letter.
The \z command actually changes the font.

630 \def\el@PrintCounters{%

631 \def\a{\arabic}%

632 \def\l{\alph}%

633 \def\L{\Alph}%

634 \def\r{\roman}%

635 \def\R{\Roman}%

636 \def\z{\el@ZapfDingbats\arabic}

The de�nition is twofold: it prints the �rst numbers, and then the last one, i.e. the nth one in an
item of the nth level. There are few di�erences. So, in case we're one of the �rst counters, i.e. in
case \el@ControlCounter is lower than \el@CounterLevel (which basically records how many �'s we've
seen), and if Start* for this counter is unspeci�ed (equal to NA) but Start is not, then we turn that
counter to the value of Start, set it back to NA (because we don't want the counter to be stuck to that
value), and reset lower counters. Indeed, if you say \ListProperties(Start1=5) and then type ��,
chances are you want the second counter to start at 1, don't you?

637 \ifnum\el@ControlCounter<\el@CounterLevel%

638 \expandafter\ifx\csname Start\the\el@ControlCounter*\endcsname\el@NA%

639 \expandafter\ifx\csname Start\the\el@ControlCounter\endcsname\el@NA%

640 \else%

641 \setcounter{List\the\el@ControlCounter}{\csname Start\the\el@ControlCounter\endcsname}%

642 \expandafter\gdef\csname Start\the\el@ControlCounter\endcsname{NA}%

643 \el@ResetCounters%

644 \fi%

And if Start* is not unspeci�ed, �rst we check if the value has changed: indeed, since Start* is meant to
follow an external counter, changing its value will a�ect lower counters. For instance, if the �rst counter
follows sections, every new section increases it by one and we want the second, third, etc., counters to be
reset as with any incrementing of a higher counter. So if the current value of a counter is not equal to
the value of its Start* parameter fully expanded, we launch \el@ResetCounters. In any case, we set
the counter to Start*.

645 \else%

646 \expandafter\ifnum\csname theList\the\el@ControlCounter\endcsname=%

647 \csname Start\the\el@ControlCounter*\endcsname%

648 \else%

649 \el@ResetCounters%

650 \fi

651 \setcounter{List\the\el@ControlCounter}{\csname Start\the\el@ControlCounter*\endcsname}%

652 \fi%

Now, if the current counter is higher than Hide for the current level, we print it or rather store it in
\el@ItemCounter, which before all stores itself, i.e. previous values of itself, so when we reiterate we
retrieve everything from the previous iteration.

653 \ifnum\el@ControlCounter>\csname Hide\the\el@CounterLevel\endcsname%

654 \xdef\el@ItemCounter{\el@ItemCounter%

27

We store the counter value in a group, because if its Numbers parameter is z, we change the font, and
we don't want that to spread. This parameter is used in a somewhat cumbersome but e�cient fashion;
we retrieve its value with \csname Numbers\the\el@ControlCounter\endcsname, which yields, say, a,
and since it's enclosed in an additional \csname/\endcsname pair, we get \a, which was de�ned at the
beginning of the macro.

655 \bgroup%

656 \csname\csname Numbers\the\el@ControlCounter\endcsname\endcsname{List\the\el@ControlCounter}%

657 \egroup%

Finally, we put the punctuation mark, close the \el@ItemCounter and the conditional and set the stage
for tail recursion:

658 \csname Mark\the\el@ControlCounter\endcsname}%

659 \fi%

660 \el@Advance\el@ControlCounter%

661 \let\easynext\el@PrintCounters%

Now, if we're concerned with the last counter of the item, �rst we increment it and reset all counters
below:

662 \else%

663 \stepcounter{List\the\el@CounterLevel}%

664 \el@ResetCounters%

Then, as before, we check Start and Start* and act accordingly, except that we don't have to check
whether Start* has changed, because counters are reset anyway.

665 \expandafter\ifx\csname Start\the\el@ControlCounter*\endcsname\el@NA%

666 \expandafter\ifx\csname Start\the\el@ControlCounter\endcsname\el@NA%

667 \else%

668 \setcounter{List\the\el@ControlCounter}{\csname Start\the\el@ControlCounter\endcsname}%

669 \expandafter\gdef\csname Start\the\el@ControlCounter\endcsname{NA}%

670 \fi%

671 \else%

672 \setcounter{List\the\el@ControlCounter}{\csname Start\the\el@ControlCounter*\endcsname}%

673 \fi%

We build \el@ItemCounter just the same except that if FinalMark is speci�ed, we put it instead of Mark.

674 \ifnum\el@ControlCounter>\csname Hide\the\el@CounterLevel\endcsname%

675 \xdef\el@ItemCounter{\el@ItemCounter%

676 \bgroup%

677 \csname\csname Numbers\the\el@ControlCounter\endcsname\endcsname{List\the\el@ControlCounter}%

678 \egroup%

679 \expandafter\ifx\csname FinalMark\the\el@ControlCounter\endcsname\el@NA%

680 \csname Mark\the\el@ControlCounter\endcsname%

681 \else%

682 \csname FinalMark\the\el@ControlCounter\endcsname%

683 \fi}%

684 \fi%

And we stop the iteration and close:

685 \el@ControlCounter1%

686 \let\easynext\relax%

687 \fi%

688 \easynext}

Now, for the �nal big de�nition, we need two boxes, two dimensions, and a de�nition which is an
imitation of LATEX's \@sptoken to de�ne a space, except that I enclosed it in a group here (since \:

already exists). It makes \el@Space a space.

690 \newbox\el@CounterBox

691 \newbox\el@ControlBox

692 \newdimen\el@TotalMargin

693 \newdimen\el@LeftMove

694 {\def\:{\global\let\el@Space= }\: }

28

First, we turn # into a normal character because we'll need it in the error message, then we check
whether \elNextToken, which has been stored by � (see the de�nition of the easylist environment
below), and which represents the next character after the current �, is a space, in which case we must
proceed. We reset \el@LeftMove (see below) and then close a group. Indeed, a group is open after each
item number so that the text can have Style** command like \color{red} without a�ecting the rest of
the text. \begin{easylist} has a corresponding \begingroup and \end{easylist} a \endgroup.

696 \catcode`#=12

697 \def\elCreateItem{%

698 \ifx\elNextToken\el@Space%

699 \global\el@LeftMove=0pt%

700 \endgroup%

Now, if \el@CounterLevel, which is incremented each time a � is followed by another � and which records
the level of the item we're building, is higher than the total number of counters asked for, we issue an
error message (with the proper symbol, hence the ugly conditional) and replace the item number by
boxed exclamation marks. (§ is the output of � and ¶ is the output of ¶ in the current encoding. As
you may know, verbatimizing is not really showing the bare input, and there's nothing I can do about
it because, as far as I'm aware, � and ¶ as glyphs are only accessible through commands which, in a
verbatim environment, woulnd't launch... So we'll have to live with it to the end of the package.)

701 \ifnum\el@CounterLevel>\el@CounterTotal%

702 \PackageError{easylist}{^^J==> Too many %

703 \ifAmpersand&\else\ifAt @\else\ifPilcrow¶\else\ifSharp#\else§\fi\fi\fi\fi's.%

704 ^^J==> You can't use more than \el@CounterTotal\space%

705 \ifAmpersand&\else\ifAt @\else\ifPilcrow¶\else\ifSharp#\else§\fi\fi\fi\fi's%

706 ^^J==> unless you specify it when calling the package}{}

707 \par\noindent\fbox{!!!}\begingroup%

If everything's okay, we create a paragraph and add Space or Space* depending on the level of the
previous item, which was stored in \el@PreviousItem (0 means that there was no previous item).

708 \else%

709 \par%

710 \expandafter\ifnum\el@PreviousItem=0%

711 \else%

712 \expandafter\ifnum\el@PreviousItem=\el@CounterLevel%

713 \vskip\csname Space\the\el@CounterLevel*\endcsname%

714 \else%

715 \vskip\csname Space\the\el@CounterLevel\endcsname%

716 \fi%

717 \fi%

Then we launch \el@PrintCounters to create \el@ItemCounter, and set the working margin to the
value of Margin for the current level.

718 \el@PrintCounters%

719 \el@TotalMargin\csname Margin\the\el@CounterLevel\endcsname%

Now we build a box with the counter in full regalia, i.e. nested in its CtrCom, accompanied by its Style(*)
and with the FinalSpace added at the end of it if not all counters were hidden (since if there's no counter,
you don't want a space). The inner pair of braces creates a group that will prevent Style(*) values like
\color{blue} from spreading to the text item.

720 \setbox\el@CounterBox=\hbox{{%

721 \csname CtrCom\the\el@CounterLevel\endcsname{%

722 \csname Style\the\el@CounterLevel\endcsname%

723 \csname Style\the\el@CounterLevel*\endcsname%

724 \el@ItemCounter}%

725 \ifnum\el@CounterLevel>\csname Hide\the\el@CounterLevel\endcsname%

726 \hskip\csname FinalSpace\the\el@CounterLevel\endcsname%

727 \fi}}%

Now we have to checked the Align parameter. If it is false, we do nothing, of course. If it is set to
fixed, we store the width of the box we've just built, and it will serve as our reference width for this
level. We turn Align to alreadyfixed for items to come.

29

728 \expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@False%

729 \else\expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@Fixed%

730 \expandafter\xdef\csname CounterBoxWidth\the\el@CounterLevel\endcsname{%

731 \the\wd\el@CounterBox}%

732 \expandafter\gdef\csname Align\the\el@CounterLevel\endcsname{alreadyfixed}%

If Align is alreadyfixed, we rebuild the box, this time setting its width to the reference width and
replacing FinalSpace with a glue.

733 \else\expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@AlreadyFixed%

734 \setbox\el@CounterBox=\hbox to \csname CounterBoxWidth\the\el@CounterLevel\endcsname{{%

735 \csname CtrCom\the\el@CounterLevel\endcsname{%

736 \csname Style\the\el@CounterLevel\endcsname%

737 \csname Style\the\el@CounterLevel*\endcsname%

738 \el@ItemCounter}%

739 \hfil}}%

We copy that new box into \el@ControlBox to get the real width of the counter, compare it to the
desired value, and if it is larger, we issue a warning (but use the box anyway):

740 \setbox\el@ControlBox=\hbox{\unhcopy\el@CounterBox}%

741 \expandafter\ifdim\wd\el@ControlBox>\csname CounterBoxWidth\the\el@CounterLevel\endcsname%

742 \PackageWarning{easylist}{%

743 ^^J==> This counter is to wide and will spread on%

744 ^^J==> the item text. You should increase FinalSpace%

745 ^^J==> if you use `fixed' or increase the dimension%

746 ^^J==> if you specified one.

747 ^^J==>}%

748 \fi%

If Align is move, we store the width of the box once again and set Align to alreadymoved.

749 \else\expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@Move%

750 \expandafter\xdef\csname CounterBoxWidth\the\el@CounterLevel\endcsname{%

751 \the\wd\el@CounterBox}%

752 \expandafter\gdef\csname Align\the\el@CounterLevel\endcsname{alreadymoved}%

And if Align is alreadymoved, we set a dimension to the width of the current box minus the desired
width, i.e. we determine the extra space, which we'll remove when we insert the box.

753 \else\expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@AlreadyMoved%

754 \el@LeftMove=\wd\el@CounterBox%

755 \advance\el@LeftMove by -\csname CounterBoxWidth\the\el@CounterLevel\endcsname%

Finally, if Align is none of the above, it should be a dimension. But we have to be sure of this, so we run
\el@UnitSearch, and if it's ok, we rebuild the box with the dimension, which we store, and turn Align

to alreadyfixed. We measure the width one again an issue an warning if the box is overfull.

756 \else%

757 \edef\el@TempTestable{\csname Align\the\el@CounterLevel\endcsname}%

758 \DubiousFigurefalse%

759 \Signfalse%

760 \Pointfalse%

761 \expandafter\el@UnitSearch\el@TempTestable?%

762 \ifDubiousFigure%

763 \el@Error%

764 [.^^J==> Admissible values are `false', `fixed', `move' or a dimension]%

765 {Align\the\el@CounterLevel}{\csname Align\the\el@CounterLevel\endcsname}%

766 {value for `Align'}%

767 \expandafter\gdef\csname Align\the\el@CounterLevel\endcsname{false}%

768 \else%

769 \expandafter\xdef\csname CounterBoxWidth\the\el@CounterLevel\endcsname{%

770 \csname Align\the\el@CounterLevel\endcsname}%

771 \setbox\el@CounterBox=\hbox to \csname CounterBoxWidth\the\el@CounterLevel\endcsname{{%

772 \csname CtrCom\the\el@CounterLevel\endcsname{%

30

773 \csname Style\the\el@CounterLevel\endcsname%

774 \csname Style\the\el@CounterLevel*\endcsname%

775 \el@ItemCounter}%

776 \hfil}}%

777 \expandafter\gdef\csname Align\the\el@CounterLevel\endcsname{alreadyfixed}%

778 \setbox\el@ControlBox=\hbox{\unhcopy\el@CounterBox}%

779 \expandafter\ifdim\wd\el@ControlBox>\csname CounterBoxWidth\the\el@CounterLevel\endcsname%

780 \PackageWarning{easylist}{%

781 ^^J==> This counter is to wide and will spread on%

782 ^^J==> the item text. You should increase FinalSpace%

783 ^^J==> if you use `fixed' or increase the dimension%

784 ^^J==> if you specified one.

785 ^^J==>}%

786 \fi%

787 \fi%

788 \fi\fi\fi\fi\fi%

Now we have to deal with the Hang parameter. If it is on, in case we're in a alreadymoved situation,
we add the reference width to the working margin and substract it from \parindent; in any other case,
we do the same with the current width of the box (which is the same of the desired width if Align is
alreadyfixed). The net e�ect of this is to leave room for the item number in the left margin and to
move the �rst line (with \parindent) on the left by its width.

789 \expandafter\ifx\csname Hang\the\el@CounterLevel\endcsname\el@True%

790 \expandafter\ifx\csname Align\the\el@CounterLevel\endcsname\el@AlreadyMoved%

791 \advance\el@TotalMargin by \csname CounterBoxWidth\the\el@CounterLevel\endcsname%

792 \parindent=-\csname CounterBoxWidth\the\el@CounterLevel\endcsname%

793 \else%

794 \advance\el@TotalMargin by \wd\el@CounterBox%

795 \parindent=-\wd\el@CounterBox%

796 \fi%

If Hang is turned o�, we simply set \parindent to value speci�ed by the user:

797 \else%

798 \parindent=\csname Indent\the\el@CounterLevel\endcsname%

799 \fi%

Finally, we set the left margin, and with \hangafter0 we tell TEX to start indenting from the �rst line
on. Then we add the negative space (set to 0pt if Align is not alreadymoved) and release the box.

800 \hangafter0\hangindent\el@TotalMargin%

801 \hskip-\el@LeftMove\box\el@CounterBox%

We're done with the counter and we must now set the stage for the item text. First, we open a group for
the reason above, set \@currentlabel (used by LATEX to know what should be \label'ed with \label)
to \el@ItemCounter and clear the latter (since it recusively de�nes itself, see above).

802 \begingroup%

803 \edef\@currentlabel{\el@ItemCounter}%

804 \gdef\el@ItemCounter{}%

We shape the paragraphs to come by setting \parindent to the value issued by the user (since the
�rst paragraph has already begun with the printing of the counter, hanging items won't be a�ected)
and by repeating the margin with \everypar (since \hangafter and \hangindent are reset after each
paragraph). And, of course, we issue the Style(**) of this level.

805 \parindent=\csname Indent\the\el@CounterLevel\endcsname%

806 \everypar{\hangafter0\hangindent\el@TotalMargin}%

807 \csname Style\the\el@CounterLevel\endcsname%

808 \csname Style\the\el@CounterLevel**\endcsname%

Finally, we set some values, simply increment the level counter if there was no space after all, close by
ignoring spaces so that the distance from the counter to the text will be rigidly �xed by FinalSpace,
and restore #.

31

809 \fi%

810 \xdef\el@PreviousItem{\the\el@CounterLevel}%

811 \global\el@CounterLevel1%

812 \else%

813 \global\el@Advance\el@CounterLevel%

814 \fi\ignorespaces}

815 \catcode`#=6

Here are the prede�ned styles. There's nothing much to comment. \elPredefinedStyle is called by
\begin{easylist} and does nothing if nothing follows.

817 \def\el@Tractatus{tractatus}

818 \def\el@CheckList{checklist}

819 \def\el@BookToc{booktoc}

820 \def\el@ArticleToc{articletoc}

821 \def\el@Enumerate{enumerate}

822 \def\el@Itemize{itemize}

823

824 \def\elPredefinedStyle{\@ifnextchar[{\el@PredefinedStyle}{}}

825

826 \def\el@PredefinedStyle[#1]{%

827 \def\el@TempStyle{#1}%

828 \ifx\el@TempStyle\el@Tractatus%

829 \NewList(Mark=,Mark1=.)%

830 \else\ifx\el@TempStyle\el@CheckList%

831 \NewList(%

832 Hide=1000,Progressive*=1em,Hang=true,%

833 Style*={\framebox(7,7){}}\hskip.6em,

834 Style1**=\bfseries)

835 \else\ifx\el@TempStyle\el@BookToc%

836 \NewList(%

837 Hang=true,FinalMark=,Hide=1,%

838 Style1=\large\bfseries,Numbers1=R,Space1=2.25em,Space1*=2.25em,Hide1=0,Hang1=false,Align1=2em,%

839 Style2=\bfseries,Space2=1em,Space2*=1em,Align2=1.5em,%

840 Margin3=1.5em,Margin4=3.8em,Margin5=7em,Margin6=10em,Margin7=12em,%

841 Align3=2.3em,Align4=3.2em,Align5=4.1em,Align6=5em,Align7=6em)%

842 \else\ifx\el@TempStyle\el@ArticleToc%

843 \NewList(%

844 Hang=true,FinalMark=,%

845 Align1=1.5em,Style1=\bfseries,Space1=1em,Space1*=1em,%

846 Margin2=1.5em,Margin3=3.8em,Margin4=7em,Margin5=10em,%

847 Align2=2.3em,Align3=3.2em,Align4=4.1em,Align5=5em)%

848 \else\ifx\el@TempStyle\el@Enumerate%

849 \NewList(%

850 FinalSpace=.5em,Hang=true,Mark=.,Space=4pt,Space*=4pt,Align=move,%

851 Margin1=1.2em,%

852 Margin2=2.9em,Style2*={(},Mark2={)},Numbers2=l,Hide2=1,%

853 Margin3=5.6em,Numbers3=r,Hide3=2,%

854 Margin4=6.8em,Numbers4=L,Hide4=3)%

855 \else\ifx\el@TempStyle\el@Itemize%

856 \NewList(%

857 Hang=true,Space=4pt,Space*=4pt,Hide=1000,%

858 Margin1=1.5em,Style1*=\textbullet\hskip .5em,%

859 Margin2=3.7em,Style2*=--\hskip .5em,%

860 Margin3=5.9em,Style3*=\ast\hskip .5em,%

861 Margin4=7.8em,Style4*=\cdot\hskip .5em)%

862 \else%

863 \PackageError{easylist}{^^J==> `\el@TempStyle' is not a valid predefined style}{}%

864 \fi\fi\fi\fi\fi\fi}

Finally, we de�ne the environment. First we turn o� @ and store the category codes of the symbols to
be made active. I could have simply said for instance \catcode`#=6 but who knows, catcodes might have

32

been changed by a previous package. \edef\AtCatcode{\number\catcode`@\relax} is useless since we
just said \makeatletter, but it's for the sake of symmetry.

866 \makeatother

867

868 \edef\SectionCatcode{\number\catcode`§}%

869 \edef\PilcrowCatcode{\number\catcode`¶}%

870 \edef\SharpCatcode{\number\catcode`#}%

871 \edef\AtCatcode{\number\catcode`@}%

872 \edef\AmpersandCatcode{\number\catcode`&}%

Then we make them active to allow a de�nition that will make them, say, active.

874 \catcode`§=\active

875 \catcode`¶=\active

876 \catcode`@=\active

877 \catcode`#=\active

878 \catcode`&=\active

Now, according to the option loaded with the package, we create the proper environment. For instance,
if @ was chosen, we make it active in the environment and de�nes it as follows: it stores the next item in
\elNextToken and calls \elCreateItem, which will act accordingly.

880 \ifAt

881 \def\easylist{%

882 \catcode`@=\active%

883 \def@{\futurelet\elNextToken\elCreateItem}%

Next \easylist opens a group to match those created by items and launch \elPredefinedStyles,
while \endeasylist closes a group and add a \par that will ensure that the last item of an easylist is
properly formatted.

884 \begingroup\elPredefinedStyle}

885 \def\endeasylist{\endgroup\par}

Finally we de�ne \Activate and \Deactivate, which are straightforward. \AtCatcode is \xdef'ed
because we want the current value category code of @, and \Activate might be issued in a group, so we
want \AtCatcode to be global.

886 \gdef\Activate{%

887 \xdef\AtCatcode{\number\catcode`@}%

888 \catcode`@=\active}

889 \gdef\Deactivate{\catcode`@=\AtCatcode}

And we do the same for the other symbols:

890 \else

891 \ifPilcrow

892 \def\easylist{%

893 \catcode`¶=\active%

894 \def¶{\futurelet\elNextToken\elCreateItem}%

895 \begingroup\elPredefinedStyle}

896 \def\endeasylist{\endgroup\par}

897 \gdef\Activate{%

898 \xdef\PilcrowCatcode{\number\catcode`¶}%

899 \catcode`¶=\active}

900 \gdef\Deactivate{\catcode`¶=\PilcrowCatcode}

901 \else

902 \ifSharp

903 \def\easylist{%

904 \catcode`#=\active%

905 \def#{\futurelet\elNextToken\elCreateItem}%

906 \begingroup\elPredefinedStyle}

907 \def\endeasylist{\endgroup\par}

908 \gdef\Activate{%

909 \xdef\SharpCatcode{\number\catcode`#}%

33

910 \catcode`#=\active}

911 \gdef\Deactivate{\catcode`#=\SharpCatcode}

912 \else

913 \ifAmpersand

914 \def\easylist{%

915 \catcode`&=\active%

916 \def&{\futurelet\elNextToken\elCreateItem}%

917 \begingroup\elPredefinedStyle}

918 \def\endeasylist{\endgroup\par}

919 \gdef\Activate{%

920 \xdef\AmpersandCatcode{\number\catcode`&}%

921 \catcode`&=\active}

922 \gdef\Deactivate{\catcode`&=\AmpersandCatcode}

923 \else

924 \def\easylist{%

925 \catcode`§=\active%

926 \def§{\futurelet\elNextToken\elCreateItem}%

927 \begingroup\elPredefinedStyle}%

928 \def\endeasylist{\endgroup\par}

929 \gdef\Activate{%

930 \xdef\SectionCatcode{\number\catcode`§}%

931 \catcode`§=\active}

932 \gdef\Deactivate{\catcode`§=\SectionCatcode}

933 \fi

934 \fi

935 \fi

936 \fi

At last, we restore the original catcodes and say goodbye.

938 \catcode`&=\AmpersandCatcode

939 \catcode`#=\SharpCatcode

940 \catcode`@=\AtCatcode

941 \catcode`¶=\PilcrowCatcode

942 \catcode`§=\SectionCatcode

34

	Choosing the symbol
	Usage
	Referring to an item
	Options
	Parameters affecting the nth counter in an item number
	 Startn, Startn*
	 Mark, Markn, FinalMark, FinalMarkn
	 Numbers, Numbersn

	Parameters affecting numbers and items of the nth level
	 Hide, Hiden
	 Style, Stylen, Style*, Stylen*, Style**, Stylen**
	 CtrCom, CtrComn
	 Hang, Hangn
	 Align, Alignn
	 Margin, Marginn
	 Progressive, Progressive*
	 Space, Spacen, Space*, Spacen*
	 Indent, Indentn
	 FinalSpace, FinalSpacen

	Predefined styles
	Trouble with boxes
	An example
	Implementation
	Declarations and options
	Basic recursive definitions
	Parameters
	Parametric tests
	Non-parametric tests
	Dimensions
	Number denotation
	Numbers

	Creating items

