\documentclass{amsart} \title{The Dynkin diagrams package \\ Version 3.1415926} \makeatletter \DeclareRobustCommand{\scotsMc}{\scotsMcx{c}} \DeclareRobustCommand{\scotsMC}{\scotsMcx{\textsc{c}}} \DeclareRobustCommand{\scotsMcx}[1]{% M% \raisebox{\dimexpr\fontcharht\font`M-\height}{% \check@mathfonts\fontsize{\sf@size}{0}\selectfont \kern.3ex\underline{\kern-.3ex #1\kern-.3ex}\kern.3ex }% } \expandafter\def\expandafter\@uclclist\expandafter{% \@uclclist\scotsMc\scotsMC } \makeatother \author{Ben \scotsMc{}Kay} \address{School of Mathematical Sciences, University College Cork, Cork, Ireland} \email{b.mckay@ucc.ie} \date{25 November 2019} \usepackage{etex} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenx} \usepackage{etoolbox} \usepackage{lmodern} \RequirePackage[tt=lining]{cfr-lm} \usepackage[kerning=true,tracking=true]{microtype} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{mathtools} \usepackage{array} \usepackage{xstring} \usepackage{longtable} \usepackage[listings]{tcolorbox} \tcbuselibrary{breakable} \tcbuselibrary{skins} \usepackage[pdftex]{hyperref} \hypersetup{ colorlinks = true, %Colours links instead of ugly boxes urlcolor = black, %Colour for external hyperlinks linkcolor = black, %Colour of internal links citecolor = black %Colour of citations } \usepackage{booktabs} \usepackage{colortbl} \usepackage{varwidth} \usepackage{dynkin-diagrams} \usepackage{fancyvrb} \usepackage{xspace} \newcommand{\TikZ}{Ti\textit{k}Z\xspace} \usepackage{filecontents} \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathmorphing} \arrayrulecolor{white} \makeatletter \def\rulecolor#1#{\CT@arc{#1}} \def\CT@arc#1#2{% \ifdim\baselineskip=\z@\noalign\fi {\gdef\CT@arc@{\color#1{#2}}}} \let\CT@arc@\relax \rulecolor{white} \makeatother \newcommand{\C}[1]{\mathbb{C}^{#1}} \renewcommand*{\arraystretch}{1.5} \newcommand{\wdtA}{.7cm} \newcommand{\wdtD}{3cm} \newcommand{\wdtE}{6cm} \newcommand{\wdtL}{3cm} \newcolumntype{A}{@{}>{\columncolor[gray]{.9}$}m{\wdtA}<{$}} \newcolumntype{B}{@{}>{\columncolor[gray]{.9}}m{\wdtA}} \newcolumntype{D}{>{\columncolor[gray]{.9}}m{\wdtD}} \newcolumntype{E}{>{\columncolor[gray]{.9}}m{\wdtE}} \newcolumntype{L}{>{\columncolor[gray]{.9}}p{\wdtL}} \newcolumntype{M}{>{\columncolor[gray]{.9}}l} \newcolumntype{P}{>{\columncolor[gray]{.9}}p{10cm}} \NewDocumentCommand\textleftcurly{}{\texttt{\char'173}}% \NewDocumentCommand\textrightcurly{}{\texttt{\char'175}}% \NewDocumentCommand\csDynkin{omom}% {% \texttt{\detokenize{\dynkin}\!\!\!% \IfNoValueTF{#1}{}{[#1]}% \textleftcurly#2\textrightcurly% \IfNoValueTF{#3}{}{[#3]}% \textleftcurly#4\textrightcurly% }% }% \NewDocumentCommand\dynk{omom}% {% \dynkin[#1]{#2}[#3]{#4}&\csDynkin[#1]{#2}[#3]{#4}\\ }% \NewDocumentCommand\typesetSubseries{m}% {% \IfInteger{#1}{#1}{\IfStrEq{#1}{}{n}{#1}} }% \NewDocumentCommand\dyn{omom}% {% {#2}_{\typesetSubseries{#4}}^{\IfInteger{#3}{#3}{\IfStrEq{#1}{extended}{1}{}}} & \dynk[#1]{#2}[#3]{#4}% }% \NewDocumentEnvironment{dynkinTable}{mmm}% {% \renewcommand{\wdtD}{#2} \renewcommand{\wdtL}{#3} \begin{longtable}{ADM} \caption{#1}\\ \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{2}{c}{continued \dots}\\ \endfoot \endlastfoot }% {% \end{longtable} }% \definecolor{example-color}{gray}{.85} \definecolor{example-border-color}{gray}{.7} \tcbset{coltitle=black,colback=example-color,colframe=example-border-color,enhanced,breakable,pad at break*=1mm, toprule=1.2mm,bottomrule=1.2mm,leftrule=1mm,rightrule=1mm,toprule at break=-1mm,bottomrule at break=-1mm, before upper={\widowpenalties=3 10000 10000 150}} \makeatletter \def\@tocline#1#2#3#4#5#6#7{\relax \ifnum #1>\c@tocdepth% \else \par \addpenalty\@secpenalty\addvspace{#2}% \begingroup \hyphenpenalty\@M \@ifempty{#4}{% \@tempdima\csname r@tocindent\number#1\endcsname\relax }{% \@tempdima#4\relax }% \parindent\z@ \leftskip#3\relax \advance\leftskip\@tempdima\relax #5\leavevmode\hskip-\@tempdima #6\nobreak\relax ,~#7\par \endgroup \fi} \makeatother \fvset{fontsize=\small} \begin{document} \maketitle \begin{center} \begin{varwidth}{\textwidth} \tableofcontents \end{varwidth} \end{center} \setlength{\arrayrulewidth}{1.5pt} \section{Quick introduction} \begin{tcolorbox}[title={Load the Dynkin diagram package (see options below)}] \begin{verbatim} \documentclass{amsart} \usepackage{dynkin-diagrams} \begin{document} The Dynkin diagram of \(B_3\) is \dynkin{B}{3}. \end{document} \end{verbatim} \end{tcolorbox} \begin{tcblisting}{title={Invoke it}} The Dynkin diagram of \(B_3\) is \dynkin{B}{3}. \end{tcblisting} \begin{tcblisting}{title={Inside a \TikZ statement}} The Dynkin diagram of \(B_3\) is \tikz \dynkin{B}{3}; \end{tcblisting} \begin{tcblisting}{title={Inside a Dynkin diagram environment}} The Dynkin diagram of \(B_3\) is \begin{dynkinDiagram}{B}{3} \draw[very thick,red] (root 1) to [out=-45, in=-135] (root 3); \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Inside a \TikZ environment}} Baseline controls vertical alignment: the Dynkin diagram of \(B_3\) is \begin{tikzpicture}[baseline=(origin.base)] \dynkin{B}{3} \draw[very thick,red] (root 1) to [out=-45, in=-135] (root 3); \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Indefinite rank Dynkin diagrams}} \dynkin{B}{} \end{tcblisting} \begin{dynkinTable}{The Dynkin diagrams of the reduced simple root systems \cite{Bourbaki:2002} pp. 265--290, plates I--IX}{2.25cm}{2.5cm} \dyn{A}{} \dyn{C}{} \dyn{D}{} \dyn{E}{6} \dyn{E}{7} \dyn{E}{8} \dyn{F}{4} \dyn{G}{2} \end{dynkinTable} \section{Set options globally} \begin{tcolorbox}[title={Most options set globally \dots}] \begin{verbatim} \pgfkeys{/Dynkin diagram,edge length=.5cm,fold radius=.5cm, indefinite edge/.style={ draw=black,fill=white,thin,densely dashed}} \end{verbatim} \end{tcolorbox} You can also pass options to the package in \verb!\usepackage!. \emph{Danger:} spaces in option names are replaced with hyphens: \texttt{edge length=1cm} is \texttt{edge-length=1cm} as a global option; moreover you should drop the extension \verb!/.style! on any option with spaces in its name (but not otherwise). For example, \begin{tcolorbox}[title={\dots or pass global options to the package}] \begin{verbatim} \usepackage[ ordering=Kac, edge/.style=blue, indefinite-edge={draw=green,fill=white,densely dashed}, indefinite-edge-ratio=5, mark=o, root-radius=.06cm] {dynkin-diagrams} \end{verbatim} \end{tcolorbox} \section{Coxeter diagrams} \begin{tcblisting}{title={Coxeter diagram option}} \dynkin[Coxeter]{F}{4} \end{tcblisting} \begin{tcblisting}{title={gonality option for \(G_2\) and \(I_n\) Coxeter diagrams}} \(G_2=\dynkin[Coxeter,gonality=n]{G}{2}\), \ \(I_n=\dynkin[Coxeter,gonality=n]{I}{}\) \end{tcblisting} \begin{dynkinTable}{The Coxeter diagrams of the simple reflection groups}{2.25cm}{6cm} \dyn[Coxeter]{A}{} \dyn[Coxeter]{B}{} \dyn[Coxeter]{C}{} \dyn[Coxeter]{E}{6} \dyn[Coxeter]{E}{7} \dyn[Coxeter]{E}{8} \dyn[Coxeter]{F}{4} \dyn[Coxeter,gonality=n]{G}{2} \dyn[Coxeter]{H}{3} \dyn[Coxeter]{H}{4} \dyn[Coxeter,gonality=n]{I}{} \end{dynkinTable} \section{Satake diagrams}\label{section:Satake} \begin{tcblisting}{title={Satake diagrams use the standard name instead of a rank}} \(A_{IIIb}=\dynkin{A}{IIIb}\) \end{tcblisting} We use a solid gray bar to denote the folding of a Dynkin diagram, rather than the usual double arrow, since the diagrams turn out simpler and easier to read. \begin{dynkinTable}{The Satake diagrams of the real simple Lie algebras \cite{Helgason:2001} p. 532--534}{2.75cm}{3cm} \dyn{A}{I} \dyn{A}{II} \dyn{A}{IIIa} \dyn{A}{IIIb} \dyn{A}{IV} \dyn{B}{I} \dyn{B}{II} \dyn{C}{I} \dyn{C}{IIa} \dyn{C}{IIb} \dyn{D}{Ia} \dyn{D}{Ib} \dyn{D}{Ic} \dyn{D}{II} \dyn{D}{IIIa} \dyn{D}{IIIb} \dyn{E}{I} \dyn{E}{II} \dyn{E}{III} \dyn{E}{IV} \dyn{E}{V} \dyn{E}{VI} \dyn{E}{VII} \dyn{E}{VIII} \dyn{E}{IX} \dyn{F}{I} \dyn{F}{II} \dyn{G}{I} \end{dynkinTable} \section{How to fold} \begin{tcblisting}{title={If you don't like the solid gray ``folding bar'', most people use arrows. Here is \(E_{II}\)}} \newcommand{\invol}[2]{\draw[latex-latex] (root #1) to [out=-60,in=-120] node[midway,below]{$\sigma$} (root #2);} \begin{dynkinDiagram}[edge length=.75cm,labels*={1,...,6}]{E}{6} \invol{1}{6}\invol{3}{5} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={The double arrows for \(A_{IIIa}\) are big}} \newcommand{\invol}[2]{\draw[latex-latex] (root #1) to [out=-60,in=-120] node[midway,below]{$\sigma$} (root #2);} \begin{dynkinDiagram}[edge length=.75cm]{A}{oo.o**.**o.oo} \invol{1}{10}\invol{2}{9}\invol{3}{8}\invol{4}{7}\invol{5}{6} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={If you don't like the solid gray ``folding bar'', most people use arrows \dots}} \tikzset{/Dynkin diagram/fold style/.style={stealth-stealth,thick, shorten <=1mm,shorten >=1mm,}} \dynkin[ply=3,edge length=.75cm]{D}{4} \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold{1}{13} \dynkinFold[bend right=90]{0}{14} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={\dots but you could try springs pulling roots together}} \tikzset{/Dynkin diagram/fold style/.style= {decorate,decoration={name=coil,aspect=0.5, segment length=1mm,amplitude=.6mm}}} \dynkin[ply=3,edge length=.75cm]{D}{4} \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold{1}{13} \dynkinFold[bend right=90]{0}{14} \end{dynkinDiagram} \end{tcblisting} \section{Labels for the roots} \begin{tcblisting}{title={Make a macro to assign labels to roots}} \dynkin[label,label macro/.code={\alpha_{\mathrlap{#1}}},edge length=.75cm]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Labelling several roots}} \dynkin[labels={,2,...,5,,7},label macro/.code={\alpha_{\mathrlap#1}}]{A}{7} \end{tcblisting} \begin{tcblisting}{title={The \texttt{foreach} notation I}} \dynkin[labels={1,3,...,7},]{A}{9} \end{tcblisting} \begin{tcblisting}{title={The \texttt{foreach} notation II}} \dynkin[labels={,\alpha_2,\alpha_...,\alpha_7},]{A}{7} \end{tcblisting} \begin{tcblisting}{title={The \texttt{foreach} notation III}} \dynkin[label macro/.code={\beta_{\mathrlap{#1}}},labels={,2,...,7},]{A}{7} \end{tcblisting} \begin{tcblisting}{title={Label the roots individually by root number}} \dynkin[label]{B}{3} \end{tcblisting} \begin{tcblisting}{title={Label a single root}} \begin{dynkinDiagram}{B}{3} \dynkinLabelRoot{2}{\alpha_2} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Access root labels via TikZ}} \begin{dynkinDiagram}{B}{3} \node[below] at (root 2) {\(\alpha_{\mathrlap{2}}\)}; \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Commands to label several roots}} \begin{dynkinDiagram}{A}{7} \dynkinLabelRoots{,\alpha_2,\alpha_3,\alpha_4,\alpha_5,,\alpha_7} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={The labels have default locations, mostly below roots}} \dynkin[edge length=.75cm,labels={1,2,3}]{E}{8} \end{tcblisting} \begin{tcblisting}{title={The starred form flips labels to alternate locations, mostly above roots}} \dynkin[edge length=.75cm,labels*={1,2,3}]{E}{8} \end{tcblisting} \begin{tcblisting}{title={Labelling several roots and alternates}} \dynkin[% label macro/.code={\alpha_{\mathrlap{#1}}}, label macro*/.code={\gamma_{\mathrlap{#1}}}, labels={,2,...,5,,7}, labels*={1,3,4,5,6}]{A}{7} \end{tcblisting} \begin{tcblisting}{title={Commands to label several roots}} \begin{dynkinDiagram}{A}{7} \dynkinLabelRoots{,\alpha_2,\alpha_3,\alpha_4,\alpha_5,,\alpha_7} \dynkinLabelRoots*{a,b,c,d,e,f,g} \end{dynkinDiagram} \end{tcblisting} \section{Label subscripts} Note the slight improvement that \verb!\mathrlap! makes: the labels are centered on the middle of the letter \(\alpha\), ignoring the space taken up by the subscripts. \begin{tcblisting}{title={Label spacing improvement}} \dynkin[label,label macro/.code={\alpha_{#1}},edge length=.75cm]{D}{15} \par\noindent{}% \dynkin[label,label macro/.code={\alpha_{\mathrlap{#1}}},edge length=.75cm]{D}{15} \end{tcblisting} \section{Height and depth of labels} Labels are set with default maximum height the height of the character \(b\), and default maximum depth the depth of the character \(g\). To change these, set \verb!label height! and \verb!label depth!: \begin{tcblisting}{title={Change height and dept of characters}} \dynkin[labels={a,b,c,d}]{F}{4} \dynkin[labels*={a,b,c,d}]{F}{4} \dynkin[% label macro/.code={\alpha_{\mathrlap{#1}}}, label macro*/.code={\gamma_{\mathrlap{#1}}}, label height=$\alpha_1$, label depth=$\alpha_1$, labels={,2,...,5,,7}, labels*={1,3,4,5,6}]{A}{7} \dynkin[labels={A,B,C,D},label height=$A$,label depth=$A$]{F}{4} \dynkin[labels={a^1,b^2,c^3,d^4},label height=$X^X$]{F}{4} \end{tcblisting} \section{Text style for the labels} \begin{tcblisting}{title={Use a text style: big and blue}} \begin{dynkinDiagram}[text style={scale=1.2,blue}, edge length=.75cm, labels={1,2,n-1,n}, label macro/.code={\alpha_{\mathrlap{#1}}} ]{A}{} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Use a text style; font selection is in the label macro}} \begin{dynkinDiagram}[text style={scale=1.2,blue}, edge length=.75cm, labels={1,2,n-1,n}, label macro/.code={\mathbb{A}_{\mathrlap{#1}}}]{A}{} \end{dynkinDiagram} \end{tcblisting} \section{Bracing roots} \begin{tcblisting}{title={Bracing roots}} \begin{dynkinDiagram}{A}{*.*x*.*} \dynkinBrace[p]{1}{2} \dynkinBrace[q]{4}{5} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Bracing roots, and a starred form}} \begin{dynkinDiagram}{A}{10} \dynkinBrace[\text{Roots 2 to 9}]{2}{9} \dynkinBrace*[\text{Roots 3 to 8}]{3}{8} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Bracing roots}} \newcommand\circleRoot[1]{\draw (root #1) circle (3pt);} \begin{dynkinDiagram}{A}{**.***.***.***.***.**} \circleRoot{4}\circleRoot{7}\circleRoot{10}\circleRoot{13} \dynkinBrace[y-1]{1}{3} \dynkinBrace[z-1]{5}{6} \dynkinBrace[t-1]{11}{12} \dynkinBrace[x-1]{14}{16} \end{dynkinDiagram} \end{tcblisting} \begin{filecontents*}{EulerProducts.tex} \tikzset{/Dynkin diagram,ordering=Dynkin,label macro/.code={\alpha_{#1}}} \newcounter{EPNo} \setcounter{EPNo}{0} \NewDocumentCommand\EP{smmmm}% {% \stepcounter{EPNo}\roman{EPNo}. & \def\eL{.6cm} \IfStrEqCase{#2}% {% {D}{\gdef\eL{1cm}}% {E}{\gdef\eL{.75cm}}% {F}{\gdef\eL{.35cm}}% {G}{\gdef\eL{.35cm}}% }% \tikzset{/Dynkin diagram,edge length=\eL} \IfBooleanTF{#1}% {\dynkin[backwards,labels*={#4},labels={#5}]{#2}{#3}} {\dynkin[labels*={#4},labels={#5}]{#2}{#3}} \\ }% \begin{longtable}{MM} \caption{Dynkin diagrams from Euler products \cite{Langlands:1967}}\\ \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{2}{c}{continued \dots}\\ \endfoot \endlastfoot \EP{A}{***.**}{1,1,1,1,1}{,1,2,n-1,n} \EP{A}{***.**}{1,1,1,1,1}{1,2,n-1,n} \EP{A}{**.***.*}{1,1,1,1,1,1}{1,2,m-1,,m,n} \EP{B}{**.***}{2,2,2,2,1}{1,2,n-1,n} \EP*{B}{***.**}{2,2,2,2,1}{n,n-1,2,1,} \EP{C}{**.***}{1,1,1,1,2}{1,2,n-1,} \EP*{C}{***.**}{1,1,1,1,2}{n,n-1,2,1,} \EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n} \EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n} \EP{E}{6}{1,1,1,1,1,1}{1,...,5} \EP*{E}{7}{1,1,1,1,1,1,1}{6,...,1} \EP{E}{7}{1,1,1,1,1,1,1}{1,...,6} \EP*{E}{8}{1,1,1,1,1,1,1,1}{7,...,1} \EP{E}{8}{1,1,1,1,1,1,1,1}{1,...,7} \EP{G}{2}{1,3}{,1} \EP{G}{2}{1,3}{1} \EP{B}{**.*.**}{2,2,2,2,1}{,1,2,n-1,n} \EP{F}{4}{1,1,2,2}{,3,2,1} \EP{C}{3}{1,1,2}{,2,1} \EP{C}{**.***}{1,1,1,1,2}{,1,n-2,n-1,n} \EP*{B}{3}{2,2,1}{1,2} \EP{F}{4}{1,1,2,2}{1,2,3} \EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-2,n,n} \EP{E}{6}{1,1,1,1,1,1}{1,2,3,4,,5} \EP{E}{6}{1,1,1,1,1,1}{1,2,3,5,,4} \EP*{E}{7}{1,1,1,1,1,1,1}{,5,...,1,6} \EP*{E}{7}{1,1,1,1,1,1,1}{,6,4,3,2,1,5} \EP*{E}{8}{1,1,1,1,1,1,1,1}{,6,...,1,7} \EP*{E}{8}{1,1,1,1,1,1,1,1}{,7,5,4,3,2,1,6} \EP*{E}{7}{1,1,1,1,1,1,1}{5,...,1,,6} \EP*{E}{7}{1,1,1,1,1,1,1}{1,...,5,,6} \EP*{E}{8}{1,1,1,1,1,1,1,1}{6,...,1,,7} \end{longtable} \end{filecontents*} {\input{EulerProducts}}\VerbatimInput{EulerProducts.tex} \section{Style} \begin{tcblisting}{title={Colours}} \dynkin[ edge/.style={blue!50,thick}, */.style=blue!50!red, arrow color=red]{F}{4} \end{tcblisting} \begin{tcblisting}{title={Edge lengths}} The Dynkin diagram of \(A_3\) is \dynkin[edge length=1.2,parabolic=3]{A}{3} \end{tcblisting} \begin{tcblisting}{title={Root marks}} \dynkin{E}{8} \dynkin[mark=*]{E}{8} \dynkin[mark=o]{E}{8} \dynkin[mark=O]{E}{8} \dynkin[mark=t]{E}{8} \dynkin[mark=x]{E}{8} \dynkin[mark=X]{E}{8} \end{tcblisting} At the moment, you can only use: \par\noindent\begin{tabular}{>{\ttfamily}cl} * & solid dot \\ o & hollow circle \\ O & double hollow circle \\ t & tensor root \\ x & crossed root \\ X & thickly crossed root \end{tabular} \begin{tcblisting}{title={Mark styles}} The parabolic subgroup \(E_{8,124}\) is \dynkin[parabolic=124,x/.style={brown,very thick}]{E}{8} \end{tcblisting} \begin{tcblisting}{title={Sizes of root marks}} \(A_{3,3}\) with big root marks is \dynkin[root radius=.08cm,parabolic=3]{A}{3} \end{tcblisting} \section{Suppress or reverse arrows} \begin{tcblisting}{title={Some diagrams have double or triple edges}} \dynkin{F}{4} \dynkin{G}{2} \end{tcblisting} \begin{tcblisting}{title={Suppress arrows}} \dynkin[arrows=false]{F}{4} \dynkin[arrows=false]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Reverse arrows}} \dynkin[reverse arrows]{F}{4} \dynkin[reverse arrows]{G}{2} \end{tcblisting} \section{Backwards and upside down} \begin{tcblisting}{title={Default}} \dynkin{E}{8} \dynkin{F}{4} \dynkin{G}{2} \end{tcblisting} \begin{tcblisting}{title={Backwards}} \dynkin[backwards]{E}{8} \dynkin[backwards]{F}{4} \dynkin[backwards]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Reverse arrows}} \dynkin[reverse arrows]{F}{4} \dynkin[reverse arrows]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Backwards, reverse arrows}} \dynkin[backwards,reverse arrows]{F}{4} \dynkin[backwards,reverse arrows]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Backwards versus upside down}} \dynkin[label]{E}{8} \dynkin[label,backwards]{E}{8} \dynkin[label,upside down]{E}{8} \dynkin[label,backwards,upside down]{E}{8} \end{tcblisting} \section{Drawing on top of a Dynkin diagram} \begin{tcblisting}{title={TikZ can access the roots themselves}} \begin{dynkinDiagram}{A}{4} \fill[white,draw=black] (root 2) circle (.15cm); \fill[white,draw=black] (root 2) circle (.1cm); \draw[black] (root 2) circle (.05cm); \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Draw curves between the roots}} \begin{dynkinDiagram}[label]{E}{8} \draw[very thick, black!50,-latex] (root 3.south) to [out=-45, in=-135] (root 6.south); \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{title={Change marks}} \begin{dynkinDiagram}[mark=o,label]{E}{8} \dynkinRootMark{*}{5} \dynkinRootMark{*}{8} \end{dynkinDiagram} \end{tcblisting} \section{Mark lists} The package allows a list of root marks instead of a rank: \begin{tcblisting}{title={A mark list}} \dynkin{E}{oo**ttxx} \end{tcblisting} The mark list \verb!oo**ttxx! has one mark for each root: \verb!o!, \verb!o!, \dots, \verb!x!. Roots are listed in the current default ordering. (Careful: in an affine root system, a mark list will \emph{not} contain a mark for root zero.) If you need to repeat a mark, you can give a \emph{single digit} positive integer to indicate how many times to repeat it. \begin{tcblisting}{title={A mark list with repetitions}} \dynkin{A}{x4o3t4} \end{tcblisting} \NewDocumentCommand\ClassicalLieSuperalgebras{om}% {% \IfValueT{#1}{\tikzset{/Dynkin diagram,root radius=#1}} \renewcommand{\wdtE}{10cm} \begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #2}{3.5cm}{6.5cm} \IfValueT{#1}{ & & \texttt{\textbackslash{}tikzset\{/Dynkin diagram,root radius=#1\}} \\ } A_{mn} & \dynk{A}{o3.oto.oo} B_{mn} & \dynk{B}{o3.oto.oo} B_{0n} & \dynk{B}{o3.o3.o*} C_{n} & \dynk{C}{too.oto.oo} D_{mn} & \dynk{D}{o3.oto.o4} D_{21\alpha} & \dynk{A}{oto} F_4 & \dynk{F}{ooot} G_3 & \dynk[extended,affine mark=t, reverse arrows]{G}{2} \end{dynkinTable} \IfValueT{#1}{\tikzset{/Dynkin diagram,root radius=.05cm}} }% \ClassicalLieSuperalgebras[.07cm]{We need a slightly larger root radius parameter to distinguish the tensor product symbols from the solid dots.} \ClassicalLieSuperalgebras{Here we see the problem with using the default root radius parameter, which is too small for tensor product symbols.} \section{Indefinite edges} An \emph{indefinite edge} is a dashed edge between two roots, \dynkin{A}{*.*} indicating that an indefinite number of roots have been omitted from the Dynkin diagram. In between any two entries in a mark list, place a period to indicate an indefinite edge: \begin{tcblisting}{title={Indefinite edges}} \dynkin{D}{o.o*.*.t.to.t} \end{tcblisting} In certain diagrams, roots may have an edge between them even though they are not subsequent in the ordering. For such rare situations, there is an option: \begin{tcblisting}{title={Indefinite edge option}} \dynkin[make indefinite edge={3-5},label]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Give a list of edges to become indefinite}} \dynkin[make indefinite edge/.list={1-2,3-5},label]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Indefinite edge style}} \dynkin[indefinite edge/.style={draw=black,fill=white,thin,densely dashed},% edge length=1cm,% make indefinite edge={3-5}] {D}{5} \end{tcblisting} \begin{tcblisting}{title={The ratio of the lengths of indefinite edges to those of other edges}} \dynkin[edge length = .5cm,% indefinite edge ratio=3,% make indefinite edge={3-5}] {D}{5} \end{tcblisting} \begingroup \renewcommand{\wdtA}{.35cm} \renewcommand{\wdtE}{6.55cm} \begin{dynkinTable}{Springer's table of indices \cite{Springer:2009}, pp. 320-321, with one form of \(E_7\) corrected}{2.5cm}{3.7cm} % 1 A_n & \multicolumn{2}{E}{ \begin{dynkinDiagram}{A}{o.o*o.o*o.o} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{n-d} \end{dynkinDiagram} } \\ % 2 A_n & \multicolumn{2}{E}{ \begin{dynkinDiagram}{A}{o.o*o.o*o.o*o.o*o.o} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \dynkinLabelRoot{9}{n-rd} \dynkinLabelRoot{12}{n-d} \end{dynkinDiagram} } \\ % 3 B_n & \multicolumn{2}{E}{ \begin{dynkinDiagram}{B}{**.*.o.oo} \dynkinLabelRoot{3}{r} \end{dynkinDiagram} } \\ % 4 C_n & \multicolumn{2}{E}{ \begin{dynkinDiagram}{C}{o.o*o.o*o.oo} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \end{dynkinDiagram} } \\ % 5 D_n & \multicolumn{2}{E}{ \begin{dynkinDiagram}{D}{o.o*o.o*o.ooo} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \end{dynkinDiagram} } \\ % 6 E_6 & \dynk{E}{*oooo*} % 7 E_6 & \dynk{E}{o*o*oo} % 8 E_6 & \dynk{E}{o*oooo} % 9 E_6 & \dynk{E}{**ooo*} % 10 E_7 & \dynk{E}{*oooooo} % 11 E_7 & \dynk{E}{ooooo*o} % 12 E_7 & \dynk{E}{oooooo*} % 13 E_7 & \dynk{E}{*oooo*o} % 14 - corrected from Springer. E_7 & \dynk{E}{*oooo**} % 15 E_7 & \dynk{E}{*o**o*o} % 16 E_8 & \dynk{E}{*ooooooo} % 17 E_8 & \dynk{E}{ooooooo*} % 18 E_8 & \dynk{E}{*oooooo*} % 19 E_8 & \dynk{E}{oooooo**} % 20 E_8 & \dynk{E}{*oooo***} % 21 F_4 & \dynk{F}{ooo*} % 22 D_4 & \dynk{D}{o*oo} \end{longtable} \endgroup \section{Parabolic subgroups} Each set of roots is assigned a number, with each binary digit zero or one to say whether the corresponding root is crossed or not: \begin{tcblisting}{} The flag variety of pointed lines in projective 3-space is associated to the Dynkin diagram \dynkin[parabolic=3]{A}{3}. \end{tcblisting} \begin{filecontents*}{hermitian-symmetric-spaces.tex} \NewDocumentCommand\HSS{mommm} {#1&\IfNoValueTF{#2}{\dynkin{#3}{#4}}{\dynkin[parabolic=#2]{#3}{#4}}\\} \renewcommand*{\arraystretch}{1.5} \begin{longtable} {>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}l} \caption{The Hermitian symmetric spaces}\endfirsthead \caption{\dots continued}\\ \endhead \caption{continued \dots}\\ \endfoot \endlastfoot \HSS{A_n}{A}{**.*x*.**}{Grassmannian of $k$-planes in $\C{n+1}$} \HSS{B_n}[1]{B}{}{$(2n-1)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n+1}$} \HSS{C_n}[16]{C}{}{space of Lagrangian $n$-planes in $\C{2n}$} \HSS{D_n}[1]{D}{}{$(2n-2)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n}$} \HSS{D_n}[32]{D}{}{one component of the variety of maximal dimension null subspaces of $\C{2n}$} \HSS{D_n}[16]{D}{}{the other component} \HSS{E_6}[1]{E}{6}{complexified octave projective plane} \HSS{E_6}[32]{E}{6}{its dual plane} \HSS{E_7}[64]{E}{7}{the space of null octave 3-planes in octave 6-space} \end{longtable} \end{filecontents*} \begingroup \input{hermitian-symmetric-spaces.tex} \endgroup \VerbatimInput{hermitian-symmetric-spaces.tex} \begin{tcblisting}{title={Folded parabolics look bad (zoom in on a root)}} \dynkin[fold,parabolic=3]{C}{2} \dynkin[fold,parabolic=3]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Folded parabolics: you can try using thicker crosses}} \dynkin[fold,x/.style={very thick,line cap=round},parabolic=3]{C}{2} \dynkin[fold,x/.style={ultra thick,line cap=round},parabolic=3]{G}{2} \end{tcblisting} \section{Extended Dynkin diagrams} \begin{tcblisting}{title={Extended Dynkin diagrams}} \dynkin[extended]{A}{7} \end{tcblisting} The extended Dynkin diagrams are also described in the notation of Kac \cite{Kac:1990} p. 55 as affine untwisted Dynkin diagrams: we extend \verb!\dynkin{A}{7}! to become \verb!\dynkin{A}[1]{7}!: \begin{tcblisting}{title={Extended Dynkin diagrams}} \dynkin{A}[1]{7} \end{tcblisting} \renewcommand*{\arraystretch}{1.5} \begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems}{3cm}{5cm} \dyn[extended]{A}{1} \dyn[extended]{A}{} \dyn[extended]{B}{} \dyn[extended]{C}{} \dyn[extended]{D}{} \dyn[extended]{E}{6} \dyn[extended]{E}{7} \dyn[extended]{E}{8} \dyn[extended]{F}{4} \dyn[extended]{G}{2} \end{dynkinTable} \section{Affine twisted and untwisted Dynkin diagrams} The affine Dynkin diagrams are described in the notation of Kac \cite{Kac:1990} p. 55: \begin{tcblisting}{title={Affine Dynkin diagrams}} \(A^{(1)}_7=\dynkin{A}[1]{7}, \ E^{(2)}_6=\dynkin{E}[2]{6}, \ D^{(3)}_4=\dynkin{D}[3]{4}\) \end{tcblisting} \begin{dynkinTable}{The affine Dynkin diagrams}{3cm}{3.75cm} \dyn{A}[1]{1} \dyn{A}[1]{} \dyn{B}[1]{} \dyn{C}[1]{} \dyn{D}[1]{} \dyn{E}[1]{6} \dyn{E}[1]{7} \dyn{E}[1]{8} \dyn{F}[1]{4} \dyn{G}[1]{2} \dyn{A}[2]{2} \dyn{A}[2]{even} \dyn{A}[2]{odd} \dyn{D}[2]{} \dyn{E}[2]{6} \dyn{D}[3]{4} \end{dynkinTable} \begin{dynkinTable}{Some more affine Dynkin diagrams}{3cm}{3.25cm} \dyn{A}[2]{4} \dyn{A}[2]{5} \dyn{A}[2]{6} \dyn{A}[2]{7} \dyn{A}[2]{8} \dyn{D}[2]{3} \dyn{D}[2]{4} \dyn{D}[2]{5} \dyn{D}[2]{6} \dyn{D}[2]{7} \dyn{D}[2]{8} \dyn{D}[3]{4} \dyn{E}[2]{6} \end{dynkinTable} \section{Extended Coxeter diagrams} \begin{tcblisting}{title={Extended and Coxeter options together}} \dynkin[extended,Coxeter]{F}{4} \end{tcblisting} \begin{dynkinTable}{The extended (affine) Coxeter diagrams}{3cm}{6cm} \dyn[extended,Coxeter]{A}{} \dyn[extended,Coxeter]{B}{} \dyn[extended,Coxeter]{C}{} \dyn[extended,Coxeter]{D}{} \dyn[extended,Coxeter]{E}{6} \dyn[extended,Coxeter]{E}{7} \dyn[extended,Coxeter]{E}{8} \dyn[extended,Coxeter]{F}{4} \dyn[extended,Coxeter]{G}{2} \dyn[extended,Coxeter]{H}{3} \dyn[extended,Coxeter]{H}{4} \dyn[extended,Coxeter]{I}{1} \end{dynkinTable} \section{Kac style} We include a style called \verb!Kac! which tries to imitate the style of \cite{Kac:1990}. \begin{tcblisting}{title={Kac style}} \dynkin[Kac]{F}{4} \end{tcblisting} \begingroup \pgfkeys{/Dynkin diagram,Kac} \begin{dynkinTable}{The Dynkin diagrams of the simple root systems in Kac style}{5cm}{4.5cm} \dyn{A}{} \dyn{B}{} \dyn{C}{} \dyn{D}{} \dyn{E}{6} \dyn{E}{7} \dyn{E}{8} \dyn{F}{4} \dyn{G}{2} \end{dynkinTable} \begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems in Kac style}{5cm}{4.5cm} \dyn[extended]{A}{1} \dyn[extended]{A}{} \dyn[extended]{B}{} \dyn[extended]{C}{} \dyn[extended]{D}{} \dyn[extended]{E}{6} \dyn[extended]{E}{7} \dyn[extended]{E}{8} \dyn[extended]{F}{4} \dyn[extended]{G}{2} \end{dynkinTable} \begin{dynkinTable}{The Dynkin diagrams of the twisted simple root systems in Kac style}{6cm}{4.5cm} \dyn{A}[2]{2} \dyn{A}[2]{even} \dyn{A}[2]{odd} \dyn{D}[2]{} \dyn{E}[2]{6} \dyn{D}[3]{4} \end{dynkinTable} \endgroup \section{Ceref style} We include a style called \verb!ceref! which paints oblong root markers with shadows. The word ``ceref'' is an old form of the word ``serif''. \begin{tcblisting}{title={Ceref style}} \dynkin[ceref]{F}{4} \end{tcblisting} \begingroup \pgfkeys{/Dynkin diagram,ceref} \begin{dynkinTable}{The Dynkin diagrams of the simple root systems in ceref style}{5cm}{4.5cm} \dyn{A}{} \dyn{B}{} \dyn{C}{} \dyn{D}{} \dyn{E}{6} \dyn{E}{7} \dyn{E}{8} \dyn{F}{4} \dyn{G}{2} \end{dynkinTable} \begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems in ceref style}{5cm}{4.5cm} \dyn[extended]{A}{1} \dyn[extended]{A}{} \dyn[extended]{B}{} \dyn[extended]{C}{} \dyn[extended]{D}{} \dyn[extended]{E}{6} \dyn[extended]{E}{7} \dyn[extended]{E}{8} \dyn[extended]{F}{4} \dyn[extended]{G}{2} \end{dynkinTable} \begin{dynkinTable}{The Dynkin diagrams of the twisted simple root systems in ceref style}{6cm}{4.5cm} \dyn{A}[2]{2} \dyn{A}[2]{even} \dyn{A}[2]{odd} \dyn{D}[2]{} \dyn{E}[2]{6} \dyn{D}[3]{4} \end{dynkinTable} \endgroup \section{More on folded Dynkin diagrams} The Dynkin diagrams package has limited support for folding Dynkin diagrams. \begin{tcblisting}{title={Folding}} \dynkin[fold]{A}{13} \end{tcblisting} \begin{tcblisting}{title={Big fold radius}} \dynkin[fold,fold radius=1cm]{A}{13} \end{tcblisting} \begin{tcblisting}{title={Small fold radius}} \dynkin[fold,fold radius=.2cm]{A}{13} \end{tcblisting} Some Dynkin diagrams have multiple foldings, which we attempt to distinguish (not entirely successfully) by their \emph{ply}: the maximum number of roots folded together. Most diagrams can only allow a 2-ply folding, so \verb!fold! is a synonym for \verb!ply=2!. \begin{tcblisting}{title={3-ply}} \dynkin[ply=3]{D}{4} \dynkin[ply=3,fold right]{D}{4} \dynkin[ply=3]{D}[1]{4} \end{tcblisting} \begin{tcblisting}{title={4-ply}} \dynkin[ply=4]{D}[1]{4} \end{tcblisting} The \(D^{(1)}_{\ell}\) diagrams can be folded on their left end and separately on their right end: \begin{tcblisting}{title={Left, right and both}} \dynkin{D}[1]{} \ \dynkin[fold left]{D}[1]{} \ \dynkin[fold right]{D}[1]{} \ \dynkin[fold]{D}[1]{} \end{tcblisting} We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which we can have two different patterns, so by default, the package only draws as much as it can without distinguishing the two: \begin{tcblisting}{title={Default \(D^{(1)}_{2\ell}\) and the two ways to finish it}} \dynkin[ply=4]{D}[1]{****.*****.*****}% \ \begin{dynkinDiagram}[ply=4]{D}[1]{****.*****.*****}% \dynkinFold[bend right=90]{1}{13}% \dynkinFold[bend right=90]{0}{14}% \end{dynkinDiagram} \ \begin{dynkinDiagram}[ply=4]{D}[1]{****.*****.*****}% \dynkinFold{0}{1}% \dynkinFold{1}{13}% \dynkinFold{13}{14}% \end{dynkinDiagram} \end{tcblisting} \begingroup \renewcommand{\wdtA}{.7cm} \renewcommand{\wdtD}{3.5cm} \renewcommand{\wdtL}{7cm} \NewDocumentCommand\seriesName{mmm}% {% \IfStrEq{#2}{0}{#1_{#3}}{#1^{#2}_{#3}}% }% \NewDocumentCommand\foldingTable{smmmmmmmm}% {% \begin{tabular}{ADL}% \seriesName{#2}{#3}{#4} \seriesName{#6}{#7}{#8}&\IfBooleanTF{#1}{\reflectbox{#9}}{#9}% \end{tabular}% \\ \hline }% \NewDocumentCommand\fold{smmmmmm}% {% \IfBooleanTF{#1}% {% \foldingTable% {#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}% {#5}{#6}{#7}{\dynk[reverse arrows]{#5}[#6]{#7}}% }% {% \foldingTable% {#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}% {#5}{#6}{#7}{\dynk{#5}[#6]{#7}}% }% }% \begin{filecontents*}{DoneTwoElBendy.tex} \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold[bend right=90]{1}{13} \dynkinFold[bend right=90]{0}{14} \end{dynkinDiagram} \end{filecontents*} \begin{filecontents*}{DoneTwoElStraight.tex} \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold{0}{1} \dynkinFold{1}{13} \dynkinFold{13}{14} \end{dynkinDiagram} \end{filecontents*} \pgfkeys{/Dynkin diagram,fold radius=.35cm} \begin{longtable}{@{}p{15cm}@{}} \caption{Some foldings of Dynkin diagrams. For these diagrams, we want to compare a folding diagram with the diagram that results when we fold it, so it looks best to set \texttt{fold radius} and \texttt{edge length} to equal lengths.}\\ \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{1}{c}{continued \dots}\\ \endfoot \endlastfoot \fold{A}{0}{3}{C}{0}{2} \foldingTable{A}{0}{2\ell-1}{\dynk[fold]{A}{**.*****.**}}% {C}{0}{\ell}{\dynk{C}{}} \fold*{B}{0}{3}{G}{0}{2} \foldingTable{D}{0}{4}{\dynk[ply=3,fold right]{D}{4}}% {G}{0}{2}{\dynk{G}{2}} \foldingTable{D}{0}{\ell+1}{\dynk[fold]{D}{}}% {B}{0}{\ell}{\dynk{B}{}} \fold*{E}{0}{6}{F}{0}{4} \foldingTable{A}{1}{3}{\dynk[ply=4]{A}[1]{3}}% {A}{1}{1}{\dynk{A}[1]{1}} \foldingTable{A}{1}{2\ell-1}{\dynk[fold]{A}[1]{**.*****.**}}% {C}{1}{\ell}{\dynk{C}[1]{}} \foldingTable{B}{1}{3}{\dynk[ply=3]{B}[1]{3}}% {A}{2}{2}{\dynk{A}[2]{2}} \foldingTable{B}{1}{3}{\dynk[ply=2]{B}[1]{3}}% {G}{1}{2}{\dynk{G}[1]{2}} \foldingTable{B}{1}{\ell}{\dynk[fold]{B}[1]{}}{D}{2}{\ell}{\dynk{D}[2]{}} \foldingTable{D}{1}{4}{\dynk[ply=3]{D}[1]{4}}% {B}{1}{3}{\dynk{B}[1]{3}} \foldingTable{D}{1}{4}{\dynk[ply=3]{D}[1]{4}}% {G}{1}{2}{\dynk{G}[1]{2}} \foldingTable{D}{1}{\ell+1}{\dynk[fold]{D}[1]{}}% {D}{2}{\ell}{\dynk{D}[2]{}} \foldingTable{D}{1}{\ell+1}{% \dynk[fold right]{D}[1]{}}% {B}{1}{\ell}{\dynk{B}[1]{}} \foldingTable{D}{1}{2\ell}{% \input{DoneTwoElStraight.tex} & \VerbatimInput{DoneTwoElStraight.tex} \\ }% {A}{2}{\text{odd}}{\dynk{A}[2]{odd}} \foldingTable{D}{1}{2\ell}{% \input{DoneTwoElBendy.tex} & \VerbatimInput{DoneTwoElBendy.tex} \\ }% {A}{2}{\text{even}}{\dynk{A}[2]{even}} \fold*{E}{1}{6}{F}{1}{4} \foldingTable{E}{1}{6}{\dynk[ply=3]{E}[1]{6}}% {D}{3}{4}{\dynk{D}[3]{4}} \fold{E}{1}{7}{E}{2}{6} \fold{F}{1}{4}{G}{1}{2} \foldingTable{A}{2}{\text{odd}}{% \dynk[odd,fold]{A}[2]{****.***} }% {A}{2}{\text{even}}{\dynk{A}[2]{even}} \foldingTable{D}{2}{3}{\dynk[fold]{D}[2]{3}}% {A}{2}{2}{\dynk{A}[2]{2}} \end{longtable} \endgroup \begingroup \renewcommand{\wdtA}{.8cm} \begin{dynkinTable}{Frobenius fixed point subgroups of finite simple groups of Lie type \cite{Carter:1995} p. 15}{3cm}{6cm} A_{\ell\ge 1} & \dynk{A}{} {}^2\!A_{\ell\ge 2} & \dynk[fold]{A}{} B_{\ell\ge 2} & \dynk{B}{} {}^2\!B_2 & \dynk[fold]{B}{2} C_{\ell\ge3} & \dynk{C}{} D_{\ell\ge4} & \dynk{D}{} {}^2\!D_{\ell\ge4} & \dynk[fold]{D}{} {}^3\!D_4 & \dynk[ply=3]{D}{4} E_6 & \dynk{E}{6} {}^2\!E_6 & \dynk[fold]{E}{6} E_7 & \dynk{E}{7} E_8 & \dynk{E}{8} F_4 & \dynk{F}{4} {}^2\!F_4 & \dynk[fold]{F}{4} G_2 & \dynk{G}{2} {}^2G_2 & \dynk[fold]{G}{2} \end{dynkinTable} \endgroup \section{Root ordering}\label{section:order} \begin{tcblisting}{title={Root ordering}} \dynkin[label,ordering=Adams]{E}{6} \dynkin[label,ordering=Bourbaki]{E}{6} \dynkin[label,ordering=Carter]{E}{6} \dynkin[label,ordering=Dynkin]{E}{6} \dynkin[label,ordering=Kac]{E}{6} \end{tcblisting} Default is Bourbaki. Sources are Adams \cite{Adams:1996} p. 56--57, Bourbaki \cite{Bourbaki:2002} p. pp. 265--290 plates I-IX, Carter \cite{Carter:2005} p. 540--609, Dynkin \cite{Dynkin:1952}, Kac \cite{Kac:1990} p. 43. \NewDocumentCommand\tablerow{mm}% {% #1_{#2}& \dynkin[label,ordering=Adams]{#1}{#2}& \dynkin[label]{#1}{#2}& \dynkin[label,ordering=Carter]{#1}{#2}& \dynkin[label,ordering=Dynkin]{#1}{#2}& \dynkin[label,ordering=Kac]{#1}{#2}\\ }% \begin{center} \renewcommand{\wdtA}{.7cm} \renewcommand{\wdtL}{2.2cm} \begin{longtable}{@{}ALLLLL@{}} \toprule & Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule \endfirsthead \toprule & Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule \endhead \bottomrule \endfoot \bottomrule \endlastfoot \tablerow{E}{6}\tablerow{E}{7}\tablerow{E}{8}\tablerow{F}{4}\tablerow{G}{2} \end{longtable} \end{center} The marks are set down in order according to the current root ordering: \begin{tcblisting}{} \dynkin[label]{E}{*otxXOt*} \dynkin[label,ordering=Carter]{E}{*otxXOt*} \dynkin[label,ordering=Kac]{E}{*otxXOt*} \end{tcblisting} \section{Connecting Dynkin diagrams}\label{section:name} We can make some sophisticated folded diagrams by drawing multiple diagrams, each with a name: \begin{tcblisting}{title={Name a diagram}} \dynkin[name=Bob]{D}{6} \end{tcblisting} We can then connect the two with folding edges: \begin{tcblisting}{title={Connect diagrams}} \begin{dynkinDiagram}[name=upper]{A}{3} \node (current) at ($(upper root 1)+(0,-.3cm)$) {}; \dynkin[at=(current),name=lower]{A}{3} \begin{scope}[on background layer] \foreach \i in {1,...,3}% {% \draw[/Dynkin diagram/fold style] ($(upper root \i)$) -- ($(lower root \i)$);% }% \end{scope} \end{dynkinDiagram} \end{tcblisting} The following diagrams arise in the Satake diagrams of the pseudo-Riemannian symmetric spaces \cite{Baba:2009}. \begin{tcblisting}{} \pgfkeys{/Dynkin diagram,edge length=.5cm,fold radius=.5cm} \begin{tikzpicture} \dynkin[name=1]{A}{IIIb} \node (a) at (-.3,-.4){}; \dynkin[name=2,at=(a)]{A}{IIIb} \begin{scope}[on background layer] \foreach \i in {1,...,7}% {% \draw[/Dynkin diagram/fold style] ($(1 root \i)$) -- ($(2 root \i)$);% }% \end{scope} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \pgfkeys{/Dynkin diagram, edge length=.75cm, edge/.style={draw=example-color,double=black,very thick}} \begin{tikzpicture} \foreach \d in {1,...,4} { \node (current) at ($(\d*.05,\d*.3)$){}; \dynkin[name=\d,at=(current)]{D}{oo.oooo} } \begin{scope}[on background layer] \foreach \i in {1,...,6}% {% \draw[/Dynkin diagram/fold style] ($(1 root \i)$) -- ($(2 root \i)$);% \draw[/Dynkin diagram/fold style] ($(2 root \i)$) -- ($(3 root \i)$);% \draw[/Dynkin diagram/fold style] ($(3 root \i)$) -- ($(4 root \i)$);% }% \end{scope} \end{tikzpicture} \end{tcblisting} \section{Other examples} \begin{filecontents*}{d44.tex} \tikzset{/Dynkin diagram,edge length=1cm,fold radius=1cm} \tikzset{/Dynkin diagram,label macro/.code={\alpha_{#1}},label macro*/.code={\beta_{#1}}} \({}^1 D_4\) 4-ply tied straight: \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold{0}{1} \dynkinFold{1}{13} \dynkinFold{13}{14} \dynkinLabelRoots{0,...,14} \dynkinLabelRoots*{0,...,14} \end{dynkinDiagram} \({}^1 D_4\) 4-ply tied bending: \begin{dynkinDiagram}[ply=4]{D}[1]% {****.*****.*****} \dynkinFold{1}{13} \dynkinFold[bend right=65]{0}{14} \dynkinLabelRoots{0,...,14} \dynkinLabelRoots*{0,...,14} \end{dynkinDiagram} \end{filecontents*} \begingroup\input{d44}\endgroup \VerbatimInput{d44.tex} Below we draw the Vogan diagrams of some affine Lie superalgebras \cite{Ransingh:2013,Ransingh:unpub}. \begingroup \tikzset{/Dynkin diagram,edge length=.35cm,fold radius=.3cm} \NewDocumentCommand\labls{m}% {% \ifcase#1% {1}\or% {1}\or% {2}\or% {2}\or% {2}\or% {2}\or% {2}\or% {1}\or% {1}\or% \else\typeout{What?}% \fi% }% \NewDocumentCommand\lablIt{m}% {% \ifnum#1=0\relax% 1% \else 2% \fi% }% \begingroup \tikzset{/Dynkin diagram,label macro/.code=\labls{#1},label,root radius=.06cm} \tcbset{text width=10cm} \renewcommand{\wdtA}{2cm} \NewDocumentEnvironment{Category}{m}% {% \begin{tcolorbox}[title={\(#1\)},breakable]{} }% {% \end{tcolorbox} }% \begin{Category}{\mathfrak{sl}\left(2m|2n\right)^{(2)}} \begin{tcblisting}{} \begin{dynkinDiagram}[ply=2,label]{B}[1]{oo.oto.oo} \dynkinLabelRoot*{7}{1} \end{dynkinDiagram} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[1]{oo.oto.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[1]{oO.otO.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,fold]{D}[1]{oo.oto.ooo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2m+1|2n\right)^2} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oO.oto.oO} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,fold]{B}[1]{oo.oto.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2m+1|2n+1\right)^2} \begin{tcblisting}{} \dynkin[label]{D}[2]{o.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[2]{o.OtO.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2|2n+1\right)^{(2)}} \begin{tcblisting}{} \dynkin[ply=2,label,double edges]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,double fold]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,double edges]{B}[1]{oo.OtO.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,double fold]{B}[1]{oo.OtO.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[ply=2,label,double edges]{D}[1]{oo.oto.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,double fold left]{D}[1]{oo.oto.ooo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{osp}\left(2m|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[label,label macro/.code={1}]{D}[2]{o.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,label macro/.code={1}]{D}[2]{o.Oto.Oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{osp}\left(2|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[label,label macro/.code=\lablIt{#1}, affine mark=*] {D}[2]{o.o.o.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,label macro/.code=\lablIt{#1}, affine mark=*] {D}[2]{o.O.o.o*} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(1|2n+1\right)^{4}} \begin{tcblisting}{} \dynkin[label,label macro/.code={1}]{D}[2]{o.o.o.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,label macro/.code={1}]{D}[2]{o.o.O.o*} \end{tcblisting} \end{Category} \begin{Category}{A^1} \begin{tcblisting}{} \begin{tikzpicture} \dynkin[name=upper]{A}{oo.t.oo} \node (Dynkin current) at (upper root 1){}; \dynkinSouth \dynkin[at=(Dynkin current),name=lower]{A}{oo.t.oo} \begin{scope}[on background layer] \foreach \i in {1,...,5}{ \draw[/Dynkin diagram/fold style] ($(upper root \i)$) -- ($(lower root \i)$); } \end{scope} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold]{A}[1]{oo.t.ooooo.t.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold,affine mark=t]{A}[1]{oo.o.ootoo.o.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[affine mark=t]{A}[1]{o*.t.*o} \end{tcblisting} \end{Category} \begin{Category}{B^1} \begin{tcblisting}{} \dynkin[affine mark=*]{A}[2]{o.oto.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[affine mark=*]{A}[2]{o.oto.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[affine mark=*]{A}[2]{o.ooo.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd]{A}[2]{oo.*to.*o} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd,fold]{A}[2]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd,fold]{A}[2]{o*.oto.o*} \end{tcblisting} \end{Category} \begin{Category}{D^1} \begin{tcblisting}{} \dynkin{D}{otoo} \end{tcblisting} \begin{tcblisting}{} \dynkin{D}{ot*o} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold]{D}{otoo} \end{tcblisting} \end{Category} \begin{Category}{C^1} \begin{tcblisting}{} \dynkin[double edges,fold,affine mark=t,odd]{A}[2]{to.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[double edges,fold,affine mark=t,odd]{A}[2]{t*.oo} \end{tcblisting} \end{Category} \begin{Category}{F^1} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{oto*}% \dynkinQuadrupleEdge{1}{2}% \dynkinTripleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{*too}% \dynkinQuadrupleEdge{1}{2}% \dynkinTripleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \end{Category} \begin{Category}{G^1} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{ot*oo}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{oto*o}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{*too*}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \begin{tcblisting}{} \begin{dynkinDiagram}{A}{*tooo}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{dynkinDiagram}% \end{tcblisting} \end{Category} \endgroup \section{Example: the complex simple Lie algebras} \begin{filecontents*}{simple-lie-algebras.tex} \NewDocumentEnvironment{bunch}{}% {\renewcommand*{\arraystretch}{1}\begin{array}{@{}ll@{}}\\ \midrule}{\\ \midrule\end{array}} \small \NewDocumentCommand\nct{mm}{\newcolumntype{#1}{>{\columncolor[gray]{.9}}>{$}m{#2cm}<{$}}} \nct{G}{.3}\nct{D}{2.1}\nct{W}{3}\nct{R}{3.7}\nct{S}{3} \NewDocumentCommand\LieG{}{\mathfrak{g}} \NewDocumentCommand\W{om}{\ensuremath{\mathbb{Z}^{#2}\IfValueT{#1}{/\left<#1\right>}}} \renewcommand*{\arraystretch}{1.5} \NewDocumentCommand\quo{}{\text{quotient of } E_8} \begin{longtable}{@{}GDWRS@{}} \LieG&\text{Diagram}&\text{Weights}&\text{Roots}&\text{Simple roots}\\ \midrule\endfirsthead \LieG&\text{Diagram}&\text{Weights}&\text{Roots}&\text{Simple roots}\\ \midrule\endhead A_n&\dynkin{A}{}&\frac{1}{r+1}\W[\sum e_j]{n+1}&e_i-e_j&e_i-e_{i+1}\\ B_n&\dynkin{B}{}&\frac{1}{2}\W{n}& \pm e_i, \pm e_i \pm e_j, i\ne j&e_i-e_{i+1}, e_n\\ C_n&\dynkin{C}{}&\W{n}& \pm 2 e_i, \pm e_i \pm e_j, i\ne j&e_i-e_{i+1}, 2e_n\\ D_n&\dynkin{D}{}&\frac{1}{2}\W{n}& \pm e_i \pm e_j, i\ne j & \begin{bunch}e_i-e_{i+1},&i\le n-1\\e_{n-1}+e_n\end{bunch}\\ E_8&\dynkin{E}{8}&\frac{1}{2}\W{8}& \begin{bunch}\pm2e_i\pm2e_j,&i\ne j,\\ \sum_i(-1)^{m_i}e_i,&\sum m_i \text{ even}\end{bunch}& \begin{bunch} 2e_1-2e_2,\\2e_2-2e_3,\\2e_3-2e_4,\\2e_4-2e_5,\\2e_5-2e_6,\\2e_6+2e_7,\\ -\sum e_j,\\2e_6-2e_7 \end{bunch}\\ E_7&\dynkin{E}{7}&\frac{1}{2}\W[e_1-e_2]{8}&\quo&\quo\\ E_6&\dynkin{E}{6}&\frac{1}{3}\W[e_1-e_2,e_2-e_3]{8}&\quo&\quo\\ F_4& \dynkin{F}{4}&\W{4}& \begin{bunch}\pm 2e_i,\\ \pm 2e_i \pm 2e_j, \quad i \ne j,\\ \pm e_1 \pm e_2 \pm e_3 \pm e_4 \end{bunch}& \begin{bunch}2e_2-2e_3,\\2e_3-2e_4,\\2e_4,\\e_1-e_2-e_3-e_4\end{bunch}\\ G_2&\dynkin{G}{2}&\W[\sum e_j]{3}& \begin{bunch} \pm(1,-1,0),\\ \pm(-1,0,1),\\ \pm(0,-1,1),\\ \pm(2,-1,-1),\\ \pm(1,-2,1),\\ \pm(-1,-1,2) \end{bunch}& \begin{bunch}(-1,0,1),\\(2,-1,-1)\end{bunch} \end{longtable} \end{filecontents*} \begingroup \input{simple-lie-algebras.tex} \endgroup \VerbatimInput{simple-lie-algebras.tex} \section{An example of Mikhail Borovoi} \begin{filecontents*}{borovoi.tex} \tikzset{big arrow/.style={ -Stealth,line cap=round,line width=1mm, shorten <=1mm,shorten >=1mm}} \newcommand\catholic[2]{\draw[big arrow,green!25!white] (root #1) to (root #2);} \newcommand\protestant[2]{ \begin{scope}[transparency group, opacity=.25] \draw[big arrow,orange] (root #1) to (root #2); \end{scope}} \begin{dynkinDiagram}[edge length=1.2cm, indefinite edge/.style={thick,loosely dotted}, labels*={0,1,2,3,\ell-3,\ell-2,\ell-1,\ell}]{D}[1]{} \catholic{0}{6}\catholic{1}{7} \protestant{7}{0}\protestant{6}{1} \end{dynkinDiagram} \end{filecontents*} \begingroup \begin{center} \input{borovoi.tex} \end{center} \endgroup \VerbatimInput{borovoi.tex} \newpage \section{Syntax} The syntax is \verb!\dynkin[]{}[]{}! where \verb!! is \verb!A!, \verb!B!, \verb!C!, \verb!D!, \verb!E!, \verb!F! or \verb!G!, the family of root system for the Dynkin diagram, \verb!! is \verb!0!, \verb!1!, \verb!2!, \verb!3! (default is \verb!0!) representing: \[ \renewcommand*{\arraystretch}{1} \begin{array}{rp{8cm}} 0 & finite root system \\ \hline 1 & affine extended root system, i.e. of type \({}^{(1)}\) \\ 2 & affine twisted root system of type \({}^{(2)}\) \\ 3 & affine twisted root system of type \({}^{(3)}\) \\ \end{array} \] and \verb!! is \begin{enumerate} \item an integer representing the rank or \item blank to represent an indefinite rank or \item the name of a Satake diagram as in section~\ref{section:Satake}. \end{enumerate} The environment syntax is \verb!\begin{dynkinDiagram}! followed by the same parameters as \verb!\dynkin!, then various Dynkin diagram and \TikZ{} commands, and then \verb!\end{dynkinDiagram}!. \section{Options} \newcommand*{\typ}[1]{\(\left<\texttt{#1}\right>\)} \newcommand*{\optionLabel}[3]{%% \multicolumn{2}{l}{\(\texttt{#1}=\texttt{#2}\),} \\ \multicolumn{2}{l}{\(\textrm{default}: \texttt{#3}\)} \\ }%% \renewcommand*{\arraystretch}{1} \par\noindent% \begin{longtable}{p{1cm}p{10cm}} \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{2}{c}{continued \dots}\\ \endfoot \endlastfoot \optionLabel{ceref}{\typ{true or false}}{false} & whether to draw roots in a ``ceref'' style. \\ \optionLabel{edge length}{\typ{number}cm}{.35cm} & distance between nodes in the Dynkin diagram \\ \optionLabel{edge/.style}{TikZ style data}{solid,draw=black,fill=white,thin} & style of edges in the Dynkin diagram \\ \optionLabel{Kac}{\typ{true or false}}{false} & whether to draw in the style of \cite{Kac:1990} \\ \optionLabel{name}{\typ{string}}{anonymous} & A name for the Dynkin diagram, with \texttt{anonymous} treated as a blank; see section~\ref{section:name}. \\ \optionLabel{parabolic}{\typ{integer}}{0} & A parabolic subgroup with specified integer, where the integer is computed as \(n=\sum 2^{i-1} a_i\), \(a_i=0\) or \(1\), to say that root \(i\) is crossed, i.e. a noncompact root. \\ \optionLabel{root radius}{\typ{number}cm}{.05cm} & size of the dots and of the crosses in the Dynkin diagram \\ \optionLabel{text style}{\typ{TikZ style data}}{scale=.7} & Style for any labels on the roots. \\ \optionLabel{mark}{\typ{o,O,t,x,X,*}}{*} & default root mark \\ \optionLabel{affine mark}{o,O,t,x,X,*}{*} & default root mark for root zero in an affine Dynkin diagram \\ \optionLabel{label}{true or false}{false} & whether to label the roots according to the current labelling scheme. \\ \optionLabel{label macro}{\typ{1-parameter \TeX{} macro}}{\texttt{\#1}} & the current labelling scheme for roots. \\ \optionLabel{label macro*}{\typ{1-parameter \TeX{} macro}}{\texttt{\#1}} & the current labelling scheme for alternate roots. \\ \optionLabel{label height}{\typ{1-parameter \TeX{} macro}}{b} & the current maximal height of text labels for the roots, set by giving mathematics text of that height. \\ \optionLabel{label depth}{\typ{1-parameter \TeX{} macro}}{g} & the current maximal depth of text labels for the roots, set by giving mathematics text of that depth. \\ \optionLabel{make indefinite edge}{\typ{edge pair \(i\)-\(j\) or list of such}}{\{\}} & edge pair or list of edge pairs to treat as having indefinitely many roots on them. \\ \optionLabel{indefinite edge ratio}{\typ{float}}{1.6} & ratio of indefinite edge lengths to other edge lengths. \\ \optionLabel{indefinite edge/.style}{\typ{TikZ style data}}{solid,draw=black,fill=white,thin,densely dotted} & style of the dotted or dashed middle third of each indefinite edge. \\ \optionLabel{backwards}{\typ{true or false}}{false} & whether to reverse right to left. \\ \optionLabel{upside down}{\typ{true or false}}{false} & whether to reverse up to down. \\ \optionLabel{arrows}{\typ{true or false}}{true} & whether to draw the arrows that arise along the edges. \\ \optionLabel{reverse arrows}{\typ{true or false}}{true} & whether to reverse the direction of the arrows that arise along the edges. \\ \optionLabel{fold}{\typ{true or false}}{true} & whether, when drawing Dynkin diagrams, to draw them 2-ply. \\ \optionLabel{ply}{\typ{0,1,2,3,4}}{0} & how many roots get folded together, at most. \\ \optionLabel{fold left}{\typ{true or false}}{true} & whether to fold the roots on the left side of a Dynkin diagram. \\ \optionLabel{fold right}{\typ{true or false}}{true} & whether to fold the roots on the right side of a Dynkin diagram. \\ \optionLabel{fold radius}{\typ{length}}{.3cm} & the radius of circular arcs used in curved edges of folded Dynkin diagrams. \\ \optionLabel{fold style/.style}{\typ{TikZ style data}}{solid,draw=black!40,fill=none,line width=radius} & when drawing folded diagrams, style for the fold indicators. \\ \optionLabel{*/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black} & style for roots like \dynkin{A}{*} \\ \optionLabel{o/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black} & style for roots like \dynkin{A}{o} \\ \optionLabel{O/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black} & style for roots like \dynkin{A}{O} \\ \optionLabel{t/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black} & style for roots like \dynkin{A}{t} \\ \optionLabel{x/.style}{\typ{TikZ style data}}{solid,draw=black,line cap=round} & style for roots like \dynkin{A}{x} \\ \optionLabel{X/.style}{\typ{TikZ style data}}{solid,draw=black,thick,line cap=round} & style for roots like \dynkin{A}{X} \\ \optionLabel{fold left style/.style}{\typ{TikZ style data}}{} & style to override the \texttt{fold} style when folding roots together on the left half of a Dynkin diagram \\ \optionLabel{fold right style/.style}{\typ{TikZ style data}}{} & style to override the \texttt{fold} style when folding roots together on the right half of a Dynkin diagram \\ \optionLabel{double edges}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{double fold}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{double left}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{double fold left}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{double right}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{double fold right}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{arrow color}{\typ{}}{black} & set to override the default color for the arrows in nonsimply laced Dynkin diagrams. \\ \optionLabel{Coxeter}{\typ{true or false}}{false} & whether to draw a Coxeter diagram, rather than a Dynkin diagram. \\ \optionLabel{ordering}{\typ{Adams, Bourbaki, Carter, Dynkin, Kac}}{Bourbaki} & which ordering of the roots to use in exceptional root systems as in section~\ref{section:order}. \\ \end{longtable} \par\noindent{}All other options are passed to TikZ. \nocite{*} \bibliographystyle{amsplain} \bibliography{dynkin-diagrams} \end{document}